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Abstract. In this note we review the technique proposed at ToSC 2018 by Sadeghi
et al. for attacks built upon several related-tweakey impossible differential trails.
We show that the initial encryption queries are improper and lead the authors to
misevaluate a filtering value in the key recovery phase. We identified 4 other papers
(from Eurocrypt, DCC, and 2 from ToSC) that follow on the results of Sadeghi et
al. , and in three of them the flawed technique was reused.
We thus present a careful analysis of these types of attacks and give generic complexity
formulas similar to the ones proposed by Boura et al. at Asiacrypt 2014. We apply
these to the aforementioned papers and provide patched versions of their attacks.
The main consequence is an increase in the memory complexity. We show that in
many cases (a notable exception being quantum impossible differentials) it is possible
to recover the numeric time estimates of the flawed analysis, and in all cases we were
able to build a correct attack reaching the same number of rounds.
Keywords: Impossible Differential Attack · Related-Tweakey · Complexity Analysis

1 Introduction
The impossible differential attack is a block cipher cryptanalysis technique that was
independently discovered by Knudsen [Knu98] and Biham, Biryukov and Shamir [BBS99]
in the late 1990s. The idea is to focus on differentials of probability zero, in opposition to
differential cryptanalysis [BS91] which searches differentials of high probability. Formally,
an impossible differential (or impossible differential distinguisher) is a couple of differences
(∆X , ∆Y ) such that if two messages differ by ∆X the difference of their corresponding
ciphertexts cannot be equal to ∆Y .

In a similar manner to what can be done for other statistical cryptanalyses, an impossible
differential distinguisher can be turned into an attack by appending and/or prepending
some rounds for key recovery. An attacker guesses the required key material of these
rounds to check if they obtain the impossible pair of differences (∆X , ∆Y ): if that is the
case they discard the key candidate as they know it must be incorrect.

Many significant results have been obtained with this technique, among which 7-round
attacks on AES-128 [ZWF07, BA08]. Quite naturally, extensions to the related-key and
related-tweak scenario have also been proposed.

Our contributions. In this article we review the impossible differential technique
proposed by Sadeghi et al. in [SMB18] which takes advantage of several impossible
differentials requiring different tweakey differences. We show that the technique is flawed,
describe how to fix the problem and provide generic formulas that estimate the time, data
and memory complexity of such a process. We identified 4 papers that rely on the results
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2 A Note on Related-Tweakey Impossible Differential Attacks

of Sadeghi et al. and show how to fix all of the attacks presented in these. Fortunately,
the patched complexities are close to the wrong ones, and the same number of rounds can
be attacked.

Outline. The following section introduces the necessary notations and recalls the working
principle of an impossible differential attack, together with its generic complexity formulas
expressed by Boura et al. in [BNS14]. As most of the studied attacks target the SKINNY
block cipher or one of its variants we also briefly recall its specification. Section 3 describes
the multiple-tweakey attack presented by Sadeghi et al. [SMB18], a brief description of
the spotted issues is given right after and the corrected procedure is given in Section 5.
Section 6 describes the impact of our findings on the 4 articles we identified, and provides
the corrected complexities.

2 Preliminaries
2.1 Single-key Impossible Differential Attacks and their Complex-

ity Analysis
We start by recalling the framework of single-key impossible differential attacks for block
ciphers, as detailed in [BNS14]. We consider an n-bit block cipher with a k-bit master key
K. The attack is built around a probability-0 differential distinguisher of rd rounds that
starts with a (set of) n-bit difference(s) ∆X and ends with a (set of) n-bit difference(s)
∆Y , as depicted in Figure 1. Then, rb rounds are added before this differential and rf

rounds are added after. The set of possible differences at the plaintext side, denoted ∆in,
is a set of differences that might lead to ∆X after rb rounds. Similarly, ∆out represents
the set of differences at the ciphertext side to which ∆Y might propagate after rf rounds.

We let 2−cin denote the probability that a difference in ∆in leads to a difference in ∆X ,
and 2−cout the probability that a difference in ∆out leads to a difference in ∆Y . The set of
key bits used to compute if a difference in ∆in leads to ∆X is kin, while the corresponding
set of key bits at the ciphertext side is kout.

