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Abstract.
YOSO MPC (Gentry et al., Crypto 2021) is a new MPC framework where each
participant can speak at most once. This models an adaptive adversary’s ability
to watch the network and corrupt or destroy parties it deems significant based on
their communication. By using private channels to anonymous receivers (e.g. by
encrypting to a public key whose owner is unknown), the communication complexity
of YOSO MPC can scale sublinearly with the total number N of available parties,
even when the adversary’s corruption threshold is linear in N (e.g. just under N/2).
It was previously an open problem whether YOSO MPC can achieve guaranteed
output delivery in a constant number of rounds without relying on trusted setup.
In this work, we show that this can indeed be accomplished. We demonstrate three
different approaches: the first two (which we call YaOSO and YOSO-GLS) use two
and three rounds of communication, respectively. Our third approach (which we call
YOSO-LHSS) uses O(d) rounds, where d is the multiplicative depth of the circuit
being evaluated; however, it can be used to bootstrap any constant-round YOSO
protocol that requires setup, by generating that setup within YOSO-LHSS. Though
YOSO-LHSS requires more rounds than our first two approaches, it may be more
practical, since the zero knowledge proofs it employs are more efficient to instantiate.
As a contribution of independent interest, we introduce a verifiable state propagation
UC functionality, which allows parties to send private message which are verifiably
derived in the “correct” way (according to the protocol in question) to anonymous
receivers. This is a natural functionality to build YOSO protocols on top of.
Keywords: YOSO · MPC · Constant-round · Guaranteed output delivery

1 Introduction
As our digital world becomes more reliably connected, we grow to depend more and more
on outsourcing our data storage and processing to the cloud. There are clear benefits
to doing this, such as minimizing the risk of data loss (e.g. when we spill coffee on our
laptops), and using resources more efficiently. However, there are also serious drawbacks,
such as having to trust a cloud provider to maintain both the availability and privacy
of our data in an era of frequent data breaches. Secure multi-party computation (MPC)
[CCD88, GMW87, Yao86] allows a cloud comprised of many distinct machines to not only
store, but also process our data securely. MPC guarantees that the data remains private
even from an attacker controlling fewer that some threshold t of the machines.

Outsourcing the processing of our data can be very useful: for instance, it lets us search
our securely stored emails without having to download the entire contents of our inbox.
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Perhaps even more importantly, MPC can be used to compute joint functions on multiple
entities’ private data without revealing anything but the function output. This enables
crucial computations where multiple entities have privacy concerns, like research using
health data across different hospital databases [VCAZ+18, sod19], and discovering the
true extent of the gender wage gap across many different institutions [LJA+18].

One long-standing challenge in MPC is balancing security and efficiency. Intuitively,
security increases with the number of machines we employ in our MPC: the more machines
are used, the more of them an attacker would need to subvert in order to learn our data.
In order to make our computation secure against a powerful attacker, we would need a
very large number of machines — perhaps millions, e.g. in a distributed blockchain setting.
However, running a secure computation among millions of machines would be horribly
inefficient; transferring our data to those machines would be a prohibitive burden on our
devices, and the pairwise communication required by most MPC protocols would be too
much for the machines and their network.

An alternative path is to hide which machines we are outsourcing our data to. Then,
a small subset of machines could perform the computation, bypassing the problem of
prohibitive pairwise communication. By keeping the subset anonymous, we ensure that an
attacker won’t know which machines to target.

This approach is very tricky, since computing on data requires the machines to commu-
nicate. However, as soon as a machine sends a message, it ceases to be anonymous; an
attacker who is watching the network will learn that the message-sender — and message-
receiver — likely play crucial roles in the computation, and will be able to target them.
The recent work of Gentry et al. [GHK+21] introduces secure computation in the you only
speak once (YOSO) model. In this model, once a machine sends a message, that machine
becomes irrelevant to the computation, so an attacker who then targets that machine gains
nothing. To stop an attacker from targeting the message recipients, YOSO protocols hide
their identities using what we call receiver-anonymous communication channels.

1.1 Related Work
Related work can be broken up into work focusing on receiver-anonymous communication
channels and on MPC protocols using those channels.

1.1.1 Receiver-Anonymous Communication Channels

When data is outsourced to a small set of machines, those machines immediately assume
critical roles; so, it is important to hide which machines are picked for this by choosing them
randomly and by keeping them anonymous. Of course, outsourcing data to a set of machines
requires private communication to those machines. In order to communicate privately to
machines which must remain anonymous, we need receiver-anonymous communication
channels (RACCs) to those machines. RACCs are modeled as publicly known encryption
keys such that (a) the adversary does not know who owns the corresponding decryption
key as long as that owner is not corrupt, and (b) fewer than some threshold t (which we
take to be half) of the decryption key owners are corrupt.

Receiver-anonymous communication channels first appeared in the work of Benhamouda
et al. [BGG+20], which builds such channels with the guarantee that only half of the
decryption key owners are corrupt as long as only around a quarter of the overall population
is corrupt. Another RACC construction was shown by Gentry et al. [GHM+21], with the
stronger guarantee that only half of the decryption key owners are corrupt as long as only
slightly less than half of the overall population is corrupt. The downside of this second
construction is that it is more computationally intensive (as compared to the former, which
can be based on lighter-weight assumptions such as cryptographic sortition and anonymous
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PKE). The recent work of Campanelli et al. [CDK+22] proposes a new primitive, namely
‘Encryption to the Future’ based on a special kind of witness encryption to realize RACCs.

1.1.2 YOSO MPC

Recently, the first YOSO MPC protocols have appeared in the literature [GHK+21,
CGG+21]. They all have a common structure: committees of size n — where the size n is
chosen to guarantee that the committee will have an honest majority with overwhelming
probability — carry out the computation sequentially. The lth (set of) committee(s)
performs the lth layer of multiplication, and uses RACCs to pass the computation to their
successors.

We summarize the constructions below, and compare them in Table 1. It should be
noted that even constructions which do not explicitly make any computational assumptions
rely on RACCs, which do require such assumptions.

YOSO-CDN (Gentry et al. [GHK+21]) This construction is based closely on the
CDN protocol [CDN01] and achieves guarantee output delivery. However, this protocol
requires computational assumptions and setup; that is, some correlated secrets are
distributed to an initial subset of parties by e.g. a trusted authority.

YOSO-IT (Gentry et al. [GHK+21]) This construction relies on new information-
theoretic techniques such as future broadcast, distributed commitments, and augmented
verifiable secret sharing. Like CDN, YOSO-IT guarantees output delivery. However,
while YOSO-IT does not require computational assumptions or setup, the number of
committees required for each layer of multiplication is polynomial rather than constant
in the committee size, which can be prohibitively inefficient.

YOSO MPC from Class Groups (Braun et al. [BDO23]) In a recent concur-
rent independent work, Braun et al. perform distributed key generation for a linearly
homomorphic threshold encryption (LHTE) scheme based on class groups in the YOSO
setting. Resharing this LHTE key between committees then allows evaluating a circuit
in the CDN style, which yields a YOSO protocol with no setup. This approach has
the advantage that any committee holding the key may access previously broadcasted
ciphertexts. Like YOSO-CDN a committee is needed for each layer of multiplications
and output delivery is guaranteed.

Other specialised protocols have also been studied in the YOSO setting, such as [EFR21]
which proposes new protocols for distributed key generation, threshold encryption and
signature schemes. Lastly, MPC in YOSO-like settings (with dynamic participation) have
been explored in works such as [CGG+21], [AHKP22a], [AHKP22b] and [DDG+23].

1.2 Our Contributions
In this paper, we make several contributions. First, we formalize an ideal functionality
which most YOSO MPC constructions can run on top of. We call this functionality the
verifiable state propagation functionality, denoted FVeSPa. This fills a gap in the original
YOSO paper [GHK+21], where RACCs were modeled as an ideal functionality that allows
private communication to anonymous receivers. However, this abstraction does not allow
public verifiability of messages sent between two parties, which is often used in protocol
designs.

To capture verification, the new functionality additionally requires the sender to input
a witness proving that her messages follow the protocol. We describe FVeSPa informally
in Section 1.3, and formally in Section 3. In work subsequent to ours, Canetti et al.
[CKR+23] demonstrate how the guarantees of FVeSPa may be realised when compiling
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Table 1: YOSO MPC Constructions. d is the multiplicative depth of the circuit being
computed; m is the number of inputs; n is the committee size chosen to guarantee that
a majority of the roles will be honest; h is the committee size chosen to guarantee that
the committee has at least one honest role with overwhelming probability. FBC and FSPP,
introduced in [GHK+21], allow broadcast and secure point-to-point messages respectively;
FVeSPa enables verifiability of messages, with Fhom

VeSPa allowing additional homomorphic
operations. Properties that are optimal are in bold.

YOSO MPC
scheme

Security
Guarantee

Number
of

Rounds

Number of
Speakers

Setup Computational
Building
Blocks

RACC
function-

alities
Fluid MPC
[CGG+21]

Security with
Abort

O(d) O(dn) none none none

YOSO-CDN
[GHK+21]

Guaranteed
Output

Delivery

d + 3 m + 2dh +
(d + 1)n

CRS, dis-
tribution
of shares
to first

committee

NIZK, LHTE FBC

YOSO-IT
[GHK+21]

Guaranteed
Output

Delivery

O(d) poly(m, d, n) none none FSPP,FBC

Braun et al.
[BDO23]

(concurrent)

Guaranteed
Output

Delivery

O(d) O(m + nd) none NIZK, LHTE FSPP,FBC

YaOSO (this
work)

Guaranteed
Output

Delivery

2 m + n none YGC, 2-round
MPC

FVeSPa

YOSO-GLS (this
work)

Guaranteed
Output

Delivery

3 m + n + h URS TFHE FVeSPa

YOSO-GLS (this
work)

Guaranteed
Output

Delivery

5 m + 2n + 2h none TFHE FVeSPa

YOSO-LHSS (this
work)

Guaranteed
Output

Delivery

d + 3 m + 2dh +
(d + 1)n

none LHE Fhom
VeSPa

Bootstrapping
(this work)

Guaranteed
Output

Delivery

O(1) O(m + n) none LHE, TFHE Fhom
VeSPa

protocols from the YOSO model. Intuitively, this realisation follows from the combination
of RACCs together with zero knowledge proofs, allowing each round of communication
through FVeSPa to be realised by one round of broadcast communication. In this work, we
focus on how to build YOSO MPC protocols in the FVeSPa-hybrid model.

Next, we describe several YOSO MPC protocols in the FVeSPa-hybrid model that
achieve guaranteed output delivery (GOD). A natural question is whether it is possible to
have a YOSO MPC protocol without setup where the number of rounds of communication
is independent of the circuit being computed. We answer this question in the affirmative
thrice-over. This question is of particular importance for YOSO protocols as each round
of broadcast must be realised across many thousands of parties; the real world time
required for a round may therefore be very significant, considering current widely deployed
blockchains this may be in the order of minutes rather than seconds.

Our first constant-round setup-free YOSO MPC protocol is YaOSO; it compiles an
underlying two-round non-YOSO MPC protocol by garbling its second-message function.
YaOSO itself only requires two rounds, which is optimal.

Our second YOSO MPC protocol is YOSO-GLS ; it builds on the GLS protocol [GLS15].
YOSO-GLS requires between three and five rounds, depending on the setup we assume is
available; Five rounds are necessary if only RACCs are available, and three rounds are
achievable if a URS (uniform random string) is additionally present. YOSO-GLS uses
complex assumptions such as threshold FHE; however, unlike YaOSO, it does not rely on
generic compilation, and so may in practice be more efficient.

Our third YOSO MPC protocol is YOSO-LHSS ; it is based on YOSO-CDN [GHK+21],
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but avoids the use of a secret shared decryption key, which is the setup that YOSO-CDN
relies on. YOSO-LHSS takes O(d) rounds, where d is the multiplicative depth of the circuit
being computed. However, YOSO-LHSS also leads to a YOSO MPC with a constant
number of rounds; YOSO-LHSS can be used execute the setup for a constant-round
YOSO protocol that uses threshold fully homomorphic encryption (TFHE). We call this
the bootstrapping protocol. This bootstrapping approach could also be applied to the
concurrent work of Braun et al. [BDO23]. While bootstrapping achieves constant round
complexity asymptotically, the number of setup rounds needed for TFHE may be significant
in concrete terms, eliminating a significant fraction of any improvement for low depth
computations. In light of this, we view our previous two approaches as the more desirable
options.

Broadly speaking, we faced two main challenges in the design of the above protocols:
first, identifying suitable non-YOSO protocols as starting points, and second, making the
necessary changes to YOSO-ify them. In non-YOSO MPC protocols, the same participants
are involved in input, computation and output. To adapt such a protocol to the YOSO
setting, a natural approach is to make each committee carry out the respective round of the
non-YOSO protocol and distribute its state among the next committee members to carry
the computation forward. However, translating the next-message functions 1 computed
on a participant’s local state in each round of the underlying protocol to a next-message
function on a distributed state could get very complicated (both in terms of efficiency and
design), depending on the steps involved in the underlying protocol. Therefore, identifying
suitable non-YOSO protocols that allow smooth transformation to the YOSO setting is a
crucial and non-trivial step in our protocol designs.

We give an overview of our protocols in Section 1.4 – Section 1.6.

1.3 Verifiable State Propagation
Previous YOSO protocols were designed assuming that the roles (i.e. the one-time
stateless parties) have access to two functionalities, providing point-to-point and broadcast
communication respectively (where the point-to-point functionality could be realized using
RACCs) 2.

In the case of computationally secure protocols, a gap remained: the YOSO-CDN
protocol achieves verifiability of messages sent via the point-to-point functionality by
assuming access to encryption keys for each role, and using the broadcast functionality
to send ciphertexts along with zero knowledge proofs of correctness. Explicit access
to keys requires using RACCs in a non black-box manner, which strays from the ideal
notion of RACCs (which is simply to serve as a means for point-to-point communication
to anonymous receivers). In this work, we address the above gap by instead explicitly
modeling the verification of messages within the sending mechanism.

We do this by introducing the verifiable state propagation functionality FVeSPa, which
supports both point-to-point and broadcast messages, while providing a mechanism for
proving these messages are correctly produced. In practice, designing protocols in the
FVeSPa-hybrid provides the same possibilities when designing protocols as using zero
knowledge proofs together with access to explicit encryption keys; however, it allows for
much simpler protocol descriptions and a modular protocol design.

Further, we also introduce an augmented version of FVeSPa, namely the Fhom
VeSPa func-

tionality (described in Section 6.1). FVeSPa allows the sender to prove that she correctly
computed her messages as a function of the messages she has received (and possibly

1Next-message function refers to the code a participant uses to compute her messages of the next round,
which is a function computed on the messages she has seen previously and possibly additional input.

2Recall that RACCs are modeled as publicly known encryption keys (where the owners of the decryption
key are secret). For point-to-point communication towards a role, one simply needs to encrypt the message
using the role’s encryption key.
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additional input), but not as a function of messages of which she is not the recipient. On
the other hand, Fhom

VeSPa functionality also allows the sender to additionally prove that her
messages were correctly computed based on messages previously sent to a given recipient
by others, even though she might not know the contents of those messages. This augmented
functionality allows us to capture efficient YOSO protocol designs (such as YOSO-LHSS)
which employ homomorphic computations on ciphertexts, through the use of either fully
or partially homomorphic encryption.

1.4 YaOSO: Technical Overview
Our first protocol is a two-round YOSO MPC protocol with guaranteed output delivery
which we call YaOSO. We present it in the FVeSPa-hybrid model. The optimality of two
rounds follows from the fact that any one-round YOSO protocol would be susceptible to a
residual function attack [HLP11] (as the adversary could recompute first-round messages
on behalf of corrupt parties, while keeping the honest parties’ messages fixed, to obtain
multiple evaluations of the function).

YaOSO is a generic compiler that transforms any two-round broadcast non-YOSO
MPC protocol that achieves semi-malicious security 3 in the dishonest majority setting,
to a two-round YOSO MPC protocol in the FVeSPa-hybrid model that achieves malicious
security with guaranteed output delivery in the honest majority setting. Since the former
can be instantiated using the protocols of [GS18, BL18] with semi-malicious security in
the plain model, this yields a round-optimal YOSO MPC protocol in the FVeSPa-hybrid
model with guaranteed output delivery.

1.4.1 Assumptions

Our compiler is based on threshold secret sharing and adaptive garbled circuits (Ap-
pendix A.2), which can be built from one-way functions. The underlying protocol in our
compiler can be instantiated using the protocols of Garg et al. [GS18] and Benhamouda
et al. [BL18], which rely on 2-round semi-malicious oblivious transfer (OT). 4

1.4.2 Recap of the Compiler of Ananth et al. [ACGJ18]

The main idea of our compiler is to adapt the compiler of Ananth et al. [ACGJ18] to the
YOSO setting. We begin with a high-level description of the compiler of Ananth et al.
and refer to their paper for further details. The compiler of Ananth et al. transforms
any two-round n-party MPC protocol with security against semi-malicious adversaries
(say Πsm) to a two-round n-party MPC protocol with guaranteed output delivery against
semi-malicious fail-stop adversaries corrupting t < n/2 parties (say Π′). In the first round
of Π′, each party broadcasts the first-round message of the underlying protocol Πsm, along
with an adaptive garbled circuit whose code would be used to compute their second-round
message in Πsm. Such a garbled circuit has the party’s input and randomness hard-coded
and takes as input the first-round messages she receives 5. Each of the labels corresponding
to the first-round messages are threshold-shared (with threshold t) among the set of
parties. In the second-round, parties broadcast the relevant share of the label, based on
the first-round messages that were broadcast. The threshold sharing ensures that even if a
party aborts in the second round, the labels corresponding to the first-round messages

3Where semi-malicious security refers to security against an adversary that follows the protocol honestly
but can choose bad random coins for each round.

4The construction of Garg et al. [GS18] is based on a two-round OT in the plain model which is secure
against semi-malicious receiver and semi-honest sender. We refer to Garg et al. [GS18] for further details.

5This technique of using next-message garbling to emulate a party ‘speaking’ in the next round also
appears in works of [CGZ20, DMR+21, GMPS21].
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can be reconstructed and her garbled circuit can be evaluated to obtain her second-round
messages. This achieves guaranteed output delivery.

