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Abstract. Let (N, e) be a public key of the RSA cryptosystem, and d be the
corresponding private key. In practice, we usually choose a small e for quick encryption.
In this paper, we improve partial private key exposure attacks against RSA with MSBs
of d and small e. The key idea is that under such a setting we can usually obtain more
information about the prime factors of N and then, by solving a univariate modular
polynomial equation using Coppersmith’s method, N can be factored in polynomial
time. Compared to previous results, we reduce the number of the leaked bits in d
that are needed to mount the attack by log2(e) bits. For e = 65537, previous work
required an additional enumeration of 17 bits to achieve our new bound, resulting in
a 210 (or 1,024) x increase in time consumption. Furthermore, our experiments show
that for a 1024-bit modulus N , our attack can achieve the theoretical bound on a
simple personal computer, which verifies the new method.
Keywords: RSA · Factorization · Coppersmith’s method · Partial Key Exposure
Attack

1 Introduction
The RSA cryptosystem, one of the most worldwide used public key cryptosystems, was
proposed by Rivest, Shamir and Adleman [RSA78] in 1978. Its security is based on the
hardness of the factorization problem. In the key generation phase of RSA, Alice first
selects two prime numbers p and q, computes the public modulus N = pq, and then chooses
a random integer e coprime to ϕ(N) = (p − 1)(q − 1) as the public exponent, and computes
d such that ed ≡ 1 mod ϕ(N), as the secret exponent.

As a famous public-key encryption scheme, there has been much research about the
cryptanalysis of RSA. Wiener’s attack [Wie90] showed that RSA could be broken when the
secret exponent is small, typically d < N0.25. Therefore, it is insecure to choose a small d to
reduce the cost of decryption. As a follow-up result, Boneh and Durfee [BD99] gave a new
method showing that Wiener’s attack can be extended to d < N0.292, which still remains
the best bound despite several efforts [HM09, HM10, KSI11, TK16]. Note that in all these
attacks, the adversary has no additional available bits of the secret key (p, q, ϕ(N), d).
Moreover, Rivest et al. [RSA78, Mil75] showed that one can factor N probabilistically
in polynomial time when d is known. Then Coron and May [May04, CM07] proposed a
deterministic algorithm to factor N with the known d.

In a so-called partial key exposure attack, one can obtain some information about
the secret key, e.g. via some side-channel leakage like [ZvdPYS22]. Coppersmith [Cop96,
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Cop97] showed a polynomial-time attack exists when only half-bits of the prime p are
given. As a direct application of Coppersmith’s result, Boneh et al. [BDF98a] showed
that only a quarter of the least significant bits (LSB) of d is enough to factor N when e
is sufficiently small. For the most significant bits (MSBs) case, they showed that when
e = Nα with 1

4 < α < 1
2 , only αn MSBs of d are required to factor N where n = log2(N).

Later, several results were proposed for larger e [BM03] or even full size e ≈ N [EJMdW05].
In [EJMdW05], Ernst et al. also studied the attacks with leaked MSBs/LSBs of small d,
which has been further improved by [Aon09]. Also, there are several results about partial
key exposure attack for larger d [TK19, STK20].

Since small e is the usual setting in practice to increase the efficiency of encryption,
such as the parameters in the TLS/SSL protocol for Apple, Microsoft, IACR, and Arxiv,
we are more interested in the case when 1 < e < N

1
4 . An interesting open problem was

once proposed by Boneh et al. [BDF98a] in 1998: is it enough to mount an attack given
1
4 n bits of d in positions 1

4 n to 1
2 n when e is constant small? Later, they gave a positive

answer to this question in the full version of their paper [BDF98b]: roughly 3
4 n MSBs

of d are needed to mount their attack when 1 < e < N
1
4 . Moreover, they try to find p

with 1
4 n − log2(e) bits is known in Theorem 3.3 in [BDF98b]. If noncontinuous MSBs of d

are allowed to be obtained, the cost of time in their attack is e · poly(n) when nearly 1
4 n

MSBs are known or poly(n) when log2(e) + 1
4 n MSBs are known, where poly(n) denotes

polynomial time in n. A natural question is whether these MSBs are necessary for factoring
RSA modulus in polynomial time when e is small.

In this paper, we present a negative answer to the above question, that is, we can
break RSA even with fewer leaked bits of d when e is small. Note that we can usually find
the exact value of k such that the key equation ed = 1 + k(N − (p + q) + 1) holds when
e is small and enough MSBs of d are known. It is well known that the MSBs (or LSBs)
of d can yield nearly the same size as the MSBs (or LSBs) of p under some reasonable
conditions, then Coppersmith’s classical result [Cop97] can be employed. However, besides
the MSBs (or LSBs) of p that we can obtain from the MSBs (or LSBs) of d, we can also
get (p + q) mod e from the key equation, which will yield p mod e when the factorization
of e is known. Then we present an efficient algorithm based on Coppersmith’s method to
recover p using its MSBs (or LSBs) and p mod e. With the help of p mod e, the whole
attack needs fewer leaked bits in d than previous attacks. Simply speaking, the key idea
in our attack is to extract and explore the additional information of p mod e.

Based on the former idea, we find that given an n-bit RSA modulus N = pq with
q < p < 2q and p − q = N

1
2 −θ with 0 < θ < 1

4 , let e = Nα (α < 1
4 ) be a small public

exponent with known factorization and r distinct prime factors, and d = Nδ be a private
exponent. We show that we can factor N with time polynomial in 2r and log2(N) in the
following two cases.