∆
in
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t

∆
X

∆
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cin
kin

cout
kout

impossible differential

rb rfrd

Figure 1: Setting and notation for an impossible differential attack on a block cipher.

Given a pair of messages with a plaintext difference in ∆in and a ciphertext difference
in ∆out, the probability that a specific key guess leads to ∆X and ∆Y (and thus is
discarded) is equal to 2−cin−cout . Not discarding a given key is thus of probability
(1 − 2−cin−cout), and not discarding a given key when considering N pairs is thus of
probability (1 − 2−cin−cout)N ≃ exp (−N × 2−cin−cout).

The goal of an attacker is to reduce the set of possible keys by at least a factor of 2
in order to keep the final step (of exhaustively testing the remaining keys) of reasonable
cost. We introduce the variable g to measure the number of remaining keys and denote by
Ng

min the number of pairs satisfying ∆in and ∆out such that:

(1 − 2−cin−cout)Ng
min <

1
2g

.
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The previous approximation using the exponential function leads to:

Ng
min > g × ln(2) × 2cin+cout .

To build a given amount of pairs N , an attacker organizes their encryption queries
into structures (either at the plaintext or at the ciphertext side). Depending on the exact
number of pairs that are required, either several structures are encrypted or less than one.
Combining these different scenarios, the data complexity can be approximated by:

D = max
{

min∆∈{∆in,∆out}
{√

N2n+1−|∆|
}

, N2n+1−|∆in|−|∆out|
}

where 2|∆in| and 2|∆out| represent the number of differences in ∆in and ∆out, respectively.
This number of encryption queries must be so that D ≤ 2n (the full codebook).

If we let CE denote the cost of one encryption, the lower bound of the time complexity
of the attack (T ) provided in [BNS14] is:

T =
(

D +
(

N + 2|kin∪kout| N

2cin+cout

)
C ′

E + 2k−g

)
CE ,

where C ′
E is the ratio of the cost of partial encryption to the full encryption. This should

satisfy T ≤ 2kCE . The memory complexity corresponds to storing the N pairs.

2.2 The SKINNY Block Cipher
SKINNY [BJK+16] is a family of tweakable block ciphers whose variants are denoted
SKINNY-n-v, where n = 16 × s is the internal state size, s = 4 or 8 is the word size and
v is the tweakey size (it can be equal to n, 2n or 3n), all expressed in bits. The round
function of SKINNY is recalled in Figure 2 and relies on 5 operations:

• SubCells (SC): applies an s-bit Sbox to each word,

• AddConstants (AC): adds a round constant to words 0, 4 and 8,

• AddRoundTweakey (ART): adds the round tweakey to the first and second rows,

• ShiftRows (SR): right-rotates row i by i positions,

• MixColumns (MC): multiplies each column by the binary matrix

M =

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 .
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Figure 2: Word numbering and round function of SKINNY (modified version of [Jea16]).
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The tweak and the key are handled together with the TWEAKEY framework of
Jean et al. [JNP14]: depending on the version of SKINNY, there are either 1, 2 or 3
master tweakey states (denoted TK1, TK2 and TK3) which are filled with the key and the
tweak values. These states undergo linear operations (in the so-called tweakey schedule)
to produce the round tweakeys of the r rounds of the cipher (TK1, TK2, . . . TKr).

The first 8s-bit round tweakey is obtained by extracting the first 2 rows of each master
tweakey state and xoring them together. After that and as can be seen in Figure 3, each
tweakey state first sees its cells shuffled by the permutation PT , and then the 8 cells of the
first two rows are modified by a s-bit LFSR. The LFSR of the first tweakey state is the
identity, and the second and third (denoted LFSR2 and LFSR3) are as defined below.
The second round tweakey is the xor of the first two rows of each updated tweakey state,
and so on.

Extracted
8s-bit subtweakey

PT

LFSR

LFSR

Figure 3: Tweakey schedule of SKINNY (figure from [Jea16]).