1.4.3 Adapting the Compiler to the YOSO Setting

In the compiler of Ananth et al., the same participants are involved in the input, com-
putation and output phases; different roles are required to carry out these actions in the
YOSO setting. In the YOSO setting, we employ one committee for each round; the input
committee, and the computation committee. First, the members of the input committee
carry out the actions of the first-round of the compiler of Ananth et al. (as described
above); however, instead of sending the secret shares to one another, they send them to the
members of the computation committee. Next, we observe that this gives the computation
committee all of the information it needs in order to enable the public reconstruction of
the output; the actions of the participants in the second round of the compiler of Ananth
et al. depend only on the first round public transcript and the threshold shares received in
the first round. This transfer of threshold shares can be done via the FVeSPa functionality,
which also upgrades the security to the malicious setting, as the actions of the input and
computation committee roles can now be verified.

Lastly, we note that, unlike the output of the compiler of Ananth et al., the output
of our compiler should now be publicly computable (since we do not wish to involve a
third committee). So, output computation should not depend on the secret state of the
roles who computed the earlier messages. To address this, we assume that the output
computation of Πsm does not require any secrets and relies on the public transcript alone.
We note that this can be assumed without loss of generality, as one can always consider
the output computation executed by an additional participant of the MPC protocol Πsm
with a dummy input that uses a default random tape 6. This completes the overview of
our compiler, which is formally described in Section 4.

1.4.4 Round and Communication Complexity

YaOSO uses two committees: an input committee of size m (where honest majority is not
required) and a computation committee of size n (where the size n is chosen to be large
enough to guarantee an honest majority within the committee). The protocol comprises
just two rounds, where input committee roles speak first, followed by the computation
committee roles. The communication complexity is the communication complexity of the
underlying semi-malicious protocol that is being compiled, with an additional overhead of
O(|C|), where C is the circuit computing the next-message function for computing the
second-round messages of the underlying protocol. 7

1.5 YOSO-GLS: Technical Overview

The second protocol we present is closely based on the three-round MPC protocol of
Gordon et al. [GLS15], which we will henceforth refer to as the GLS protocol. We call
our adaptation YOSO-GLS. We present two variants of YOSO-GLS: the first requires
three rounds and access to a uniform random string (URS), and the second requires two
additional rounds instead sampling this string explicitly. We prove our YOSO-GLS protocol
securely YOSO realises MPC with guaranteed output delivery in the FVeSPa-hybrid model.

6Since Πsm is semi-maliciously secure, correctness of the output holds for any choice of random tape.
7Analyzing the concrete communication costs of our protocols would require analyzing the overhead

incurred through the use of FVeSPa (which we rely on in a black-box fashion).
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1.5.1 Assumptions

The technical cornerstone of the GLS protocol is a threshold fully homomorphic encryp-
tion (TFHE) scheme based on the Learning with Error (LWE) assumption described in
Definition 6. Our YOSO-GLS protocol relies similarly on this assumption.

1.5.2 Recap of the GLS Protocol

To provide context for the necessary changes when adapting to the YOSO setting we start
by providing a high level recap of the three round protocol of Gordon et al. and refer to
their paper for further details.

Round 1: In the first round, each party generates a key pair for the [GSW13] FHE
scheme, using a common matrix B. Each party then broadcasts their generated public
key. Note that B is assumed to be chosen uniformly at random and is available as a
common reference string.

Round 2: In the second round, parties distribute Shamir sharings of their secret keys
along with a sharing of an additional error term. Parties then encrypt their input under
their own public key, reusing the encryption randomness to produce additional hints,
which allow transforming the ciphertext to an encryption under a common public key.
These ciphertexts and hints are then broadcast.

Round 3: In the third round, the ciphertexts are transformed to encryptions under
the common public key for parties which appropriately distributed their key and error
shares. The circuit may then be evaluated homomorphically on the ciphertexts. The
resulting output is then partially decrypted by each party, exploiting the structure
of the secret key sharings and linearity of decryption. The shares of error terms,
distributed along with the secret keys in round one, are added to mask the partial
decryptions. These partial decryptions are then broadcast.

Finally, parties may perform polynomial interpolation over the partial decryptions to
reconstruct the final output.

1.5.3 Adapting the GLS Protocol to the YOSO Setting

Moving to the YOSO model poses a series of concrete challenges, as roles may not maintain
state and communicate across multiple rounds. The original GLS protocol requires storing
the secret keys generated in the first round, so they may be shared in the second. Delaying
sharing allowed avoiding the need for point-to-point communication in the first round.
In their setting, access to broadcast would allow distributing public keys in the first
round, enabling point-to-point commnication from the second round onwards. In our
setting, the FVeSPa functionality allows private communication to future committees in all
rounds, meaning the secret keys may already be secret shared and distributed in the first
round. We call the committee performing this task the key generation committee, and the
next committee — which broadcasts encrypted inputs — the input committee. The final
committee will be the computation committee.

The separation between key generation and input committee roles presents a new
problem: if an input is encrypted under any single public key, that input is leaked directly
to the role which generated the key. Therefore, to avoid leaking its input, a role must
instead transform the ciphertext towards a common public key prior to broadcasting it.
This is possible due to the changes we have already made, by sharing keys one round
earlier.

These changes allow us to move to the YOSO setting while maintaining the round
complexity by requiring only three sequential committees, including the input committee.
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Modifying key generation has the added benefit of making it a local process, simplifying
the presentation of the algorithm. Key generation in the GLS protocol required access to
a uniform reference string, this is unchanged for our three round protocol. We provide a
protocol realising the required URS sampling, through the use of two additional committees,
for a combined five rounds in total.

1.5.4 Communication and Round Complexity

The three round YOSO-GLS protocol uses one dishonest majority key generation committee
of size h, an input committee of size m and a final honest majority computation committee
of size n. The five round protocol, which avoids the need for a URS, requires one additional
dishonest majority committee followed by an honest majority committee. We maintain
the asymptotic message complexity of the original GLS protocol.

1.6 YOSO-LHSS: Technical Overview
The third protocol we present is structurally similar to the YOSO-CDN protocol of Gentry
et al. [GHK+21]. We call it YOSO-LHSS. Like YOSO-CDN, YOSO-LHSS requires O(d)
rounds of communication, where d is the multiplicative depth of the circuit being computed.
However, unlike YOSO-CDN, YOSO-LHSS does not require the trusted distribution of an
initial set of key share. In order decrease the number of rounds without relying on such
initial trusted distribution, YOSO-LHSS can be used to generate the setup necessary for
some constant-round YOSO MPC protocol (e.g. one based on threshold fully homomorphic
encryption). We elaborate on this in Section 1.7.

Though YOSO-LHSS requires more rounds than YaOSO or YOSO-GLS, we believe
it may be more efficient in practice, because of the simpler message validity relations it
employs; the zero-knowledge proofs for those relations (that would be to used realize the
actions of FVeSPa) is much more practical than for those required by our other protocols.

We prove our YOSO-LHSS protocol securely YOSO realises MPC with guaranteed
output delivery in the Fhom

VeSPa-hybrid model.

1.6.1 Assumptions

YOSO-LHSS uses the Fhom
VeSPa functionality to allow participants to perform homomorphic

operations on messages intended for others. YOSO-LHSS does not rely on any additional
assumptions outside of Fhom

VeSPa; however, it’s worth noting that Fhom
VeSPa for the linear

homomorphism we require can be based on the encryption scheme of Castagnos and
Laguillaumie [CL15b], which in turn is based on the DDH assumption in the class group
setting.

1.6.2 Recap of the YOSO-CDN protocol

Since our protocol is closely related to the YOSO-CDN protocol of Gentry et al. [GHK+21],
we recap CDN — and YOSO-CDN— here.

CDN [CDN01] relies on linearly-homomorphic threshold encryption (LHTE), where a
fixed public encryption key pk is known, and the corresponding secret decryption key sk is
secret shared among the n participants. A role can supply an input by encrypting it under
pk, and publishing the resulting ciphertext. The participants then perform the computation
by leveraging the homomorphism of the encryption scheme for linear operations, and by
using Beaver triples for multiplications.

Assuming the availability of a Beaver triple a = Enc(a), b = Enc(b) and c = Enc(ab),
the parties multiply ciphertexts x and y (encrypting x and y, respectively) by (1) using
the linear homomorphism to compute ϵ = a− x and δ = b− y, (2) jointly decrypting ϵ
and δ, and (3) using linear homomorphism to compute xy = c− ϵb− δa + ϵδ.
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The Beaver triples themselves can be generated on-the-fly in two rounds. In the
first round, each participant i of that round chooses a random additive share ai of a,
and publishes ai = Enc(ai) together with a zero knowledge proof that it is well-formed.
Everyone can then use the linear homomorphism to compute a =

∑
ai, using only the

contributions ai which are accompanied by a verifying proof. In the second round, each
participant i of that round similarly contributes an encrypted additive share bi of b, together
with bia (which she computes as a linear operation on a using her knowledge of bi), and
a zero knowledge proof that bi and bia were produced consistently. Everyone can then
compute b =

∑
bi and c =

∑
bia using the contributions from those parties i whose zero

knowledge proofs verify.
To YOSO-ify this construction, Gentry et al. needed to make only a few minor changes

to ensure that every round of communication can be carried out by a new committee.
First, they observe that the two rounds of communication that generate a Beaver triple
(a) do not depend on the shared secret decryption key, and so (b) can be carried out by
committees with a dishonest majority and no RACCs. They thus instruct two smaller
committees of size h (where h is chosen to guarantee that a set of h random roles will
contain at least one honest role with overwhelming probability) to carry out Beaver triple
generation.

All that remains is to ensure that every committee that must decrypt a value (whether
those values are the ϵ and δ needed for a multiplication, or the computation output itself)
holds shares of the secret decryption key. In order to do this, we need an additional
property from the threshold linearly homomorphic encryption scheme: it must allow a
committee that holds a sharing of the secret decryption key to re-share that key to the next
committee in a single round of communication. (They can do this in the same breath in
which they broadcast their contributions to the decryption of the values they are opening.)
Gentry et al. use an encryption scheme that has this property. An unfortunate downside
of this is that each secret key share has size O(n), resulting in O(n2) communication
per committee member as part of the key resharing (even disregarding the size of the
accompanying zero knowledge proof). An even more important remaining issue is how the
public encryption key, together with the initial sharing of the decryption key, is generated.
YOSO-CDN relies on a trusted setup for this.

1.6.3 Adapting YOSO-CDN

YOSO-LHSS is based closely on the YOSO-CDN protocol, described above. However,
we make a crucial pivot: instead of using a threshold linearly homomorphic encryption
scheme (LHTE) with a global public key, we use Fhom

VeSPa to enable linear computations on
messages to individual recipients. This eliminates the need for a trusted setup.

In order to provide a secret to a committee instead of an individual recipient, we
share the secret using a linearly homomorphic threshold secret sharing (e.g. Shamir secret
sharing). In more detail, in order to provide an input x to the computation, instead of
encrypting x to a global public key as in YOSO-CDN, a role must first secret share x as
(x1, . . . , xn) and then send each share to a member of a specific committee (this point-to-
point communication can be done using Fhom

VeSPa). That committee now holds a sharing of
x, and can either jointly reconstruct x at the appropriate time (by publishing the shares),
or compute on x and other values it may hold. Linear computations are accomplished by
leveraging Fhom

VeSPa, and through the linear homomorphisms of the secret sharing scheme. A
multiplication requires the use of a Beaver triple, just like in YOSO-CDN; however, the
Beaver triple must now be generated for this specific committee.

Unlike in YOSO-CDN, if a value is input to one committee but must later be used by
a different committee, the first committee must re-share the value to the new committee.
This can be done simply by having each role re-share its share to the new committee.
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1.6.4 Communication Complexity, Round Complexity and Future Horizon

YOSO-LHSS uses two types of committees: committees of size n (where the size n is
chosen to be large enough to guarantee an honest majority within the committee), and
committees of size h (where the h can be much smaller than n, since only one honest role,
rather than an honest majority, is needed). YOSO-LHSS uses one committee of size n for
each layer of multiplication, as well as one additional committee of size n to decrypt the
output. Each multiplication requires two committees of size h to generate a Beaver triple.

Including m roles who speak to provide inputs to the computation, this makes the
total number of roles who speak throughout the protocol equal to m + (d + 1)n + 2dh.

It might look like this necessitates 3d + 3 rounds of communication, but many of these
committees can speak at the same time. The two committees generating Beaver triples
for the first multiplication must both speak before the first multiplication can happen,
but the roles providing input can speak at the same time as one of those Beaver triple
committees. Committees generating Beaver triples for future multiplications can always
speak in parallel with previous committees; in fact, if desired, all of the Beaver triple
committees could speak at once, or alternatively, a single committee could generate all of
the Beaver triples. Of course, the committee who decrypts the output must speak last,
which leaves us with d + 3 rounds of communication. One reason not to have a single
pair of committees of size h generate all of the Beaver triples is what Gentry et al. call
the future horizon, which describes how long before a role needs to act must her receiver
anonymous communication channel be available, or, in other words, how far in advance
must machines be assigned to their roles, or how many rounds can separate a speaker i
from the last speaker j to whom speaker i must send a message. It is desirable to minimize
the future horizon, because when running in e.g. a blockchain environment, the pool of
participants can be very dynamic, and because machines are always coming and going
it can be impractical to select machines for roles too far in advance (since they might
disappear before the time comes). A small future horizon enables on-the-fly assignment of
machines to roles while the protocol runs. If a single pair of committees generates all of
the Beaver triples, the future horizon of YOSO-LHSS will be determined by the round
distance from the first of these two Beaver committees to the last committee that receives
an output of a multiplication (which will be the output committee). This distance will be
d + 2. If instead we have a designated pair of committees generate Beaver triples for each
layer of the multiplication (as described above), the future horizon is 3. (We assume that
the output wires of a given layer of multiplication gates in the circuit being computed
serve as input only to the next layer of multiplication gates; otherwise, the future horizon
is determined by the longest wire in the circuit. Note that any circuit can be converted to
a circuit with the property we assume by adding multiplication-by-one gates.)

1.6.5 Comparison to YOSO-CDN

There are advantages and disadvantages to the changes we make to YOSO-CDN to obtain
YOSO-LHSS. Of course, a crucial advantage of YOSO-LHSS — and the motivation for
our changes — is that YOSO-LHSS does not require trusted setup.

On the other hand, a disadvantage of YOSO-LHSS is that a given value is held by
one committee; for it to be used by several committees, it must be shared to several,
or re-shared from committee to committee. In YOSO-CDN, any value encrypted to the
global public key is accessible by any committee that holds the shared secret decryption
key; no additional work to make the value accessible to a given committee is needed. In
particular, this means that in YOSO-LHSS, Beaver triple preprocessing must be done with
a committee in mind. In YOSO-CDN, all Beaver triples are useable by any committee.
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1.7 Achieving Setup-Free Constant-Round YOSO MPC from
YOSO-LHSS

Gentry et al. [GHK+21] point out a simple constant-round YOSO MPC protocol: if a
secret key for a threshold fully homomorphic encryption (FHE) scheme is shared to a
committee, that committee can perform the entire computation as long as joint decryption
only requires a single round of communication. However, this protocol requires setup, in
the form of the distribution of the secret key shares.

We observe that it is possible to combine any setup-free YOSO MPC with any constant-
round YOSO MPC (which might rely on setup) to obtain a setup-free YOSO MPC whose
round complexity is independent of the circuit being computed. This can be done simply
by performing the setup for the constant-round YOSO MPC within the setup-free YOSO
MPC, and then using the constant-round YOSO MPC for the actual computation. If the
setup performed by the setup-free YOSO MPC is independent of the circuit we wish to
compute, the number of rounds required by this bootstrapped protocol will be independent
of the size of the circuit as well. (Note that the number of rounds may still depend on
the security parameter depending on the setup performed.) We can use our setup-free
YOSO MPC — YOSO-LHSS— to generate a threshold fully homomorphic encryption key,
and share the corresponding decryption key to a committee. (It should be noted that the
YOSO-IT construction of Gentry et al. could also be used as the setup-free YOSO MPC
here; however, that construction is much less practically efficient than ours, due to the
large number of committees they require even for a single multiplication.)

Lastly, we point out that an alternate approach to designing constant-round YOSO
protocols could be via randomized encoding i.e. to first consider the low-degree randomized
encoding of the function to be computed and subsequently use a YOSO MPC to realize this.
Since this approach typically leads to an efficiency blowup, we believe the bootstrapping
approach outlined above to be more promising towards designing efficient constant-round
YOSO MPC.

2 YOSO Secure Multiparty Computation (MPC) Defi-
nitions

In this section we recap what it means for an MPC protocol to be YOSO secure. The
YOSO model [GHK+21] makes a crucial separation between physical machines and the
roles which they play in the protocol. By mapping machines to roles in a random and
unpredictable way, we can ensure that the adversary will not know which machines will be
important, and will not be able to preemptively corrupt or destroy those machines. In this
paper, we describe our YOSO MPC protocols in terms of roles. We ignore how roles are
assigned to machines; we assume the availability of a role assignment functionality which
allows point-to-point communication and broadcast messages between roles. Mechanisms
which realize such a role assignment functionality were described by Benhamouda et al.
[BGG+20] and Gentry et al. [GHM+21]. The YOSO model uses the UC framework
[Can01], with roles instead of physical machines as the participants. Every participant
is ‘YOSO-ified’, meaning that as soon as she speaks for the first time, she is killed. A
protocol Π YOSO-realizes a functionality F if the YOSO-ification of Π UC-realizes F
(Section 2.1).

2.1 UC MPC
Consider a protocol Π = (R1, . . . , Ru) described as a tuple of roles Ri, each of which is a
probabilistic polynomial-time (PPT) machine. Some of those roles are input roles, who,
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when they speak, provide an input. Other roles are there to assist in computing a function
f on the provided inputs.

In a real-world execution of protocol Π with environment E and adversary A, the
PPT environment E provides the input x = (x1, . . . , xm) to protocol’s input roles. The
environment also communicates with the PPT adversary A. We consider a synchronous
model, where the protocol is executed in rounds; in each round, some roles speak (over
a broadcast channel). During the execution of the protocol, the corrupt roles receive
arbitrary instructions from A, while the honest roles faithfully follow the instructions
of the protocol using the input they were given. We consider the adversary A to be
rushing, i.e., during every round the adversary can see the messages the honest roles sent
before producing messages from corrupt roles. At the end of the protocol execution, the
environment E produces a binary output. Let REALΠ,A,E(1κ) denote the random variable
(over the random coins used by all roles) representing E ’s output in the real world.

