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Abstract.
We study signatures well suited for sensitive applications (e.g. whistleblowing) where
both the signer’s anonymity and deniability are important. Two independent lines
of work have tackled these two goals: ring signatures ensure the signer’s anonymity
(within a set of signers, called a ring), and — separately — multi designated verifier
signatures ensure that all the intended recipients agree on whether a signature is valid,
while maintaining the signer’s deniability by preventing the intended recipients from
convincing an outsider of the validity of the signature. In this paper, we introduce
multi designated verifier ring signatures (MDVRS), which simultaneously offer both
signer anonymity and deniability. This makes MDVRS uniquely suited for sensitive
scenarios.
Following the blueprint of Damgård et al (TCC’20) for multi designated verifier
signatures, we introduce provably simulatable designated verifier ring signatures
(PSDVRS) as an intermediate building block which we then compile into an MDVRS.
We instantiate PSDVRS in a concretely efficient way from discrete logarithm based
sigma protocols, encryption and commitments.
Keywords: Digital Signatures · Designated Verifier · Ring Signatures.

1 Introduction
Digital signatures serve a fundamental role in securing online communication. A digital
signature scheme enables the signer, i.e., the party holding a secret key, to produce a
concise string, called a signature, for a chosen message. This signature authenticates the
chosen message in such a way that any verifier, i.e., any party holding the signer’s public
key, can check that the signature was produced by the signer and that the message was
not altered. This fairly simple property is integral to countless applications, including
digital certificates, electronic payment systems, and identification schemes.

While the initial aim of digital signatures was to make the origin of a message publicly
verifiable, over the years interest has grown towards authenticating messages in a privacy-
enhancing way. This can serve two purposes:

1. Protecting the signer by (1) hiding their identity within an anonymity set or (2)
making it harder for the intended verifier to implicate them. This is relevant when
the signer is a whistle-blower and might face retaliation, and may address the privacy
threat associated with dissemination of signed documents [SBWP03].

Funded in part by the Danish Independent Research Council (grants DFF-2064-00016B and DFF-
2032-00122B “YOSO”, and grant DFF-0165-00107B “C3PO”), and the European Research Council (ERC,
under the European Unions’s Horizon 2020 research and innovation programme under grant agreement No
803096 “SPEC”).

E-mail: sk@cs.au.dk (Sebastian Kolby), elenap@chalmers.se (Elena Pagnin), sophia.yakoubov@cs
.au.dk (Sophia Yakoubov)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-08 Accepted: 2024-09-02

https://doi.org/10.62056/a33zivrzn
https://crossmark.crossref.org/dialog/?doi=10.62056/a33zivrzn&domain=pdf&date_stamp=2024-10-02
https://orcid.org/0009-0005-3228-7194
https://orcid.org/0000-0002-7804-6696
https://epagnin.github.io
https://orcid.org/0000-0001-7958-8537
mailto:sk@cs.au.dk
mailto:elenap@chalmers.se
mailto:sophia.yakoubov@cs.au.dk
mailto:sophia.yakoubov@cs.au.dk
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


2 Multi Designated Verifier Ring Signatures

2. Controlling exposure by proving authenticity only to preselected — authorized —
entities. This provides new venues of application for digital signatures, such as
verifying copies of software only for costumers who paid [JSI96], and in blockchain
technologies [CK21].

A signer’s privacy can be protected in several ways. Ring signatures (RS) [RST01]
and group signatures [Cv91] both hide the signer’s exact identity among a set of potential
signers. In the case where the signer is an informant or whistle-blower, this has the
drawback of creating evidence that at least one member of a group leaked information;
while the exact identity of the group member remains unknown, such evidence might
trigger an investigation or mass mistrust. This is particularly problematic when the group
(ring) is small. To combat this, Aranha et al. [AHAN+22] propose a way to extend the
initial ring to a larger set; however, the public verifiability issue remains.

In contrast, designated verifier [JSI96] signatures limit who is able to perform the
verification of message authenticity. A traditional signature can be verified by anyone,
but a designated verifier signature only convinces the intended recipient of the signature’s
authenticity. That recipient is then unable to prove to anyone else that the signature is
authentic. Multi designated verifier signatures (MDVS) [LV04, DHM+20] allow the signer
to enable verification by more than one recipient (while still limiting the recipients’ ability
to convince an outsider). As long as no retaliator is among the designated verifiers, the
retaliators have no evidence implicating an individual or group. However, given that each
designated verifier is convinced of the exact identity of the signer, signers are still at risk in
case one of the designated verifiers happened to be a retaliator, or have a retaliator’s trust.

The two approaches have been recently combined into designated verifier linkable ring
signatures [BBG+22]. However, the case of multi designated verifier ring signatures —
which additionally guarantee consistent verification by multiple recipients — remains
unexplored. In this work, we are interested in filling this gap in privacy-oriented signatures.
At a first glance, this may appear as a trivial combination of ring signatures and multi
designated verifier techniques; however, it turns out that simultaneously achieving both
the signer-ring feature and the multi designated verifier one is far from trivial.

Properties Multi designated verifier ring signatures (MDVRS), which we introduce,
provide stronger security notions for signer privacy by (1) protecting the signer’s identity
within a ring of potential signers, and (2) limiting the evidence that could be used against
them by selecting a set of designated verifiers. On top of correctness and unforgeability,
MDVRS signatures enjoy:

Consistency, i.e., all designated verifiers get the same validity result.

Off-the-record (a.k.a. deniability), i.e., no set of colluding verifiers can provably iden-
tify a smaller ring of signers and prove this to a third party.

Anonymity, i.e., the identity of the actual signer is not revealed even in case all signers’
and designated verifiers’ secret keys involved in ring signature are known.

Additional Applications Whistleblowing remains the most compelling motivation for
privacy-preserving signatures. Other applications include e-voting and alarm-sounding.

E-voting: Privacy-preserving signatures can enable the anonymous casting of a ballot.
Proving authenticity only to a designated set of verifiers makes it harder for a coercer to
check that a voter voted a certain way.

Sounding an alarm: It may be important to alert a localized group to a particular
danger. The person sounding that alarm might not want to be identified, to avoid
questioning. This alarm might, for instance, consist of notifying nearby hospitals of an
outbreak of coronavirus.
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1.1 Our Contribution
We put forth a definitional framework and a construction for multi designated verifier ring
signatures (MDVRS). As a building block for MDVRS, and a result of independent interest,
we extend the notion of provably simulatable designated verifier signatures [DHM+20] to
the ring setting (PSDVRS). We give a generic compiler from PSDVRS to MDVRS, and
we design a concretely efficient PSDVRS from discrete logarithm-based assumptions. Our
PSDVRS uses a discrete logarithm-based non-interactive zero-knowledge proof system.

Finally, we discuss how our approach may be applied to a compressed sigma protocol
[AC20] for proving partial knowledge (1-of-n) of discrete logarithms [ACF21] to achieve
PSDVRS signatures which have size logarithmic in the ring.

The size of our resulting MDVRS signature has a linear dependency on the number of
verifiers, and a logarithmic dependency on the signer ring. Notably, the linear dependency
on the number of verifiers cannot be avoided, as shown by Damgård et al. [DHM+20] (in
the context of MDVS).

1.2 Technical Overview
We build our MDVRS scheme in a generic way from a provably simulatable designated
(single) verifier ring signature (PSDVRS) scheme. The idea is that a PSDVRS signature
can be produced in one of three ways: by the signer, by the verifier, or by a third party (in
which case it should not verify — since otherwise it would constitute a forgery — but it
should look like a valid signature to an outsider). Furthermore, the signature is produced
together with a proof of the way in which it was generated; this proof demonstrates that
the signature is real, that it is a simulation by the designated verifier, or that it is a
simulation by a third party. Without the proof, signatures produced in the three ways
are indistinguishable, and signatures produced the first two ways are indistinguishable
even given the verifier’s secret state. In order to produce an MDVRS signature, the signer
produces a PSDVRS signature for each verifier; to ensure consistency, the signer proves in
zero knowledge that either all the signatures are real and for the same message, or they
are all a kind of simulation.

Now, the challenge becomes building a PSDVRS signature that is both concretely
efficient, and that lends itself to efficient zero knowledge OR-proofs of the kind described
above. From a structural perspective our PSDVRS signature is based on a ring signature,
where the ring is augmented with the verifier’s own key to ensure the off-the-record
property. For efficiency, we design our ring signature scheme based on a concrete Sigma
protocol for the knowledge of one of several discrete logarithms. To embed the designated
verifier feature, the signer encrypts the first message of the Sigma protocol to the verifier
using ElGamal encryption in the same group where the keys live. This trick prevents
public verifiability of the Sigma protocol and, by compiling the Sigma protocol into a non
interactive honest verifier zero knoweldge (HVZK) argument of knowledge (Figure 17), also
provides public simulatability. Indeed, the resulting signatures are publicly simulatable by
producing a dummy ciphertext for the first message of the Sigma protocol, and then using
the simulator that enables the honest verifier zero knowledge property of the (compiled)
argument of knowledge. To distinguish the origin of simulated signatures it suffices to
include the randomness associated to the dummy ciphertext in the proof of the signature’s
provenance. To prove provenance of signatures generated by the signer (resp. verifier), the
signer (resp. verifier) includes a commitment to their own secret key in the signature; and
provides its secret key and commitment randomness in the proof of provenance. Again,
public simulation will commit to a dummy value (and include the associated randomness
in the proof of provenance). We achieve this, while maintaining a non interactive zero
knowledge (NIZK) friendly statement, avoiding proving the evaluation of cryptographic
hashes within zero knowledge.
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1.3 Related Work
Ring Signatures Ring signatures [RST01] are a well established mechanism to leak
secrets in an anonymous way and yet show some entitlement [BGLS03, ZK02, DKNS04,
BKM06]. The concept of ring signature has been revisited and enhanced over the years to
include, e.g., threshold versions et al. [BSS02], traceability [FS07], linkability [SALY17],
identity based constructions [CLHY05], and ring extensions [AHAN+22]. In this work, we
are interested in combining it with the verifier’s designation.

Designated Verifier Signatures The notion of designated verifier proofs was in-
troduced in 1996 independently by Chaum (in a patent) and by Jakobsson, Sako and
Impagliazzo [JSI96]. One major application for this primitive are designated verifier
signatures (DVS) which provide deniability (aka off-the-record) and authentication at
the same time, emulating the properties of a face-to-face conversation. (In a face-to-face
conversation, authentication is given by witnessing the speaker make a statement, and
off-the-record comes from later inability to prove what was said.) Among other things,
DVS enables a software vendor to certify that products are correct and free of viruses,
but only to paying customers [JSI96]. Jakobsson et al. [JSI96] use trapdoor (chameleon)
commitments to build DVS.

In 2003, to address the privacy threat associated with dissemination of verifiable
signed documents, Steinfeld, Bull, Wang and Pieprzyk [SBWP03] and [SWP04] generalize
the concept of DVS to Universal DVS, which allows anyone (not necessarily the signer
themselves) to transform a publicly verifiable signature into a designated verifier signature
for any chosen verifier. The designated verifier can verify this signature and be convinced
that the message was signed by the signer; but, they are unable to convince anyone else of
this fact. Steinfeld et al. [SBWP03] provide constructions of deterministic Universal DVS
based on BLS [BLS01] signatures (in the random oracle model).

Laguillaumie and Vergnaud introduce the concept of Multi Designated Verifiers Signa-
tures (MDVS) [LV04], an extension of DVS. They identify core challenges for this setting,
including consistency of the designated verifiers’ verification outcomes, unforgeability even
given all of the designated verifiers’ keys, source hiding and privacy of signer’s identity.
Their constructions are based on ring signatures, or on bilinear maps (with tripartite Joux
key exchange [Jou04]). This work sparked a extensive line of research that revisited the
seminal constructions [Cho08], proposed identity based solutions [Cho06], and strengthened
the security [DHM+20].