Continuous MSBs leaked. We know (δ − γ)n MSBs of d with

γ < δ + α − θ − 3
4 ,

where γn is the number of unknown bits of d. That is to say, we only need ( 3
4 − α)n

bits compared with 3
4 n in [BDF98b] when θ ≈ 0.

Noncontinuous MSBs leaked. We know (δ + α − 1)n MSBs of d and ( 5
4 + θ − α − δ)n

bits after (δ − 1
2 )n MSBs of d. In other words, our attack only requires ( 1

4 + θ)n
known bits of d in total.

Finally, we also provide an algorithm for both MSBs and LSBs cases. Our attack only
requires ( 1

4 + θ)n bits of d like MSBs case but needs e · poly(n) time.
We would also like to point out that
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• It is not so hard to factor e in practice since we just consider small e. For example,
if n = 1024, then e has at most 256 bits, which is very easy to factor.

• In practice, it seems reasonable to assume θ ≈ 0. A rough estimation shows that
p − q < 1

2c

√
N with probability about 1

2c , in which θ ≈ c
n . However, to eliminate θ

completely, we need to enumerate almost c bits of d to increase the number of known
bits.

• As in [BDF98b], we also consider the full size d (δ ≈ 1) and θ ≈ 0. Our method
reduces log2(e) MSBs compared with Boneh et al.’s attack [BDF98b]. That is, for
the continuous MSBs case, we just need ( 3

4 − α)n bits compared with 3
4 n MSBs

in [BDF98b]. If noncontinuous MSBs can be obtained, nearly 0.25n MSBs are enough
for our attack, whereas log2(e) + 0.25n MSBs are needed for their attack [BDF98b].
We provided a summary of comparison in Figure 1.

0.25 0.5 0.75 1

0.25

0.5

0.75

1
BM03

EJMdW05

BDF98 I

BDF98 II

BDF98 III

this work

Most significant bits known

logN e

1− γ

Figure 1: The results for known MSBs of d.

To achieve our new bound, previous work [BDF98b] required an additional enumeration
of log2 e bits to achieve our new bound. For the widely used e = 65537, our new algorithm
eliminates this enumeration, which leads to a 210 (or 1,024) x improvement in the running
time.

Table 1: Comparison of running time for 1024-bit N( " - " means longer than 24 h1).

log2 e [BDF98b]’s Bound Ours Leaked MSBs Time in [BDF98b] Ours

17 768 752 768 2095.55 s 1.5 s
752 - 1028.72 s ≈ 0.29 h

129 768 640 768 111.64 s 0.12 s
640 - 4057.90 s≈1.13 h

Moreover, our attack can achieve the theoretical bound for 1024 bits N , which means
our method is practical. We provide an efficient open source implementation of our
algorithm in SageMath. The source code is available at:

https://github.com/fffmath/MSBsOfPrivateKeyAttack.

With this implementation, we conducted several experiments, and the experimental results
can be found in Section 4.

1We estimate the time consumption to be 216 × 2000 s and 2128 × 100 s, respectively.

https://github.com/fffmath/MSBsOfPrivateKeyAttack
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Roadmap. Our paper is organized as follows. We provide some necessary background
for our approaches in Section 2. In Section 3, we present our main result for the MSBs case
and then generalize it to both MSBs and LSBs case. Section 4 describes the experiments
that validate our analysis. Finally, we provide a brief conclusion in Section 5.

2 Notations and Preliminaries
Let Z denote the ring of integers. We use lowercase bold letters (e.g., v) for row vectors
and uppercase bold letters (e.g., A) for matrices.

MSBs abbreviates the most significant bits and LSBs abbreviates the least significant
bits. Ω(·) denotes the lower bound of the asymptotic complexity, and O(·) (Big-O) denotes
the upper bound of the asymptotic complexity.

For any polynomial h(x1 · · · , xk) ∈ Z[x1, · · · , xk], we use ∥h(x1 · · · , xk)∥ to denote
the Euclidean norm of the coefficient vector of h(x1 · · · , xk). That is, for h(x1 · · · , xk) =∑

hi1,··· ,ik
x1

i1 · · · xk
ik , it holds that

∥h(x1 · · · , xk)∥ =
√∑

h2
i1,··· ,ik

.

2.1 Lattices, SVP, and LLL
Let m ≥ 1 be an integer. A lattice is a discrete additive subgroup of Rm. An equivalent
definition is presented as follows.

Definition 1 (Lattice). Let v1, v2, . . . , vn ∈ Rm be n linearly independent vectors
with n ≤ m. The lattice L spanned by {v1, v2, . . . , vn} is the set of all integer linear
combinations of {v1, v2, . . . , vn}, i.e.,

L =
{

v ∈ Rm | v =
n∑

i=1
aivi, ai ∈ Z

}
.

We call n as the rank of L and m as the dimension of L. The lattice L is said to be

full rank if n = m. Define B =


v1
v2
...

vn

, which is denoted as the matrix basis of L. The

determinant of L is defined as det(L) =
√

det (BBT ), where BT is the transpose of B. If
L is full rank, this reduces to det(L) = |det (B)|.

The Shortest Vector Problem (SVP) is one of the famous computational problems in
lattices.