Now, consider an ideal-world execution with the same environment E , but with an
ideal-world adversary S. In the ideal-world execution, instead of running the protocol
Π, the roles turn to a trusted party to compute f on the input given to them by E .
This trusted party receives the inputs x1, . . . , xm from the input roles, and broadcasts
f(x1, . . . , xm). We call this trusted party the ideal functionality Ff for computation of f
with guaranteed output delivery. Let IDEALFf ,S,E(1κ) denote the random variable (over
the random coins used by S) representing E ’s output in the ideal world.

Definition 1 (UC Security [Can01]). Let f : ({0, 1}∗)m → {0, 1}∗ be an m-input function.
A protocol Π = (R1, . . . , Ru) UC-securely computes f (with guaranteed output delivery)
if for every PPT real-world adversary A there exists a PPT ideal-world adversary (or
simulator) S such that, for any PPT environment E , it holds that REALΠ,A,E(1κ) and
IDEALFf ,S,E(1κ) are indistinguishable for any large enough security parameter κ.

2.2 The YOSO Adversary’s Corruption Power

Gentry et al. show that, given a role assignment mechanism that randomly maps roles to
machines, an adversary with the ability to selectively corrupt machines corresponds to
an adversary who randomly corrupts roles. This lets us assume that an adversary who
can corrupt slightly fewer than half of the available machines can corrupt less than half of
the roles in a committee of roles as long as the committees are chosen to be large enough.
We let n be the committee size that ensures an honest majority of roles. We let h be the
(smaller) committee size that ensures at least one honest role on the committee.

Gentry et al. also point out that for random corruptions, there is very little difference
between adaptive corruptions and static corruptions. In the case of random corruptions, the
adversary must leave the choice of which role to corrupt to a special corruption controller ;
the adversary cannot tell whether the corruption controller makes this random choice on
the fly, or whether the choice was made before the start of the protocol. We follow the
path laid out by Gentry et al., and phrase our proof in terms of static security, noting that
it can be extended to the adaptive case using standard techniques.

Roles which are expected to provide input are a special case, since it makes no sense to
request input from random machines; rather, there are likely pre-determined participants
who are expected to provide meaningful inputs. We prove our protocols secure without
making any assumptions about the adversary’s ability to corrupt input roles. In particular,
we do not require an honest majority of input roles.

To summarize, we prove security against an adversary who can statically corrupt (a)
arbitrarily many input roles, (b) fewer than half of the roles in each committee of size n,
and (c) all but one of the roles in each committee of size h.



14 Constant-Round YOSO MPC Without Setup

2.3 Compiling Abstract YOSO to Natural YOSO

The YOSO model separates the protocol design (that considers abstract roles) from the
role assignment (that maps roles to machines). Current YOSO MPC protocols in the
abstract model use the two communication functionalities: FBC and FSPP, for broadcast
and point-to-point messages respectively. To demonstrate how abstract YOSO protocols
can be realized in practice, Gentry et al. [GHK+21] present a compiler that transforms
an abstract YOSO protocol (designed in the FBC and FSPP hybrid model) with t random,
static role corruptions to a UC secure protocol in the natural world with t′ chosen static
machine corruptions. This compiler requires t′/N < t/n, where n and N refer to the size
of a committee and the number of machines respectively. The compiled UC protocol in
the natural world is in the FRA-hybrid model, where FRA denotes the ideal functionality
modeling a blockchain with role assignment. The high-level intuition of the compiler is that
since the role-to-machine assignment is unknown to the adversary, the chosen corruptions
of machines in the natural world translates to random corruptions in the abstract world.
Gentry et al. [GHK+21] also presents such a a compiler for adaptive security.

3 Verifiable State Propagation

As mentioned above, current YOSO MPC protocols use the two communication function-
alities: FBC and FSPP, for broadcast and point-to-point messages respectively. We define
the verifiable state propagation functionality, FVeSPa, as an augmented variant of these
functionalities, building in verification directly. Conceptually we envision FVeSPa playing
a similar role to existing GMW-like compilers, such as [AJL+12], that adds a layer of
verification to each of the messages in the protocol transcript.

Next, we elaborate on the motivation behind introducing this new functionality FVeSPa.
We note that the abstraction of FSPP is problematic when considering the verifiability
of messages sent between two parties, as the secure channels provide no way of proving
statements about how the messages a role passes on to the next committee relate to the
messages it received. Explicit encryption keys used for the point-to-point communication
would allow the use of NIZK, but this would require exposing the role assignment mechanism
to the design of the MPC layer, breaking the abstraction of the YOSO model. The use
of setup (which we wish to avoid) in the YOSO-CDN protocol of [GHK+21] effectively
sidesteps this issue as keys are assumed as a part of the setup, allowing the subsequent use
of NIZK w.r.t. encrypted messages sent on FBC. Braun et al. [BDO23] similarly assume
explicit keys for roles to enable NIZK.

The FVeSPa functionality maintains two maps for messages between roles, a map y for
point-to-point messages, and a map z for broadcast messages. When roles have completed
their work, they may input a single Send message to the functionality containing all
point-to-point messages as well as a broadcast message. The role also provides a witness
and relation along this input, allowing the functionality to verify that the messages satisfy
some requirement. The statements for the considered relations may be divided into four
parts, ϕsend, ϕbroadcast, ϕreceive and ϕpublic. The first two contain the point-to-point and
broadcast messages respectively. While the third part of the statement, which is specified
by the functionality, contains all messages sent directly to the role, allowing roles to prove
that their messages are well-formed with respect to secret messages they have received.
The fourth and final part, of the statement, which is also specified by the functionality,
contains all previous broadcast messages. After receiving a send command from an honest
role the functionality outputs a Spoke token, killing the role.

Roles may read messages input to the functionality in the rounds after they were sent.
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Functionality FVeSPa

This ideal functionality has the following behaviour:
• Define a map R : Role→ Rel⊥. Specify the relations the messages of each role must

satisfy.
• Initially create point-to-point and broadcast maps:

y : N× Role× Role→ Msg⊥ where y(r, R, R′) = ⊥ for all r, R, R′

z : N× Role→ Msg⊥ where z(r, R) = ⊥ for all r, R.

• On input (Send, S, ((R1, x1), . . . , (Rk, xk)), x, w) in round r proceed as follows:

– Let ϕsend = ((R1, x1), . . . , (Rk, xk)) and ϕbroadcast = x.
– Collect all yk ̸= ⊥ for r′ < r, R′ ∈ Role where y(r′, R′, S) = yk to produce a

vector ϕreceive = ((R′
1, y1), . . . , (R′

m, ym)).
– Let ϕpublic be the current public state, represented by a vector of all elements

(r′, R′, msg), for all R′ ∈ Role where z(r′, R′) = msg ̸= ⊥ and r′ < r.
– If ((ϕsend||ϕreceive||ϕbroadcast||ϕpublic), w) ̸∈ R(S) ignore the input.
– Else:

∗ For i ∈ [k] update y(r, S, Ri) = xi. Store point to point messages from the
role.

∗ Update z(r, S) = x. Store the broadcast message from the role.
∗ Output (S, ((R1, |x1|), . . . , (Rk, |xk|)), x) to S. Leak message lengths and the

broadcast message to the simulator in a rushing fashion.
If S is honest give Spoke to S.

• On input (Read, R, S, r′) in round r where r′ < r for x = y(r′, S, R) output x to R.
• On input (Read, S, r′) in round r where r′ < r output x = z(r′, S) to R.

We prove each of our protocols secure in the FVeSPa-hybrid model, supplanting the
broadcast and point-to-point functionalities of [GHK+21].

3.1 VeSPa and the big picture
In recent work Canetti et al. [CKR+23] construct a new compiler for YOSO protocols,
which they show may be easily extended to be compatible with the FVeSPa-hybrid model.
They show how a statically-secure abstract protocol in the FVeSPa-hybrid model can be
compiled to achieve adaptive security in the natural world. The verifiability provided by
FVeSPa in the abstract world is emulated in the natural world by using NIZK8 proofs that
augment the ciphertexts containing protocol messages.9 This compiler demonstrates the
usability of protocols designed in FVeSPa-hybrid model and shows how the guarantees of
FVeSPa may be realised when compiling protocols from the YOSO model.

In summary, FVeSPa may largely be seen as a reorganisation of existing abstractions.
More specifically, it does not introduce computational overhead as compared to construc-
tions that rely on FBC and FSPP since this is essentially a conceptual reorganization of
work: it moves the zero-knowledge proofs previously explicit in the MPC layer to the
FVeSPa layer.

8NIZKs themselves traditionally require a URS or random oracle, but can also be instantiated with a
set of URSs a minority of which can be adversarially generated (multi-string NIZKs [GO14]). These URSs
can be published by one initial committee.

9These proofs may be used as their approach allows achieving adaptive security without requiring that
the aforementioned ciphertexts be non-committing.
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4 YaoOSO
As outlined in the overview in Section 1.4, we present a compiler that transforms any
two-round broadcast non-YOSO MPC protocol that achieves semi-malicious security with
abort in the dishonest majority setting to a two-round YOSO MPC protocol in the FVeSPa-
hybrid model that achieves malicious security with guaranteed output delivery in the
honest majority setting. This compiler adapts the approach of the compiler in [ACGJ18]
with suitable modifications to make it compatible with the YOSO setting.

4.1 Tools
The compiler uses the following tools:

• A two-round m-party non-YOSO broadcast protocol Πsm achieving semi-malicious
security with abort against dishonest majority (such as the protocols of [GS18,
BL18]). Πsm is represented by the set of algorithms {frst-msgi, snd-msgi, out},
where frst-msgi computes Pi’s first-round broadcast message; snd-msgi computes
Pi’s second messages; and out computes the output.
The syntax of the algorithms is as follows:

– frst-msgi(xi, ρi)→ msg1
i produces the first-round broadcast message of party

Pi to all parties.
– snd-msgi(xi, ρi, msg1

1, . . . , msg1
m)→ msg2

i produces the second-round broadcast
message of party Pi to all parties.

– out(msg1
1, . . . , msg1

m, msg2
1, . . . , msg2

m) → y produces the public output. As
mentioned previously, it is without loss of generality to assume that the output
computation requires only the public transcript.

• An adaptive garbling scheme (garble, eval, simGC) (Appendix A.2).

• A Shamir secret sharing scheme (Share, Rec) (Appendix A.1).

Notation. Let Ci,xi,ρi
(msg1

1, . . . , msg1
m) (with hard coded values (xi, ρi)) denote the

boolean circuit that computes snd-msgi. For simplicity assume each first round message is
ℓ bits long, so each circuit has L = m · ℓ input bits. Let g be the size of a garbled Ci.

4.2 Protocol
We introduce a relation for each of the committees in the protocol, allowing FVeSPa to
enforce correct behaviour.
Below, is the relation corresponding to an input committee role Ij ,

RInput,j =



ϕsend =
(
Ei, {s(0)

j,l,i, s
(1)
j,l,i}l∈[L]

)
i∈[n]

ϕreceive = ⊥ , ϕpublic = ⊥
ϕbroadcast =

(
msg1

j , GCj

)
w =

(
xj , ρj , ρj,gc,

{ρ(b)
j,l }b∈{0,1},l∈[L]

)

msg1
j ← frst-msgj(xj , ρj)

(GCj , {K(0)
j,l , K

(1)
j,l }l∈[L])

← garble(1λ, Cj,xj ,ρj
, ρj,gc)

For b ∈ {0, 1}, l ∈ [L] :
(s(b)

j,l,1, . . . , s
(b)
j,l,n)

← Share(K(b)
j,l , ρ

(b)
j,l )


.

Below, is the relation corresponding to a computation committee role Ei,
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RComputation,i =



ϕsend = ⊥
ϕreceive = {s(0)

j,l,i, s
(1)
j,l,i}j∈I,l∈[L],

ϕbroadcast = {s(bl)
j,l,i}j∈I,l∈[L]

ϕpublic = msg1
1, . . . , msg1

m

w = ⊥

msg1
1|| . . . ||msg1

m := b1, . . . , bL


.

We present the protocol ΠY aOSO in the FVeSPa-hybrid model.

Protocol ΠY aOSO : Input

This step is run by the input committee I of size m. The jth input role Ij (with input xj) does the
following:

• Compute the first round message of Πsm using input xj and randomness ρj as msg1
j ←

frst-msgi(xj , ρj)

• Garble the circuit computing the second round next-message function of Πsm as (GCj , K⃗j) ←
garble(1λ, Cj,xj ,ρj

, ρj,gc), where K⃗j = {K(0)
j,l

, K
(1)
j,l
}l∈[L] and ρj,gc denotes the randomness used

for garbling.

• Compute t-out-of-n threshold sharing of the labels as (s
(b)
j,l,1, . . . , s

(b)
j,l,n

) ← Share(K
(b)
j,l

, ρ
(b)
j,l

) (for
l ∈ [L] and b ∈ {0, 1}), where ρ

(b)
j,l

denotes the randomness used.

• Send input
(

Send, Ij ,
(

(E1, {s(0)
j,l,1, s

(1)
j,l,1}l∈[L]), . . . , (En, {s(0)

j,l,n
, s

(1)
j,l,n
}l∈[L])

)
,
(

msg1
j , GCj

)
,(

xj , ρj , ρj,gc, {ρ(b)
j,l
}b∈{0,1},l∈[L]

))
to FVeSPa.

Protocol ΠY aOSO : Computation

This step is run by the computation committee E of size n. The ith role Ei does the following:

• Collect the broadcast messages
(

msg1
j , GCj

)
of the input role Ij by giving input (Read, Ij , 1) to

FVeSPa.

• Collect the point-to-point message {s(0)
j,l,i

, s
(1)
j,l,i
}l∈[L] sent by Ij by giving input (Read, Ei, Ij , 1)

to FVeSPa. Let I′ denote the subset of input roles Ij for whom the above reads resulted in non-⊥
output.

• For α ∈ {(j − 1)ℓ + 1, . . . , jℓ̇}, let bα denote the αth bit in msg1
j (where msg1

j is replaced by default
first-round message for j /∈ I′). In other words, set b1, . . . , bL := msg1

1|| . . . ||msg1
m.

• Send input (Send, Ei,⊥, {s(bl)
j,l,i
}j∈I,l∈{L},⊥) to FVeSPa. (Assume the set of shares to be simply ⊥

for j /∈ I′).

Protocol ΠY aOSO : Output

The output can be computed by any party as follows:

• Collect the broadcast messages
(

msg1
j , GCj

)
of each input role Ij by inputing (Read, Ij , 1) to FVeSPa.

Let I′ denote the subset of input roles Ij for whom the above read resulted in non-⊥ output.

• Collect the broadcast messages {s(bl)
j,l,i
}j∈I,l∈[L] of each computation committee role Ei by inputing

(Read, Ei, 2) Let E′ denote the subset of committee roles Ei for whom the above read resulted in
non-⊥ output.

• For j ∈ I′,

- Reconstruct the appropriate input label Kj,l for l ∈ [L] as Kj,l ← Rec({s(bl)
j,l,i
}i∈E′ ).
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- Evaluate GCj to obtain msg2
j as msg2

j ← eval(GCj , Kj,1, . . . , Kj,L).

• Compute the output as y ← out(msg1
1, . . . , msg1

m, msg2
1, . . . , msg2

m), where msg1
j and msg2

j for input
roles j /∈ I′ are computed using default input and randomness.

Theorem 1. The protocol ΠY aOSO realises the MPC functionality Ff with guaranteed
output delivery in the FVeSPa-hybrid model.

The proof of Theorem 1 may be found in Appendix C.1

5 YOSO-GLS
We now present our first protocol as outlined in Section 1.5, starting with the TFHE
scheme which makes up its core.

5.1 Threshold Fully Homomorphic Encryption
For the YOSO-GLS protocol we will use an adaptation of the Threshold Fully Homomorphic
Encryption (TFHE) scheme described by Gordon et al. in [GLS15]. To simplify the security
proof of the final protocol, and potentially ease future use of TFHE, we extract three
security properties of the scheme. This diverges from the approach of [GLS15], where the
authors analyse the scheme directly within the security proof of the protocol.

As described in our technical overview, moving to the YOSO model requires a series of
modifications to the TFHE scheme, these changes are reflected in the syntax we present
now.

Setup(1κ, n, d; ρ)→ pp: A setup algorithm parameterized by the size of an honest
majority committee n, producing public parameters pp, which are given as an implicit
argument to all subsequent algorithms.

KGen(ρi)→ (pki, ski) : Given public parameters pp and randomness ρi, the key gener-
ation algorithm produces a public key pki and a secret key ski split into shares, such
that ski = (ski,1, . . . , ski,n).

Enc({pki}i∈K, x; ρ)→ C : Given a set of public keys {pki}i∈K and a message x, the
encryption algorithm encrypts to a ciphertext C under randomness ρ.

Eval(f, C1, . . . , Cm)→ C : Homomorphically evaluates function f on input ciphertexts
C1, . . . , Cm to produce C.

PDec({pki}i∈K, cskj , C)→ dj : For a ciphertext C, encrypted under the public keys
{pki}i∈K, and computation secret key cskj = {ski,j}i∈K this algorithm produces a
partial decryption dj .

Combine({pki}i∈K, C, {di}i∈R)→ out : Given a set of partial decryptions {di}i∈R of
size at least t + 1, decrypts ciphertext C to plaintext out

To satisfy security we require one additional algorithm, for simulating partial decryptions.

SimPDec(C, {pki}i∈K, {ski}i∈IKGen , {(cskj , dj)}j∈IComputation , out)→ {dj}j∈[n]\IComputation : Given
a ciphertext C under public keys {pki}i∈K, along with partial decryptions for corrupt
computation roles, and all secrets known to the corrupted roles, the partial decryption
simulation algorithm produces partial decryptions dj for j ∈ [n]\IComputation which are
indistinguishable from honestly produced partial decryptions.
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5.1.1 TFHE Security

We extract three properties which we show our TFHE scheme adapted for the YOSO
setting satisfies. We define correctness (Definition 2), semantic security (Definition 3,
Figure 2), and partial decryption simulatability (Definition 4, Figure 3), where semantic
security and partial decryption simulatability use a common set of oracles defined in
Figure 1. The oracles are specifically tailored to represent the corruption powers of the
adversary over different committees in the YOSO model. One peculiarity of this is that
our oracles do not allow an honestly generated key to be corrupted or leaked subsequently,
as roles erase all private state prior to sending any messages.

We will first define correctness.

Definition 2 (Correctness). A TFHE scheme is perfectly correct, if for all positive integers
n, h, d, t < n/2, all functions f (computed by a circuit of depth d only containing NAND
gates and), all ρ, {ρKGen

i }i∈[h], {(xi, ρEnc
i )}i∈[m], and non-empty sets K ⊂ [h], R ⊂ [n] where

|R| > t:
f(x1, . . . , xm) = Combine({pki}i∈K, C, {di}i∈R).