On the single verifier side, several works consider efficiency [SKM04], identity based key
management systems [SZM04], a unified generic framework [LSMP07], but never signer
privacy, until very recently. Recently, designated verifier linkable ring signatures [BGK+22]
were introduced, to which Balla et al. [BBG+22] added unconditional anonymity1. These
works combine signer anonymity with linkability, which makes same signer signatures
traceable.

1.4 Comparison to Balla et al. [BBG+22]
Designated verifier linkable ring signatures [BBG+22] simultaneously offer the signer
limited anonymity against the designated verifier, and deniability against everyone else.
Anonymity is limited because linkability ensures that two signatures produced by the same
signer can be linked (to one another, but not to the signer’s identity). In particular, if a
signer picks inappropriate rings (e.g., where the signer is the only entity in the intersection
of the two rings) for the same ‘ev’, linkability will reveal the signer’s identity.

1Unconditional anonymity states that the anonymity property does not rely on any computational
assumptions (this holds as long as ‘ev’ was not reused).
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In this paper, we propose a concrete construction that is based on that of Balla et al.,
modified to remove the linkability tags and to achieve publicly simulatable designated
verifier ring signatures. We then use this modified construction as a building block for our
MDVRS.

2 Preliminaries
Here we briefly recall the main cryptographic primitives used as building blocks in our
constructions.

Commitment Scheme. Let Com = (Setup, Commit) be a non interactive commitment
scheme that is hiding and binding [BFM88]. For efficiency reasons we consider the
perfectly hiding and computationally binding commitments of [Ped92].

Non interactive zero knowledge argument of knowledge. Let the tuple NIZK =
(Setup, Prove, Verify) be a non interactive zero knowledge argument of knowledge
scheme. Taking the definitions of Groth and Maller [GM17] we will require per-
fect completeness, zero knowledge and simulation extractability. Note, simulation
extractability is a stronger property than simulation soundness.

3 Multi Designated Verifier Ring Signatures
In this section, we introduce the notion of Multi Designated Verifier Ring Signatures
(MDVRS) with syntax (Section 3.1) and security model (Section 3.2). Throughout the
section we focus on the multi verifier case; the syntax for the basic case of a single
designated verifier can be easily derived by setting |D| = 1. Our construction of MDVRS
is deferred to Section 5.

3.1 Syntax
We follow the approach of Damgård et al. [DHM+20] and include two key-generation
algorithms in the syntax: one to be run for signers, the other for (designated) verifiers.
This split enables a semantic distinction between these entities which is useful in real world
scenarios where signers may not necessarily wish to act as verifiers, and vice versa.

pp is an implicit input to all algorithms after Setup.
For the sake of notation, σ denotes a signature on the message µ, for the ring of

potential signers identified by R, and for designated verifiers in D.

Definition 1 (MDVRS). A multi designated verifier ring signature (MDVRS) scheme is
defined by the following probabilistic polynomial-time (PPT) algorithms:

Setup(1κ)→ pp: On input the security parameter κ ∈ N, outputs public parameters
pp that are implicitly input to all subsequent algorithms and contain at least a
description of the message, key, and user index spaces.

SignKeyGen()→ (spk, ssk): On input the public parameter pp, outputs the public key
spk and secret key ssk for a signer.

VerKeyGen()→ (vpk, vsk): On input the public parameter pp, outputs the public key vpk
and secret key vsk for a verifier.

Sign(sskk, {spki}i∈R, {vpkj}j∈D, µ)→ σ: On input the public parameters pp; a secret
signing key sskk of the signer k ∈ R (this enforces that the signer’s public key
appears in the set {spki}i∈R); a set {spki}i∈R of signers’ public keys in the ring of
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identifiers R; a set {vpkj}j∈D of designated verifiers’ public keys; and a message µ;
the algorithm outputs a signature σ.

Verify(vskk, {spki}i∈R, {vpkj}j∈D, µ, σ) = d ∈ {0, 1}: On input the public parameters pp;
a secret verifier key vskk for a designated verifier k ∈ D; a set of public signers keys
{spki}i∈R; a set of public verifiers keys {vpkj}j∈D; a message µ; and a signature σ,
outputs a boolean decision d: d = 1 (accept) or d = 0 (reject). This algorithm is
deterministic.

Sim(spk, {spki}i∈R, {vpkj}j∈D, {vskj}j∈C , µ)→ σ′: On input public parameters pp, the
public signing key spk of a signer, a set of public signing keys {spki}i∈R belong
to a ring of signers (where spk ∈ {spki}i∈R), the public keys of the designated
verifiers {vpkj}j∈D, the secret keys of the corrupt designated verifiers {vskj}j∈C ,
and a message µ, outputs a simulated signature σ′.

Remark 1. In scenarios with a trusted authority, a master secret key msk could be produced
by Setup, and used for SignKeyGen and VerKeyGen. We do not use such an msk.
Remark 2. We choose to explicitly include the simulation algorithm in the syntax because
the off-the-record property demands that it be believable that a given signature was
simulated by a corrupt subset of designated verifiers, and for that, the explicit description
of a simulation algorithm (as opposed to assurance of its existence) is more convincing.

3.2 Security Model
Following the blueprint of Damgård et al. [DHM+20], we describe the intuition behind
the security notions formalized in our model.

Correctness, consistency, unforgeability, and off-the-record are obvious translations of
existing definitions to our setting. The novelty when modelling security for MDVRS is the
introduction of Anonymity.

Correctness: All verifiers j ∈ D are able to individually verify an honestly generated
signature σ. (This property is exactly the same as for MDVS.)

Consistency: If at least one verifier j ∈ D accepts the signature σ, then so do all
designated verifiers in D. (This property is the same as for MDVS, and it is not
relevant in the single designated verifier setting.)

Unforgeability: Without the knowledge of at least one signer’s secret key sski for a
signer in R, no PPT adversary can create a signature σ′ for any new message µ′ and
ring R′ ⊆ R that is accepted by any set of honest designated verifiers.

Off-The-Record: Given a signature σ, any malicious subset of the designated verifiers
C ⊆ D cannot convince any other party that σ is a signature from signer i ∈ R.

Anonymity: Given a signature σ on behalf of a ring R of (at least two) signers, no PPT
adversary can identify which sskk was used to generate σ, even given the knowledge
of all designated verifiers’ secret keys vskj with j ∈ D, as well as of all the secret
keys belonging to members of R.

Remark 3. When modelling security we explicitly require keys be generated through a key
generation oracle, thus excluding rogue key attacks (in which the adversary may not know
the secret key corresponding to public key it registers). This is to avoid a conflict that
otherwise rises between the notions of unforgeability and off-the-record (simulatability). In
detail, to model the off-the-record property we require that an adversary cannot distinguish
an honest signature from one simulated by a subset of the designated verifiers. In order to
be able to simulate a signature, the subset of designated verifiers’ secret key is needed,
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otherwise the same simulation could be produced with only public input and without the
collaboration of said verifiers, while remaining convincing for any designated verifier (Verify
outputs 1), which contradicts unforgeability. Since the verifier secrets are necessary for
simulation, the reduction must know the secret key corresponding to any registered public
key, which is not guaranteed in case of rogue key attacks.

Next we present the formal definitions of the security notions outlined above. For all
future security definitions, we let κ ∈ N be the security parameter and u ∈ N be a fixed
upper bound on the number of registered users. For ease of notation we let our adversary
be implicitly stateful where ever it is invoked multiple times. This may equivalently be
expressed by defining the adversary as a tuple of PPT Turing machines A = (A1, . . . ,Aℓ),
where each Ai has an additional output statei which is given as an input to Ai+1. Finally,
since the oracles and the security experiments share large similarities with the ones for
PSDVRS, we highlight the details that differ for one of the schemes in light grey for
MDVRS and dark grey for PSDVRS.

All security games share a common setup, which generates public parameters and
initialises the necessary oracles. We briefly describe our oracles, referring to Figure 2 for a
formal description.

– The key generation oracle OKG allows the adversary to generate keys for the honest
signers and verifiers, receiving their public key and to register the keys of corrupt
parties by providing their key generation randomness (to rule out rogue key attacks).

– The corruption oracle OCorr allows the adversary to corrupt a previously honest
party, obtaining their secret key.

– The signing and verification oracles OSign, OVerify allow the adversary to respectively
obtain signatures for honest signers and verify signatures for honest designated
verifiers.

Common setup
1 : LS ← ∅, LV ← ∅, Lcorr ← ∅, Lσ ← ∅, Lver ← ∅
2 : pp← Setup(1κ)
3 : O ← {OKG, OSign, OVerify, OCorr}

Figure 1: Setup for each of the security games. The oracles are described in Fig. 2.

To allow bookkeeping among the oracles several lists are maintained. For key management
this includes a list of signer keys LS, a list of verifier keys LV, and a list of corrupt identities
Lcorr. For queries, a list of signing queries Lσ and verification queries LV are additionally
maintained.
Remark 4. Our security model implicitly assumes that adaptive corruptions only allow the
adversary to obtain the long term secrets of honest parties. Looking ahead, this saves the
simulator from providing random coins explaining signatures and other values produced
by the oracles for previously honest parties. This setting can be achieved by assuming
reliable erasures.

We begin by defining correctness for an MDVRS scheme.
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OKG(mode, i, aux)
1 : if aux ̸= ∅ :
2 : parse aux := r ∈ {0, 1}κ

3 : Lcorr ← Lcorr ∪ {(mode, i)}
4 : else : r ←R {0, 1}κ

5 : if mode = signer :
6 : if (i, ·, ·) /∈ LS :
7 : (spki, sski)← SignKeyGen(r)
8 : LS ← LS ∪ {(i, spki, sski)}
9 : retrieve (i, spki, sski) from LS

10 : return spki

11 : if mode = verifier :
12 : if (i, ·, ·) /∈ LV :
13 : (vpki, vski)← VerKeyGen(r)
14 : LV ← LV ∪ {(i, vpki, vski)}
15 : retrieve (i, vpki, vski) from LV

16 : return spki

OSign(k,R,D, µ) OSign(k,R, j, µ)
1 : for i ∈ R : spki ← OKG(signer, i)
2 : D ← {j}
3 : for j ∈ D : vpkj ← OKG(verifier, j)
4 : if (k ∈ R) ∧ ((signer, k) ̸∈ Lcorr) :
5 : retrieve (k, spkk, sskk) from LS

6 : (σ, π )← Sign(sskk,

{spki}i∈R, {vpkj}j∈D, µ)
7 : Lσ ← Lσ ∪ {(k,R,D, µ, σ)}
8 : return σ

9 : return ⊥

OCorr (mode,k)
1 : if (mode, k) ∈ Lcorr : return ⊥
2 : else : Lcorr ← Lcorr ∪ {(mode, k)}
3 : if mode = signer :
4 : spkk ← OKG(signer, k)
5 : retrieve (k, spkk, sskk) from LS

6 : return (k, spkk, sskk)
7 : if mode = verifier :
8 : vpkk ← OKG(verifier, k)
9 : retrieve (k, vpkk, vskk) from LV

10 : return (k, vpkk, vskk)
OVerify(k,R,D, µ, σ) OVerify(k,R, µ, σ, π)
1 : for i ∈ R : spki ← OKG(signer, i)
2 : D ← {k}
3 : if RealSigVal({spki}i∈R, µ, σ, π) ̸= 1

∧VerSigVal({spki}i∈R, µ, σ, π) ̸= 1
∧PubSigVal({spki}i∈R, µ, σ, π) ̸= 1 :

4 : return ⊥
5 : for j ∈ D : vpkj ← OKG(verifier, j)
6 : if ((verifier, k) ̸∈ Lcorr) ∧ (k ∈ D) :
7 : retrieve (i, vpkk, vskk) from LV

8 : d← Verify(vskk, {spki}i∈R

, {vpkj}j∈D , µ, σ)

9 : Lver ← Lver ∪ (k,R ,D , µ, σ)
10 : return d

11 : return ⊥

Figure 2: Oracles that an adversary A in the security games. Lsign is the list of messages queried
to the signing oracle. Details which only feature in the oracles for one of the schemes are marked
in light grey for MDVRS and dark grey for PSDVRS.
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Definition 2 (Correctness). Let MDVRS be a multi designated verifier ring signature
scheme. We say that MDVRS is correct if for all PPT adversaries A taking part in
Experimentcor

MDVRS,A(κ, u) defined in Figure 3, it holds that

Advcor
MDVRS,A(κ, u) = Pr

[
win← Experimentcor

MDVRS,A(κ, u)
]
≤ negl(κ).