Definition 2 (SVP). Given a lattice L, the Shortest Vector Problem (SVP) asks to find a
non-zero lattice vector v ∈ L of minimum Euclidean norm, i.e., find v ∈ L\{0} such that
∥v∥ ≤ ∥w∥ for all non-zero w ∈ L.

SVP has been proven NP-hard under randomized reduction [Ajt98]. Nevertheless,
there exist algorithms to efficiently find a relatively short vector, such as the famous LLL
algorithm introduced by Lenstra, Lenstra, and Lovász [LLL82] in 1982. The following
result [May03] presents the upper bound for the norm of the i-th vector in the LLL-reduced
basis using the determinant of the lattice.

Lemma 1 (LLL Algorithm). Given an n-dimensional lattice L, we can find an LLL-reduced
basis {v1, v2, . . . , vn} of L in polynomial time, which satisfies

∥vi∥ ≤ 2
n(n−1)

4(n+1−i) det(L) 1
n+1−i , for i = 1, . . . , n.
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2.2 Coppersmith’s Method
Suppose f ∈ Z[x1, ...xk] is a polynomial with a small root u = (u1, . . . , uk) ∈ Zk modulo
some integer M . Here, a small root means |ui| < Xi for known bound Xi, for i = 1, . . . , k.
To find such a root, Coppersmith’s method is usually employed. Below we will give a brief
introduction to Coppersmith’s method for solving modular equations. More details can be
found in [May03].

Coppersmith’s method first constructs a lattice L with the coefficient vector of a system
of polynomials that has the same small root u of f modulo Mm where m is some positive
integer. For example, the polynomials can be selected as:

g[i1,...,ik,i] = xi1
1 · . . . · xik

k f iMm−i, for i = 0, . . . , m.

Note that each g[i1,...,ik,i] has the same small root u of f modulo Mm.
Coppersmith’s method tries to find the short vectors, or equivalently, the short polyno-

mials g1, . . . , gk, in the lattice L by applying the LLL algorithm. Using the following result,
due to Howgrave-Graham, and Lemma 1, we just need det(L) < Mm dim(L) to ensure that
g1, . . . , gk have the same small root u with f , not only modulo Mm but also over Z.

Lemma 2 (Howgrave-Graham [How97]). Let g(x1, . . . , xk) ∈ Z[x1, . . . , xk] be a polynomial
with at most ω monomials. Let M be a positive integer. If there exist k integers (u1, . . . , uk)
satisfying the following two conditions:

1. g(u1, . . . , uk) ≡ 0 mod M ,

2. there exist k positive integers X1, . . . , Xk such that |ui| < Xi for i = 1, . . . , k, and
∥g(x1X1, . . . , xkXk)∥ < M√

ω
,

then g(u1, . . . , uk) = 0 holds over Z.

Lastly, Coppersmith’s method computes the desired root u = (u1, . . . , uk) by solving
the system of polynomial equations gi(x1, . . . , xk) = 0 for i = 1, . . . , k.

In the multivariate scenario, that is, for k > 1, we usually assume the ideal generated
by g1, . . . , gk being zero-dimensional, allowing us to compute the small root u by Gröbner
basis [MR09, MNS21, MNS22, MN23]. However, when f is univariate (k = 1), we can
directly compute the root of g1 over Z without any assumption. In this paper, we just use
Coppersmith’s method for univariate polynomials as described in the following lemma,
whose detailed proof can be found in the proof of Theorem 7 in [May03] or an analogous
proof showed in [LZPL15]. We use the latter in this paper.

Lemma 3. Suppose N has an unknown divisor b > Nβ and f is a monic and univariate
polynomial with degree r, then we can find all solutions x0 with

|x0| ≤ N
β2
r

of the equation f(x) ≡ 0 mod b in polynomial time of (r, log2(N)).

Our analysis is based on β = 1
2 and deg(f) = 1. More specifically, to solve f(x) ≡ 0

mod b with |x| < X, we choose the coefficient vectors of the following polynomials gi(xX)
as the lattice basis matrix.

gi(x) = f i(x)Nmax{⌊ m
2 ⌋−i,0} for i = 0, . . . , m.

Additionally, we provide an example with m = 8, β = 1
2 and deg(f) = 1 in Table 2 for

better understanding.
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Table 2: The matrix of the lattice with m = 8.

gi 1 x x2 x3 x4 x5 x6 x7 x8

g0(xX) N4 0 0 0 0 0 0 0 0
g1(xX) ∗ N3X 0 0 0 0 0 0 0
g2(xX) ∗ ∗ N2X2 0 0 0 0 0 0
g3(xX) ∗ ∗ ∗ NX3 0 0 0 0 0
g4(xX) ∗ ∗ ∗ ∗ X4 0 0 0 0
g5(xX) ∗ ∗ ∗ ∗ ∗ X5 0 0 0
g6(xX) ∗ ∗ ∗ ∗ ∗ ∗ X6 0 0
g7(xX) ∗ ∗ ∗ ∗ ∗ ∗ ∗ X7 0
g8(xX) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ X8

2.3 Factoring RSA Modulus with Some Hints
Let us introduce the (textbook) RSA scheme briefly, which consists of three polynomial-time
algorithms: Key Generation, Encryption and Decryption.

Key Generation: Alice randomly selects two primes p and q with q < p < 2q, and then
computes N = pq and ϕ(N) = (p − 1)(q − 1). After that, Alice chooses a random
integer e such that gcd(e, ϕ(N)) = 1, and compute d such that ed ≡ 1 mod ϕ(N).
The public key is (e, N) and the private key is d.