LFSR2 and LFSR3 are defined as follows for s = 4, where x0 is the least significant
bit:

LFSR2 : (x3||x2||x1||x0) → (x2||x1||x0||x3 ⊕ x2)
LFSR3 : (x3||x2||x1||x0) → (x0 ⊕ x3||x3||x2||x1)

For s = 8 we have:

LFSR2 : (x7||x6||x5||x4||x3||x2||x1||x0) → (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)
LFSR3 : (x7||x6||x5||x4||x3||x2||x1||x0) → (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

The great performance and security of SKINNY inspired other variants, such as
ForkSKINNY [ALP+19], SKINNYe-v2 [NSS20a, NSS20b] and SKINNYee [NSS22]
which mainly differ on the tweakey management and reuse the same round operations.

3 Multiple-Tweakey Attack from ToSC 2018
This section recalls the key recovery technique used in the 23-round related-tweakey
impossible differential attack on SKINNY-n-2n described in [SMB18]. A 19-round attack
on SKINNY-n-n was also presented in [SMB18] but we do not detail it here as the
technique is very similar. We propose a fix for both these attacks in Section 5.

Description of the 23-round related-tweakey impossible differential attack on
SKINNY-n-2n of [SMB18]. We reuse the notations from [SMB18]. The attack is
based on the 15-round related-tweakey impossible differential trail represented in Figure 4.
This distinguisher is positioned between Y4 and X19 and a total of 23 rounds is attacked
by adding 3 rounds at the top and 5 rounds at the bottom for the key-recovery phase, as
detailed in Figure 5. The first round tweakey addition is moved to the end of the round (just
before X2) by defining an equivalent tweakey for the first round as ETK = MC(SR(TK1)).
Since all the operations made before do not rely on secret values, the attacker considers
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Table 1: The TDT from [SMB18].

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15
TDT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T K2[7] 9 3 A 6 F 5 C 4 D 7 E 2 B 1 8
T K4[1] 1 2 3 4 5 6 7 8 9 A B C D E F

T K18[7] 7 F 8 E 9 1 6 B C 4 3 5 2 A D
T K20[1] D A 7 5 8 F 2 6 B C 1 3 E 9 4
T K22[0] 8 1 9 2 A 3 B C 4 D 5 E 6 F 7

an equivalent plaintext at position Y1 (see Figure 5) that corresponds to the state before
the first equivalent tweakey addition.

As can be seen in Figure 4, the distinguisher starts after the SubCells operation and
relies on a difference cancellation between the difference of the internal state and the one
in the round tweakey. The difference in the master tweakey is set so that the 3 next rounds
are blank rounds, and the last round of the distinguisher also relies on a cancellation
between the internal state difference and the round tweakey difference.

The idea of the authors of [SMB18] is to use the set of all the possible distinguishers of
this shape instead of only one. The 3 blank rounds require an inactive round tweakey in
the round 3 of Figure 4, that translates into the relation

∆TK1[1] ⊕ LFSR2(∆TK2[1]) = 0xn ⊕ LFSR2(p) = 0.

There is a total of 2s −1 pairs of such (non-zero) working tweakey differences, that uniquely
determine the master tweakey differences together with the internal state input and output
differences of the distinguisher.

The authors of [SMB18] define the “Tweakey Differentials Table” (TDT) (reproduced
in Table 1 for the case s = 4) to store the 2s − 1 sets of valid round tweakey differences in
rounds 2, 4, 18, 20 and 22. They use 2s − 1 lists (Li) to store the data corresponding to
each distinguisher.

We transcribe below the beginning of the key recovery procedure proposed in [SMB18]
and provide our comments in Section 4. The attack is also described in Figure 5.

The attacker queries 2x structures of 2|∆in| = 24s messages with Y1 taking all the
possible values in cells 5, 7, 8 and 15 and being fixed in the other positions. A total of
2x+8s pairs of messages (P, P̄ ) and their associated (C, C̄) are built from these 2x+4s+1

initial messages (D = 2x+|∆in|+1). As |∆out| = n, these pairs are not further filtered on
their ciphertext differences and can all be used to discard wrong key guesses.