Experimentcor
MDVRS,A(κ, u) Experimentcor

PSDVRS,A(κ, u)
1 : (i∗,R∗, j∗ ,D∗ , µ∗)← AO(pp)
2 : if (signer, i∗) /∈ Lcorr :
3 : (σ, π )← Sign(sski∗ , {spki}i∈R∗ , {vpkj}j∈D∗ , vpkj∗ , µ∗)

4 : b← Verify(vskj∗ , {spki}i∈R∗ , {vpkj}j∈D∗ , µ∗, σ)

5 : if (i∗ ̸∈ R∗)∨(j∗ ̸∈ D∗) : return lose

6 : if (b ̸= 1) :
7 : return win

8 : return lose

Figure 3: The correctness experiment for MDVRS (Definition 2) and PSDVRS (Definition 8)

As was the case for MDVS we have more than one designated verifier, so it is important
to enforce consistency among the verification outcome of independent verifying parties.
This is the aim of the following definition.

Definition 3 (Consistency). Let MDVRS be a multi designated verifier ring signature
scheme. We say that MDVRS is consistent if for all PPT adversaries A taking part in
Experimentcon

MDVRS,A(κ, u) (Figure 4), it holds that

Advcon
MDVRS,A(κ, u) = Pr

[
win← Experimentcon

MDVRS,A(κ, u)
]
≤ negl(κ).

Experimentcon
MDVRS,A(κ, u)

1 : (R∗,D∗, µ∗, σ∗)← AO(pp)
2 : // correctness ensures consistency for honestly produced signatures

3 : if (·,R∗,D∗, µ∗, σ∗) ∈ Lσ : return lose

4 : // check consistency of any two verifiers outputs

5 : for j0 ∈ D∗, j1 ∈ D∗, j0 ̸= j1 :
6 : b0 ← Verify(vskj0 , {spki}i∈R∗ , {vpkj}j∈D∗ , µ∗, σ∗)
7 : b1 ← Verify(vskj1 , {spki}i∈R∗ , {vpkj}j∈D∗ , µ∗, σ∗)
8 : if (b0 ̸= b1) ∧ ((verifier, j0) ̸∈ Lcorr) ∧ ((verifier, j1) ̸∈ Lcorr) :
9 : return win

10 : return lose

Figure 4: Consistency experiment for MDVRS (Definition 3)

Notably, the winning conditions in the consistency experiment do not check whether
the signers’ secret keys are corrupted or not. This is because consistency should indeed
hold against any PPT adversary as long as not all of the keys of the designated verifiers are
corrupted. In particular, the knowledge of a secret signing key does not give any advantage
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in creating an inconsistent signature that will be accepted by some designated verifiers
and rejected by others.

By design, corrupt designated verifiers can construct an inconsistent signature, since
some verifiers will accept it (i.e. those verifiers that created it), while the remaining honest
designated verifiers will reject the simulated signature.

In the consistency game we disregard any signatures produced by the signing oracle, as
these are already guaranteed to verify by the correctness property.

Definition 4 (Unforgeability). Let MDVRS be a multi designated verifier ring signature
scheme. We say that MDVRS is unforgeable if for all PPT adversaries A taking part in
Experimenteuf

MDVRS,A(κ, u) (Figure 5), it holds that

Adveuf
MDVRS,A(κ, u) = Pr

[
win← Experimenteuf

MDVRS,A(κ, u)
]
≤ 1

2 + negl(κ).

Experimenteuf
MDVRS,A(κ, u) Experimenteuf

PSDVRS,A(κ, u)
1 : (R∗, j∗ ,D∗ , µ∗, σ∗)← AO(pp)
2 : if (∃i ∈ R∗ : (signer, i) ∈ Lcorr) : return lose

3 : if ((verifier, j∗) ∈ Lcorr)∨(j∗ ̸∈ D∗) : return lose

4 : if (·,R∗ ,D∗ , j∗ , µ∗, ·) ∈ Lσ : return lose

5 : if (Verify(vskj∗ , {spki}i∈R∗ , {vpkj}j∈D∗ , µ∗, σ∗) = 1) : return win

6 : else : return lose

Figure 5: The unforgeability experiment for MDVRS (Definition 4) and PSDVRS (Definition 9).

We consider a signature on a message to be a forgery if all signers in the ring are
honest and the signature verifies for an honest designated verifier, while no query has been
made to the signing oracle for the exact same ring and set of designated verifiers. This
definition of unforgeability is quite strong and could potentially be relaxed to allow subsets
of designated verifiers or supersets of the ring.

Definition 5 (Off-The-Record). Let MDVRS be a multi designated verifier ring signature
scheme. We say that MDVRS is off-the-record if for all PPT adversaries A taking part in
Experimentotr

MDVRS,A(κ, u) (Figure 6), it holds that

Advotr
MDVRS,A(κ, u) = Pr

[
win← Experimentotr

MDVRS,A(κ, u)
]
− 1

2 ≤ negl(κ).

Definition 5 states that any adversary that corrupts a subset (of size t) of the designated
verifiers C∗ cannot determine whether the received signature was created by real signer i∗

or simulated by the corrupt verifiers C∗. The adversary is not allowed to see the secret
keys for the designated verifiers that are in D∗\C∗. If the adversary was allowed to get
secret keys of additional parties in D∗ (which are not in C∗), then he would be able
to distinguish trivially, since any honest designated verifiers (i.e. any j ∈ D∗\C∗) can
distinguish simulated signatures from real signatures (from the unforgeability property).

Note that Figure 6 prevents the adversary from interacting with the verification oracle
using the challenge (R∗,D∗, µ∗) as part of the input. Without this constraint, A may use
the verification oracle to trivially distinguish simulated signatures from real ones (since
correctness imposes that designated verifiers be able to make this distinction).

Definition 6 (Signer Anonymity). Let MDVRS be a multi designated verifier ring signature
scheme. We say that MDVRS is signer anonymous if for all PPT adversaries A taking
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Experimentotr
MDVRS,A(κ, u)

1 : (i∗,R∗,D∗, µ∗)← AO(pp)
2 : C∗ ← {(verifier, j)}j∈D∗ ∩ Lcorr

3 : b←R {0, 1}
4 : σ0 ← Sign(sski∗ , {spki}i∈R∗ , {vpkj}j∈D∗ , µ∗)
5 : σ1 ← Sim(spki∗ , {spki}i∈R∗ , {vpkj}j∈D∗ , {vskj}(verifier,j)∈C∗ , µ∗)

6 : b′ ← AO(σb)
7 : if C∗ ̸= {(verifier, j)}j∈D∗ ∩ Lcorr : return lose

8 : if (signer, i∗) ∈ Lcorr : return lose

9 : if (·,R∗,D∗, µ∗, ·) ∈ Lver : return lose

10 : if b′ = b : return win

11 : return lose

Figure 6: The off-the-record experiment for MDVRS (Definition 5).

part in the anonymity experiment Experimentanon
MDVRS,A(κ, u) (Figure 7), it holds that

Advanon
MDVRS,A(κ, u) = Pr

[
win← Experimentanon

MDVRS,A(κ, u)
]
− 1

2 ≤ negl(κ).

To satisfy anonymity we require that any signature produced by an honest signer should
be indistinguishable from a signature produced by a different honest signer in the same
ring. We require this to hold even against full key exposure: indeed there is no restriction
on the adversary’s interaction with the corruption oracle.

Experimentanon
MDVRS,A(κ, u) Experimentanon

PSDVRS,A(κ, u)
1 : (i∗

0, i∗
1,R∗ ,D∗ , j∗ , µ∗)← AO(pp)

2 : b←R {0, 1}
3 : (σb , π )← Sign(sski∗

b
, {spki}i∈R∗ , {vpkj}j∈D∗ , vpkj∗ , µ∗)

4 : b′ ← AO(σb)
5 : if (i∗

0 ̸∈ R∗) ∨ (i∗
1 ̸∈ R∗) : return lose

6 : if b′ = b : return win

7 : else : return lose

Figure 7: The anonymity experiment for MDVRS (Definition 6) and PSDVRS (Definition 10).

Definition 7. A secure MDVRS scheme MDVRS = (Setup, SignKeyGen, VerKeyGen, Sign,
Verify, Sim) must have the properties correctness (Definition 2), consistency (Definition 3),
unforgeability (Definition 4) and off-the-record (Definition 5).

4 Provably Simulatable Designated Verifier Ring Sig-
natures

Rather than constructing MDVRS directly we follow the approach of Damgård et al.
[DHM+20] to break down the problem. This approach consists of two key elements:
producing designated verifier ring signatures (DVRS) for each designated verifier, and
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proving that these signatures were produced correctly. The naïve approach for doing
this becomes problematic when considering the off-the-record property: each designated
verifiers j would not be able to simulate a signature for other designated verifiers (unless
j ∈ D). To resolve this, the proof must show that either each of the DVRS signatures
verifies, or they are all simulated.

Consider a DVRS scheme. Such a scheme consists of five algorithms: Setup, SignKeyGen,
VerKeyGen, Sign and Verify. To satisfy the off-the-record property there must addition-
ally be an efficient simulation algorithm Sim, allowing a verifier to produce a signature
indistinguishable from a real signature. While the Sim algorithm is never meant to be
used in practice, its existence is essential in guaranteeing the properties of DVRS and its
description plays a central role in the security proofs. In order to leverage DVRS in the
building of MDVRS, we need another simulation algorithm: one that can be run publicly
to produce a signature that looks real (without knowledge of the verifier’s secret key), but
does not verify (given that knowledge). Consistency for our MDVRS requires that it be
possible to prove how each individual signature was produced.

We introduce an intermediate primitive, Provably Simulatable DVRS (PSDVRS), which
supports exactly this. A PSDVRS scheme is like a DVRS with two distinct simulation
algorithms: PubSigSim and VerSigSim, for public and verifier simulation respectively. It also
has three algorithms RealSigVal, PubSigVal and VerSigVal which validate how a signature
or simulation was produced.

4.1 Syntax
We present the algorithms in the PSDVRS syntax as needed, starting with the core
algorithms, and introducing the simulation and validation algorithms as required by the
security properties.

The algorithms Setup, SignKeyGen and VerKeyGen of a PSDVRS scheme have the same
syntax as in an MDVRS scheme. Recall all algorithms take the public parameters produced
by Setup as an implicit argument.The signing and verification algorithms of PSDVRS
differ from the ones of MDVRS in that the signatures only target a single verifier.

Setup, SignKeyGen, VerKeyGen are as in Definition 1.

Sign(sskk, {spki}i∈R, vpk, µ)→ (σ, π) On input public parameters pp;a signer secret key
sskk; a ring of signer public keys {spki}i∈R (subject to k ∈ R, enforcing the inclusion
of spkk in the ring); a designated verifier public key vpk; and message µ; produces
a signature σ along with a proof π that the signature was produced by an honest
signer.

Verify(vsk, {spki}i∈R, µ, σ) = d ∈ {0, 1} On input public parameters pp;a verifier secret
key vsk; a ring of signer keys {spki}i∈R; a message µ; and a signature σ outputs a
boolean decision d: d = 1 (accept) or d = 0 (reject). This algorithm is deterministic.