Encryption: To encrypt a message m, Bob computes the ciphertext C = me mod N
and sends it to Alice.

Decryption: Alice compute Md mod N to get the message m.

Note that textbook RSA could be insecure when using low encryption exponents (e.g.,
e = 3) or when facing the chosen plaintext attack. To avoid these problems, practical RSA
implementations typically choose e = 216 + 1 and embed padding into the value m before
encrypting it [Ble98, Mac13].

The security of the RSA cryptosystem is based on the problem of factoring large
numbers and the RSA problem. Although it seems hard to factor big RSA modulus
directly up to now, Coppersmith’s method is usually employed to factor N when some
additional hints are given. For example, when given half of the most significant bits of a
prime factor, we can find the factorization of N [Cop96, Cop97, May03].

Lemma 4. Given a n-bit RSA modulus N = pq with q < p < 2q, if p0 is an approximation
of p such that |p − p0| < N

1
4 , then one can find p and factor N in polynomial time.

known MSBs of p︷ ︸︸ ︷ unknown bits p̃<N
1
4︷ ︸︸ ︷

︸ ︷︷ ︸
p: 12n bits

Figure 2: Illustration of known bits of p for Lemma 4.

The following Corollary shows that we can factor N when |p−q| is small enough, which
can also be derived by Fermat’s Factoring Method [dW02].
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Corollary 1. Given n-bit RSA modulus N = pq with q < p < 2q, suppose |p − q| < N
1
4 ,

then one can find p and factor N in polynomial time.

Proof. Note that |p − ⌈
√

N⌉| < |p − q| < N
1
4 . Therefore, ⌈

√
N⌉ is an approximation of p

satisfying Lemma 4. Then the corollary follows.

2.4 Deriving Information from the Approximation
It is well known that the MSBs of d can be used to yield a good approximation of k, which
satisfies ed = 1 + kϕ(N).

Lemma 5 (Lemma 4.2 in [BDF98b]). Given n-bit RSA modulus N = pq with q < p < 2q,
let e = Nα be a public exponent with α < 1, and d ≤ Nδ be a private exponent satisfying
ed ≡ 1 mod (p − 1)(q − 1). Let d0 be an approximation of d such that |d − d0| < Nγ . If
α + δ < 3

2 and γ < 1 − α, then

ed − 1
(p − 1)(q − 1) =

[
ed0 − 1

N

]
+ k1,

with a constant additive error |k1| ≤ 14.

Next, we generalize Lemma B.1 in [BDF98b] as below to show how to yield the MSBs
of p from the approximation of p + q. For completeness, we present its proof, which is
almost the same as the proof of Lemma B.1 in [BDF98b].

Lemma 6 (Lemma B.1 in [BDF98b]). Given a n-bit RSA modulus N = pq with q < p < 2q
and p−q = N

1
2 −θ with 0 < θ < 1

4 , let 2 (p + q) > S ≥ p+q ≥ 2
√

N be an approximation of
p+q with |S−(p + q) | < Nβ. Define p0 = 1

2 (S+
√

S2 − 4N). Then p0 is an approximation
of p such that

|p − p0| <
1
2

(
1 + 9Nθ

)
Nβ .

Proof. First, observe that (p + q)2 = (p − q)2 + 4N . Hence (p + q)2 > 4N . Also, observe
that q < p < 2q implies q <

√
N , and p + q < 3q < 3

√
N . Denote S′ = p + q and

D′ =
√

S′2 − 4N . We have |S − S′| < Nβ , S + S′ < 3S′ < 9
√

N and D′ = p − q = N
1
2 −θ.

Then p = 1
2 (S′ + D′). Let D =

√
S2 − 4N ≥ 0, and p0 = 1

2 (S + D). Then, since
D2 − D′2 = S2 − S′2, we get

|p − p0| ≤ 1
2(|S − S′| + |D − D′|)

= 1
2(|S − S′| + |D2 − D′2|

D + D′ )

= 1
2(|S − S′| + |S − S′|(S + S′)

D + D′ )

≤ 1
2(1 + S + S′

D + D′ )Nβ

<
1
2(1 + 9

√
N

N
1
2 −θ

)Nβ

= 1
2

(
1 + 9Nθ

)
Nβ .

This concludes the proof.

Note that we ask 0 < θ < 1
4 due to Corollary 1.
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3 Factoring RSA Modulus with Known Bits of d

In practical implementations of RSA, the public exponent e is often chosen to be a small
value like e = 216 + 1 = 65537. This choice of e ensures efficient encryption and verification
processes due to its low Hamming weight (only two bits set to 1). However, although
this choice does not directly influence the security but also raises the problem to balance
efficiency and security.

In this section, we focus on the partial key exposure attacks against RSA with small
public exponent. More precisely, we consider the RSA modulus N = pq with p < q < 2q,
and p − q = N

1
2 −θ with 0 < θ < 1

4 due to Corollary 1, e = Nα with 0 < α < 1
4 , and in

addition, an approximation of d is known.
In the following, we first introduce our improvement for the MSBs case by presenting

a simple lemma that allows us to recover p using information from both p mod e and
the MSBs of p. Additionally, note that some MSBs remain unused (See Section 4.2.8
in [MH24]), we can also complete the attack with less MSBs of d under conditions allowing
for non-continuous leakage. Finally, we generalize the attack to the case when both MSBs
and LSBs are leaked.