Once these pairs have been generated, the attacker guesses the value of ETK[7] to
compute the difference in the cell Y2[7] of each pair of plaintexts. By looking for the index
i such that ∆Y2[7] = TDT [1][i] in the TDT, the attacker deduces in which list Li to store
the pair. This identifies which of the 2s − 1 impossible trails is considered for this key
guess.

The TDT is also used in round 4, where the attacker needs to check if the correct
difference happens at the start of the distinguisher. Namely, it corresponds to checking
that ∆Y4[1] = TDT [2][i] (and if not, to discard the pair) as this is the required condition
to have a cancellation.

We do not transcribe here the remainder of the key recovery as it is standard and
not relevant to our discussion. The claimed complexities of the 23-round attacks are of
D = 262.47 chosen plaintexts for SKINNY-64-128, and D = 2124.41 for SKINNY-128-256.
The time complexities (expressed in number of encryptions) are respectively of T = 2124.21

and T = 2243.61.
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Figure 4: Screenshot of the 15-round related-tweakey impossible distinguisher for SKINNY-
n-2n from [SMB18].
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Figure 5: Screenshot of the 23-round related-tweakey impossible attack for SKINNY-n-2n
from [SMB18].
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4 Analysis of the Key-Recovery in [SMB18]
There are a few interlinked issues in the previous process.

Data generation. First, the authors mention a total of 2x+|∆in|+1 encryption queries
corresponding to 2x structures of 2|∆in| messages that can form a total of 2x+2|∆in| pairs.
This presupposes that each plaintext is encrypted twice, under two different tweaks.

TDT. The TDT misses that the set of relevant tweakey differences is actually a vector
space (if we add the 0 difference) and not an arbitrary set of values. Such vector space
stems from the linearity of the tweakey schedule and of the condition it needs to fulfill. It
implies that the queries of the plaintexts under several tweaks can be done efficiently, as
will be detailed next section.

On the “choice” of i. Following the first key guess (of ETK[7]), the attacker computes
∆Y2[7] for each pair of plaintexts (P, P̄ ) and deduces from it the impossible differential
trail that is used for this pair by selecting i and putting the pair in the corresponding list
Li, where i is such that ∆Y2[7] = TDT [1][i]. This means the tweakey difference depends
on the value of ETK[7], and cannot be predicted beforehand. Thus, the approach breaks
if each plaintext is encrypted under only 2 tweakeys.

Filtering factor at round 2. In the initial attack, the first cancellation between ∆Y2[7]
and ∆TK2[7] happens with probability 1 as ∆TK2[7] is chosen with i. We showed in
the previous point that i cannot be chosen and that ∆TK2[7] is fixed with the pair, so
actually checking this cancellation creates a filter of 2−s of the pairs.

Following these observations we detail a corrected algorithm in the next section and
reassess the attacks of [SMB18] together with the attacks proposed in 4 papers that are
based on it ([HSE23, HGSE23, BDL20, DNS24]).

5 Detailed Description of the Patched Key-Recovery
In this section we describe a technique to organize an attack taking advantage of a valid set
of impossible differential trails based on several tweakey differences. We start by discussing
how to modify the 23-round attack of [SMB18] and next provide generic complexity
formulas.

5.1 Principle
The encryption queries must allow to take advantage of the set of 2s − 1 impossible
differential distinguishers. As both the tweakey schedule and the condition to obtain
the 3 blank rounds are linear, the set of relevant tweakey differences is actually a vector
space. The attacker can thus exploit this mathematical pattern by querying structures of
plaintexts under a set of tweakey values that take all possible values on an affine coset of
the space of tweakey differences. Similar to the original attack presented in [SMB18], the
considered plaintext values are organized in one structure where all the possible values for
the 4 active cells of Y1 are spanned while the other cells are fixed to a given value. What
is different is that these 24s messages are each encrypted under a set of 2s tweakeys.

By pairing any two different messages encrypted under any two different master
tweakeys within a structure, an attacker obtains a valid message difference and a valid
tweakey difference. A total of approximately 24s+s ×24s+s ×2−1 ≈ 210s−1 such (unordered)
pairs are obtained from 24s+s initial encryption queries. This is thus repeated 2x times to
get enough pairs for the attack.
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Note that this change can be seen as increasing the size of the structure by using the
additional degree of freedom on the tweakey.