4.2 PSDVRS Security Model
The first properties which a PSDVRS scheme must statisfy are the standard notions of
correctness and existential unforgeability, which we describe formally below. The oracles
used in the experiments described in this section are collected in Fig. 2.

Correctness: An honestly generated signature should verify for the designated verifier.

Definition 8 (Correctness). Let PSDVRS be a provably simulatable designated verifier
ring signature scheme. We say that PSDVRS is correct if for all PPT adversaries A taking
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part in the correctness experiment Experimentcor
PSDVRS,A(κ, u) defined in Figure 3, it holds

that
Advcor

PSDVRS,A(κ, u) = Pr
[
win← Experimentcor

PSDVRS,A(κ, u)
]
≤ negl(κ).

Existential Unforgeability: Without knowledge of the verifier’s secret key or at least
one signer secret key for a given ring R, no PPT adversary can produce a verifying
signature on a message µ (and ring R) for which it has not previously seen a signature.

Definition 9 (Existential Unforgeability). Let PSDVRS be a provably simulatable designated-
verifier ring signature scheme. We say that PSDVRS has Existential Unforgeability if for
all PPT adversaries A taking part in the anonymity experiment Experimenteuf

PSDVRS,A(κ, u)
(Figure 5), it holds that

Adveuf
PSDVRS,A(κ, u) = Pr

[
win← Experimenteuf

PSDVRS,A(κ, u)
]
≤ negl(κ).

4.2.1 Signer Anonymity

To achieve signer anonymity in and MDVRS scheme the PSDVRS scheme we construct it
from must also have signer anonymity, that is, a verifier should be unable to distinguish
which honest member of a ring produced a signature. On a high level, no PPT adversary
can distinguish signatures produced by two honest signers i0, i1 ∈ R for the same message
µ and designated verifier j, even when all secret keys are given to the adversary; we
formalise anonymity in the following definition.

Definition 10 (Signer Anonymity). Let PSDVRS be a provably simulatable designated-
verifier ring signature scheme. We say that PSDVRS is signer anonymous if for all
PPT adversaries A taking part in the anonymity experiment Experimentpsdvrs-anon

PSDVRS,A (κ, u)
(Figure 7), it holds that

Advpsdvrs-anon
PSDVRS,A (κ, u) =Pr

[
win← Experimentpsdvrs-anon

PSDVRS,A (κ, u)
]
− 1

2 ≤ negl(κ).

4.2.2 Provable Signing

A signer must be able to prove a signature was is real, to accommodate this the output of
the Sign algorithm must be extended to include a proof π. This proof may be verified by a
final algorithm:

RealSigVal({spki}i∈R, vpk, µ, σ, π)→ d ∈ {0, 1} On input public parameters pp; a ring of
signers {spki}i∈R; a verifier public key vpk; a message µ; a signature σ; and proof π
outputs a boolean decision d: d = 1 (accept) or d = 0 (reject).

A real signature along with its corresponding proof should always cause RealSigVal to
accept. Additionally, it should be intractable to produce a signature and proof such that
RealSigVal outputs accept, but the signature does not verify.

Definition 11 (Provable Signing Correctness). Let PSDVRS be a provably simulatable
designated verifier ring signature scheme. We say that PSDVRS has Provable Signing Cor-
rectness if for all PPT adversaries A taking part in ExperimentProvSig-Cor

PSDVRS,A (κ, u) (Figure 8),
it holds that

AdvProvSig-Cor
PSDVRS,A (κ, u) = Pr

[
win← ExperimentProvSig-Cor

PSDVRS,A (κ, u)
]
≤ negl(κ).
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ExperimentProvSig-Cor
PSDVRS,A (κ, u)

1 : (i∗,R∗, j∗, µ∗)← AO(pp)
2 : if (signer, i∗) ∈ Lcorr : return lose

3 : if i∗ ̸∈ R∗ : return lose

4 : (σ, π)← Sign(sski∗ , {spki}i∈R∗ , vpkj∗ , µ∗)
5 : if RealSigVal({spki}i∈R∗ , vpkj∗ , µ∗, σ, π) ̸= 1 : return win

6 : return lose

Figure 8: The provable signing correctness experiment for PSDVRS (Definition 11).

ExperimentProvSig-Sound
PSDVRS,n,A (κ, u)

1 : (R∗, j∗, µ∗, σ∗, π∗)← AO(pp)

2 : if
(
Verify({spki}i∈R∗ , vskj∗ , µ∗, σ∗) = 0 ∧

RealSigVal({spki}i∈R∗ , vpkj∗ , µ∗, σ∗, π∗) = 1
)

: return win

3 : else : return lose

Figure 9: The provable signing soundness experiment for PSDVRS (Definition 12).

Definition 12 (Provable Signing Soundness). Let PSDVRS be a provably simulatable
designated verifier ring signature scheme. We say that PSDVRS has Provable Sign-
ing Soundness if for all n and all PPT adversaries A taking part in the experiment
ExperimentProvSig-Sound

PSDVRS,n,A (κ, u) (Figure 9), it holds that

AdvProvSig-Sound
PSDVRS,n,A (κ, u) =Pr

[
win← ExperimentVerSigSim-Sound

PSDVRS,n,A (κ, u)
]
≤ negl(κ).

4.2.3 Provable Public Simulation

As any subset of verifiers should be able to simulate an MDVRS signature, we require a
path for simulating on behalf of any non-colluding verifiers. This approach for simulating
should also be provable, to allow a consistency proof in an MDVRS construction. To allow
provable public simulation the syntax must be extended with the following algorithms:

PubSigSim(spk, {spki}i∈R, vpk, µ)→ (σ, π) On input public parameters pp; a signer public
key spk; a ring of signers {spki}i∈R (where spk ∈ {spki}i∈R); a verifier public key
vpk; and message µ outputs a simulated signature σ and a proof π that σ is a public
simulation.

PubSigVal({spki}i∈R, vpk, µ, σ, π)→ d ∈ {0, 1} On input public parameters pp; a ring of
signers {spki}i∈R; a verifier public key vpk; a message µ; a signature σ; and proof π
outputs a boolean decision d: d = 1 (accept) or d = 0 (reject).

These algorithms allow producing public simulations which other outsiders cannot distin-
guish from real signatures, while being able to prove a signature was publicly simulated.
Additionally, an adversary should not be able to produce a signature σ which is accepted
by Verify, along with a proof causing σ to be accepted as a public simulation by PubSigVal.
These notions are expressed formally in Definiton 13, 14 and 15.
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ExperimentPubSigSim-Ind
PSDVRS,A (κ, u)

1 : (i∗,R∗, j∗, µ∗)← AO(pp)
2 : b←R {0, 1}
3 : if (signer, i∗) ∈ Lcorr ∨ (signer, i∗) /∈ LS : return lose

4 : (σ0, π0)← Sign(sski∗ , {spki}i∈R∗ , vpkj∗ , µ∗)
5 : (σ1, π1)← PubSigSim(spki∗ , {spki}i∈R∗ , vpkj∗ , µ∗)

6 : b′ ← AO(σb) // The adversary may now corrupt more identities

7 : if (signer, i∗) ∈ Lcorr : return lose

8 : if i∗ ̸∈ R∗ : return lose

9 : if ((verifier, j∗) ∈ Lcorr) : return lose

10 : if (j∗,R∗, µ∗, ·) ∈ Lver : return lose

11 : if b′ = b : return win

12 : else : return lose

Figure 10: The public signature simulation indistinguishability experiment for PSDVRS (Def-
inition 13). Note, the adversary is never given the proof πb as this proof is only used in the
witness for a larger proof when constructing MDVRS. In fact, given this proof the adversary could
trivially distinguish the real and simulated case.

Definition 13 (PubSigSim Indistinguishability). Let PSDVRS be a provably simulatable
designated verifier ring signature scheme. We say that PSDVRS has PubSigSim Indistin-
guishability if for all PPT adversariesA taking part in the experiment ExperimentPubSigSim-Ind

PSDVRS,A (κ, u)
(Figure 10), it holds that

AdvPubSigSim-Ind
PSDVRS,A (κ, u) =Pr

[
win← ExperimentPubSigSim-Ind

PSDVRS,A (κ, u)
]
− 1

2 ≤ negl(κ).

Definition 14 (PubSigSim Correctness). Let PSDVRS be a provably simulatable designated-
verifier ring signature scheme. We say that PSDVRS has PubSigSim Correctness if for all
PPT adversaries A taking part in ExperimentPubSigSim-Cor

PSDVRS,A (κ, u) (Figure 11), it holds that

AdvPubSigSim-Cor
PSDVRS,A (κ, u) =Pr

[
win← ExperimentPubSigSim-Cor

PSDVRS,A (κ, u)
]
≤ negl(κ).

ExperimentPubSigSim-Cor
PSDVRS,A (κ, u)

1 : (i∗,R∗, j∗, µ∗)← AO(pp)
2 : (σ, π)← PubSigSim(spki∗ , {spki}i∈R∗ , vpkj∗ , µ∗)
3 : if i∗ ̸∈ R∗ : return lose

4 : if PubSigVal({spki}i∈R∗ , vpkj∗ , µ∗, σ, π) ̸= 1 : return win

5 : return lose

Figure 11: The public signature simulation correctness experiment for PSDVRS (Definition 14).

Definition 15 (PubSigSim Soundness). Let PSDVRS be a provably simulatable designated-
verifier ring signature scheme. We say that PSDVRS has PubSigSim Soundness if for all PPT
adversaries A taking part in the experiment ExperimentPubSigSim-Sound

PSDVRS,A (κ, u) (Figure 12), it
holds that

AdvPubSigSim-Sound
PSDVRS,A (κ, u) =Pr

[
win← ExperimentPubSigSim-Sound

PSDVRS,A (κ, u)
]
≤ negl(κ).
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ExperimentPubSigSim-Sound
PSDVRS,A (κ, u)

1 : (R∗, j∗, µ∗, σ∗, π∗)← AO(pp)
2 : if ((verifier, j∗) ∈ Lcorr) ∨ ((verifier, j∗) /∈ LV) : return lose

3 : if
(
Verify({spki}i∈R∗ , vskj∗ , µ∗, σ∗) = 1) ∧

(PubSigVal({spki}i∈R∗ , vpkj∗ , µ∗, σ∗, π∗) = 1
)

: return win

else : return lose

Figure 12: The public signature simulation soundness experiment for PSDVRS (Definition 15).

4.2.4 Provable Verifier Simulation

To construct MDVRS colluding verifiers should also be able to produce simulations on
their own behalf, which remain indistinguishable from real signatures even if a verifier gives
away their secret to a third party. We once again expand the syntax with two additional
algorithms, to allow provable verifier simulation:
VerSigSim(spk, {spki}i∈R, vpk, vsk, µ)→ (σ, π) On input public parameters pp; a signer

public key spk; a ring of signers {spki}i∈R (where spk ∈ {spki}i∈R); a verifier secret
key vsk; and message µ outputs a simulated signature σ and a proof π that σ is a
public simulation.

VerSigVal({spki}i∈R, vpk, µ, σ, π)→ d ∈ {0, 1} On input public parameters pp; a ring of
signers {spki}i∈R; a verifier public key vpk; a message µ; a signature σ; and proof π
outputs a boolean decision d: d = 1 (accept) or d = 0 (reject).

Verifier simulations must be indistinguishable from real signatures, even given the secret
key of the verifier. Furthermore, the proof π and simulated signature σ should be accepted
as a verifier simulation by VerSigVal, when corretly produced, while it remains hard to
satisfy VerSigVal without the verifier secret key. This is formalised in Definition 16, 17 and
18.
Definition 16 (VerSigSim Indistinguishability). Let PSDVRS be a provably simulatable
designated verifier ring signature scheme. We say that PSDVRS has VerSigSim Indistin-
guishability if for all PPT adversariesA taking part in the experiment ExperimentVerSigSim-Ind

PSDVRS,A (κ, u)
(Figure 13), it holds that

AdvVerSigSim-Ind
PSDVRS,A (κ, u) =Pr

[
win← ExperimentVerSigSim-Ind

PSDVRS,A (κ, u)
]
− 1

2 ≤ negl(κ).