3.1 Factoring RSA Modulus with Known MSBs of d

We start with the following lemma, which shows that one can recover p using p mod e
and additional MSBs of p.

Lemma 7. Given a n-bit RSA modulus N = pq with q < p < 2q, let e = Nα be a public
exponent with α < 1

4 . Suppose γn MSBs of p and p ≡ p mod e are known, then one can
find p and factor N in polynomial time of n when γ > 1

4 − α.

γn MSBs pm︷ ︸︸ ︷ unknown bits p̃︷ ︸︸ ︷

︸ ︷︷ ︸
p: 12n bits

︸ ︷︷ ︸
p mod e

Figure 3: Illustration of known bits of p and known p mod e for Lemma 7.

Proof. As in Figure 3, let p = pm2 1
2 n−γn + p̃ where pm ≈ Nγ is known. Then p0 =

pm2 1
2 n−γn is an approximation of p with |p − p0| < N

1
2 −γ .

Since p ≡ p mod e, we can write p = te + p. Denote t0 = p0−p
e . Then t0 is an

approximation of t with

|t − t0| = |t − p0 − p

e
|

= | te − (p0 − p)
e

|

= | (p − p) − (p0 − p)
e

|

= |p − p0

e
|

< N
1
2 −γ−α.

Then, one can write t = t0 + t̃ with an unknown t̃ satisfying t̃ < N
1
2 −γ−α.

Consider the univariate polynomial g(x) = (t0 + x)e + p. Then t̃ is a solution of the
equation of g(x) ≡ 0 mod p. Since gcd(e, N) = 1, then one can compute e−1 mod N
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and f(x) = e−1g(x) mod p. Note that f is monic, and has the same root as g. Since
γ > 1

4 − α, we have
1
2 − γ − α <

1
4 ,

which yields that t̃ is a small root of f(x) = 0 mod p. Therefore, we can find p̃ and then
factor N by Lemma 3.

Below we present our main theorem. For simplicity, we assume e is a prime number.

Theorem 1. Given a n-bit RSA modulus N = pq with q < p < 2q and p − q = N
1
2 −θ

with 0 < θ < 1
4 , let e = Nα be a small prime public exponent with α < 1

4 , and d = Nδ be a
private exponent satisfying ed ≡ 1 (mod (p − 1)(q − 1)). Let d0 be an approximation of d
such that |d − d0| < Nγ . Then one can factor N in polynomial time if

γ < δ + α − θ − 3
4 .

known MSBs of d︷ ︸︸ ︷ unknown bits d̃<Nγ

︷ ︸︸ ︷

︸ ︷︷ ︸
d with d=Nδ

Figure 4: Illustration of known bits of d for Theorem 1

Proof. Let d0 be an approximation of d such that |d−d0| < Nγ . Without loss of generality,
we can assume that d − d0 ≥ 0. If d < d0, then d′

0 = d0 − Nγ is also a good approximation
of d such that 0 ≤ d − d′

0 < Nγ .
Let d = d0 + d̃ where 0 ≤ d̃ < Nγ is unknown. The key equation of RSA implies that

there exists an integer k such that

ed − k(p − 1)(q − 1) = 1.

We next show how to factor N step by step.
Step 1. Determine the candidate k. Since γ < δ + α − θ − 3

4 , we have γ <
1 + α − 3

4 < 1 − α. Besides, it holds that α + δ < 1
4 + 1 < 3

2 . By Lemma 5, we have
k =

[
ed0−1

N

]
+ k1 ≈ Nα+δ−1 with |k1| ≤ 14. Then we can enumerate these candidates and

k is one of them. Below, we assume the correct value of k is known.
Step 2. Recover the MSBs of p. The equation ed − k(p − 1)(q − 1) = 1 with

d = d0 + d̃ gives
ed̃ + k(p + q) = k(N + 1) − ed0 + 1. (1)

Define S = N + 1 − ed0−1
k . Then by Equation (1) we have

S − (p + q) = ed̃

k
.

Since 0 ≤ d̃ < Nγ , and k ≈ Nα+δ−1, then

0 ≤ S − (p + q) <
Nα+γ

Nα+δ−1 =N1+γ−δ.

Since S ≥ p + q > 2
√

N , then S2 > 4N . Define D =
√

S2 − 4N , and p0 = 1
2 (S + D). By

Lemma 6, we get
|p − p0| <

1
2

(
1 + 9Nθ

)
N1+γ−δ.
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It shows that 1
2 n − (1 + γ + θ − δ)n MSBs bits of p are known.

Step 3. Recover p ≡ p mod e. Consider the following equation again

ed = 1 + k(N − (p + q) + 1).

Note that gcd(k, e) = 1. Similar to Theorem 7 in [BDF98a], we can compute

p + q ≡ N + 1 − k−1 mod e,

which yields s = p + q mod e. Then we can find p ≡ p mod e by solving the following
modular equation

x2 − sx + N ≡ 0 mod e. (2)

Step 4. Factor N . To apply Lemma 7, we set 1
2 − (1 + γ + θ − δ) > 1

4 − α, that is

γ < δ + α − θ − 3
4 .

Then, we can factor N in polynomial time using Lemma 7.

Especially when we consider e = 216 + 1, as a prime number, Theorem 1 works directly.
As in [BDF98b], as long as we can solve Equation 2 or know the factorization of e, the
proof will work regardless of whether e is prime or not. By an analogous proof, we have
the following Theorem 2.