Where the inputs to Combine are produced as:

• pp← Setup(1κ, n, d; ρ)

• (pki, ski)← KGen(ρKGen
i ) for i ∈ K

• Ci ← Enc({pki}i∈K, xi; ρEnc
i ) for i ∈ [m]

• C ← Eval(f, C1, . . . , Cm)

• dj ← PDec({pki}i∈K, {ski,j}i∈K, C) for j ∈ R.

For the purposes of our remaining definitions, we must first capture the corruption powers
of the adversary. We do this by formalising three oracles, with access to common state.
These oracles are:

• OKGen(i): An oracle that generates a new honest key pair and registers it in the
system.

• OKReg(i, ρi): An oracle that allows registering a corrupt key pair, requiring the
randomness used for its generation.

• OCorr(j): An oracle which leaks the computation key for cskj .

These oracles track which keys have been chosen by and leaked to the adversary, allowing
thresholds on corruptions to be checked in our security games. We do not allow the
adversary to corrupt an honestly generated key after the fact, as this local state, such as
the randomness used in generation, would be deleted in the YOSO setting.

Definition 3 (Semantic Security). A TFHE scheme is semantically secure under chosen
plaintext attack if, for all PPT adversaries A,

AdvIND−CP A
A,n,t,TFHE (κ) = Pr[A wins GameIND−CP A

A,n,t,TFHE (κ)]− 1
2 ≤ negl(κ)

for a negligible function negl in the security parameter κ. Where GameIND−CP A
A,n,t,TFHE (κ) is

defined as described in Figure 2
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OKGen(i)
1 : if i ∈ HKGen ∪ IKGen ∨ i ̸∈ [n] : return ⊥
2 : (pki, ski = (ski,1, . . . , ski,n))← KGen()
3 : Lkeys := Lkeys ∪ {(i, pki, ski)}
4 : HKGen := HKGen ∪ {i}
5 : return pki

OKReg(i, ρi)
1 : if i ∈ HKGen ∪ IKGen ∨ i ̸∈ [n] : return ⊥
2 : (pki, ski)← KGen(ρi)
3 : Lkeys := Lkeys ∪ {(i, pki, ski)}
4 : IKGen := IKGen ∪ {i}
OCorr(j)
1 : if j ̸∈ [n] : return ⊥
2 : IComputation := IComputation ∪ {j}
3 : cskj ← {ski,j |∃(i, pki, (ski,1, . . . , ski,n)) ∈ Lkeys}
4 : return cskj

Figure 1: Oracles used in the security games for TFHE schemes

Definition 4 (Partial Decryption Simulatability). A TFHE scheme has partial decryption
simulatability if, for all PPT adversaries A, for all n, d and functions f (of only NAND
gates and depth less than d),

AdvP arDecSim
A,n,d,f,TFHE(κ) = Pr[A wins GameP arDecSim

A,n,d,f,TFHE(κ)]− 1
2 ≤ negl(κ)

for a negligible function negl in the security parameter κ, where GameP arDecSim
A,n,d,f,TFHE(κ) is

defined as described in Figure 3

5.1.2 Instantiating Threshold Fully Homomorphic Encryption

We provide an instantiation of TFHE in Appendix A.4, proving its security in Appendix A.5.
A discussion of the changes required to adapt the original scheme to the YOSO setting
may be found in our technical overview (Section 1.5).

5.2 The YOSO-GLS Protocol
We present two variants of our YOSO-GLS protocol, achieving different round complexities,
depending on the allowed setup.

• A five round protocol. Two sequential committees, realising a subprotocol for
sampling public parameters for the TFHE scheme, described in Appendix B.1.
Followed by three rounds for the TFHE scheme, consisting of a key generation, input
and computation committee, described in this section.

• A three round protocol. The explicit sampling of public parameters is replaced by
access to a uniform reference string, leaving only the three rounds needed for the
TFHE scheme.

The functionality for sampling public parameters may be defined as FTFHE
Setup (realised in

Appendix B.1). For now we assume access to this ideal functionality and proceed to design
our main protocol.
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GameIND−CP A
A,n,t,TFHE (κ)

1 : HKGen := ∅; IKGen := ∅; IComputation := ∅; Lkeys := ∅
2 : O ← {OKGen,OKReg,OCorr}
3 : pp← Setup(1κ, n)
4 : x0, x1 ← AO(pp)
5 : K ← HKGen ∪ IKGen

6 : b
$← {0, 1}

7 : C ← Enc({pki}i∈K, xb)

8 : b′ ← A{OCorr}(C)
9 : if |HKGen| = 0 : A loses

10 : if |IComputation| > t : A loses

11 : if |x0| ≠ |x1| : A loses

12 : if b = b′ : A wins

13 : else : A loses

for a definition of the oracles provided to the adversary.

Figure 2: The semantic security game for TFHE schemes. See Figure 1

Functionality FTFHE
Setup

• Run pp← TFHE.Setup(1κ, n, d) and output pp to S.

• On input (Read, R) output pp to R.

Notation Our three-round protocol considers three committees:

K1, . . . , Kh denotes the key generation committee K (of size h).

I1, . . . , Im denotes the input committee I (of size m).

E1, . . . , En denotes the computing committee E (of size n).

We introduce a relation for each of the committees in the protocol, allowing FVeSPa to
enforce correct behaviour. Below, is the relation for a role in the key generation committee
Ki,

RKGen =


ϕsend =

(
(E1, ski,1), . . . , (En, ski,n)

)
ϕreceive = ⊥ , ϕbroadcast =

(
pki

)
w =

(
ρKi

) (pki, (ski,1, . . . , ski,n))
← TFHE.KGen(pp, ρKi

)

 .

Below, is the relation corresponding to an input committee role Ii,

REnc =


ϕsend = ⊥, ϕreceive = ⊥
ϕbroadcast =

(
Ci

)
ϕpublic =

(
(K1, pk1), . . . , (Kh, pkh)

)
w =

(
xi, ρIi

) Ci

← TFHE.Enc({pki}i∈K, xi; ρIi
)

 .
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GameP arDecSim
A,n,d,f,TFHE(κ)

1 : HKGen := ∅; IKGen := ∅; IComputation := ∅; Lkeys := ∅
2 : O ← {OKGen,OKReg,OCorr}
3 : pp← Setup(1κ, n)
4 : {(xk, ρk)}k∈[m] ← AO(pp)
5 : K ← HKGen ∪ IKGen

6 : for j ∈ [n] :
7 : cskj ← {ski,j |∃(i, pki, (ski,1, . . . , ski,n)) ∈ Lkeys}
8 : for k ∈ [m] :
9 : Ck ← Enc({pki}i∈K, xk; ρk)

10 : C ← Eval(f, C1, . . . , Cm)
11 : out← f(x1, . . . , xm)

12 : b
$← {0, 1}

13 : if b = 0 :
14 : for j ∈ [n] \ IComputation :
15 : dj ← PDec({pki}i∈K, cskj , C)
16 : else :
17 : for j ∈ IComputation :
18 : dj ← PDec({pki}i∈K, cskj , C)
19 : {dj}j∈[n]\IComputation ← SimPDec(C, {pki}i∈K, {ski}i∈IKGen ,

{(cskj , dj)}j∈IComputation , out)
20 : b′ ← A({dj}j∈([n]\IComputation))
21 : if |HKGen| = 0 : A loses

22 : if |IComputation| > t : A loses

23 : if b = b′ : A wins

24 : else : A loses

Figure 3: The partial decryption simulatability game for TFHE schemes. See Figure 1 for
a definition of the oracles provided to the adversary.
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Lastly, the relation for a role in the computation committee Ei,

REval =



ϕsend = ⊥
ϕreceive =

(
(E1, ski,1), . . . , (En, ski,n)

)
ϕbroadcast =

(
di

)
ϕpublic =

(
(K1, pk1), . . . , (Kh, pkh),

(I1, C1), . . . , (Im, Cm)
)

w = ⊥

C ← TFHE.Eval(f, C1, . . . , Cm)
cski = {skj,i}j∈K

di ← PDec({pkk}k∈K, cski, C)


.

The FVeSPa functionality is parameterised by a map from roles to relations which their
messages must satisfy. In this case, when defining our use of FVeSPa, let R be the map such
that R(Ki) = RKGen for i ∈ h , R(Ij) = REnc for j ∈ m, and R(Ek) = REval for k ∈ n.
Having defined our committees and necessary relations we may now present our protocol.

Protocol ΠY OSO−GLS

Setup: Any role R may read the public parameters pp after round two, by giving input (Read, R) to FTFHE
Setup .

KGen: This step is run by the key generation committee K of size h. Each member Ki (i ∈ [h]) does
the following:

1. Runs the key generation algorithm (pki, (ski,1, . . . , ski,n))← TFHE.KGen(pp, ρKi
).

2. Input (Send, Ki, ((E1, ski,1), . . . , (En, ski,n)), pki, ρKi
) to FVeSPa.

When the key generation committee is finished all roles may define K such that {pki}i∈K contains all keys
where pki ̸= ⊥ is returned by FVeSPa on the input (Read, Ki, 3).

Input: This step is run by the input generation committee I of size m. Each member Ii (i ∈ [m])
encrypts their input xi under the TFHE keys to get Ci ← TFHE.Enc({pki}i∈K, xi; ρIi

) and then inputs
(Send, Ii,⊥, Ci, (xi, ρIi

)) to FVeSPa.

Computation: This step is run by the computation committee E of size n. Each member Ei (i ∈ [n])
does the following:

1. Collects all Cj ̸= ⊥ broadcasted by the committee I by giving input (Read, Ij , 2) to FVeSPa.
2. Evaluates the function f homomorphically on the ciphertexts C ← TFHE.Eval(f, C1, . . . , Cm),

replacing any missing Cj with default values.
3. Retrieves each key share by K, skj,i by giving input (Read, Ij , Ei, 2) to FVeSPa and defines cski =
{skj,i}j∈K .

4. Produces partial decryption di ← PDec({pkk}k∈K, cski, C).
5. Broadcasts di by inputing (Send, Ei,⊥, di,⊥) to FVeSPa.

Output: By inputing (Read, Ei, 3) to FVeSPa, any party may then take a set {di}i∈R of at least t + 1 partial
decryptions and recover the final output out← Combine({pki}i∈K, C, {di}i∈R).

Theorem 2. The protocol ΠY OSO−GLS YOSO realises the MPC functionality Ff with
guaranteed output delivery in the (FVeSPa,FTFHE

Setup )-hybrid model.

Here we provide a high level sketch of our proof strategy for the YOSO-GLS protocol.
A complete proof of Theorem 2 may be found in Appendix C.2.

The FVeSPa functionality directly leaks inputs from the corrupt roles to the simulator,
which may later input these to the MPC functionality to receive the result of the computa-
tion. The FVeSPa additionally forces the adversary to provide the randomness used for key
generation and encryption to the simulator. For messages to be stored they must satisfy
the relation specified for a given role. In our case, this ensures that keys, encryptions and
decryptions are computed correctly, for some choice of randomness. Thus, correctness of
our TFHE scheme implies that our protocol computes the correct output.
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We may then proceed through two hybrids, reducing to the security properties of the
TFHE scheme. First, partial decryptions for honest roles may be simulated, exploiting that
the key shares for the corrupt roles have been leaked by FVeSPa and the output from the ideal
MPC functionality. Indistinguishability follows from the partial decryption simulatability of
the TFHE scheme, mapping corruptions in the protocol to use of the corresponding corrup-
tion oracles in the security game. In the second hybrid, bringing the simulator to the ideal
world, encryptions of honest inputs may then be replaced by encryptions of zero. It is still
possible to produce the same partial decryptions, simply simulating for the output received
from the ideal functionality. Indistinguishability now follows from the semantic security of
the TFHE scheme, again mapping corruptions in the protocol to oracle queries in the game.

6 YOSO-LHSS
In this section, we describe our YOSO MPC protocol based on linearly homomorphic
encryption (LHE). Instead of using LHE explicitly, we use the functionality Fhom

VeSPa, which
models the use of homomorphic encryption for private communication to future roles.

6.1 Homomorphic Verifiable State Propagation
In some cases the functionality of FVeSPa may be unnecessarily restrictive. For example, it is
not unreasonable that the encryption scheme used to realise point-to-point communication
have homomorphic properties. If this were the case then it might be possible for a role R′
to apply a function on a message x, sent from a sender S to receiver R, without having to
know what x is. We express this additional power by introducing an expanded variant
of our verifiable state propagation functionality called Fhom

VeSPa. The class of functions
allowed by Fhom

VeSPa may be restricted depending on the needs of the protocol and how
the functionality is constructed, e.g. a linearly homomorphic encryption scheme allowing
the application of any linear function. For ease of comparison to FVeSPa we mark details
exclusive to Fhom

VeSPa with a dark background.

Functionality Fhom
VeSPa

This ideal functionality has the following behaviour:
• Define a map R : Role→ Rel⊥. Specify the relations the messages of each role must

satisfy.
• Initially create point-to-point and broadcast maps:

y : N× Role× Role→ Msg⊥ where y(r, R, R′) = ⊥ for all r, R, R′.
In an abuse of notation we use y(R) as a shorthand for the vector of all messages
previously sent to role. Specifically, define y(R) as the vector ((S1, y1), . . . , (Sm, ym))
containing all pairs (Sj , yj) such that yj = y(r′, Sj , R) ̸= ⊥ for some r′ < r.
z : N× Role→ Msg⊥ where z(r, R) = ⊥ for all r, R.

• On input (Send, S, ((R1, x1, f1 ), . . . , (Rk, xk, fk )), x, w) in round r proceed as follows:

– Let ϕsend = ((R1, x1, f1 ), . . . , (Rk, xk, fk )) and ϕbroadcast = x.
– Collect all yk ̸= ⊥ for r′ < r, R′ ∈ Role where y(r′, R′, S) = yk to produce a

vector ϕreceive = ((R′
1, y1), . . . , (R′

m, ym)).
– Let ϕpublic be the current public state, represented by a vector of all elements

(r′, R′, msg), for all R′ ∈ Role where z(r′, R′) = msg ̸= ⊥ and r′ < r.
– If ((ϕsend||ϕreceive||ϕbroadcast||ϕpublic), w) ̸∈ R(S) ignore the input.
– Else:
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∗ For i ∈ [k] update y(r, S, Ri) = (xi, fi(y(Ri))). Store point to point mes-
sages to each recipient role and apply the homomorphism on messages
sent to each recipient role.

∗ Update z(r, S) = x. Store the broadcast message from the role.
∗ Output (S, ((R1, |x1|, |f1(y(Ri))|), . . . , (Rk, |xk|, |fk(y(Ri))|)), x) to S. Leak

message lengths and the broadcast message to the simulator in a rushing
fashion.

If S is honest give Spoke to S.

• On input (Read, R, S, r′) in round r where r′ < r for (x, xhom ) = y(r′, S, R) output
(x, xhom ) to R.

• On input (Read, S, r′) in round r where r′ < r output x = z(r′, S) to R.

Realizing Fhom
VeSPa: Choosing Compatible Linearly Homomorphic Encryption

and Secret Sharing We wish to build our Y OSO − LHSS scheme through the use of
t-out-of-n secret sharings and a compatible linear homomorphism.

The natural choice of linearly homomorphic secret sharing is Shamir secret sharing
[Sha79]. We have several constraints for picking our homomorphic encryption scheme: (a)
it must offer a linear homomorphism over the same finite field for independently generated
key pairs (in order to support operations over shares from a single secret sharing), and (b)
it is strongly desirable that it not require a common reference string. Notably, well known
encryption schemes such as Paillier [Pai99] do not support distributed generation of keys,
while alternate variants such as the cryptosystems due to Damgård and Jurik [DJ03] and
Bresson et al. [BCP03] require a common reference string.

We instead propose the use of the linearly homomorphic cryptosystem of Castagnos
and Laguillaumie [CL15b], which has an ElGamal-like structure. The plaintext msg is
encoded in an exponent (as fmsg) during encryption, so that the natural multiplicative
homomorphism of ElGamal becomes an additive one. In order to enable efficient decryption,
Castagnos and Laguillaumie use class groups, and encode msg using a generator f of
a subgroup where the discrete logarithm problem is efficiently solvable. The message
space will be integers modulo a prime p, where p can be a fixed parameter across multiple
independently generated key pairs (under the constraint that p is big enough).10

6.2 Informal Overview of YOSO-LHSS
To submit an input x to a committee C of size n, an input owner first Shamir secret shares
that input with threshold n/2 as (x1, . . . , xn). She then uses Fhom

VeSPa to send each share xi

to one of the members of C.
To perform linear operations, the members of a committee use the linear homomorphism

of the Shamir secret sharing . Performing multiplications is more involved. Let M denote
the committee which holds shares of the values to be multiplied, and let O denote the
committee to which we would like to give shares of the products. The multiplication
requires two additional committees A and B (of size h)— each of which only needs to
have one honest role, as opposed to an honest majority — to generate a Beaver triple.
First, each member Aj of committee A chooses a random value aj , shares and sends it
via Fhom

VeSPa to M , and independently shares and sends it via Fhom
VeSPa to O. The value a is

defined as the sum of successfully sent aj ’s. We let aj,k denote the share sent by Aj to Ok.
Each member Bj of committee B then chooses a random value bj , and proceeds similarly

to the members of committee A. However, each role Bj also sends to each member Ok

10p is not a CRS, since security does not depend on the honest choice of p.
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of O the value bj(a1,k + · · ·+ ah,k), using Fhom
VeSPa to compute this value homomorphically

without knowing the values ai,k. To ensure that Ok cannot compute bj by dividing the
value it receives by a1,k + · · ·+ ah,k which it knows, Bj masks the value it sends with a
freshly computed sharing of zero; so, what it actually sends is bj(a1,k + · · ·+ ah,k) + 0j,k,
where 0j,k is the kth share of zero. As with a, b is defined as the sum of successfully sent
bj ’s; c = ab is similarly defined as the sum of bja’s.

Next, to multiply two shared values x and y using the generated Beaver triple (a, b, c),
committee M locally computes shares of ϵ = a − x and δ = b − y and broadcasts these
shares, allowing public reconstruction of ϵ and δ. Now that committee M has spoken,
committee O picks up the torch. They use their own shares of a, b and c, as well as the
reconstructed ϵ and δ, to compute shares of xy = c− ϵb− δa + ϵδ. (Note that we use this
version of the Beaver triple arithmetic — avoiding using shares of x and y — since shares
of x and y were held by committee M , and may by default not be available to members of
committee O.)