Again, we remark that the adversary is never given πb as this can be used to trivially
distinguish the real and simulated case. However, the proof is part of the witness for a
larger proof when constructing MDVRS.
Definition 17 (VerSigSim Correctness). Let PSDVRS be a provably simulatable designated-
verifier ring signature scheme. We say that PSDVRS has VerSigSim Correctness if for all
PPT adversaries A taking part in ExperimentVerSigSim-Cor

PSDVRS,A (κ, u) (Figure 14), it holds that

AdvVerSigSim-Cor
PSDVRS,A (κ, u) =Pr

[
win← ExperimentVerSigSim-Cor

PSDVRS,A (κ, u)
]
≤ negl(κ).

Definition 18 (VerSigSim Soundness). Let PSDVRS be a provably simulatable designated-
verifier ring signature scheme. We say that PSDVRS has VerSigSim Soundness if for all n
and all PPT adversaries A taking part in ExperimentVerSigSim-Sound

PSDVRS,A (κ, u) (Figure 15), it
holds that

AdvVerSigSim-Sound
PSDVRS,A (κ, u) =Pr

[
win← ExperimentVerSigSim-Sound

PSDVRS,A (κ, u)
]
≤ negl(κ).
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ExperimentVerSigSim-Ind
PSDVRS,A (κ, u)

1 : (i∗,R∗, j∗, µ∗)← AO(pp)
2 : if ((signer, i∗) ∈ Lcorr) : return lose // ensure the challenger is able to sign

3 : b←R {0, 1}
4 : (σ0, π0)← Sign(sski∗ , {spki}i∈R∗ , vpkj∗ , µ∗)
5 : (σ1, π1)← VerSigSim(spki∗ , {spki}i∈R∗ , vskj∗ , µ∗)

6 : b′ ← AO(σb)
7 : if ((signer, i∗) ∈ Lcorr) ∨ (i∗ ̸∈ R∗) : return lose

8 : if (j∗,R∗, µ∗, ·) ∈ Lver : return lose

9 : if b′ = b : return win

10 : else : return lose

Figure 13: The verifier signature simulation indistinguishability experiment for PSDVRS
(Definition 16).

ExperimentVerSigSim-Cor
PSDVRS,A (κ, u)

1 : (i∗,R∗, j∗, µ∗)← AO(pp)
2 : (σ, π)← VerSigSim(spki∗ , {spki}i∈R∗ , vskj∗ , µ∗)
3 : if i∗ ̸∈ R∗ : return lose

4 : if VerSigVal({spki}i∈R∗ , vpkj∗ , µ∗, σ, π) ̸= 1 : return win

5 : else : return lose

Figure 14: The verifier signature simulation correctness game for PSDVRS (Definition 17).
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ExperimentVerSigSim-Sound
PSDVRS,A (κ, u)

1 : (R∗, j∗, µ∗, σ∗, π∗)← AO(pp, vpk)

2 : if
(
(verifier, j∗) /∈ Lcorr) ∧

VerSigVal({spki}i∈R∗ , vpk, µ∗, σ∗, π∗)
= 1 : return win

3 : else : return lose

Figure 15: The verifier signature simulation soundness experiment for PSDVRS (Definition 17).

Definition 19. A secure PSDVRS consisting of the algoriths Setup, VerKeyGen, SignKeyGen,
Sign, Verify, simulation algorithms PubSigSim, VerSigSim, and validation algorithms PubSigVal,
VerSigVal, RealSigVal, must satisfy:

– Correctness (Definition 8), Existential Unforgeablility (Definition 9) and Signer
Anonymity (Definition 10)

– Provable Signing correctness (Definition 11) and soundness (Definition 12)

– PubSigSim indistinguishability (Definition 13), correctness (Definition 14) and sound-
ness (Definition 15)

– VerSigSim indistinguishability (Definition 16), correctness (Definition 17) and sound-
ness (Definition 17)

5 Constructing MDVRS from PSDVRS
Our goal is to construct an MDVRS scheme given a PSDVRS scheme. To produce
an MDVRS signature we may first produce a set of signatures targeted toward each
designated verifier. To ensure consistent verification we must prove that all signatures are
real signatures for the same message. To support simulation by a subset of the verifiers

— which should be indistinguishable even given their secret keys — the relation must
additionally admit sets which are a combination of verifier and public simulations.

5.1 Construction
We use relation Rcons (where “cons” stands for “consistency”) in our construction, to
enforce consistency across Provably Simulatable DVRS. Let Rcons be defined by the
following set:

ϕ=


PSDVRS.pp
{spki}i∈R
{vpkj}j∈D
{σj}j∈D

µ


w = {πj}j∈D

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(∧
j∈D RealSigVal({spki}i∈R, vpkj , µ, σj , πj)

)
∨

∧
j∈D

 PubSigVal({spki}i∈R, vpkj , µ, σj , πj)
∨

VerSigVal({spki}i∈R, vpkj , µ, σj , πj)




Informally Rcons ensures that either all signatures are real or all signatures are either

a verifier or public simulation.The first branch will be used by an honest signer as it may
produce a real PSDVRS targeted toward each verifier. The second branch enables the
off-the-record property: each colluding verifier may produce verifier simulation toward
themselves, with the remaining signatures being public simulations. In combination, the
resulting zero knowledge proof of Rcons and signature simulations are indistinguishable
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Setup(1κ)
1 : ppPSDVRS ← PSDVRS.Setup(1κ)
2 : (crs, td)← NIZK.Setup(1κ, Rcons)
3 : return pp = (ppPSDVRS, crs)

SignKeyGen()
1 : return (spk, ssk)← PSDVRS.SignKeyGen()

VerKeyGen()
1 : return (vpk, vsk)← PSDVRS.VerKeyGen()

Sign(sskk, {spki}i∈R, {vpkj}j∈D, µ)
1 : for j ∈ D : (σj , πj)← PSDVRS.Sign(sskk, {spki}i∈R, vpkj , µ)
2 : ϕ = (PSDVRS.pp, {spki}i∈R, {vpkj}j∈D, {σj}j∈D, µ)
3 : w = {πj}j∈D

4 : π ← NIZK.Prove(crs, ϕ, w)
5 : return σ = ({σj}j∈D, π)

Verify(vskk, {spki}i∈R, {vpkj}j∈D, µ, σ = ({σj}j∈D, π))
1 : ϕ = (PSDVRS.pp, {spki}i∈R, {vpkj}j∈D, {σj}j∈D, µ)
2 : dNIZK ← NIZK.Verify(crs, ϕ, π)
3 : dsig ← PSDVRS.Verify(vskk, {spki}i∈R, µ, σk)
4 : return dNIZK ∧ dsig

Sim(spk, {spki}i∈R, {vpkj}j∈D, {vskj}j∈C , µ)
1 : for j ∈ C : (σj , πj)← VerSigSim(spk, {spki}i∈R, vpkj , vskj , µ)
2 : for j ∈ D \ C : (σj , πj)← PubSigSim(spk, {spki}i∈R, vpkj , µ)
3 : ϕ = (PSDVRS.pp, {spki}i∈R, {vpkj}j∈D, {σj}j∈D, µ)
4 : w = {πj}j∈D

5 : π ← NIZK.Prove(crs, ϕ, w)
6 : return σ = ({σj}j∈D, π)

Figure 16: Our construction of MDVRS from PSDVRS and NIZK.

from those produced by a real signer, even given the secrets of the colluding verifiers.
Allowing this second branch in the consistency proof does not help an adversary forge
towards honest designated verifiers as the adversary is unable to produce a proof of
provenance that will pass the real signature validation (first branch).

5.2 Security Statement and Proofs
We prove the security of our MDVRS construction by reducing to the security of the
underlying primitives. For security the proof simulation and extraction for NIZK must be
straight line, i.e. not require rewinding of the adversary during simulation or extraction.
See [GKO+23] for an overview of straight line and simulation extractable proof systems.

Theorem 1. The MDVRS scheme described in Section 5 (Figure 16) is secure according
to Definition 7 when instantiated with a secure PSDVRS scheme and a NIZK scheme with
perfect completeness, zero knowledge (with straight line simulation and advantage bounded
by ϵNIZK

zk ) and simulation extractability (with straight line extraction and advantage bounded
by ϵNIZK

sim-ext). Let κNIZK = ϵNIZK
zk + QVerify · ϵNIZK

sim-ext, then the MDVRS scheme is secure with
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advantages:
Advcor

MDVRS,A(κ, u) ≤ κNIZK + ϵPSDVRS
cor ,

Advcon
MDVRS,A(κ, u) ≤ κNIZK + ϵPSDVRS

ProvSig-sound

+ϵPSDVRS
PubSigSim-sound + ϵPSDVRS

VerSigSim-sound,

Adveuf
MDVRS,A(κ, u) ≤ κNIZK + ϵNIZK

sim-ext + ϵPSDVRS
euf ,

Advotr
MDVRS,A(κ, u) ≤ κNIZK + u · (ϵPSDVRS

VerSigSim-ind + ϵPSDVRS
PubSigSimInd-ind),

Advanon
MDVRS,A(κ, u) ≤ κNIZK + u · ϵPSDVRS

anon .

Secure erasure is assumed for the case of adaptive corruptions.

Proof. We prove each of the security properties of the MDVRS scheme described in
Figure 16 individually, reducing to the security of the PSDVRS and NIZK primitives.

Remark 5. When reducing to the security of PSDVRS we must provide access to the
signing and verification oracle. The signing oracle in the PSDVRS games does not return
the proof of how the signature was created, although it outputs proof of provenance π,
only the signatures σ are given to the adversary (and hence are available to our reduction).
It is therefore necessary to simulate the consistency proofs needed to respond to MDVRS
queries during our reductions. Now consider the verification oracle. For our MDVRS
construction verification has two parts (1) verifying the zero knowledge proof and (2)
verifying a PSDVRS signature. The first of these may be done directly, but verifying a
PSDVRS signature requires the verifier secret key or use of the verification oracle in the
PSDVRS game we are reducing to. Querying the verification oracle requires the proof of
provenance for the PSDVRS signature. This proof of provenance is not provided directly,
but may be obtained by extracting from the NIZK.

Correctness. The MDVRS scheme is correct according to Definition 2. First, we define
the following sequence of indistinguishable hybrids:

H0: Run the Experimentcor
MDVRS,A(κ, u) as described in Figure 3.

H1: Same as H0, except abort if dNIZK is false during verification.

H2: Same as H1, but replace the honestly produced CRS with a simulated one, and
simulate all proofs contained in signatures produced by the oracles.

H3: Same as H2, but for every verification query extract the witness from the NIZK
π (unless the signature was produced by the signing oracle, where the oracle may
simply return 1). Abort if extraction fails.

H4: Same as H3, except abort if dSig is false during verification. The adversary can now
no longer win, as the signature will always verify.

H0 ≈ H1: This is indistinguishable by perfect completeness of the NIZK.

H1 ≈ H2: This is indistinguishable by zero knowledge of the NIZK.

H2 ≈ H3: This is indistinguishable by the simulation extractability of the NIZK. The
adversary can at most query QVerify signatures.
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H3 ≈ H4: To distinguish these hybrids an adversary must cause dsig to be false, i.e. find
inputs to the PSDVRS signing algorithm which cause it to produce signatures which
do not verify. Such an MDVRS adversary A may be reduced to an PSDVRS adversary
with the same advantage in the corresponding correctness game. This may be done by
using the oracles of the PSDVRS game to produce necessary PSDVRS’s for the signing
queries, and passing (i∗, j∗, µ∗) from (i∗,R∗, j∗, µ∗) provided by A on to the PSDVRS
challenger. Verification queries may be performed by passing PSDVRS signatures to
the PSDVRS verification oracle, along with the proofs of provenance extracted from
π. This generates an invalid PSDVRS with the distinguishing advantage of A.