Theorem 2. Given n-bit RSA modulus N = pq with q < p < 2q and p − q = N
1
2 −θ with

0 < θ < 1
4 , let e = Nα (α < 1

4) be a small public exponent with r known distinct prime
factors and d = Nδ be a private exponent satisfying ed ≡ 1 mod (p − 1)(q − 1). Let d0 be
an approximation of d such that |d − d0| < Nγ . Then one can factor N in time polynomial
in log2(N) and 2r if

γ < δ + α − θ − 3
4 .

3.2 Factoring RSA Modulus with Less Known MSBs of d

Theorem 1 shows that we need (δ − γ)n = ( 3
4 − α + θ)n MSBs of d. In fact, we can use

kN
e to get an approximation of d with |d − kN

e | < N δ− 1
2 , which means 1

2 n MSBs of d is
known. Therefore, we do not need the 3

2 n − αn − δn bits after (α + δ − 1)n MSBs of d.
That is, we only need ( 3

4 n − αn) − ( 3
2 n − αn − δn) = δn − 3

4 n bits of d. We rewrite this
result in the following Theorem.

Theorem 3. Given a n-bit RSA modulus N = pq with q < p < 2q and p − q = N
1
2 −θ with

0 < θ < 1
4 , let e = Nα be a prime public exponent with α < 1

4 , and d = Nδ be a private
exponent satisfying ed ≡ 1 (mod (p − 1)(q − 1)). One can factor N in polynomial time if
(δ + α − 1)n MSBs of d and ( 5

4 + θ − α − δ)n bits after (δ − 1
2 )n MSBs of d are known.

That is, we only need ( 1
4 + θ)n bits of d.

Proof. Denote by d
(1)
m ≈ Nδ+α−1 the known MSBs of d. Then d0 = d

(1)
m 2(1−α)n is an

approximation of d with |d − d0| < N1−α. Then, by Lemma 5, we can determine a few
candidates of k. Below, we assume the correct value of k is known.
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(δ+α−1)n MSBs d(1)
m︷ ︸︸ ︷

(δ− 1
2 )n MSBs of d

︷ ︸︸ ︷
known bits ( 5

4+θ−α−δ)n
︷ ︸︸ ︷

︸ ︷︷ ︸
d with d=Nδ

Figure 5: Illustration of known bits of d for Theorem 3.

With the correct k, we claim that d0 =
[

kN
e

]
is a good approximation of d since

|d − d0| ≈ |d − kN

e
|

= |ed − kN

e
|

= |kϕ(N) + 1 − kN

e
|

= |k(p + q − 1) − 1
e

|

< |k(p + q)
e

|

< |p + q|

≈ N
1
2 .

Note d = Nδ, then d0 =
[

kN
e

]
has almost the same (δ − 1

2 )n MSBs of d. By enumeration,
we can assume the (δ − 1

2 )n MSBs of d are known.
Now we have (

δ − 1
2

)
n +

(
5
4 + θ − α − δ

)
n =

(
3
4 − α + θ

)
n

MSBs of d. Then we have an approximation d0 such that |d − d0| < Nδ+α−θ− 3
4 . Hence,

by Theorem 1, we can factor N in polynomial time.

Similarly, when the factorization of e is known, we have

Corollary 2. Given a n-bit RSA modulus N = pq with q < p < 2q and p − q = N
1
2 −θ

with 0 < θ < 1
4 , let e = Nα be a public exponent with α < 1

4 , and r known distinct prime
factors, and d = Nδ be a private exponent satisfying ed ≡ 1 (mod (p − 1)(q − 1)). One
can factor N with time polynomial in log2(N) and 2r if (δ + α − 1)n MSBs of d and
( 5

4 + θ − α − δ)n bits after (δ − 1
2 )n MSBs of d are known.

Note that Corollary 2 implies that only ( 1
4 + θ)n bits of d are needed. Note also that

when e is enumerable and d ≈ N , our Theorem 3 produces the same result as Theorem
3.3 in [BDF98b], requiring only 1

4 n bits in the positions from 1
4 n to 1

2 n.
However, when e ≈ N

1
4 , d ≈ N , θ ≈ 0, only 1

4 n MSBs are needed in our Theorem 3,
which is much better than Theorem 3.3 in [BDF98b] and achieves the bound in Theorem
4.1 in [BDF98b].

3.3 Factoring RSA Modulus with MSBs and LSBs of d

We generalize Lemma 7 in the following lemma, which shows one can recover p with p
mod e and additional MSBs and/or LSBs of p.
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Lemma 8. Given a n-bit RSA modulus N = pq with q < p < 2q, let e = Nα be a public
exponent with α < 1

4 . Suppose γ1n MSBs, γ2n LSBs of p and p mod e are known, then
one can find p and factor N when γ1 + γ2 > 1

4 − α.

γ1n MSBs pm︷ ︸︸ ︷ γ2n LSBs pl︷ ︸︸ ︷

︸ ︷︷ ︸
p: 12n bits

︸ ︷︷ ︸
p mod e

Figure 6: Illustration of known bits of p and known p mod e for Lemma 8.

Proof. As in Figure 6, let p = pm2 1
2 n−γ1n + p̃2γ2n + pl where pm ≈ Nγ1 and pl ≈ Nγ2 are

known. Then p0 = pm2 1
2 n−γ1n is an approximation of p with |p − p0| < N

1
2 −γ1 .