The formal description of the YOSO-LHSS may be found in Appendix B.2

Theorem 3. The protocol ΠY OSO−LHSS realises the MPC functionality Ff with guaranteed
output delivery in the Fhom

VeSPa-hybrid model.

The proof of Theorem 3 may be found in Appendix C.4.
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Supplementary Material
A Tools
We recap the tools we need in our YOSO constructions.

A.1 Linearly Homomorphic Secret Sharing
A t-out-of-n secret sharing scheme allows a party to “split” a secret into n shares in a field
F that can be distributed among different parties. To reconstruct the original secret x at
least t + 1 shares need to be used. Such a secret sharing scheme is linearly homomorphic if
it allows parties to locally evaluate linear functions on shared values.

Syntax A t-out-of-n linearly homomorphic secret sharing scheme has the following
algorithms:

Share(x; ρ)→ (s1, . . . , sn): An algorithm that, given a secret x, outputs a set of n
shares in a finite field F.

Rec({si}i∈S⊆[n],|S|>t)→ x: An algorithm that, given a vector of at least t + 1 shares,
outputs the secret x.

Eval((s1, . . . , sm), (c1, . . . , cm))→ s: An algorithm that, given some party i’s shares
s1, . . . , sm of secrets x1, . . . , xm as well as coefficients c1, . . . , cm, outputs a share s of∑m

j=1 cjxj in the finite field F.

SimShare({si}i∈S,|S|≤t, x)→ {s′′i }i∈[n]\S: A simulation algorithm that, given shares
belonging to corrupt parties and a target value x, simulates the shares belonging to
honest parties that causes Rec to output the desired value.

Properties We require the following properties of a linearly homomorphic t-out-of-n
secret sharing scheme:

Perfect Correctness. The perfect correctness property requires that the shares of
a secret x should always reconstruct to x. More formally, a secret sharing scheme is
perfectly correct if for any secret x, for any subset S ⊆ [n], |S| > t,

Pr
[
x = x′

(s1, . . . , sn)← Share(x)
x′ ← Rec({si}i∈S)

]
= 1,

where the probability is taken over the random coins of Share.
Furthermore, correctness should hold even when shares are a result of an evaluation.
More generally, the perfect correctness of a linearly homomorphic t-out-of-n secret
sharing scheme requires that for any set of secrets x1, . . . , xm, any set of coefficients
c1, . . . , cm, for any subset S ⊆ [n], |S| > t,

Pr

x′ =
m∑

j=1
cjxj

(sj
1, . . . , sj

n)← Share(xj) ∀j ∈ [m]
si ← Eval((s1

i , . . . , sm
i ), (c1, . . . , cm)) ∀i ∈ [n]

x′ ← Rec({si}i∈S)

 = 1,

where the probability is taken over the random coins of Share.
If a negligible error probability is allowed, we simply say that the scheme is correct.
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Privacy. The privacy property requires that any combination of up to t shares should
leak no information about the secret x. More formally, we say that a secret sharing
scheme is private if for all (unbounded) adversaries A, for any set I ⊆ {1, . . . , n},
|I| ≤ t and any two secrets x0, x1 (such that |x0| = |x1|),∣∣∣∣Pr

[
A(S) = 1 {si}i∈[n] = Share(x0);

S = {si}i∈I

]
− Pr

[
A(S) = 1 {si}i∈[n] = Share(x1);

S = {si}i∈I

]∣∣∣∣
≤ negl(κ)

for a negligible function negl in the bit-length κ of the size of F.

Share Simulatability. Additionally, we require an efficient simulator for the gen-
erated shares. More formally, we say that a secret sharing scheme is share simu-
latable if there exists a PPT simulator SimShare such that for every PPT adversary
A, for any set I ⊆ {1, . . . , n}, |I| ≤ t (and H = {1, . . . , n}\I), and any two se-
crets x0, x1, for (s0, . . . , sn) ← Share(x0), (s′1, . . . , s′n) ← Share(x1) and {s′′i }i∈H ←
SimShare({si}i∈I , x0),

|Pr [A({si}i∈I , {si}i∈H) = 1]− Pr [A({si}i∈I , {s′′i }i∈H) = 1] | ≤ negl(κ)

for a negligible function negl in the bit-length κ of the size of F.

Instantiation In our constructions, we use Shamir’s threshold secret sharing scheme
[Sha79], and refer to its algorithms as (SH.Share, SH.Rec, SH.Eval, SH.SimShare). Shamir
secret sharing satisfies the useful property we require in our construction – SH.Eval involves
only linear operations (which is important since our construction executes SH.Eval on the
threshold shares under the hood of a linearly homomorphic encryption scheme).

A.2 Garbling Scheme
A garbling scheme, introduced by Yao [Yao82] and formalized by Bellare et al. [BHR12b],
enables a party to “encrypt” or “garble” a circuit in such a way that it can be evaluated
on inputs — given tokens or “labels” corresponding to those inputs — without revealing
what the inputs are.

Definition 5 (Garbling Scheme). A projective garbling scheme is a tuple of efficient
algorithms GC = (garble, Eval) defined as follows.

garble(1n, C)→ (GC, K): The garbling algorithm garble takes as input the security
parameter n and a boolean circuit C : {0, 1}ℓ → {0, 1}m, and outputs a garbled circuit
GC and ℓ pairs of garbled labels K = (K0

1 , K1
1 , . . . , K0

ℓ , K1
ℓ ). For simplicity we assume

that for every i ∈ [ℓ] and b ∈ {0, 1} it holds that Kb
ℓ ∈ {0, 1}n.

Eval(GC, K1, . . . , Kℓ)→ y: The evaluation algorithm Eval takes as input the garbled
circuit GC and ℓ garbled labels K1, . . . , Kℓ, and outputs a value y ∈ {0, 1}m.

We require the following properties of a projective garbling scheme:

Perfect Correctness. We say GC satisfies perfect correctness if for any boolean circuit
C : {0, 1}ℓ → {0, 1}m and x = (x1, . . . , xℓ) it holds that

Pr[Eval(GC, K[x]) = C(x)] = 1,

where (GC, K)← garble(1n, C) with K = (K0
1 , K1

1 , . . . , K0
ℓ , K1

ℓ ), and K[x] = (Kx1
1 , . . . , Kxℓ

ℓ ).
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Next, we formally define the security notions we require for a garbling scheme. When
garbled circuits are used in such a way that decoding information is used separately,
obliviousness requires that a garbled circuit together with a set of labels reveals nothing
about the input the labels correspond to, and privacy requires that the additional knowledge
of the decoding information reveals only the appropriate output. In our work, we do not
consider decoding information separately (but rather, consider it to be included in the
garbled circuit), so we do not need obliviousness.

Privacy Informally, privacy requires that a garbled circuit together with a set of labels
reveal nothing about the input the labels correspond to (beyond the appropriate output).

More formally, we say that GC satisfies privacy if there exists a simulator simGC such
that for every PPT adversary A, it holds that

Pr[A wins] ≤ 1
2 + negl(n)

in the following experiment:

Adversary A Challenger C

C : {0, 1}ℓ → {0, 1}m

−−−−−−−−−−−−−−−−−−−−−−−−−−▷
x = (x1, . . . , xℓ) ∈ {0, 1}ℓ

−−−−−−−−−−−−−−−−−−−−−−−−−−▷ b← {0, 1}
if b = 0:

(GC, (K0
1 , K1

1 , . . . , K0
ℓ , K1

ℓ ))← garble(1n, C)
Ki = K

xi
i

for i ∈ [ℓ]
if b = 1:

(GC, K1, . . . , Kℓ)← simGC(1n, C, C(x))
GC, K1, . . . , Kℓ

◁−−−−−−−−−−−−−−−−−−−−−−−−−−
b′

−−−−−−−−−−−−−−−−−−−−−−−−−−▷
A wins if b = b′

Adaptive Privacy Informally, this property requires that privacy is maintained against
an adversary who first obtains the garbled circuit and then selects the input. More formally,
we say that GC satisfies adaptive privacy if there exists a simulator simGC such that for
every PPT adversary A, it holds that

Pr[A wins] ≤ 1
2 + negl(n)

in the following experiment:

Adversary A Challenger C

C : {0, 1}ℓ → {0, 1}m

−−−−−−−−−−−−−−−−−−−−−−−−−−▷ b← {0, 1}
if b = 0:

(GC, (K0
1 , K1

1 , . . . , K0
ℓ , K1

ℓ ))← garble(1n, C)
if b = 1:

GC← simGC(1n, ϕ(C), “ckt”)
where ϕ(C) denotes the topology of C

GC
◁−−−−−−−−−−−−−−−−−−−−−−−−−−

x = (x1, . . . , xℓ) ∈ {0, 1}ℓ

−−−−−−−−−−−−−−−−−−−−−−−−−−▷ if b = 0:
Ki = K

xi
i

for i ∈ [ℓ]
if b = 1:

((K1, . . . , Kℓ)← simGC(1n, C(x), “input”)
K1, . . . , Kℓ

◁−−−−−−−−−−−−−−−−−−−−−−−−−−
b′

−−−−−−−−−−−−−−−−−−−−−−−−−−▷
A wins if b = b′

We assume that the topology of a circuit does not reveal hard coded values (as hard
coded values are essentially fixed input labels for some wires).
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Instantiation For our constructions, adaptive garbled circuits can be obtained using
one-time pads with Yao’s garbled circuits (as shown by Bellare et al. [BHR12a]).

A.3 Vector operations
Before we may proceed to defining the scheme we must first recall a number of vector
operations, presented in [GSW13]. Let ℓ = ⌊log q⌋+1 be the length of the bit representation
of an integer for some modulus q. We may then define the following procedures acting on
vectors a ∈ Zv

q and a′ ∈ Zv·ℓ
q , where arithmetic is over Zq.

• BitDecomp(a) = (a1,0, . . . , a1,ℓ−1, . . . , av,0, . . . , av,ℓ−1) where ai,j is the jth bit of the
ith element of a, such that ai =

∑ℓ−1
j=0 2jai,j .

• BitDecomp−1(a′) = (
∑ℓ−1

j=0 2ja′1,j , . . . ,
∑ℓ−1

j=0 2ja′v,j) for a′ = (a1,0, . . . , a1,ℓ−1, . . . ,
av,0, . . . , av,ℓ−1), while this is most naturally defined when a′ is a binary vector it
remains well defined when this is not the case.

• Flatten(a′) = BitDecomp(BitDecomp−1(a′)) for non-binary a′ this procedure outputs
a binary vector which preserves some of the structure of a′. This is a central feature
in how the GSW scheme limits error growth, see [GSW13] for detailed exposition.

We also define the above procedures on matrices, by simply applying the procedure row
by row.

A.4 Threshold Fully Homomorphic Encryption construction
We will now describe our Threshold Fully Homomorphic Encryption construction TFHE =
(Setup, KGen, Enc, Eval, PDec, Combine, SimPDec)

Public Parameters.

Following the approach of [GLS15] we define the following public parameters, with respect
to security parameter κ. The number of roles participating in the key generation is the size
of a helper committee h, these roles each produce keys shares for a committee of n roles.
We then define a bound d = poly(κ) for the maximal circuit depth, along with a modulus
q = poly(d, κ). Finally, we introduce a lattice dimension v = v(d, n) and error distribution
χ = χ(κ, d, n) chosen such that they provide κ bits of security for the LWEv,q,χ problem
(See Definition 6). We set u = O((v + n) log q) and let ℓ be the bitlength of our modulus
⌊log q⌋ + 1. For our Bχ-bounded error distribution χ, we may define a positive integer
bound Bsmug ∈ Z subject to the constraints:

((v + 1)ℓ + 1)d · n ·Bχ

Bsmug
= negl(κ), n ·Bsmug < q/8.

The final public parameter produced is a uniformly random matrix B ∈ Zu×v
q , to

be used when generating public keys. Note that B is the only public parameter which
may not be locally and deterministically derived from know parameters. We then have
pp = (v, u, q, χ, Bχ, Bsmug, B)← Setup(1κ, n).

Key Generation.

We combine the two rounds of key generation of the [GLS15] scheme into a single procedure.
KGen(B) where role i proceeds as follows:
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• Sample si uniformly in Zv
q , sample error term ẽ from χu, and compute pki = B ·si + ẽ.

If any sample from χ has absolute value larger than Bχ, it should be replaced 0 if
this is the case. (Note that as χ is Bχ-bounded this only happens with negligible
probability)

• Sample an error term ri uniformly from [−Bsmug, Bsmug]

• Shamir share si and ri with a t-of-n threshold to produce (si,1, . . . , si,n) and
(ri,1, . . . , ri,n). Note that as si is a vector each share si,j actually consists of v
pointwise shares.

• Output (pki, ((si,1, ri,1), . . . , (si,n, ri,n)))

Encryption.

To permit a separate key generation committee we combine the encryption and ciphertext
transformation procedures, this is possible as consolidating key generation into a single
rounds allows roles giving input to know which key shares are available at time of encryption.
Enc({pki}i∈K, x) proceeds as follows:

• First compute public key pk =
∑

i∈K pki

• Sample R uniformly from {0, 1}(v+1)ℓ×u

• Compute and output C = Flatten(x · I(v+1)ℓ + BitDecomp(R · pk||R ·B))

Evaluation.

All ciphertexts provided are encrypted under the same public key pk =
∑

i∈K pki, this
corresponds directly to an encryption in the [GSW13] scheme under pk. Therefore, any
circuit f , made up of only NAND gates, may be evaluated homomorphically on the
ciphertexts. We refer the reader to [GSW13] and [GLS15] for a detailed explanation.

Partial Decryption.

Let β = ⌊log(q/2)⌋, such that 2β ∈ (q/4, q/2]. The β-th row of C may then be parsed as
Cβ = (Cβ,1||Cβ,2) where Cβ,1 ∈ Zℓ

q and Cβ,2 ∈ Zv·ℓ
q .

The partial decryption of our scheme proceeds exactly as the first round of decryption
in [GLS15]. Partial decryption PDec, of a ciphertext under keys {pki}i∈K, for a party j,
which has received key and noise shares {(si,j , ri,j)}i∈K may be done by:

• Summing all key shares zj =
∑

i∈K si,j

• Computing and outputting partial decryption dj = ⟨BitDecomp−1(Cβ,2), zj⟩+
∑

i∈K ri,j

Final decryption.

Given at least t partial decryptions of C under keys {pki}i∈K any party reconstruct the final
decryption. In Combine({pki}i∈K, C, {di}i∈R) a party starts by choosing a set R′ ⊂ R of
size t + 1. They may then use Lagrange polynomials µk to reconstruct w =

∑
k∈R′ µk(0)dk.

This is then finally used to output the decryption:⌊
BitDecomp−1(Cβ,1)− w

2β

⌉
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Partial Decryption Simulatability.

Given the secret and randomness shares of corrupt roles the partial decryptions of the
honest roles may be simulated. We extract the approach taken by the simulator described
in [GLS15] for generating third round messages, defining a seperate SimPDec algorithm,
which proceeds as follows:

The algorithm is given ciphertext C with corresponding plaintext out, along with secret
and randomness shares for i ∈ IKGen, in the form of ski = ((si,1, ri,1), . . . , (si,n, ri,n)). The
algorithm additionally recieves (dj , cskj = {(si,j , ri,j)i∈K}) for j ∈ IComputation.

1. Partial decryptions are interpolated to produce w = ⟨BitDecomp−1(Cβ,2),
∑

i∈K si⟩
such that

out =
⌊

BitDecomp−1(Cβ,1)− w

2β

⌉
.

To decrypt to a desired output contributions of honest partial decryptions must be
constructed, such that they interpolate to give

W = BitDecomp−1(Cβ,1)−
〈

BitDecomp−1(Cβ,2),
∑

i∈IKGen

si

〉
− 2β · out,

where si is reconstructed for each corrupt party in IKGen, from the secrets (si,1, . . . , si,n).

2. We will define Shamir shares αi such that the honest decryptions ensure that all
partial decryptions reconstruct to W when combined. We start by defining α0 = W ,
and then pick indices V ⊂ [n] \ IComputation, such that |V |+ |IComputation| = t, so that
we may construct αj for j ∈ V ∪ IComputation. This leaves αj well defined for the
remaining roles, allowing them to be interpolated.

• For j ∈ IComputation: z′j =
∑

i∈HKGen
si,j

• For j ∈ V : z′j sampled uniformly randomly
• For j ∈ V ∪ IComputation:

αj = ⟨BitDecomp−1(Cβ,2), z′j⟩

• Reconstruct the remaining shares for t ∈ [n] \ (V ∪ IComputation):
αt =

∑
j∈{0}∪V ∪IComputation

µj(t)αj

3. For honest roles j ∈ [n] \ IComputation define

di = ⟨BitDecomp−1(Cβ,2), zi⟩+ αi +
∑
j∈K

rj,i

where zi =
∑

j∈IKGen
sj,i. Finally, output {dj}j∈[n]\IComputation

A.5 Security of the TFHE construction
A.5.1 Prerequisites

To prove security of our TFHE scheme we must first introduce the Learning with Errors
assumption on which it is based.

Definition 6 (Learning with Error assumption [Reg05]). For integers v = v(κ), q = q(κ)
and distribution χ = χ(κ), we say the LWEv,q,χ assumption holds if for any u ∈ poly(κ),
the distribution (B, B · s + ẽ) is computationally indistinguishable from (B, u), where
ẽ← χu, and (B, s, u) are sampled uniformly as B $← Zu×v

q , s
$← Zv

q and u
$← Zu

q .
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We further recall a variant of the leftover hash lemma, and a useful result by Asharov
et al. that shows adding large noise may hide the small noise terms from homomorphic
evaluation.

Lemma 1 ([GLS15], Implicit in [Reg05]). Let v, χ, q be parameters such that the LWEv,q,χ,
and let n be some integer polynomial in κ. Then for u = O((v + n) log q), for any vectors
b1, . . . , bn−1 ∈ Zu

q , the distribution of (B, b, R · (b||B), R(b1|| . . . ||bn−1)) is computationally
indistinguishable from (B, b, U, R · (b1|| . . . ||bn−1)), where B is uniform over Zu×v

q , b is
uniform over Zu

q , U is uniform over Z(v+1)ℓ×u
q , and ℓ = ⌊log q⌋+ 1.