Advcor
MDVRS,A(κ, u) ≤ ϵNIZK

zk + QVerify · ϵNIZK
sim-ext + ϵPSDVRS

cor

Consistency. We prove the MDVRS scheme is consistent following Definition 3. We
again proceed by defining a sequence of indistinguishable hybrids:

H0: Run Experimentcon
MDVRS,A(κ, u) as described in Figure 4. Observe that a winning

adversary must provide a proof π∗ as a part of σ∗ which verifies.

H1: Modify H0 to simulate all proofs contained in signatures produced by the oracles.

H2: Same as H1, except use the knowledge extractor for the adversary to extract a valid
witness for π∗, aborting the experiment if this fails. Furthmore, for each verification
of the at most QVerify query extract the witness from the NIZK π if the signature
was not produced by the signing oracle, aborting if extraction fails. The extracted
witness w = {πj}j∈D must either contain proofs such that the RealSigVal is satisfied
for all j ∈ D or each πj either satisfies PubSigVal or VerSigVal.

H3: Same as H2, except abort if the extracted proofs satisfy RealSigVal. Let πj be a
proof which does not satisfy RealSigVal.

H4: Same as H3, except abort if πj satisfies PubSigVal.

H5: Same as H4, except abort πj satisfies VerSigVal.

In H5 the adversary can now no longer win. The extracted witness w for a wining
adversary must be valid, otherwise the changes for H2 would cause an abort. This leads to
a contradiction as such a witness must either contain proofs which all satisfy RealSigVal,
excluded by H3, or have proofs which all satisfy either PubSigVal or VerSigVal. Hybrids
H4 and H5 exclude the latter for one of the proofs.

We prove the sequence of hybrids above are in fact indistinguishable:

H0 ≈ H1: These hybrids are indistinguishable by the zero knowledge property of the NIZK.
An adversary distinguishing these hybrids may be reduced to an adversary with the
same advantage in the zero knowledge game of the NIZK.

H1 ≈ H2: Simulation extractability ensures that extraction for any single proof cannot
fail with non-negligible probability. H2 aborts if the adversary produces a proof
and statement which would win the simulation extractability game for one of the
(QVerify + 1) proofs.

H2 ≈ H3: An adversary producing proofs which all satisfy RealSigVal may be used to win
the provable signing soundness game (Figure 9). As verification fails for one of the
designated verifiers the PSDVRS directed toward them must not verify and may
therefore be output with the corresponding proof to the challenger.

H3 ≈ H4: The proof satisfying PubSigVal may be used along with the verifying PSDVRS
to win the PubSigSim soundness game (Figure 12).
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H4 ≈ H5: The proof satisfying VerSigVal may be used along with the verifying PSDVRS
to win the VerSigSim soundness game (Figure 15).

Advcon
MDVRS,A(κ, u) ≤ ϵNIZK

zk + (1 + QVerify)ϵNIZK
sim-ext + ϵPSDVRS

ProvSig-sound

+ ϵPSDVRS
PubSigSim-sound + ϵPSDVRS

VerSigSim-sound

Unforgeability. We prove the MDVRS scheme described in Figure 16 is unforgeable
(Definition 4). Consider the following hybrids:

H0: Run unforgeability game Experimenteuf
MDVRS,A(κ, u) described in Figure 5.

H1: Same as H0, but replace all proofs returned in signing queries by simulated proofs.
This is indistinguishable from the previous hybrid by the zero knowledge property of
the NIZK.

H2: Same as H1, but for every verification query, extract the witness from the proof
contained in the signature. Abort if extraction fails. Simulation extractability ensures
that extraction for any single proof cannot fail with non-negligible probability.

An adversary winning the game in the hybrid H1 may be reduced to and adversary winning
Experimenteuf

PSDVRS,A(κ, u) with the same advantage. To produce response to a OSign query
the required PSDVRS signatures from the oracle, and simulate the required proof. For a
OVerify query the proof may be verified directly, then using the verification query in the
PSDVRS game to verify the appropriate designated signature, using the extracted proof of
provenance. All other oracle queries may be mapped directly to the corresponding queries
of the PSDVRS game.

Adveuf
MDVRS,A(κ, u) ≤ ϵzk-NIZK + QVerify · ϵNIZK

sim-ext + ϵeuf-PSDVRS

Off-The-Record. We prove the MDVRS scheme described in Figure 16 is off-the-record
following Definition 5.

H0: Run Experimentotr
MDVRS,A(κ, u) as described in Figure 6.

H1: Same as H0, except replace the honestly produced CRS with a simulated one, and
simulate all proofs produced by the oracles.

H2: Same as H1, but for every verification query, extract the witness from the proof
contained in the signature. Abort if extraction fails.

H3: In a series of hybrids replace verifier simulations with real signatures one-by-one. The
number of hybrids in this sequence is bounded by the maximal number designated
verifiers.

H4: In a series of hybrids replace public simulations with real signatures one-by-one. The
length of this sequence of hybrids is bounded by the number of designated verifiers
above. In final hybrid of this sequence σ0 and σ1 are identically distributed.

H0 ≈ H1: These hybrids are indistinguishable by the zero knowledge property of the
NIZK.

H1 ≈ H2: Simulation extractability ensures that extraction for any single proof fails with
probability less than ϵNIZK

sim-ext.
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H2 ≈ H3: Each pair of hybrids in this sequence are indistinguishable by verifier signa-
ture simulation indistinguishability. An adversary successfully distinguishing two
hybrids may be used win the experiment ExperimentVerSigSim-Ind

PSDVRS,A (κ, u) with the same
advantage using the challenge from the game in place of the PSDVRS which is being
replaced. Note, a verifier simulation is indistinguishable even given access to the
verifiers keys.

H3 ≈ H4: Each pair in this sequence is indistinguishable by public signature simulation
indistinguishability. In this case a winning adversary may be reduced to one winning
ExperimentPubSigSim-Ind

PSDVRS,A (κ, u). The off-the-record game ensures that this verifier is
not corrupted, as required by the PubSigSim-Ind game.

Advotr
MDVRS,A(κ, u) ≤ ϵNIZK

zk + QVerify · ϵNIZK
sim-ext + u · (ϵPSDVRS

VerSigSim-ind + ϵPSDVRS
PubSigSimInd-ind)

Anonymity. We prove the MDVRS scheme described in Figure 16 is anonymous (Defi-
nition 6).

H0: Run Experimentanon
MDVRS,A(κ, u) as described in Figure 7.

H1: Same as H0, except simulate all proofs produced by the oracles.

H2: Same as H1, but for every verification query, extract the witness from the proof
contained in the signature. Abort if extraction fails.

H3: In a series of hybrids PSDVRS’s from signer i∗
0 are replaced one-by-one by signatures

from i∗
1.

H0 ≈ H1: These hybrids are indistinguishable by the zero knowledge property of NIZK.

H1 ≈ H2: Simulation extractability ensures that extraction for any single proof fails with
probability less than ϵNIZK

sim-ext.

H2 ≈ H3 Each pair of hybrids in this sequence are indistinguishable by the anonymity of
the PSDVRS scheme. An adversary distinguishing these hybrids may be reduced to
an adversary with the same advantage in Experimentanon

PSDVRS,A(κ, u).

Advanon
MDVRS,A(κ, u) ≤ ϵNIZK

zk + QVerify · ϵNIZK
sim-ext + u · ϵPSDVRS

anon

6 PSDVRS From the Discrete Logarithm Problem
We design a PSDVRS scheme based on the discrete logarithm problem, taking inspiration
from the Designated Verifier Linkable Ring Signature scheme of Balla et al. [BBG+22].
Our approach follows the established paradigm of first devising an interactive identification
scheme, and then transforming it to a signature scheme using the Fiat-Shamir transform
[FS87]. We present a simple linear size proof, and later discuss how this may be improved
to achieve O(log n) complexity.

6.1 Construction
Where relevant, we state randomness used by an algorithm explicitly as an extra parameter
r, e.g. for a randomized algorithm Setup(1κ), we may instead refer to Setup(1κ; r) where
Setup is now a deterministic function. For procedures and games with significant similarities,
we will save space by presenting both variants in one figure, highlighting details which
only appear in one of the games with light and dark gray.
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A Publicly Verifiable OR-proof. Consider the following sigma protocol proving
knowledge of the exponent for an element in the set {Xi}i∈R, which follows the blueprint
of Cramer, Damgård, and Schoenmakers [CDS94].

This proof will be publicly verifiable once the Fiat-Shamir transform is applied. The
prover P knows x such that Xk = gx and interacts with a public-coin verifier V.

1. P: Sample r and {ci}i∈R\{k} uniformly in Zq. Compute the first message of the
Sigma protocol as A← gr

(∏
i∈R\{k} Xci

i

)
. Send A to V.

2. V: Sample a uniformly random challenge c in Zq and send it to P.

3. P: Let ck = c−
∑

i∈R\{k} ci. Compute, z = r − ck · x, and then send z along with
{ci}i∈R to V.

4. V : The verifier checks, A = gz
(∏

i∈R Xci
i

)
and c =

∑
i∈R ci accepting if and only if

both relations hold.

We will rely on the special-soundness and honest-verifier zero knowledge of this protocol.
To allow the verifier to simulate signatures we simply add the verifier to R.

Getting Public Simulation with a Designated Verifier. The previous protocol
is unsuitable for our purposes, as it is publicly verifiable. To circumvent this we extend
the public key of the verifier to include V = gv, and replace the first message of the
Sigma protocol with an El-Gamal style encryption of the same message. The prover’s first
message will now be A1 = gr1 and A2 =

(
gr2

∏
i∈R\{k} Xci

i

)
V r1 . Challenge and response

(with r = r2) are computed as before. The verification, however, must be extended to
include decryption using the secret exponent v, A−v

1 A2 = gz
∏

i∈R Xci
i . Public simulation

now becomes possible if DDH is hard in the group. We present the resulting designated
verifier NIZKAoK in Figure 17.

Provable Signing. To enable proof of provenance for non publicly simulated signatures
we add a commitment to the author’s secret key. A signer (or verifier) may then prove in
zero knowledge that the committed value matches their public key. We ensure it is hard to
produce public simulations that are also valid signatures, by requiring they be produced
using a different generator h for the same group. Given a public simulation which veri-
fies, along with its proof of provenance, the discrete log of h with respect to g may be found.

We formalise the resulting signature scheme in Figure 18 and 19.