Since p(1) ≡ p mod e and p(2) ≡ pl mod 2γ2n are known, we can compute p ≡ p
mod e2γ2n by Chinese Remainder Theorem.

We can write p as p = te2γ2n + p. Denote t0 = p0−p
2γ2ne . Then t0 is an approximation of t

with
|t − t0| = |t − p0 − p

2γ2ne
| = |p − p0

2γ2ne
| < N

1
2 −γ1−γ2−α.

So there exists an unknown integer t̃ < N
1
2 −γ1−γ2−α such that t = t0 + t̃.

Consider the polynomial g(x) = (t0 + x)e + p. Then t̃ is a root of g(x) ≡ 0 mod p.
Since gcd(e, N) = 1, one can compute e−1 mod N and f(x) = e−1g(x) mod p. Note that
f is monic, and has the same root as g. Since γ1 + γ2 > 1

4 − α, we have

1
2 − γ1 − γ2 − α <

1
4 ,

which yields that t̃ is a small root of f(x) = 0 mod p. Therefore, we can find p̃ and then
factor N by Lemma 3.

Based on Theorem 3, we will demonstrate that the known bits after the (δ − 1
2 )n MSBs

of d can be generalized to other positions.

Theorem 4. Given a n-bit RSA modulus N = pq with q < p < 2q and p − q = N
1
2 −θ with

0 < θ < 1
4 , let e = Nα be a prime public exponent with α < 1

4 , and d = Nδ be a private
exponent satisfying ed ≡ 1 (mod (p − 1)(q − 1)). Suppose N ≡ 3 mod 4 and (δ + α − 1)n
MSBs of d, γ1n bits after (δ − 1

2 )n MSBs of d and γ2n LSBs of d are known, one can
factor N in O(e · poly(n)) if

γ1 + γ2 >
5
4 + θ − α − δ

where poly(n) denotes polynomial time in n. That is to say, we only need ( 5
4 + θ − α −

δ)n + (δ + α − 1)n = ( 1
4 + θ)n bits of d totally.

Proof. Consider the following equation again

ed − k(p − 1)(q − 1) = 1.

We next show how to factor N step by step.
Step 1. Determine the candidate k. Denote by d

(1)
m ≈ Nδ+α−1 the known MSBs

of d. Then d
(1)
0 = d

(1)
m 2(1−α)n is an approximation of d with |d − d

(1)
0 | < N1−α. We have

k =
[

ed
(1)
0 −1
N

]
+ k1 ≈ Nα+δ−1 with |k1| ≤ 14 by Lemma 5. Then we can enumerate these

candidate k’s. Below we assume the correct value of k is known.
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(δ+α−1)n MSBs d(1)
m︷ ︸︸ ︷

(δ− 1
2 )n MSBs d(2)

m︷ ︸︸ ︷ γ1n︷ ︸︸ ︷
γ2n LSBs dl︷︸︸︷

(δ− 1
2+γ1)n MSBs dm︷ ︸︸ ︷

︸ ︷︷ ︸
d with d=Nδ

Figure 7: Illustration of known bits of d for Theorem 4.

Step 2. Recover (δ − 1
2 )n MSBs of d. Like proof in Theorem 3, we use d

(2)
0 =

[
kN
e

]
to get an approximation of d with |d − d

(2)
0 | < N

1
2 . Note d ≈ Nδ, then d

(2)
0 =

[
kN
e

]
has

the same (δ − 1
2 )n MSBs of d.

Step 3. Recover the MSBs of p. Now we have (δ − 1
2 + γ1)n MSBs, denoted

as dm with dm ≈ Nδ− 1
2 +γ1 . Note d0 = dm2( 1

2 −γ1)n is an approximation of d with
|d − d0| < N

1
2 −γ1 . We write d as d = d0 + d̃ with 0 ≤ d̃ < N

1
2 −γ1 .

Define S = N + 1 − ed0−1
k . Then by Equation (1) we have

S − (p + q) = ed̃

k
.

Since 0 ≤ d̃ < N
1
2 −γ1 , we know that

0 ≤ S − (p + q) < N
3
2 −γ1−δ.

Define D =
√

|S2 − 4N |, and p0 = 1
2 (S + D). By Lemma 6, we get

|p − p0| <
1
2

(
1 + 9Nθ

)
N

3
2 −γ1−δ.

It shows that 1
2 n − ( 3

2 − γ1 − δ + θ)n = (γ1 + δ − θ − 1)n MSBs of p are known.
Step 4. Recover the LSBs of p. Since dl is known in the following equation:

edl ≡ 1 + k(N + 1 − p − q) mod 2γ2n

Like Theorem 3.1 in [BDF98b], it yields γ2n LSBs of p.
Step 5. Recover p mod e. Consider the following equation again

ed = 1 + k(N − (p + q) + 1).

Note that gcd(k, e) = 1. Similar to Theorem 7 in [BDF98a], we can compute

p + q ≡ N + 1 − k−1 mod e,

which yields s = p + q mod e. Then we can find p mod e by solving Equation (2).
Step 6. Factor N . Now we have (γ1 + δ − θ − 1)n MSBs, γ2n LSBs and p mod e.