In summary, the first point of Section 4 is fixed with this new data generation, the
second point (TDT use) is replaced by the subspace of tweakeys, which also fixes the value
of the previous “i” of point 3. The filtering factor (point 4) must be taken into account in
the complexity.

5.2 Generic Formulas
We consider the same notation as previously and in particular denote by |∆in| the number
of active bits at the plaintext side, by |∆out| the number of active bits at the ciphertext
side and by n the block size. We introduce |∆t| to denote the number of active tweakey
bits. We assume here for simplicity that all the 2|∆t| tweakey differences correspond to a
valid impossible differential trail, but the formulas can easily be adapted to cover more
complex cases.

The probability to keep a key is, as in Section 2.1,

(1 − 2−cin−cout)N ≃ exp
(
−N × 2−cin−cout

)
,

where N is the number of pairs with an input difference in ∆in, an output difference in
∆out and a tweakey difference in ∆t. Again we can choose the number of pairs Ng

min such
that Ng

min > g × ln(2) × 2cin+cout to get (1 − 2−cin−cout)Ng
min < 1

2g .
To build these pairs, the attacker organizes the (plaintext or ciphertext) queries in 2x

structures of 2|∆in|+|∆t| (resp. 2|∆out|+|∆t|) encryption queries each, corresponding to the
encryption of all the possible plaintexts (resp. ciphertexts) with varying values on the
active positions (and a fixed value on the other cells) under all the 2|∆t| master tweakey
differences of the linear subspace.

If more than one full structure is necessary (2x ≥ 1), with 2x+|∆in|+|∆t| encryptions,
the attacker can approximately build 2x ×

(2|∆in|+|∆t|

2
)

≈ 2x+2|∆in|+2|∆t|−1 pairs with the
correct ∆in and ∆t. Otherwise, if only a portion of 2x < 1 of a structure is required, with
2x+|∆in|+|∆t| encryptions the attacker can build around

(2x+|∆in|+|∆t|

2
)

≈ 22(x+|∆in|+|∆t|)−1

pairs with the correct1 ∆in and ∆t.
Only the pairs with a ciphertext difference lying in ∆out are of interest, so we have:

N =
{

2x+2|∆in|+2|∆t|−1−(n−|∆out|) if 2x ≥ 1
22x+2|∆in|+2|∆t|−1−(n−|∆out|) if 2x ≤ 1.

Consequently, 2x and thus the data complexity D should be chosen so that:

D =
{

2x+|∆in|+|∆t| ≈ g ln(2)2cin+cout−|∆in|−|∆t|+1+n−|∆out| if 2x ≥ 1
2x+|∆in|+|∆t| ≈ min∆∈{∆in,∆out}

{√
g ln(2)2cin+cout+1+n−|∆|

}
if 2x ≤ 1.

There is finally the cost of guessing and filtering the pairs. This approach is identical
to the single-tweak(ey) case. Using early-abort and the heuristic from [BNS14], we can
estimate it to cost

N2|kin∪kout|−cin−cout .

The exhaustive search of the remaining key bits requires 2k−g encryptions so in the
end the total time complexity is (where CE and C ′

E are as defined in Section 2.1):

T =
(

D +
(

N + 2|kin∪kout| N

2cin+cout

)
C ′

E + 2k−g

)
CE .

1Note that a refinement of these approximations can be obtained to take into account the fact that the
tweakey has to be active, by multiplying the previous formula by 2|∆t|−1

2|∆t| . In particular we will use this in
the case |∆t| = 1, as it corresponds to a factor 1

2 .
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While the formula is the same as for the single key case in Section 2.1, the values of N
and D depend on the value of |∆t|.

5.3 Differences with [SMB18]
If there are 2|∆t| possible tweakey differences, assuming the initial attack uses at least
2|∆t| structures, the correction is:

• Instead of encrypting each plaintext under two different tweaks, it is encrypted under
2|∆t| tweaks.

• The tweakey constraint is no longer free in our model, and divides the number of
pairs by 2|∆t| (that is, in general formulas, we need to add |∆t| to cin or cout).