Lemma 2 ([AJL+12]). Let B1 = B1(κ), B2 = B2(κ) be positive integers, and let e1 be an
integer such that |e1| < B1. Then for e2 sampled uniformly in the interval [−B2, B2], the
distribution of e2 is statistically close to that of e1 + e2, if B1/B2 = negl(κ).

A.5.2 Security proofs

Theorem 4. The TFHE scheme defined in Section A.4 satisfies correctness Definition 2

Proof. We follow the lines of the correctness proof of [GLS15]. Each ciphertext Ck ←
Enc({pki}i∈K, xk; ρk) corresponds to a GSW ciphertext under the public key (B, pk) where
pk =

∑
i∈K pki, i.e.

Ck = Flatten(xk · I(v+1)ℓ + BitDecomp(R · pk||R ·B)).

By the analysis of [GSW13] we know C ← Eval(f, C1, . . . , Cm) is an encryption of out =
f(C1, . . . , Cm), with appropriately bounded error. Specifically, there exists some error ẽ
satisfying |ẽ| < ((v + 1)ℓ + 1)d · n ·Bχ such that

BitDecomp−1(Cβ,1)−
〈

BitDecomp−1(Cβ,2),
∑
i∈K

si

〉
= 2β · out + ẽ.

The norm of ẽ is strictly bounded as the key generation procedure replacing any error terms
which are too large by zero, this prevents the adversary choosing randomness which causes
samples from χ to exceed Bχ. Inspection of the partial decryptions reveals that interpolating
from any set of at least t + 1 partial decryptions dj = ⟨BitDecomp−1(Cβ,2),

∑
i∈K si,j⟩+∑

i∈K ri,j yeilds

w =
〈

BitDecomp−1(Cβ,2),
∑
i∈K

si

〉
+

∑
i∈K

ri

as ri are sampled from [−Bsmug, Bsmug] then |
∑

i∈K ri| ≤ n ·Bsmug < q/8 and thus⌊
BitDecomp−1(Cβ,1)− w

2β

⌉
= out.

Here we implicitly rely on ẽ/Bsmug = negl(κ).

Theorem 5. The TFHE scheme defined in Section A.4 has semantic security following
from Definition 3

Proof. We prove the semantic security of our encryption scheme through a series of hybrids,
which we subsequently prove are indistinguishable.

Real H0: The challenger is run as described in GameIND−CP A
A,n,t,TFHE (κ)
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Hybrid H1: Instead of running OKGen(i) as prescribed pki is sampled as a uniform
vector in Zv

q . For each j ∈ IComputation define si,j and ri,j as uniformly random shares.
For each query to OCorr(j), fix any previously undefined si,j and ri,j for i ∈ HK as
random shares, prior to outputting them.

Hybrid H2: Instead of encrypting the ciphertext set C = BitDecomp(U) where U
$←

Z(v+1)ℓ×(v+1)
q .

In H2 the ciphertext C has the same distribution independent of b, therefore no adversary
may win the game with probability greater than 1/2. We will now prove our sequence of
hybrids are indistinguishable to any adversary which wins the game:

H0 ≈ H1 To ensure correctness KGen replaces any samples from χ which have norm larger than
Bχ by zero, this only happens with negligible probability for each sample, and thus
remains negligible when union bounding across the samples for each OKGen query.
Therefore, the error distribution with replacement is statistically indistinguishable
from the distribution without replacement. The computational indistinguishability
of each pki from uniform vectors then follows directly from the LWE assumption
(Definition 6). For an adversary to win the game |IComputation| ≤ t must hold, therefore
for i ∈ HKGen an adversary will never see more than t shares si,j of si. These shares
are distribted indetically to the random shares produced in H1.

H1 ≈ H2 Consider the distribution ciphertext C = Flatten(C ′) = BitDecomp(BitDecomp−1(C ′)).
We may restrict our focus to the distribution of BitDecomp−1(C ′) as this fully deter-
mines the distribution of the final ciphertext C. By the linearity of BitDecomp−1 we
may now consider the distribution of

BitDecomp−1(x · I(v+1)ℓ) + BitDecomp−1(BitDecomp(R · pk||R ·B))

= BitDecomp−1(x · I(v+1)ℓ) + (R · pk||R ·B)

Consider the distribution of R · pk||R · B, for i ∈ HKGen this is may be rewrit-
ten as R · pki||R · B +

∑
j∈K\{i}(R · pkj ||0), where 0 is the all zero matrix. By

Lemma 1 the ensemble (B, pki, R ·(pki||B), {R ·pkj}j∈K\{i}) is indistinguishable from
(B, pki, U, {R · pkj}j∈K\{i}), for any choice of pkj for j ∈ KGen \ {i}, where U is uni-
form over Z(v+1)ℓ×(v+1)

q . Thus we may replace the ciphertext by the indistinguishable
BitDecomp(U).

Theorem 6. The TFHE scheme defined in Section A.4 has partial decryption simulatability
Definition 4.

Proof. We will prove security in the partial decryption simulatability game by showing the
statistical distance between the real partial decryptions and simulated partial decryptions
in negligible.

When the adversary is given the partial decryptions on behalf of the honest roles it no
longer has access to the corruption oracles. Thus we may consider fixed sets HKGen, IKGen
from key generation as well as IComputation. Let K = HKGen ∪ IKGen.

Consider the statistical distance ∆(X, Y ) between distributions X, Y defined as:

X =


〈

BitDecomp−1(Cβ,2),
∑
j∈K

sj,i

〉
+

∑
j∈HKGen

rj,i i ∈ [n] \ IComputation
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Y =


〈

BitDecomp−1(Cβ,2),
∑

j∈IKGen

sj,i

〉
+ αi +

∑
j∈HKGen

rj,i i ∈ [n] \ IComputation


Observe that X is the distribution of partial decryptions produced by the PDec algorithm,
while Y is the distribution of produced by the SimPDec algorithm, excluding the contribu-
tions due to shares of rj for j ∈ IKGen. It is clear that AdvP arDecSim

A,n,d,f,TFHE(κ) ≤ ∆(X, Y ). Due
to the linearity of the inner product we may simplify this further and instead consider X ′

and Y ′ where ∆(X, Y ) = ∆(X ′, Y ′) for

X ′ =


〈

BitDecomp−1(Cβ,2),
∑

j∈HKGen

sj,i

〉
+

∑
j∈HKGen

rj,i i ∈ [n] \ IComputation

 ,

Y ′ =

αi +
∑

j∈HKGen

rj,i i ∈ [n] \ IComputation

 .

We may now observe that X ′ is distribted as random secret shares of〈
BitDecomp−1(Cβ,2),

∑
j∈HKGen

sj

〉
+

∑
j∈HKGen

rj

and Y ′ is distributed as random secret shares of

W +
∑

j∈HKGen

rj .

Following the argumentation of the correctness proof (Theorem 4) we know

BitDecomp−1(Cβ,1)−
〈

BitDecomp−1(Cβ,2),
∑
j∈K

sj

〉
= 2β · out + ẽ

for |ẽ| < ((v + 1)ℓ + 1)d · n ·Bχ.

Therefore,〈
BitDecomp−1(Cβ,2),

∑
j∈HKGen

sj

〉

= BitDecomp−1(Cβ,1)−
〈

BitDecomp−1(Cβ,2),
∑

j∈IKGen

sj

〉
− 2β · out + ẽ

= W + ẽ.

(Recall W = BitDecomp−1(Cβ,1)−
〈
BitDecomp−1(Cβ,2),

∑
i∈IKGen

si

〉
− 2β · out)

As |HKGen| > 0 we know by Lemma 2 that ∆(W + ẽ +
∑

j∈HKGen
rj , W +

∑
j∈HKGen

rj)
is negligible in the security parameter, concluding our proof.
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A.6 Compilation tools
A.6.1 Multi-string Non-Interactive Zero-knowledge Proofs.

Multi-string NIZK proofs [GO07] is a generalization of NIZK in the common reference
string (CRS) model. Instead of having one trusted authority to generate the reference
string, in the multi-string model several authorities generate the reference strings. The
properties of Multi-string NIZK proofs are defined similarly to those of NIZKs in the CRS
model, except that the notions of completeness, soundness and zero-knowledge are required
to hold only if the number of common reference strings that are honestly generated is
above a certain threshold.

Syntax A multi-string NIZK for an NP relation RL has the following algorithms:

mNIZK.Gen(1κ)→ crs : An algorithm to generate a common reference string. In
the multi-string model comprising of n common reference strings, we let crs =
(crs1, . . . , crsn) denote the vector of the n common reference strings.

P(crs, ϕ, w)→ π: An algorithm run by the prover that, given the vector of common
reference strings crs, statement ϕ and the witness w outputs the proof π that (ϕ, w) ∈
RL.

V(crs, ϕ, π)→ accept/reject: An algorithm that, given the vector of common refer-
ence strings crs, statement ϕ and the proof π verifies whether π proves the existence
of a witness w such that (ϕ, w) ∈ RL.

The rest of the algorithms are only necessary for proofs of security, and will not be used in
the real world:

S1(1κ)→ (crs, τ): A simulation algorithm that generates a simulated reference string
and a simulation trapdoor.

S2(crs, ϕ, τ)→ π: A simulation algorithm that, given the vector of common reference
strings crs, statement ϕ and a vector τ containing tz (where tz is a pre-defined threshold
for the multi-string NIZK proof system) simulation trapdoors for common reference
strings in crs, outputs a simulated proof of the existence of a witness w such that
(ϕ, w) ∈ RL.

E1(1κ)→ (crs, ξ): A simulation algorithm that generates a simulated reference string
and an extraction trapdoor.

E2(crs, ϕ, π, ξ)→ w: An extraction algorithm that, given the vector of common refer-
ence strings crs, statement ϕ, a valid proof π and a vector ξ containing ts (where ts is
a pre-defined threshold for the multi-string NIZK proof system) extraction trapdoors
for common reference strings in crs, outputs a witness w such that (ϕ, w) ∈ RL.

SE1(1κ)→ (crs, τ, ξ): A simulation algorithm that outputs a simulated reference string,
a simulation trapdoor and an extraction trapdoor such that (crs, τ) is distribted as
the output of S1, and (crs, ξ) is distributed as the output of E1.

Properties We require the following properties from a (tc, ts, tz, n) multi-string NIZK
proof system for an NP relation RL (as defined in the work [GO07]).

(tc, ts, tz, n)-Completeness. Informally, this property requires that if at least tc out
of n common reference strings are honest, then the prover holding a witness for
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the statement should be able to create a convincing proof. More formally, for all
non-uniform polynomial time adversaries A,

Pr
[
V(crs, ϕ, π) = 1 (crs, ϕ, w)← AmNIZK.Gen(1κ)

π ← P(crs, ϕ, w)

]
≥ 1− negl(κ)

where mNIZK.Gen on query i output crsi ← mNIZK.Gen(1κ), at least tc of the crsi’s
generated by mNIZK.Gen are included and A outputs (ϕ, w) ∈ RL, and negl is a
negligible function in the security parameter κ.
We use multi-string NIZKs with perfect (tc, ts, tz, n)-completeness for all 0 ≤ tc ≤ n
in our protocol. This means that even if the adversary chooses all common reference
strings itself, we are guaranteed to output an acceptable proof when (ϕ, w) ∈ RL.

(tc, ts, tz, n)-Soundness. Informally, this property requires that if at least ts out of
n common random strings are honestly generated, then an adversary cannot forge
the proof. The adversary gets to see possible choices of correctly generated common
reference strings and can adaptively choose n of them. It may also include up to n− ts

fake common reference strings it itself chooses. More formally, for all adversaries A,

Pr[V(crs, ϕ, π) = 1 and ϕ /∈ L : (crs, ϕ, π)← AmNIZK.Gen(1κ)] ≤ negl(κ)

where mNIZK.Gen is an oracle that on query i outputs crsi ← mNIZK.Gen(1κ), the
adversary outputs crs such that at least ts of the crsi’s generated by mNIZK.Gen are
included, and negl is a negligible function in the security parameter κ.

(tc, ts, tz, n)-Zero Knowledge. Informally, this property requires that if tz common
reference strings are correctly generated, then the adversary learns nothing from the
proof. As is standard in the zero-knowledge literature, we say that this is the case
when the proof can be simulated given only the statement ϕ.
The definition of zero-knowledge is split into the following two parts.

Reference String Indistinguishability This property simply says that the adver-
sary cannot distinguish real common reference strings from simulated reference strings.
More formally, for all non-uniform polynomial time adversaries A,∣∣∣∣ Pr[A(crs) = 1|crs← mNIZK.Gen(1κ)]

−Pr[A(crs) = 1|(crs, τ)← S1(1κ)]

∣∣∣∣ ≤ negl(κ)

for a negligible function negl in the security parameter κ.

(tc, ts, tz, n)-Simulation Indistinguishability This property strengthens the stan-
dard definition of zero-knowledge and requires that even with access to the simulation
trapdoors, the adversary cannot distinguish real proofs from simulated ones on a set
of simulated reference strings. More formally, for all non-uniform polynomial time
adversaries A,∣∣∣∣ Pr[A(π) = 1|(crs, τ , ϕ, w)← AS1(1κ); π ← P(crs, ϕ, w)]

−Pr[A(π) = 1 : (crs, τ , ϕ, w)← AS1(1κ); π ← S2(crs, τ , ϕ)]

∣∣∣∣ ≤ negl(κ),

where S1 on query i outputs (crsi, τi) ← S1(1κ), the adversary outputs (ϕ, w) ∈ RL
and crs, τ such that at least tz of the crsi’s generated by S1 are included and τ contains
tz simulation trapdoors τi corresponding to crsi’s that have been generated by the
oracle S1, and negl is a negligible function in the security parameter κ.
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(tc, ts, tz, n)-Knowledge. Informally, this property requires the existence of proba-
bilistic polynomial time algorithms E1 and E2 that can extract a witness from a valid
proof.
Like the definition of zero-knowledge, the definition is split into two parts.

Reference String Indistinguishability For all non-uniform polynomial time ad-
versaries A, ∣∣∣∣ Pr[A(crs) = 1|crs← mNIZK.Gen(1κ)]

−Pr[A(crs) = 1|(crs, ξ)← E1(1κ)]

∣∣∣∣ ≤ negl(κ)

where negl is a negligible function in the security parameter κ.

Extractability For all non-uniform polynomial time adversaries A,

Pr
[
V(crs, ϕ, π) = 1,(ϕ, w) /∈ RL

(crs, ϕ, π)← AE1(1κ)
w ← E2(crs, ϕ, w, ξ)

]
≤ negl(κ)

where E1 is an oracle that returns (crsi, ξi)← E1(1κ), ξ contains at least ts ξi’s corre-
sponding to the crsi’s generated by E1, and negl is a negligible function in the security
parameter κ.

(tc, ts, tz, n)-Simulation Soundness. Informally, this property requires that an ad-
versary cannot prove any false statement even after seeing simulated proofs of arbitrary
statements. More formally, for all non-uniform polynomial time adversaries A,

Pr[V(crs, ϕ, π) = 1, (crs, ϕ, π) /∈ Q, ϕ /∈ L|(crs, ϕ, π)← AS1,S2(1κ)] ≤ negl(κ)

where S1 on query i returns (crsi, τi) ← S1(1κ), S2 on query (crsj , ϕj) returns
πj ← S2(crsj , τ j , ϕj) with τ j having simulation trapdoors for the crsi’s generated
by S1, the adversary produces crsj containing at least ts crsi’s generated by S1, Q is
the list of statements and corresponding proofs (crsj , ϕj , πj) in the queries to S2, and
negl is a negligible function in the security parameter κ.

(tc, ts, tz, n)-Simulation Extractability. Informally, this property requires that even
after seeing many simulated proofs, whenever the adversary makes a new proof, we
should be able to extract a witness. More formally, a multi-string NIZK proof system
is (tc, ts, tz, n)-simulation extractable if it has (tc, ts, tz, n)-knowledge, is a (tc, ts, tz, n)-
NIZK proof (i.e. completeness, soundness and zero-knowledge hold for the relevant
thresholds), and for all non-uniform polynomial time adversaries A,

Pr

 V(crs, ϕ, π) = 1,
(crs, ϕ, π) /∈ Q,

(ϕ, w) /∈ RL

(crs, ϕ, π)← ASE′
1,S2(1κ),

w ← E2(crs, ϕ, π, ξ)

 ≤ negl(κ)

where SE′1 on query i returns (crsi, ξi) from (crsi, τi, ξi) ← SE1(1κ), S2 on query
(crsj , ϕj) returns πj ← S2(crsj , τ j , ϕj) (where τ j contains tz τi’s corresponding to
crsi’s in crsj generated by SE1), Q is the list of statements and corresponding proofs
(crsj , ϕj , πj) made by S2, ξ contains the first ts ξi’s generated by SE1 corresponding to
crsi’s in crs, and negl is a negligible function in the security parameter κ.
The above property of simulation extractability implies simulation-soundness.
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Instantiation In our constructions, we use the (0, ts, tz, n) multi-string NIZK with
ts = tz = ⌈(n + 1)/2⌉ of [GO07], which relies on enhanced trapdoor permutations and
satisfies the properties outlined above.

A.6.2 Encryption with key binding

Syntax We define our encryption scheme as follows.

Gen(1κ)→ (pk, sk): An algorithm that, given the security parameter, generates a
public-secret key pair (pk, sk).

Enc(pk, x; ρ)→ β: An algorithm that, given the public key, a message x ∈ F and
randomness ρ, outputs an encryption β of x.

Dec(sk, β)→ x: An algorithm that, given the secret key and a ciphertext β, outputs a
decryption x of β.

Properties We require the following properties of our encryption scheme:

Perfect Correctness. The perfect correctness property requires that decryption of
honestly produced ciphertexts must return the appropriate message. More formally, an
encryption scheme is perfectly correct if for any message x ∈ F,

Pr
[
Dec(sk, β) = x

(pk, sk)← Gen(1κ)
β ← Enc(pk, x)

]
= 1,

where the probability is taken over the random coins of Gen and Enc.

Semantic Security. The semantic security property requires that an adversary cannot
distinguish which among the two messages (that the adversary chooses) is encrypted
in a given ciphertext. More formally, for all PPT adversaries A, for (x0, x1)← A(1κ),
if |x0| = |x1|,

Pr
[
A(pk, β) = b

(pk, sk)← Gen(1κ); b← {0, 1}
β ← Enc(pk, xb)

]
≤ 1

2 + negl(κ),

where the probability is taken over the random coins of Gen and Enc.

Key Binding. This is a new property we introduce, which requires that the corre-
spondence between a secret and public key be checkable. In particular, we require the
existence of the following algorithm:

KeyMatches(pk, sk)→ accept/reject: Checks whether a given public key pk and
secret key sk correspond to one another.