To apply Lemma 8, we set (γ1 + δ − θ − 1) + γ2 > 1
4 − α, that is, when

γ1 + γ2 >
5
4 + θ − α − δ.

we can factor N in polynomial time due to Lemma 8.
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Remark 1. Note that we have N ≡ 3 mod 4 to solve Step 4 for convenience, just like
Theorem 3.1 in [BDF98b]. The e log2(e) in algorithm complexity comes from solving the
LSBs of p using the LSBs of d. In Step 4, if k is a multiple of a power of 2, additional
solutions will be generated. However, unlike Theorem 3.1 in [BDF98b], we now have an
approximate value of k, so we do not need to enumerate k from 1 to e. To be honest, we
do not achieve an improvement in time complexity because log2(e) itself is also in O(n).

When the factorization of e is known, we have the same result as Corollary 2. Suppose
e has r distinct prime factors, one can factor N with time polynomial in log2(N) and 2r

under the same known information as in Theorem 4.

4 Experiments
We provide some experiments to verify the correctness of our analysis. The source code
for the experiments is open-sourced and available at

https://github.com/fffmath/MSBsOfPrivateKeyAttack.

Our experimental environment is Ubuntu 22.04 (WSL) on a 12th Gen Intel(R) Core(TM)
i7-12700 2.10 GHz with SageMath 10.3. We employed the flatter algorithm [RH23] as the
lattice basis reduction algorithm in Coppersmith’s method.

4.1 Experiments for Theorem 1
For convenience, we assumed k to be known in all experiments; thus, additional time would
be needed to enumerate k in a real attack.

For 1024-bit N , we selected different bit-size of e and known MSBs of d for the
parameters. The results are presented in Table 3. More precisely, we conducted experiments
for 1024-bit N with e of different bit sizes, specifically e = 2256 + 1, 2128 + 1, 216 + 1. For
convenience of comparison, we used the same p and q, with p − q ≈ N1/2.

Here we use ω(n) to count the number of distinct prime factors. For example, ω(22×3) =
ω(2 × 3) = 2.

Table 3: Experimental results for 1024-bit modulus

Bit-size of e Known MSBs Lattice Dim. ω(e) Total Time (s)
257 768 3 2 0.64
257 528 30 2 3.48
257 518 100 2 203.91
129 768 3 2 0.12
129 643 200 2 2440.19
17 768 35 1 1.5
17 758 55 1 14.34
17 756 100 1 126.67

We also provided experimental results over a larger RSA modulus, see the following
Table 4.

Although we mainly care about small e, especially e = 65537, our algorithm has a
significant advantage for larger e. As shown in Table 1, the larger our e, the greater the
time advantage, because using the algorithm in [BDF98b] requires enumerating the log2 e
bits. Note that for large e, we must consider the running time of factoring e. Up to now,
the best record for factoring is RSA-250 (829 bits) [BGG+20]. As Table 4, for e < 2256,
it’s fast to factor e. Compared to [BDF98b], this will reduce the need to enumerate 256
bits to achieve our new bound!

https://github.com/fffmath/MSBsOfPrivateKeyAttack
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Table 4: Experimental results over a larger RSA modulus

log2 N log2 e Known MSBs Lattice Dim. Time for Factoring e (s) Total Time (s)
2048 17 1536 75 0.1 50.21
2048 129 1418 75 0.1 391.71
2048 257 1200 75 1.1 406.07
3072 17 2304 75 0.1 245.72
4096 17 3072 75 0.1 385.32

For cases close to the theoretical bound, we need to consider unavoidable approximation
errors, which are usually a few bits. In such cases, appropriate enumeration is necessary.
For a 1024-bit N , according to our theory, we will finally solve the equation x + C ≡ 0
mod p, with a bound of x < N

1
4 ≈ 2256. However, in practice, due to some approximation

errors like N ̸= 21024, the bound from Theorem 1 may lead us to a result of 2260. At this
point, we need to enumerate four bits to make it less than 2256.

Below are the experimental results presented in Table 5. We consider the theoretical
bounds for different bit sizes of e. Due to approximation errors, the actual solutions
(the third column in Table 5) are larger than 256 bits, which means it’s difficult to use
Coppersmith’s method directly. In such cases, we choose an appropriate number of bits
to enumerate. For example, we choose 752 + 6 to represent enumerating 6 bits. In other
words, we now have 26 (or 64) candidate 752 + 6 MSBs of d. We will run through all
candidates until we obtain the factorization of N .

Table 5: Experimental results for 1024-bit modulus

Bit-size of e Leaked MSBs of d Solution’s bound Run Total Time (s)
257 512 260 512+8 11744.21
129 640 257 640+6 4057.90
17 752 258 752+6 1028.72

Based on the above data, we can achieve theoretical bounds practically in real-world
attacks.

4.2 Experiments for Lemma 5
As we suppose k is known in Section 4.1, here we provide some experiments for tests of
|k0 − k|. In Figure 8, we selected different p and q, and various bit lengths of e. Under
the condition of Lemma 5, we plotted the true values of k and the approximated values
of k computed using the approximation of d. These are denoted as True Values and
Computed Values respectively. The closer the computed value is to the line y = x, the
smaller their difference. We plotted error bars to show that the difference is indeed within
±14, satisfying Lemma 5.

5 Conclusion
In this paper, we focused on the partial key exposure attack in the case of small e. Let
(N, e) be a public key of the RSA cryptosystem. For the MSBs case, we reduce the number
of the leaked bits in d that are needed to mount the attack by log2(e) bits compared with
previous work. Moreover, we extended our results to both MSBs and LSBs case under the
same condition as [BDF98b]. Finally, we provided experimental verification of our ideas
and showed that for 1024 bits N , we can achieve the theoretical bound practically.
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