Zero Knowledge Friendly Provable Signing and Simulation. We are designing
our PSDVRS scheme with the goal that it may be used to efficiently instantiate a MDVRS
scheme. To this end, the predicates RealSigVal, VerSigVal and PubSigVal be satisfied need
to be efficiently provable in zero knowledge. With this in mind, it is desirable to avoid
the need for generic proofs of general circuits, such as proving correct evaluation of
cryptographic hash functions. Both Prove and PubSim require calls to Hq. However, the
evaluated inputs (ϕ, A1, A2) are publicly known, allowing the hash outputs to be publicly
computed, and then be treated as fixed constants in Zq for the purposes of the proof.
With this observation, proving RealSigVal, VerSigVal and PubSigVal in zero knowledge only
requires a combination of proofs of knowledge of exponents and arithmetic over G and Zq.
Showing that proofs verify cannot be done directly as the verification algorithm requires
access to the verifier’s secret key. Instead, we include the randomness used to produce
the proof in the proof of provenance, allowing the validity of the proof to follow from the
perfect completeness of the proof system.
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Prove(ϕ, w)
1 : parse ϕ = (vpk = (X, V ), {Xi}i∈R, aux)
2 : parse w = (k, xk)

3 : r1, r2, {ci}i∈R\{k} ←$
Zq

4 : A1 ← gr1 // First half of ElGamal ciphertext

5 : A2 ← V r1 gr2
(∏

i∈R\{k}Xci
i

)
// Second half of ElGamal ciphertext

6 : ck = Hq(pp, ϕ, A1, A2)−
(∑

i∈R\{k}ci

)
mod q

7 : z ← (r2 − ck · xk)
8 : return (A1, A2, z, {ci}i∈R)

Verify(ϕ, π, v)
1 : parse ϕ = (vpk = (X, V ), {Xi}i∈R, aux)
2 : parse π = (A1, A2, z, {ci}i∈R)

3 : if A−v
1 A2 ̸= gz

(∏
i∈R Xci

i

)
then return 0

4 : if Hq(pp, ϕ, A1, A2) ̸=
(∑

i∈R ci

)
mod q then return 0

5 : return 1
HVZKSim(ϕ, c, V )
1 : parse ϕ = (vpk = (X, V ), {Xi}i∈R, aux)

2 : {ci}i∈[R] ←$
Zq subject to

∑
i∈R ci = c mod q

3 : z, r ←$
Zq

4 : A1 ← gr

5 : A2 ← V r · gz
(∏

i∈R Xci
i

)
6 : return (A1, A2, z, {ci}i∈R)

PubSim(ϕ)
1 : parse ϕ = (vpk = (X, V ), {Xi}i∈R, aux)

2 : r1 ←$
Zq; r2 ←$

Zq \ {0}
3 : A1 ← gr1 ; A2 ← hr2

4 : c = Hq(pp, ϕ, A1, A2)
5 : (A′

1, A′
2, z, {ci}i∈R)← HVZKSim(ϕ, c, V ) // First prover message is ignored

6 : return (A1, A2, z, {ci}i∈R)

Figure 17: Our publicly simulatable designated verifier NIZKAoK construction. We assume all
algorithms have access to a public string of the form (G, q, g, h)← GroupGen(1κ), where g, h are
two independent generators of G.

6.2 Security Statement
Before we prove Theorem 2 we will prove security of the Sigma protocol from Section 6.1.

Lemma 1. The Σ-protocol in Section 6.1 is special-sound for the relation,

RΣ
pp =

{
ϕ = (R, {Xi}i∈R, aux)
w = (ρ,S, {ρi}i∈S)

∣∣∣∣∣S ⊂ R, gρ =
∏
i∈S

Xρi

i , ∀i ∈ S ρi ̸= 0
}

,

and has special honest verifier zero-knowledge.
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Setup(1κ)
1 : (G, q, g, h)← GroupGen(1κ) // g, h independent generators

2 : Com.pp← Com.Setup(1κ)
3 : return pp = (G, q, g, h, Com.pp)

SignKeyGen()
1 : x←$

Zq

2 : X ← gx

3 : return (spk = X, ssk = x)

VerKeyGen()
1 : (X, x)← SignKeyGen()

2 : v ←$
Zq; V ← gv

3 : return (vpk = (X, V ), vsk = (x, v))

Sign(sskk, {spki}i∈R, vpk, µ) VerSigSim(spk, {spki}i∈R, vpk, vsk, µ)
1 : parse sskk = x vsk = (x, v)
2 : com← Com.Commit(x; rndCom)
3 : ϕ← (vpk, {vpk.X} ∪ {Xi}i∈R, (µ, com))
4 : πNIZKAoK ← NIZKAoK.Prove(ϕ, x; rndπ)
5 : return (σ = (com, πNIZKAoK), π = (k, x, rndπ, rndCom))

Verify(vsk, {spki}i∈R, µ, σ)
1 : parse σ = (com, πNIZKAoK)
2 : ϕ← (vpk, {vpk.X} ∪ {Xi}i∈R, (µ, com))
3 : return NIZKAoK.Verify(ϕ, πNIZKAoK, vsk.v)

Figure 18: Our concrete construction of PSDVRS that relies on NIZKAoK described in Figure 17.
For the remaining algorithms see Figure 19.

RealSigVal({spki}i∈R, vpk, µ, σ, π) VerSigVal({spki}i∈R, vpk, µ, σ, π)
1 : parse σ = (com, πNIZKAoK), π = (k, x, rndπ, rndCom)
2 : ϕ← (vpk, {vpk.X} ∪ {Xi}i∈R, (µ, com))

3 : dNIZKAoK ← πNIZKAoK
?= NIZKAoK.Prove(ϕ, x; rndπ)

4 : dcom ← com ?= Com.Commit(x; rndCom)
5 : dx ← spkk.X = gx vpk.X = gx

6 : return dNIZKAoK ∧ dcom ∧ dx

PubSigSim({spki}i∈R, vpk, µ)
1 : com← Com.Commit(0)
2 : ϕ← (vpk, {Xi}i∈R, (µ, com))
3 : πNIZKAoK ← NIZKAoK.PubSim(ϕ; rnd)
4 : return (σ = (com, πNIZKAoK), π = (rnd))

PubSigVal({spki}i∈R, vpk, µ, σ, π)
1 : parse σ = (com, πNIZKAoK), π = (rnd)
2 : ϕ← (vpk, {vpk.X} ∪ {Xi}i∈R, (µ, com))

3 : return πNIZKAoK
?= NIZKAoK.PubSim(ϕ; rnd)

Figure 19: Our concrete PSDVRS construction (remaining algorithms).

Proof. The relation RΣ
pp is relaxed compared to the requirement we make of the honest

prover but is sufficient for our needs.
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Special soundness. Assume we have two accepting transcripts, with the same first
message and distinct challenges (A, c, (z, {ci}i∈R)), (A, c′, (z′, {c′

i}i∈R)). By assumption,

gzA =
∏
i∈R

Xci
i , gz′

A =
∏
i∈R

X
c′

i
i

Thus,
gz−z′

=
∏
i∈R

X
ci−c′

i
i .

As c ̸= c′, we know {ci}i∈R ̸= {c′
i}i∈R. Let S be the non-empty set of indices i where

ci ̸= c′
i, then

gz−z′
=

∏
i∈S

X
ci−c′

i
i .

We have now obtained a witness for RΣ
pp, which would allow finding the discrete log of a

group element Xi with i ∈ S, if the remaining Xj for j ∈ S \ {i} are known powers of g.

(Special) HVZK. To simulate signatures we will require HVZK for our protocol.
Consider the simulator, which given a challenge c does the following:

– Sample ci uniformly in Zq for i ∈ R subject to
∑

i∈R′ ci = c.

– Sample z uniformly in Zq.

– Let A = g−z
∏

i∈R Xci
i .

The distribution of the challenges {ci}i∈R is clearly identical between the real and simulated
transcripts. In the real transcripts z = r + cixi is also uniform in Zq as r is uniform in Zq.
For fixed z and {ci}i∈R the first message A is uniquely determined. Note, this simulation
is perfect.

Special-soundness implies knowledge-soundness for the Fiat-Shamir transform of our
proof [AFK23]. It is clear that the protocol remains special-sound if the statement is
expanded to include the verifier decryption key after the transformation to Section 6.1. To
achieve adaptive knowledge soundness, the prover must be bound to a choice of statement
while producing a proof. This is done by including the statement as an input to the
random oracle. The prover does not have access to the verifier decryption key, preventing
it from inputting this to the random oracle. However, the verifier public key serves as a
perfectly binding commitment to the verifier key; it is therefore sufficient to include the
verifier public key in place of the secret key.

The HVZK simulator may easily be extended to allow the modifications in Section 6.1,
encrypting the first message as in the real protocol. For the resulting simulator see
HVZKSim in Figure 17.

We now proceed to prove the security of our PSDVRS construction in Section 6.

Theorem 2. The PSDVRS scheme described in Section 6 is secure in the programmable
random oracle model (pROM) according to Definition 19, assuming the security of the
commitment scheme and the hardness of the decisional Diffie-Hellman (DDH) and discrete
logarithm problem in the cyclic group G of order q with generators g, h. Let ϵDDH and ϵDLog
bound the advantage in solving the aforementioned problems. Consider the upper bounds
QSign and QH on the number of queries made by the adversary to the signing and random
oracle respectively. Fix ϵCom

hiding as a bound on the advantage of an adversary breaking hiding
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for the commitment scheme. Further, let ϵsim = QH/q and ϵKE ≤ (QH + 1)/q. Then the
scheme is then secure with the following advantages. Correctness:

Advcor
PSDVRS,A(κ, u) = AdvProvSig-Cor

PSDVRS,A (κ, u) = 0,

AdvPubSigSim-Cor
PSDVRS,A (κ, u) = AdvVerSigSim-Cor

PSDVRS,A (κ, u) = 0;

soundness:

AdvProvSig-Sound
PSDVRS,A (κ, u) = 0, AdvVerSigSim-Sound

PSDVRS,A (κ, u) ≤ u · ϵDLog,

AdvPubSigSim-Sound
PSDVRS,A (κ, u) ≤ ϵDLog;

signature simulation indistinguishability:

AdvPubSigSim-Ind
PSDVRS,A (κ, u) ≤ ϵCom

hiding + ϵDDH + 1/q + AdvPubSigSim-Sound
PSDVRS,A (κ, u),

AdvVerSigSim-Ind
PSDVRS,A (κ, u) ≤ ϵCom

hiding + 2ϵsim;

and unforgeability, signer anonymity

Adveuf
PSDVRS,A(κ, u) ≤ QSignϵsim + ϵKE + u · ϵDLog,

Advanon
PSDVRS,A(κ, u) ≤ ϵCom

hiding + 2ϵsim.

Secure erasure is assumed for the case of adaptive corruptions.

Proof. We prove security of our PSDVRS construction described in Figures 17, 18 and 19.
Recall u is an upper bound on the total number of registered signers and verifiers.

Oracles. When we will need to simulate the signing oracle we will do the following. For
OSign(k,R, j, µ)

– Compute com← Com.Commit(0)

– Let ϕ = (vpkj , {vpkj .Z} ∪ {Xi}i∈R, (µ, com))

– Sample c←$ Zq and compute πNIZK ← HVZKSim(ϕ, c, vpk.V )

– Reprogram the random oracle such that H(ϕ, A1, A2) = c, aborting if (ϕ, A1, A2) was
queried previously.

As HVZKSim perfectly simulates transcripts an adversary will only be able to distinguish
simulated signatures if a previously queried input to the oracle is reprogrammed. For a
single signing query A1 will be independently uniform in the group G, if the adversary has
previously made QH queries to H then the probability A1 coincides with any previously
queried transcript is at most ϵsim = QH/q, where q is the order of G.2 By a union bound
across the signing queries, the probability of aborting is at most QSignϵsim. Note, the
signature is also randomised by the commitment, which is included in the statement; if
the commitments were instantiated with Pedersen commitments [Ped92] the probability
of aborting would in fact be bounded by ϵsim = QH/q2. Randomising the random oracle
input with an additional salt would allow for an even smaller ϵsim.

Correctness. Perfect correctness follows by inspection of the scheme.
2For convenience, we will also count the indirect random oracle queries made when querying OSign

towards QH.
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Existential Unforgeability. We prove unforgeability (Definition 9, Figure 5) of our
PSDVRS scheme by a reduction to the discrete logarithm problem.

Consider an adversary A in the experiment Experimenteuf
PSDVRS,A(κ, u) as described in

Figure 5 with advantage ϵ. Our high level goal is to extract a witness for the NIZK contained
in the signature, relying on the knowledge soundness of the proof system. Specifically, we
wish to rely on the adaptive knowledge soundness [AFK23, Definition 10] of special sound
protocols under the Fiat-Shamir transform. However, our current adversary has access
to a number of oracles, making it incompatible with the standard extraction techniques.
To address this we first construct an intermediate adversary which runs A internally and
simulates access to the oracles.

More formally, consider B that plays the role as the challenger in the Experimenteuf
PSDVRS,A(κ, u),

running A internally and outputting πNIZK contained in the forgery σ∗. Queries to the
random oracle are simply forwarded by B to the real oracle. Note, B outputs a valid proof
with probability ϵ (the advantage of A).