For any (pk, sk) ← Gen(1κ), we require KeyMatches(pk, sk) = accept. Furthermore,
for any message x, for any ciphertext β ← Enc(pk, x), it should hold that for all keys
sk′ such that KeyMatches(pk, sk′) = accept, it holds that Dec(sk, β) = Dec(sk′, β).
(To weaken the definition, we might consider efficiently computable keys sk′ instead.)
This allows parties to “prove correct decryption”.
One might think that we get the ability to prove correct decryption for free from
perfect correctness. However, perfect correctness only considers the honestly generated
decryption key; key binding makes sure the adversary cannot get away with using a
different key, which might convincingly decrypt to something incorrect.
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Instantiation For a scheme like ElGamal encryption; a secret key consists of an element
x, with gx (for some generator g) as part of the public key. Notice that, in particular,
this scheme gives is the key binding property for free; it is easy to check this discrete log
relationship within the KeyMatches algorithm. Note, the cryptosystem of Castagnos and
Laguillaumie [CL15a] which we propose as the linearly homomorphic encryption scheme
for Fhom

VeSPa uses class groups, and has keys in the ElGamal style.
Notice also that if we didn’t get key binding for free, we could add key binding to any

encryption scheme by including in the public key a perfectly binding commitment to the
secret key. The new key generation algorithm Gen would do the following (building on the
key generation algorithm Gen′ of the original encryption scheme):

Gen(1κ)→ (pk, sk) :

• (pk′, sk′)← Gen′(1κ)
• Choose randomness ρ

• γ ← Commit(sk′; ρ)
• Return (pk = (pk′, γ), sk = (sk′, ρ))

The KeyMatches algorithm would then simply return accept if γ = Commit(sk′, ρ), and
reject otherwise.

B YOSO constructions
B.1 Generating Public Parameters for YOSO-GLS
The public parameters of the TFHE scheme (Appendix A.4) include a uniformly sampled
matrix B, in this section we will demonstrate how to explicitly sample such a matrix in a
two round YOSO protocol. All other public parameters may be derived deterministically.
In the first committee, which may have a dishonest majority, roles may sample random
matrices, producing index-wise Shamir sharings to send to the subsequent committee.
The second committee which must have an honest majority, then adds shares they have
received and broadcasts the result. Intuitively, this prevents a rushing adversary from
biasing B, as it would have to corrupt a majority of the second committee to know the
contribution of the honest roles.

Notation For the purposes of our protocol we define two committees:

S1, . . . , Sh denotes the sampling committee S (of size h).

C, . . . , Cn denotes the combining committee C (of size n).

To ensure correct behaviour of the roles in these committees we define the relations:

RShare =


ϕsend =

(
Bj,1, . . . , Bj,n

)
ϕreceive = ⊥
ϕbroadcast = ⊥
w =

(
Bj , ρj

) Bj,1, . . . , Bj,n

← Share(Bj ; ρSj
)

 ,

RCombine =


ϕsend = ⊥
ϕreceive =

(
B1,i, . . . , Bh,i

)
ϕbroadcast = Bi

w = ⊥

Bi =
∑h

j=1 Bj,i

where Bj,i = ⊥ is replaced by 0

 .

We now define our protocol ΠSetup.
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Protocol ΠSetup

This subprotocol is run by two sequential committees S and C, of sizes h and n respectively.

Sample: Each member Sj (j ∈ [h]) of the committee S does the following:

1. Uniformly sample a matrix Bj
$← Zu×v

q

2. Computes a point-wise Shamir sharing of Bj

• Bj,1, . . . , Bj,n ← Share(Bj ; ρSj
)

3. Input (Send, Sj , ((C1, Bj,1), . . . , (Cn, Bj,n)),⊥, ρSj
) to FVeSPa

Combine: Each member Ci (i ∈ [n]) of the committee C does the following:

1. Inputs (Read, Sj , Ci, 1) for each j ∈ [h] to get (B1,i, . . . , Bh,i), replacing any Bj,i = ⊥ with 0.

2. Defines Bi =
∑

j∈[h]
Bj,i

3. Input (Send, Ci,⊥, Bi,⊥) to FVeSPa

Output: The matrix B may then be publicly computed, where each index is defined as Bα,β ←
Rec({Bα,β

i
}i∈R) where R ⊂ [n] of size at least t + 1, and Bi ̸= ⊥ for i ∈ R. Each Bi may be read from

FVeSPa by giving input (Read, Ci, 2). All remaining public parameters may be locally derived given only
κ, n and d. The roles may then output pp = (v, u, q, χ, Bχ, Bsmug, B).

Theorem 7. The protocol ΠSetup YOSO-realises the functionality FTFHE
Setup in the FVeSPa-

hybrid model.

The proof of Theorem 7 may be found in Appendix C.3.

B.2 Formal Description of YOSO-LHSS
We describe the formal protocol in the Fhom

VeSPa-hybrid below, which uses the tool of Shamir
secret sharing scheme (Share, Rec), described in Appendix A.1.
Below, we describe our notation for the relevant roles.

• Cl,1, . . . , Cl,n denotes the roles of a generic committee Cl (of size n).

• Al,1, . . . , Al,h and Bl,1, . . . , Bl,h denote the roles of the two helper committees (each
of size h) responsible for the generation of Beaver triples to aid in the round l
multiplication.

For simplicity, we assume that each committee only performs a single operation (whether
it be decryption, Beaver triple preparation or multiplication). This can easily be parallelized
so that each committee does a single level of operations.

Before describing the protocol, we introduce some relations for use in Fhom
VeSPa.

Below, is the relation corresponding to an input committee role.

RShare =


ϕsend =

(
(C1, x1,⊥), . . . , (Cn, xn,⊥)

)
ϕreceive = ⊥
ϕbroadcast = ⊥
ϕpublic = ⊥
w =

(
x, ρ

) (x1, . . . , xn)← Share(x; ρ)

 ,

Below, is the relation corresponding to roles that decrypt i.e. open a value which has been
computed as a public linear function (denoted as fℓ) of a subset of the values that this
role has received,
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RDec =


ϕsend = ⊥
ϕreceive = (y1, . . . , ym)
ϕbroadcast = x
ϕpublic = ⊥
w = ⊥

x := fℓ(y1, . . . , ym)

 .

Protocol ΠY OSO−LHSS : Input and Output

Input: This step is run by an input role.
To provide input x to committee C, the jth input role does the following:

• Computes a shamir sharing of its secret input x as (x1, . . . , xn)← Share(x; ρIi
) with threshold t.

• Inputs
(

Send, Ij ,
(

(C1, x1,⊥), . . . , (Cn, xn,⊥)
)

,⊥,
(

x, ρIi

))
to Fhom

VeSPa.

The ith role in C may then read her share of input x in the following round by inputting (Read, Ci, Ij , 1)
to Fhom

VeSPa.

Decrypt: This step is run by a committee C of size n, in round r. To reveal her share, each member Ci

of committee C does the following:

• Input (Send, Ci,⊥, xi,⊥) to Fhom
VeSPa.

Let Q ⊆ [n] denote the indices of the roles in C who provided a valid share xi ≠ ⊥ read from Fhom
VeSPa using

(Read, Ci, r). Anyone can then reconstruct x as x← Rec({xi}i∈Q).

Output: This step is run by committee C of size n.
The committee C calls Decrypt using shares (out1, . . . , outn). Note that the associated relation RDec would
involve the values that were used to compute outi as a part of ϕreceive.

The additions in the circuit can be done via local computation. However, multiplication
gates still require interaction and thus require passing state over to a new committee. To
this end we introduce two new committees:

• Ml,1, . . . , Ml,n denotes the roles of the committee (of size n) responsible for the lth
multiplication.

• Ol,1, . . . , Ol,n denotes the roles of the committee (of size n) who holds the output of
the lth multiplication. (If committee Ol is responsible for the next multiplication, it
will be the same as committee Ml+1; or it can be the output committee.)

The multiplication committee uses the decryption operation to reveal intermediate values,
avoiding the need for any new relations. We start by assuming that a sharing of a beaver
triple is held by our multiplication and output committee, and will subsequently show how
such a triple may be produced.

Protocol ΠY OSO−LHSS : Evaluation

Add: This step is run by a committee C of size n.
To add (x1, . . . , xn) (representing shares of x) and (y1, . . . , yn) (representing shares of y), the ith member
of the committee C does the following.

• Compute her share of the sum as zi = xi + yi.

Mult: This step is run by committee Ml of size n and Ol of size n

To multiply values
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• (xl,1, . . . , xl,n) (representing shares of xl) and
• (yl,1, . . . , yl,n) (representing shares of yl)

(where the sharing is held by committee Ml) using the Beaver triple

• (al,1, . . . , al,n), (a′
l,1, . . . , a′

l,n),

• (bl,1, . . . , bl,n), (b′
l,1, . . . , b′

l,n)
(where the sharing is held by committees Ml and Ol, respectively) and

• (c′
l,1, . . . , c′

l,n), (where the sharing is held by committee Ol),

The ith member of the committee Ml does the following to compute her share of ϵl = al − xl and
δl = bl − yl.

• Compute the difference ϵl,i = al,i − xl,i.
• Compute the difference δl,i = bl,i − yl,i.

The committee Ml then calls Decrypt using shares (ϵl,1, . . . , ϵl,n) and (δl,1, . . . , δl,n) to reconstruct the
values ϵl and δl. Note that the associated relation RDec would involve the set of received shares al,i, bl,i

and the values that were used to compute xl,i, yl,i as a part of ϕreceive.
The ith member of the committee Ol does the following to compute her share of zl = xlyl.

• Reconstruct ϵ and δ by inputing (Read, Ml,i, l + 2) to Fhom
VeSPa (as described in Decrypt) for each ith

member of Ml. Note that the multiplication gate at depth l is evaluated in round l + 2.
• Compute zl,i := c′

l,i − ϵlb′
l,i − δla′

l,i + ϵlδl.

To produce beaver triples we will need two final types of committee. Let Al,1, . . . , Al,h

and Bl,1, . . . , Bl,h denote the roles of the two helper committees (each of size h) responsible
for the generation of Beaver triples to aid in the round l multiplication. Two additional
relations are also needed to ensure the triples produced are well-formed:

RBeaver,A =



ϕsend =
(
(M1, a1,⊥), . . . , (Mn, an,⊥),

(O1, a′1,⊥), . . . , (On, a′n,⊥)
)

ϕreceive = ⊥
ϕbroadcast = ⊥
ϕpublic = ⊥
w =

(
a, ρ, ρ′

)
(a1, . . . , an)← Share(a; ρ)
∧ (a′1, . . . , a′n)← Share(a; ρ′)


,

The below relation for the roles in the helper committee Bl is required to check that
the correct linear homomorphic function fi is applied on the incoming messages (say
y1, . . . , ym) of a committee role Ol,i. For simplicity, we describe fi as a tuple of coefficients
(c1, . . . , cm, c) to represent the operation fi(y1, . . . , ym) = c1y1 + c2y2 + · · ·+ cmym + c.

RBeaver,B =



ϕsend =
(
(M1, b1,⊥), . . . , (Mn, bn,⊥),

(O1, b′1, f1), . . . , (On, b′n, fn)
)

ϕreceive = ⊥
ϕbroadcast = ⊥
ϕpublic = ⊥
w =

(
b, ρ, ρ′, ρ′′

)
(b1, . . . , bn)← Share(b; ρ)
∧ (b′1, . . . , b′n)← Share(b; ρ′)
∧(01, . . . , 0n)← Share(0; ρ′′)
∧fi = (b, . . . , b, 0i) for i ∈ [n]


,

Protocol ΠY OSO−LHSS : Beaver triple generation

MakeBeaver: This step is run by two helper committees Al and Bl of size h each
To produce a Beaver triple for the lth multiplication, the members of the two helper committees Al

and Bl proceed as follows. (Multiplication then reduces to linear operations and decryptions, described
below.) Note that the Beaver values must be shared to two committees: the committee Ml responsible for
performing the multiplication, and the committee Ol who will hold the output. Committee Ol may then
be asked to perform linear operations, another multiplication, or simply to decrypt the output.
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• Each member Al,j of committee Al does the following:
– Picks a random value al,j .
– Computes two sharings of al,j as

∗ (al,j,1, . . . , al,j,n)← Share(al,j ; ρl,j) and
∗ (a′

l,j,1, . . . , a′
l,j,n)← Share(al,j ; ρ′

l,j)
with threshold t.

– Inputs
(

Send, Al,j ,
(

(Ml,1, al,j,1,⊥), . . . , (Ml,n, al,j,n,⊥), (Ol,1, a′
l,j,1,⊥), (Ol,n, a′

l,j,n,⊥)
)

,

⊥, (al,j , ρl,j , ρ′
l,j)

)
to Fhom

VeSPa.

• Let QAl
⊆ [h] denote the indices of the roles whose Send verified successfully. Let al =

∑
j∈QAl

al,j .

Then,

– Each role Ml,i can retrieve her share of al as al,i =
∑

j∈QAl

al,j,i, where al,j,i was read from

Fhom
VeSPa using (Read, Ml,i, Al,j , l + 2).

– Each role Ol,i can retrieve her share of al as a′
l,i =

∑
j∈QAl

a′
l,j,i, where a′

l,j,i was read from

Fhom
VeSPa using (Read, Ol,i, Al,j , l + 2).

• Each member Bl,j of committee Bl does the following:
– Picks a random value bl,j .
– Computes two sharings of bl,j as

∗ (bl,j,1, . . . , bl,j,n)← Share(bl,j ; ρl,j) and
∗ (b′

l,j,1, . . . , b′
l,j,n)← Share(bl,j ; ρ′

l,j)
with threshold t.

– Compute a zero sharing as (0l,j,1, . . . , 0l,j,n)← Share(0; ρ′′
l,j) with threshold t.

– Set the function f ′
i = (bl,j , . . . , bl,j , 0l,j,i) for each i ∈ [n]. Recall that this function would

take as input y(Ol,i) comprising of the messages (say y1, . . . , yh) received by Ol,i from sender
roles Al,1, . . . , Al,h and outputs bl,jy1 + · · · + bl,jyh + 0l,j,i, where any ⊥ values are to be
interpreted as 0. (The shares of 0 are used to ensure that the value bl,j is not leaked to Ol,i).

– Input
(

Send, Bl,j ,
(

(Ml,1, bl,j,1,⊥), . . . , (Ml,n, bl,j,n,⊥), (Ol,1, b′
l,j,1, f ′

1), . . . , (Ol,n, b′
l,j,n,

f ′
n)

)
,⊥, (bl,j , ρl,j , ρ′

l,j , ρ′′
l,j)

)
to Fhom

VeSPa.

• Let QBl
⊆ [h] denote the indices of the roles whose Send verified successfully. Let bl =

∑
j∈QBl

bl,j .

Let (b′
l,j,i, c′

l,j,i) denote the value that Ol,i receives from Fhom
VeSPa using (Read, Ol,i, Bl,j , l + 2). Then,

– Each role Ml,i can retrieve her share of bl as bl,i =
∑

j∈QBl

bl,j,i, where bl,j,i was read from

Fhom
VeSPa using (Read, Ml,i, Bl,j , l + 2).

– Each role Ol,i can retrieve her share of bl as b′
l,i =

∑
j∈QBl

b′
l,j,i.

– Each role Ol,i can retrieve her share of cl = albl as c′
l,i =

∑
j∈QBl

c′
l,j,i.

Note that the entirety of Beaver triple generation can be carried out without the helper committees
needing to receive any private messages. Additionally, note that Beaver triple generation committees can
have a dishonest majority, and can therefore be smaller (h < n).

The proof of Theorem 3 may be found in Appendix C.4.

C Security proofs
C.1 Security of YaOSO
To prove the protocol ΠY aOSO YOSO realises the functionality Ff with guaranteed output
delivery, we will show that the protocol YoS(ΠY aOSO) UC realises the functionality Ff .
We may do this by constructing a simulator SY aOSO for any given adversary A, such that:

REALYoS(ΠY aOSO),A,E(1κ) ≈ IDEALFf ,SY aOSO,E(1κ).

Proof. For a given adversary A we define the simulator SY aOSO. SY aOSO internally uses
the simulator (say Ssm) of the underlying semi-malicious protocol Πsm. The idea is for
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SY aOSO to transform a malicious adversary in ΠY aOSO to a semi-malicious adversary in
Πsm. This is done by verifying the messages that the maliciously corrupt roles use to
invoke FVeSPa (which SY aOSO has access to). If the messages verify, they are forwarded
to Ssm on behalf of semi-malicious corrupt parties. Else, the messages are recomputed
using default input and randomness. In this manner, the messages corresponding to the
underlying protocol can be simulated. Additionally, SY aOSO also invokes the simulator of
the adaptive garbling scheme (Appendix A.2) to simulate the garbled circuits and labels
of honest roles.

First, we argue regarding the correctness of the ΠY aOSO. The correctness of the
garbling scheme and threshold secret sharing ensures that the second-round messages of
Πsm obtained via the evaluation of garbled circuits would be correct. Now, correctness of
ΠY aOSO follows directly from the correctness of Πsm.

Next, we define the simulator below. The set of indices corresponding to honest roles
and corrupt roles in committee C are denoted as HC and IC respectively.

Simulator SY aOSO

Let Ssm denote the simulator of the underlying semi-malicious protocol Πsm.

Input: For the input committee, the simulator:

• For each honest input role j ∈ HI ,
– Receive {msg1

j} by interaction with Ssm.
– Compute the simulated garbled circuit as GCj ← simGC(1n, ϕ(Cj), “ckt”), where ϕ(Cj) denotes

the topology of the circuit (that does not depend on the hard coded values).

– When a corrupt role attempts to input (Read, Ij , 1) to FVeSPa, return the response
(

msg1
j , GCj

)
as computed above.

– When a corrupt computation committee role i ∈ IE attempts to input (Read, Ei, Ij , 1) to
FVeSPa, return as response a set of random shares {s(0)

j,l,i
, s

(1)
j,l,i
}l∈[L].

• On behalf of FVeSPa, verify the Send input by corrupt input roles j ∈ II . Replace the shares with ⊥
if the verification fails.

• When a corrupt computation committee role i ∈ IE attempts to input (Read, Ei, Ij , 1) to FVeSPa

for j ∈ II , return {s(0)
j,l,i

, s
(1)
j,l,i
}l∈[L].