Overall, the main change is the number of pairs, which is significantly increased. Every
other parameters, including the data complexity, can be reused as-is. Interestingly, the
parts of the key recovery after checking the tweakey constraints are identical. Thus, in
some regimes, the estimated time cost is not changed, and the only difference is the larger
memory footprint, as pairs need to be stored in memory for filtering.

6 Impact on Concrete Key-Recoveries
Including the original [SMB18], we identified 5 articles [SMB18, BDL20, DNS24, HSE23,
HGSE23] that build upon this technique. Among them, 3 explicitly reuse the key-recovery
technique, while 2 apply the original SKINNY related-tweakey distinguisher in different
contexts. All theses attacks are against variants of SKINNY. For clarity, we express the
attack parameters in function of s.

6.1 Revisiting the Original Article [SMB18]
In addition to the 23-round attack that we detailed in Section 3, Sadeghi et al. proposed
a 19-round related tweakey impossible differential attack on SKINNY-n-n (see [SMB18,
Appendix A]) that uses the same technique. By applying the formulas from Section 5.2 to
both these attacks (aiming for the same success probability as in [SMB18]), we obtain the
patched parameters and complexities as presented in Table 2.

Table 2: Claimed and patched parameters and costs for the attacks of [SMB18] against
SKINNY.

Attack Version rounds |∆in| cin |∆out| cout |∆t| x D N T

[SMB18]

64-64
19 4s 4s 9s 8s 1

44.3 261.3 248.3 262.83

128-128 89.47 2122.47 297.47 2124.43

64-128
23 4s 3s 16s 16s 1

45.47 262.47 277.47 2124.21

128-256 91.40 2124.41 2155.41 2243.61

patch

64-64
19 4s 4s 9s 9s s

41.3 261.3 252.3 262.83

128-128 82.47 2122.47 2105.47 2124.43

64-128
23 4s 4s 16s 16s s

42.47 262.47 281.47 2124.21

128-256 84.40 2124.40 2163.40 2243.61

Note that it’s the error in the cin/cout value that creates the error in N .
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6.2 Attacks Presented at Eurocrypt 2023 [HSE23]
The article [HSE23] presents a new CP-based method to search for impossible-differential,
integral and zero-correlation attacks. Among the impossible differential attacks that
are presented, only two attacks are related-tweakey attacks that use the framework
from [SMB18]. The two are almost-identical, with distinct targets: SKINNY-64-192
and SKINNY-128-384. They are both detailed in the full version of the article [HSE22,
Appendix F.4].

As with the previous application, we need to consider |∆t| = s and an increased cin.
The changes in the attack parameters are detailed in Table 3. While the increase of cin

and thus of N impacts the key-recovery detailed in [HSE23], its first step is to tackle the
tweakey difference. This first filtering step has a negligible cost compared with later steps
and hence, the overall cost of the pair filtering is the same. In the end, the time and data
complexities of our patched version match the ones obtained with the flawed technique.

Table 3: Claimed and patched parameters and costs for the 27-round attacks against
SKINNY from [HSE23, Table 1]. † The caption of [HSE22, Fig. 10] claims cin = 4s. This
is however inconsistent with the computations on the previous page and likely a typo.

Attack Version |∆in| cin |∆out| cout |∆t| x D N T

[HSE23]
64-192

4s 3s† 16s 16s 1
46.64 263.64 278.64 2183.26

128-384 91.99 2124.99 2155.99 2362.61

patch
64-192

4s 4s 16s 16s s
43.64 263.64 282.64 2183.26

128-384 84.99 2124.99 2163.99 2362.61

6.3 Follow-up of the Eurocrypt Article [HGSE23]
A follow-up of the previous article was posted on ePrint [HGSE23] in November 2023.
Among other things, it proposes an extension of the previous CP model that covers
bit-oriented ciphers and that does not require the attacker to set the contradiction point
of the impossible differential distinguisher.

The authors applied this improved model to various variants of SKINNY (SKINNY,
ForkSKINNY and SKINNYe-v2) and proposed 15 impossible differential attacks. As
with the previous article, the key-recovery technique of [SMB18] is explicitly used. For
most of the attacks the time cost is unaffected. Still, for 2 of them the updated costs are
slightly above what was initially claimed. Our results are summarized in Table 4.