We wish to reduce to discrete log, to this end we may replace B with B′ that receives
a discrete logarithm challenge X. The new adversary B′ follows the instructions of the
challenger in Experimenteuf

PSDVRS,A(κ, u), except for a random user index i ∈ [u], where it
sets the signer public key to X, and replaces responses to OSign(i, ·, ·, ·) with simulated
signatures. If A corrupts i then B′ must abort. B′ outputs πNIZK as B. Note, the random
oracle is only reprogrammed in positions which may not be used by a valid forgery. Let c
be the number of users A has corrupted, then B′ will output a valid proof (and not abort)
with probability at least ( u−c

u )ϵ−QSignϵsim.

By the knowledge soundness of NIZKAoK there must be an efficient extractor EB′ which
when given black-box rewind access to B′ extracts a valid witness, except with knowledge
error ϵKE. If the extractor is successful (ϕ = (vpkj , {vpkj .Z} ∪ {Xi}i∈R, (µ, com)), w =
(ρ,S, {ρi}i∈S)) ∈ RΣ is obtained, note the distribution of ϕ produced by the extractor
is the same as the distribution of statements produced by the prover. With probability
at least 1/(u− c), the identity i will be in S, allowing the discrete logarithm of X to be
efficiently computed. The resulting extractor succeeds with probability,

1
u− c

((
u− c

u

)
ϵ−QSignϵsim − ϵKE

)
≤ ϵ

u
−QSignϵsim − ϵKE.

Thus, we may conclude

Adveuf
PSDVRS,A(κ, u) ≤ QSignϵsim + ϵKE + u · ϵDLog.

By [AFK23], for a special-sound protocol ϵKE ≤ (QH + 1)/q.

Signer Anonymity. We prove signer anonymity (Definition 10, Figure 7) by reducing
to the hiding property of the commitment scheme and HVZK of our NIZK.

H0: Run Experimentanon
PSDVRS,A(κ, u) as described in Figure 7.

H1: The same as H0, but for b = 0 rather than committing to sski0 commit to sski1 .

H2: The same as H1 but for b = 0 rather than signing honestly, use HVZKSim to simulate
the signature, reprogramming the random oracle as described previously.

H3: The same as H2 but for b = 0 rather than using HVZKSim to simulate the signature
when b = 0, now sign using sski1 . For b ∈ {0, 1} the view of the adversary is now
identical.

We now prove indistinguishability of the hybrids described above:
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H0 ≈ H1: An adversary distinguishing these hybrids may be reduced to an adversary
winning the hiding game of the commitment scheme with the same advantage.

H1 ≈ H2 ≈ H3: By the perfect simulation of HVZKSim these cases may only be distin-
guished when the oracle cannot be reprogrammed, giving advantage ϵsim.

Advanon
PSDVRS,A(κ, u) ≤ ϵCom

hiding + 2ϵsim

Public Signature Simulation Indistinguishability. We prove public signature simu-
lation indistinguishability (Definition 13, Figure 10) by reduction to the hiding property of
the commitment scheme and the decisional Diffie-Hellman (DDH) problem.

H0: Run ExperimentPubSigSim-Ind
PSDVRS,A (κ, u) as described in Figure 10.

H1: The same as H0, but in Sign replace the commitment by a commitment to 0.

H2: The same as H1, but during Sign replace πNIZK with a simulated proof produced by
PubSim. The distributions for b ∈ {0, 1} are now identical.

We now prove indistinguishability of the hybrids described above:

H0 ≈ H1: An adversary distinguishing these hybrids may be reduced to an adversary
breaking hiding for the commitment scheme with the same advantage.

H1 ≈ H2: Consider a DDH challenger giving (A = ga, B = gb, C = gc) where c is either
uniformly independent in Zq or c = ab. An adversary distinguishing H1 and H2
may be reduced to an adversary for the DDH. The reduction chooses a random
index j ∈ [u] and sets vpk.V = A. If j∗ ̸= j the reduction aborts. As the reduction
no longer has access to the verifier key, it can no longer simulate the verification
oracle directly. However, the verification oracle requires the adversary to provide a
proof satisfying one of RealSigVal, VerSigVal or PubSigVal. When either RealSigVal
or VerSigVal are statisfied, OVerify may output 1, as the proof is guaranteed to
verify by completeness of the NIZK. If PubSigVal is satisfied, OVerify may output 0;
this response will only be wrong when the adversary provides a query which would
win public signature simulation soundness, allowing us to bound this event by the
corresponding advantage.
To produce the challenge signature, the reduction sets A1 = B and A2 = C ·
gr2

∏
i∈R\{k} Xci

i . In the case c = ab this clearly gives the same distribution as regular
signing. Alternatively, if c is uniform in Zq the distribution is indistinguishable from
that produced by PubSim if the check for r2 = 0 is not made, this follows as A2 is
uniform in G independent of A1. The statistical distance to the distribution where
r2 ̸= 0 is ensured is 1/q.

AdvPubSigSim-Ind
PSDVRS,A (κ, u) ≤ ϵCom

hiding + ϵDDH + 1/q + AdvPubSigSim-Sound
PSDVRS,A (κ, u).

Public Signature Simulation Correctness. (Definition 14, Figure 11) Follows by
inspection, AdvPubSigSim-Cor

PSDVRS,A (κ, u) = 0.

Public Signature Simulation Soundness. We prove public signature simulation
soundness (Definition 15, Figure 12) by reduction to the discrete logarithm problem. As
PubSigVal outputs 1, the adversary outputs randomness giving r where A1 = gr and
A2 = hr. As Verify also outputs 1, we also know

A−v
1 A2 = gz

∏
i∈R

Zci
i .
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The reduction knows the randomness used to generate all keys Zi, allowing σ to be
computed where

hr = gσ = grvgz
∏
i∈R

Zci
i .

By construction r cannot be 0, and therefore r−1σ ∈ Zq is a discrete logarithm solution,

AdvPubSigSim-Sound
PSDVRS,A (κ, u) ≤ ϵDLog.p

Verifier Signature Simulation Indistinguishability. (Definition 16, Figure 13) This
follows by the same argumentation as for signer anonymity.

AdvVerSigSim-Ind
PSDVRS,A (κ, u) ≤ ϵCom

hiding + 2ϵsim.

Verifier Signature Simulation Correctness. (Definition 17, Figure 14) Follows by
inspection, AdvVerSigSim-Cor

PSDVRS,A (κ, u) = 0.

Verifier Signature Simulation Soundness. (Definition 18, Figure 15) An adversary
winning this game may be reduced to an adversary solving the discrete logarithm problem.
The reduction proceeds as follows. First it selects a random index j ∈ [u], for this index it
sets X to be the discrete log challenge. Note, the challenger can still provide a verification
oracle for verifier j, as it may still know v where V = gv. If the adversary chooses j∗ = j,
and wins the game it must have provided a discrete logarithm solution x such that X = gx.

AdvVerSigSim-Sound
PSDVRS,A (κ, u) ≤ u · ϵDLog.

Provable Signing Correctness. (Definition 11, Figure 8) Follows by inspection,
AdvProvSig-Cor

PSDVRS,A (κ, u) = 0.

Provable Signing Soundness (Definition 12, Figure 9). For RealSigVal to output
1, dNIZK must also be 1. By perfect completeness of NIZK it follows that the signature
must verify, AdvProvSig-Sound

PSDVRS,A (κ, u) = 0.

6.3 Further Optimisations
Attema et al. [ACF21] show how compressed sigma protocol theory [AC20] may be applied
to achieve partial proofs of knowledge [CDS94] for discrete logarithms. We are interested
in their 1-out-of-n proof, which has size and rounds logarithmic in n. In acordance with
the compressed sigma protocol paradigm, their protocol is defined with respect to an
initial sigma protocol Σ0, known as the pivot, having a constant size commitment in the
first round and a large (linear-size) opening in the final round. To reduce communication
complexity, the prover proves knowledge of the opening rather than sending it directly.
This proof of knowledge is instantiated by the use of a second sigma protocol Σ1, with
an opening that is smaller than the witness (the opening of Σ0) by a constant fraction.
In fact if this second protocol further allows proving knowledge of its own openings, the
final message may be repeatedly replaced by an invocation Σ1 until the opening reaches
constant size. The resulting protocol satisfies a notion of special soundness generalised to
multiple rounds. Note, it is sufficient for only Σ0 to have HVZK for this composed protocol
to be HVZK, as the opening of the pivot does not need to be hidden. In our signature
scheme we consider the non interactive case; Attema et al. [AFK23] demonstrate that
multi-round special-sound protocols are knowledge sound under the Fiat-Shamir transform
[FS87].
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We observe that this proof of [ACF21] can be transformed to fit the designated verifier
setting by encrypting the first prover message as we did in Section 6.1. Public simulation
still follows as the adversary cannot check if the challenge used in simulation corresponds to
the first message. The recursive proofs of knowledge may be applied honestly to the third
round message. In Figure 20 we show how our NIZKAoK (Figure 17) may be modified
to use the proof of [ACF21] for the relation RPartial. Substituting this for NIZKAoK in
the PSDVRS construction (Figure 18, Figure 19) yeilds a scheme with signature sizes
logarithmic in n. For the sake of self-containment recall the relation

RPartial =
{

ϕ = (g, X1, . . . Xn ∈ G, k ∈ {1, . . . , n}, aux),
w = (S ⊂ [n], x ∈ Zn

q )

∣∣∣∣ |S| = k,
∀i ∈ S, Xi = gxi

}
,

from [ACF21], where xi is the ith entry of the vector x. For 1-of-n discrete logarithms in
an order q cyclic group G, the proof will contain (4⌈log2(2n)⌉ − 5) elements of G and 4
elements of Zq [ACF21, Theorem 6] counting only prover messages due to Fiat-Shamir.
Our final signature size will include the additional cost of encrypting the first message of
Σ0 and the commitment to the secret key from the sign procedure.

Prove(ϕ, w)
1 : parse ϕ = (vpk = (X, PKE.vpk), {Xi}i∈[n], aux)
2 : parse w = (k, xk)
3 : x ∈ Zn

q s.t. xk = xk, and xi = 0 for i ̸= k

// Proving ((g, X1, . . . Xn, 1), ({k}, x)) ∈ RPartial

4 : (a1, a2 . . . aµ)← ΠPartial.Prove((g, X1, . . . Xn, 1, aux), ({k}, x))
5 : σ ← PKE.Enc(PKE.vpk, a1)
6 : return (σ, a2 . . . aµ)

Verify(ϕ, π, PKE.vsk)
1 : parse ϕ = (vpk = (X, PKE.vpk), {Xi}i∈[n], aux)
2 : parse π = (σ, a2 . . . aµ)
3 : a1 ← PKE.Dec(PKE.vsk, σ)
4 : return ΠPartial.Verify((g, X1, . . . Xn, 1, aux), (a1, . . . , aµ))

PubSim(ϕ)
1 : parse ϕ = (vpk = (X, PKE.vpk), {Xi}i∈R, aux)

// Simulate as in [ACF21].

2 : (a1, a2, . . . , aµ)← ΠPartial.HVZKSim((g, X1, . . . Xn, 1, aux))
3 : σ ← PKE.Enc(PKE.vpk, a1)
4 : return (σ, a2 . . . aµ)

Figure 20: Replacing our publicly simulatable designated verifier NIZKAoK with ΠPartial from
[ACF21]. We consider the non interactive variant of ΠPartial after the application of the Fiat-
Shamir transform, we omit all verifier messages as these may be recomputed using the random
oracle. Note, the publicly simulated transcripts will not verify with respect to the random oracle,
however, this is not a problem as a1 would be needed to query the random oracle to observe
this. More specifically due to the structure of ΠPartial only first challenge would not be correctly
computed, while all subsequent challenges are.
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