At the conclusion of this round the simulator knows (xk, {msg1
k}, {s

(0)
k,l,i

, s
(1)
k,l,i
}l∈[L],i∈[n]) (consider default

values in case a corrupt role aborts or the verification fails) for each corrupt input role k ∈ II as they are
leaked by FVeSPa.
The simulator may provide these inputs {xk}k∈II

to the ideal functionality to receive out = f(x1, . . . , xm).
This out is provided to Ssm as the response from its ideal functionality when invoked by Ssm.

Computation: For the computation committee the simulator:

• Interacts with Ssm as follows: Send the first-round message msg1
k on behalf of corrupt roles k ∈ II .

Receive the second round messages msg2
j corresponding to the honest input roles j ∈ HI .

• For each j ∈ HI

– Compute the set of simulated garbled labels corresponding to GCj as (Kj,1, . . . , Kj,L) ←
simGC(1n, msg2

j , “input”)

– Compute the shares {s(bl)
j,l,i
}i∈HE

← SH.SimShare({s(bl)
j,l,i
}i∈IE

, Kj,l) for l ∈ [L] (where
b1, . . . , bL = msg1

1|| . . . msg1
m).

• When a corrupt role attempts to input (Read, Ei, 2) for i ∈ HE , return as response {s(bl)
j,l,i
}j∈I,l∈[L]

as computed above for j ∈ HI and leaked via FVeSPa for j ∈ II .

We prove the indistinguishability of the real and ideal world through a series of hybrids.

Real H0: Run everything as in the real protocol, using the honest roles inputs. Note,
through the use of FVeSPa the inputs of corrupt roles will already be known to the
simulator at this point, allowing them to be input the ideal functionality to receive
out = f(x1, . . . , xm).
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Hybrid H1 (Simulate honest shares): The honest threshold shares held by i ∈ HE

corresponding to labels of GCj of honest input roles j ∈ HI are set as {s(bl)
j,l,i}i∈HE

←
SH.SimShare({s(bl)

j,l,i}i∈IE
, Kj,l) for l ∈ [L] (where b1, . . . , bL = msg1

1|| . . . msg1
m).

Hybrid H2 (Simulate garbled circuits of honest input roles): The garbled cir-
cuit and corresponding labels of honest input role j ∈ HI are computed as GCj ←
simGC(1n, ϕ(Cj), “ckt”) and (Kj,1, . . . , Kj,L)← simGC(1n, msg2

j , “input”).

Hybrid H3 (Simulate the messages of Πsm): The first and second round messages
of the underlying protocol Πsm i.e. msg1

j and msg2
j for j ∈ HI are obtained via the

simulator Ssm. At this point the simulator no longer needs access to honest party
inputs.

We show that the hybrids in our sequence are indistinguishable.

H0 ≈ H1 The indistinguishability of these hybrids follows from the share simulatability of the
threshold secret sharing scheme (Appendix A.1).

H1 ≈ H2 Indistinguishability of H1 and H2 follows via reduction to the adaptive privacy of
the garbling scheme (Appendix A.2).

H2 ≈ H3 Indistinguishability of H2 and H3 follows from semi-malicious security of πsm.

C.2 Security of YOSO-GLS
We will now prove security of the ΠY OSO−GLS protocol (Theorem 2).

Proof. To prove the protocol ΠY OSO−GLS YOSO realises the functionality Ff with guar-
anteed output delivery, we will show that the protocol YoS(ΠY OSO−GLS) UC realises the
functionality Ff . We may do this by constructing a simulator S for any given adversary
A, such that:

REALYoS(ΠY OSO−GLS),A,E(1κ) ≈ IDEALFf ,S,E(1κ).
For a given adversary A we define the simulator as follows:

Simulator S

Begin by reading public parameters leaked from FSetup. Allow the adversary to control the corrupt roles,
simulating the honest roles and FVeSPa

KGen: For honest roles Ki perform key generation as described in the protocol. At the conclusion of this
round the simulator knows skj = (skj,1, . . . , skj,n) for each corrupt role Kj (j ∈ IK) as they are leaked
by FVeSPa.

Input: Rather than encrypting their input, each role may instead encrypt 0 under the TFHE keys to get
Ci ← Enc({pki}i∈K, 0; ρIi

) which may then be input to FVeSPa as (Send, Ii,⊥, Ci, (0, ρIi
)).

At the conclusion of this round the simulator knows input xj for each corrupt input role Ij (j ∈ II ). The
simulator may provide these inputs to the ideal functionality to receive out = f(x1, . . . , xm)

Computation: For the computation committee the simulator:

• Homomorphically derives the ciphertext C according to the protocol
• Derives partial decryptions for corrupt roles in the computation committee as di ←

PDec({pkk}k∈K, cski, C) for cski = {skj,i}j∈K .
• The simulator then produces partial decryptions for the honest roles {dj}j∈[n]\IComputation ←

SimPDec(C, {pki}i∈K, {ski}i∈IK
, {(cskj , dj)}j∈IE

, out)
• When a corrupt role attempts to input (Read, Ej , 3,REval) to FVeSPa for an honest role Ej , replace

the response with dj as computed above.
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We prove the indistinguishability of the real and ideal world through a series of hybrids.

Real H0: Run everything as in the real protocol, using the honest roles inputs. Note,
through the use of FVeSPa the inputs of corrupt roles will already be known to the
simulator at this point, allowing them to be input the ideal functionality to receive
out = f(x1, . . . , xm).

Hybrid H1 (Partial decryption simulation): Simulate partial decryptions for hon-
est roles as:

{dj}j∈[n]\IComputation ← SimPDec(C, {pki}i∈K, {ski}i∈IK
, {(cskj , dj)}j∈IE

, out),

where desired output out should be the value returned by the ideal functionality.
These partial decryptions should then be returned whenever a corrupt role inputs
(Read, Ej , 3) to FVeSPa for j ∈ HE .
Note, this requires access to secret keys ski for corrupt key generation roles i ∈ IK , as
well as partial decryptions dj and computation keys cskj for j ∈ IE . The simulator
has these secrets as they are leaked by FVeSPa, and may use them to deterministically
compute partial decryptions. These partial decryptions should then be returned when
a corrupt role inputs (Read, Ej , 3) for j ∈ HE .

Hybrid H2 (Encrypt 0 for honest roles): Replace encryptions of inputs from hon-
est roles by encryptions of 0. At this point the simulator no longer needs access to
honest role inputs.

First, we will prove correctness of the real protocol. The FSetup functionality ensures correct
sampling of the public parameters, while commnication through the FVeSPa functionality
with RKGen enforces that all public keys used when encrypting are well-formed. All input
ciphertexts are ensured to be encryptions under some randomness by FVeSPa with REnc.
As a result partial decryptions under the correct keys, as enforced by FVeSPa with REval,
will recombine to produce f(x1, . . . , xm) following from correctness of the TFHE scheme
(Definition 2). Note, we are guaranteed to have sufficient partial decryptions by the honest
majority of the computation committee.

We will now prove that the hybrids in our sequence are indistinguishable.

H0 ≈ H1 The indistinguishablility of these hybrids follows from the partial decryption simulata-
bility of the TFHE scheme (Definition 4). An adversary successfully distinguishing
H0 and H1 with non-negligible probability may be used to win the partial decryp-
tion simulatability game GameP arDecSim

A,n,d,f,TFHE(κ), with the same probability. This may
be done by generating secret keys for honest roles through use of the OKGen and
registering all corrupt keys sent on FVeSPa with OKReg using the randomness leaked
to the simulator. The point-to-point messages read by corrupt roles Ei for i ∈ IE ,
may be replaced by the simulator with key shares received by invoking OCorr(i).
By the threshold guarantees of the committees K and E, we are guaranteed that
the |HKGen| ≥ 1 and |IComputation| ≤ t. The partial decryptions for honest roles in
the protocol may then be set to the challenge provided in the game. Thus, if our
adversary guesses H0 we may guess b = 0 in the game, guessing b = 1 otherwise.

H1 ≈ H2 Indistinguishability of H1 and H2 follows by a reduction to the semantic security of
the TFHE scheme (Definition 3). Encryptions on behalf of honest input roles may be
replaced one at a time, maintaining indistinguishability. An adversary successfully
distinguishing these cases may then be used to win GameIND−CP A

A,n,t,TFHE (κ). We will again



52 Constant-Round YOSO MPC Without Setup

map corruptions in K to uses of the OKReg and corruptions in E to uses of OCorr.
This provides the same guarantees that |HKGen| ≥ 1 and |IComputation| ≤ t. When
replacing the input of an honest input role Ii we may input messages (0, xi) to the
game. The challenge may then be used as the ciphertext for Ii in the protocol. If
the adversary guesses it is in the hybrid where the plaintext has been replaced, we
guess b = 0 in the game, guessing b = 1 otherwise. This allows winning the game
with the distinguishing advantage the adversary has on the hybrids.

Remark 1. Note, semantic security together with partial decryption simulatability imply
that even if share simulation is called on a different output, the shares should look like
convincing shares of that output. This is because if this were not the case, decryption share
simulation could be used to distinguish between two different sets of input ciphertexts,
thus breaking semantic security.

C.3 Security of ΠSetup

Proof. We will show that YoS(ΠSetup) UC realises FTFHE
Setup in the FVeSPa-hybrid model. For

a real world adversary A we will construct ideal world adversary S such that the real and
ideal ensembles are indistinguishable, i.e.

REALYoS(ΠSetup),A,E(1κ) ≈ IDEALFTFHE
Setup ,S,E(1κ).

Simulator S

The ideal functionality FTFHE
Setup leaks the chosen matrix B to the simulator.

Sample: Run all honest roles in the sample committee as prescribed by the protocol.

Combine: The simulator ensures shares will reconstruct to B.

• For each corrupt role i ∈ IC compute Bi as in the protocol.
• Simulate Bi for i ∈ HC , conditioned on corrupt shares, such that they reconstruct to B.

Shares sent to corrupt roles FVeSPa by honest roles in the sample committee are
identically distributed in the real and ideal worlds. Any set of fewer than t shares is
independent of the secret shared value. Therefore, simulated shares will be distributed
identically to real shares, as there is at least one honest role in the sample committee.

C.4 Security of YOSO-LHSS
To prove the protocol ΠY OSO−LHSS YOSO realises the functionality Ff with guaranteed
output delivery, we will show that the protocol YoS(ΠY OSO−LHSS) UC realises the
functionality Ff . We may do this by constructing a simulator S for any given adversary
A, such that:

REALYoS(ΠY OSO−LHSS),A,E(1κ) ≈ IDEALFf ,S,E(1κ).
We start by analyzing the correctness of an all-honest execution of the protocol.

Lemma 3 (Correctness). The protocol Π on inputs (x1, . . . , xm) produces output value
z = f(x1, . . . , xm) when all roles are honest.

Proof. Correctness follows from the evaluation of each gate producing a sharing of the
appropriate gate output. If this is the case the output may be reconstructed from the
sharing associated with the final gate by perfect correctness of the secret sharing scheme.
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Input The role giving input distributes a sharing of its input value x by construction.

Add Perfect correctness of the Shamir secret sharing ensures the output is a sharing of
z = x + y.

Mult The values produced by MakeBeaver are valid sharings of a, b and c, where c = ab. It
follows by inspection that z = c−ϵb−δa+ϵδ = c−(a−x)b−(b−y)a+(a−x)(b−y) = xy.

We will now prove the security of our YOSO-LHSS protocol.

Proof. We start by defining a simulator S which may be composed with any PPT real-
world adversary A to produce an ideal world adversary S ′ such that for every PPT
environment E , it holds that REALΠ,A,E(x) and IDEALFf ,S,E(x) are indistinguishable.
We prove indistinguishability through a series of hybrids, each indistinguishable from the
last, starting in the real world and arriving in the ideal world with our complete simulator.

We define the simulator S below. We denote the set of honest and corrupt roles as
H and I respectively; we let HC and IC represent the honest and corrupt roles within a
committee C.

Simulator S

Input: For the input committee, the simulator:

• When a corrupt role Ci attempts to input (Read, Ci, Ij , 1) to Fhom
VeSPa for honest input role j ∈ HI ,

return (x̃j,i,⊥) where x̃j,i is a random share.

• On behalf of Fhom
VeSPa, verify the Send input by corrupt input roles j ∈ II and store the shares

(xj,1, . . . , xj,n). Replace the shares with ⊥ if the verification fails.

• When a corrupt role Ci attempts to input (Read, Ci, Ij , 1) to Fhom
VeSPa for corrupt input role Ij , return

(xj,i).

At the conclusion of this round the simulator knows the input (xk) (consider default values in case a
corrupt role aborts or the verification fails) for each corrupt input role k ∈ II as they are leaked by Fhom

VeSPa.
The simulator may provide these inputs {xk}k∈II

to the ideal functionality to receive out = f(x1, . . . , xm).

Decrypt: 1. If the value being decrypted corresponds to the ϵ or δ values during computation of
multiplication gate, set plaintext x as a random value. Otherwise, this value corresponds to
decryption of the final output and the plaintext x is set to out.

2. Simulating the honest role shares. Let {xi}i∈IC
denote the shares held by corrupt roles in C

(which the simulator knows because these can be deduced using the values leaked via the Fhom
VeSPa).

Compute the shares on behalf of honest roles such that they would be consistent with x as follows:
Compute {x′

i}i∈HC
← SH.SimShare({xi}i∈IC

, x).

Add: S uses the values learned earlier to deduce the shares of the output of the addition gate, i.e.,
z = x + y (where x and y denote the inputs to the addition gate) held by corrupt roles in C.

MakeBeaver: 1. S does the following with respect to the Al helper committee:
• When a corrupt role Ml,i attempts to input (Read, Ml,i, Al,j , l + 2) to Fhom

VeSPa for j ∈ HAl
,

return (al,j,i) where al,j,i is set as a random share.
• When a corrupt role Ol,i attempts to input (Read, Ol,i, Al,j , l + 2) to Fhom

VeSPa for j ∈ HAl
,

return (a′
l,j,i) where a′

l,j,i is set as a random share.
• On behalf of Fhom

VeSPa, verify the Send input by corrupt helper roles j ∈ IAl
and store the shares

{al,j,i, a′
l,j,i}i∈[n]. Replace the shares with ⊥ if the verification fails. Return the relevant

share as response on behalf of Fhom
VeSPa when corrupt roles in Ml and Ol invoke the Fhom

VeSPa with
Read with respect to Al,j .

2. With respect to the Bl helper committee, the S executes steps similar to the above (for values
{bl,j,i, b′

l,j,i}i∈[n]), except that the c′
l,j,i values also need to be simulated in a similar manner (i.e.

set to random shares when honest roles in Bl are involved and as per the protocol when corrupt
roles in Bl are involved).

3. Using the leakage from Fhom
VeSPa and the shares sent on behalf of honest roles, the simulator can

deduce the shares of al, bl held by the corrupt roles in Ml and Ol and cl held by corrupt roles in Ol.
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Mult: 1. Deduce the shares of ϵl and δl held by corrupt roles in Ml using the values learned earlier.
2. Execute the simulation steps in Decrypt to open ϵl and δl on behalf of honest roles in Ml.
3. Deduce the shares of the output of the multiplication gate, i.e., xlyl (where xl and yl denote the

inputs to the multiplication gate) held by corrupt roles in Ol using the values learned earlier.

Output: Using leaked values from Fhom
VeSPa, S deduces the shares of the output held by the corrupt roles in

the output committee. Finally, S executes the simulation steps in Decrypt to open the final output out.

We describe a series of hybrid simulators allowing us to arrive at the full simulator
described above. The final simulator does not require access to the inputs of honest roles,
relying only on the ideal functionality.

Real H0: The simulator does everything as in the real protocol. FVeSPa leaks inputs
from corrupt roles to the simulator, allowing these to be input to the ideal functionality
to receive the output out = f(x1, . . . , xm).

Hybrid H1 (Simulate output shares): Replace honest shares broadcast through
Fhom

VeSPa in final call to the Decrypt procedure with simulated shares produced as
{outi}i∈HC

← SimShare({outi}i∈IC
, out).

Hybrid H2 (Pick ϵ, δ Randomly, Simulate Honest Roles’ Shares) When mul-
tiplication committee Ml decrypts ϵ and δ choose ϵ and δ uniformly at random and
simulate honest shares:

• {ϵl,i}i∈HC
← SimShare({ϵl,i}i∈IC

, ϵ),
• {δl,i}i∈HC

← SimShare({δl,i}i∈IC
, δ).

Ideal H3 (Replace shares of honest inputs with random) Rather than sharing
honest inputs, provide random shares to corrupt roles when they input (Read, Ii, Cj , 1)
to Fhom

VeSPa.

We now prove that each pair in our sequence of hybrids is indistinguishable.

H0 ≈ H1 We will prove indistinguishablility from the real world through an invariant over the
evaluation of the circuit. The shares of honest inputs held by honest roles make up a
uniform sharing conditioned on the shares of corrupt roles. For simplicity, we assume
our circuit contains at least one multiplication gate. After the first multiplication the
corresponding held by honest roles are independent of the view of the adversary. The
process for beaver triple generation ensures this as both the A and B committees
contain at least one honest role, resulting in the sum of their produced shares making
up a uniformly random sharing of a uniform value, conditioned on corrupt shares.
The honest shares of ϵ and δ are defined as ϵl,i = al,i − xl,i and δl,i = bl,i − yl,i

for i ∈ HM . Both al,i and bl,i are uniform shares conditioned on the shares of the
adversary, rendering the same true for ϵl,i and δl,i. As c′l,i is produced through the
use of the homomorphism of Fhom

VeSPa with an added fresh sharing of 0 the result of
c′l,i − ϵlb

′
l,i − δla

′
l,i + ϵlδl for i ∈ HO will be similarly uniform shares conditioned on

the shares of corrupt roles. Addition requires no communication, and produces new
shares which are again distributed as part of a uniformly chosen sharing conditioned
on the shares of the adversary. When decrypting for the final gate the shares for
the honest roles may therefore instead be simulated by invoking share simulatability,
here the output of the functionality may be used relying on the correctness of the
protocol.
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H1 ≈ H2 As argued previously the values ϵ and δ are uniformly random, while the shares of
these values held by the honest roles constitute a uniform sharing conditioned on
the corrupt shares. Once again, the shares which are broadcasted by honest roles
may be replaced by simulations, by invoking share simulatability.

H2 ≈ H3 Finally, as the decryptions of honest shares throughout the circuit do not depend
on honest shares of honest inputs the simulator may simply choose uniform random
shares to provide to the corrupt roles. This results in an identical distribution and
eliminates the need for the inputs of honest roles.
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