We communicated our observations to the authors of the preprint who confirmed our
findings and added a discussion in the published version of their article (see Appendix A
of [HGSE24]).

6.4 Cryptanalysis of ForkSKINNY [BDL20]
In [BDL20], Bariant et al. proposed two attacks on ForkSKINNY-128-256. The first
one, which attacks the 128-bit key version, reuses the attack against 19-rounds SKINNY-
128-128 from [SMB18] to attack 24-round ForkSKINNY. As the conversion is essentially
independent on the details of the attack, the flawed key-recovery is only implicitly used.
Moreover, the correction is roughly the same as the one in Section 6.1.

The second attack, which targets the 256-bit key version, relies on an extension of
the distinguisher described in [SMB18] on SKINNY-128-256. By taking advantage of
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Table 4: Claimed and updated parameters and costs for the attacks from [HGSE23].
Patched variants keep the same data complexity, reoptimized variants change it to minimize
the time.

Cipher rounds Version |∆in| cin |∆out| cout |∆t| x D N T

ForkSKINNY
64-192

28

[HGSE23, G.1] 13s 11s 14s 14s 1 8 260 2104 2169.6

patch 13s 13s 14s 14s 2s 1.2 261.2 2112 2169.6

[HGSE23, G.2] 6s 5s 16s 16s 1 38 262 286 2123.73

patch 6s 6s 16s 16s s 35 263 290 2123.73

30
[HGSE23, G.4] 6s 5s 16s 16s 1 38 262 286 2123.73

patch 6s 6s 16s 16s s 35 263 290 2123.73

32
[HGSE23, G.3] 13s 12s 16s 16s 1 10 262 2114 2186.27

patch 13s 13s 16s 16s s 7 263 2118 2186.27

ForkSKINNY
128-256

20

[HGSE23, G.8] 5s 4s 10s 7s 1 61 2101 293 2102.2

patch 5s 5s 10s 7s s 54 2102 2101 2107.26

reoptimized 5s 5s 10s 7s s 53.2 2101.2 2100.2 2106.5

24

[HGSE23, G.6] 8s 6s 8s 8s 1 54.4 2118.4 2118.4 2123.17

patch 8s 7s 8s 8s s/2 51.4 2119.4 2122.4 2126.83

reoptimized 8s 7s 8s 8s s/2 50 2118 2121 2126.27

[HGSE23, G.7] 8s 7s 12s 12s 1 62.7 2126.7 2158.7 2246.62

patch 8s 8s 12s 12s s/2 59.7 2127.7 2162.7 2246.62

26
[HGSE23, G.5] 13s 12s 9s 9s 1 23.6 2127.6 2175.6 2238.5

patch 13s 13s 9s 9s s/2 20.6 2128.6 2179.6 2238.5

ForkSKINNY
128-288

26
[HGSE23, G.12] s 0 8s 8s 1 116.6 2124.5 268.6 2126.74

patch s s 8s 8s s/2 113.6 2125.6 272.6 2126.74

28

[HGSE23, G.10] 8s 7s 5s 5s 1 60.8 2124.8 2100.8 2126.68

patch 8s 8s 5s 5s s/2 57.8 2125.8 2104.8 2126.67

[HGSE23, G.11] 7s 6s 13s 13s 1 70.9 2126.9 2158.9 2277.23

patch 7s 7s 13s 13s s/2 67.9 2127.9 2162.9 2277.23

31
[HGSE23, G.9] 8s 7s 16s 16s 1 62.5 2126.5 2190.5 2280.5

patch 8s 8s 16s 16s s/2 59.5 2127.5 2194.5 2280.5

SKINNY
128-288

23
[HGSE23, H.2] 7s 6s 5s 5s 1 64.8 2120.8 288.8 2126.73

patch 7s 7s 5s 5s s 57.8 2121.8 296.8 2126.73

26
[HGSE23, H.1] 9s 8s 16s 16s 1 50 2122 2194 2286.38

patch 9s 9s 16s 16s s 43 2123 2202 2286.38

SKINNYe-v2 31
[HGSE23, H.3] 12s 11s 16s 16s 1 14 262 2110 2251.14

patch 12s 12s 16s 16s s 11 263 2114 2251.14
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ForkSKINNY’s structure, the authors add 3 blank rounds to the distinguisher and are
able to attack 26 rounds of ForkSKINNY with ri = 7, r0 = 27 and r1 = 19 rounds.

Given that their distinguisher has a distinct input difference, the authors made their
own key recovery. The proposed data generation step begins with the encryption of each
structure under several keys, as in the correction we propose.

Their distinguisher requires an initial tweakey difference that makes the round tweakeys
TK6 anf TK9 inactive which corresponds to selecting δ ∈ Fs

2 so that δ ⊕ LFSR15
2 (δ) = 0.

For both s = 4 and s = 8 there are 15 such solutions δ (and hence there are 15 related-key
impossible differential trails for 18 rounds), and as the condition is linear the solutions
form a linear subspace.

We agree with the parameters and with the complexity analysis made by the authors.

6.5 Quantum Impossible Differential Attacks [DNS24]

The article [DNS24] proposes a framework for quantum impossible attacks, and gives as
an application a quantum attack heavily inspired by [SMB18], but with 2 less rounds in
the output. Unfortunately, they reuse as-is the parameters for the input, that is, there
is no tweakey variation and a cancellation is free. While the authors use these flawed
parameters to estimate the number of pairs, they also describe a detailed key-recovery,
which is correct (and in particular is inconsistent with the claimed value for cin). The
authors also seek enough filtering to directly obtain the correct kin ∪ kout subkey.

As quantum computing is not the focus of this paper, we refer to [DNS24] for details
and formulas. In particular, the quantum framework can be used with our key recovery, it
only amounts in changing some parameters in their formulas.

We can patch the attack by adding |∆t| = s to the initial |∆in| (each plaintext is
encrypted with all tweaks) and cin. We can then reuse their formulas to obtain an updated
quantum cost. This cost corresponds to what the authors would have obtained had they
used correct parameters.

Optimization. We also propose an improved variant, that contains the following changes:

• The rejection probability of a key is estimated more precisely, using the natural
logarithm,

• As the first filtering step in their key recovery does not depend on any key guess, it
is moved to the pair generation part.

Our results are summarized in Table 5.

Table 5: Parameters and costs for the attacks against 21-round SKINNY-128-256. s = 8
bits. Note that the “no QRAM” attack requires classical pair generation in 2128 classical
time and queries. † Using the formulas from [DNS24] we obtain 2114.46. The 2117.46 is
likely a typo.

Attack |∆in| + |∆t| cin
|∆out|

N
Pair generation cost Pair filtering cost

and cout (with QRAM) With QRAM no QRAM

Original 4s 3s 9s 2103.17 2119.17 2104.32 2117.46†
Direct patch 5s 4s 9s 2111.17 2121.84 2112.32 2122.70

Optimized 5s 4s 8s 2102.64 2118.64 2103.79 2114.15
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7 Conclusion
In this paper, we analysed the technique proposed at ToSC 2018 by Sadeghi et al. and we
highlighted an inaccuracy that was propagated to multiple follow-up works over a span of
6 years. We showed that the technique misestimated the data generation and in particular
does not encrypt the plaintexts under the full set of relevant tweaks as it is required. A
second (related) problem comes from a condition that was considered to be passed for free.

We showed how to fix these problems and proposed generic formulas that we used to
reevaluate 5 papers using this technique. By taking advantage of tweakey structures we
obtained corrected attacks covering the same number of rounds and with complexities that
are close to the wrong ones. Shortly after noticing the problem, we shared an early version
of this note with the authors of the 5 papers, who agreed with our findings. Moreover,
the authors of [HGSE23] provided a short discussion of the impact of our fix on their
automated tool in the final version of their article, published at ToSC 2024 issue 1 (see
[HGSE24, Appendix A]).

On a more general note, our work can be seen as a reminder to be cautious when
relying on previously published techniques and to carefully analyze existing methods before
reusing them.
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