
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 3, 21 pages.

https://doi.org/10.62056/avivommol
Check for updates

Special Soundness in the Random Oracle Model
Douglas Wikströma

KTH Royal Institute of Technology, Stockholm, Sweden

Abstract. We generalize the optimal knowledge extractor for constant-round special
sound protocols presented by Wikström (2018) to a knowledge extractor for the
corresponding non-interactive Fiat-Shamir proofs in the random oracle model and
give an exact analysis of the extraction error and running time.
Relative the interactive case the extraction error is increased by a factor ℓ and the
running time is increased by a factor O(ℓ), where ℓ is the number of oracle queries
made by the prover.
Through carefully chosen notation, novel concepts, and a technical lemma, we effec-
tively recast the extraction problem of the notoriously complex non-interactive case
to the interactive case. Thus, our approach may be of independent interest.

1 Introduction
Zero knowledge proofs and proofs of knowledge. Zero knowledge proofs were
discovered by Goldwasser, Micali, and Rackoff [GMR89]. They allow a prover to inter-
actively convince a verifier that a statement is true without disclosing anything else. A
related notion discovered by Bellare and Goldreich [BG92] are proofs of knowledge. In such
protocols the prover not only shows that a statement is true, but that it holds a witness of
this fact.

The completeness of a protocol is the probability that it completes successfully when
both parties follow the protocol on a valid common input. The soundness error of a
protocol is the probability that a malicious prover convinces an honest verifier that a false
statement is true.

If there is an extraction algorithm such that for every prover and every statement
a witness is output in expected time (over the internal randomness of the extractor)
poly/(∆ − ϵ), where ∆ is the probability that the honest verifier is convinced and ϵ is the
knowledge error, then the protocol is called a proof of knowledge. Thus, the knowledge
error is an upper bound on the probability that a prover convinces a verifier without
knowing a witness.

The extractor may rewind and complete multiple executions from any point of the
execution, i.e., it treats the prover as a deterministic oracle. A knowledge error ϵ implies a
soundness error of at most ϵ, since the analysis of the knowledge extractor may be seen as
a probabilistic proof [AS08]. Due to the efficiency requirement on the extractor the reverse
implication does not hold. Readers are referred to [Gol00] for a thorough discussion of
variations of these notions.

Special soundness. A three-message public-coin protocol [GMR89, Bab85] is defined
to be special sound if a witness can be computed efficiently from two accepting transcripts
with a common first prover message, but distinct verifier messages. This notion was

E-mail: dog@kth.se (Douglas Wikström)
aPartially supported by the TrustFull project funded by the Swedish Foundation for Strategic Research.

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-08 Accepted: 2024-09-02

https://doi.org/10.62056/avivommol
https://crossmark.crossref.org/dialog/?doi=10.62056/avivommol&domain=pdf&date_stamp=2024-10-03
https://orcid.org/0000-0003-4157-1371
mailto:dog@kth.se
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Special Soundness in the Random Oracle Model

introduced by Cramer et al. [CDS94] as a generalization of a property of Schnorr’s proof
of knowledge of a discrete logarithm [Sch91].

In the generalization of Wikström [Wik18] a (2r + 1)-round protocol is special sound
if: (1) the ith verifier message is chosen uniformly at random from the ground set Si of
a matroid Mi for i ∈ [r], and (2) a witness can be computed from a tree of accepting
transcripts such that for each i ∈ [r] and each node at depth i − 1 the verifier messages
form a basis of Mi.

We use matroids as a language to formalize independence abstractly, but examples from
the literature include inequality [Sch91] or linear independence [BGR98]. It is common
to restrict challenge spaces in real-world applications by truncation or by using a pseudo-
random generator to expand challenges. Using the language of matroids this amounts to
considering a natural induced submatroid. Our results remain rigorous and explicit even
in this case. Matroids are commonly used and play an important role in the analysis of
graph algorithms. Follow-up work focus on (d1, . . . , dr)-special-soundness, i.e., the special
case of uniform matroids.

Knowledge extraction. For special sound protocols knowledge extraction amounts
to sampling interactions until two (or more) accepting transcripts with the required
independence properties are found. A basic version of a forking lemma appears in Schnorr’s
analysis of an extractor of a discrete logarithm [Sch91] and was refined and generalized in
later work [PS96, BN06]. A knowledge extractor may be an expected/strict polynomial
time algorithm which always/mostly extracts a witness. Mathematically the difference is
mostly a matter of taste, but it matters in some applications [BL04].

A forking lemma for interactive constant-round protocols appears in Bootle et al
[BCC+16]. The first exact result is given by Wikström [Wik18]. Note that for generic
special sound protocols the knowledge error can never be smaller than maxi∈[r]{|Si|−1},
since it may suffice to guess a single challenge correctly. Indeed, without additional
assumptions a prover may be able to verify if it guessed correctly in each round. Thus, his
analysis is essentially tight in this case.

However, the special case of protocols where a prover cannot determine if it guessed
correctly until the last round remain important, since they admit using small challenge
spaces and still have exponentially small knowledge error. In this case, it is important to
consider sampling without replacement. The analysis in [Wik18] applies in a straightforward
way by replacing geometric and negative binomial distributions by their hypergeometric
and negative hypergeometric siblings and adjust the tail bounds.

Follow-up work [HKR19, dPLS19, JT20, AL21] may in hindsight loosely be thought of
as performing this analysis from scratch. This is partly obscured by the different choice of
notation.

They also focus on the special case of (d1, . . . , dr)-special-soundness, which is captured
in [Wik18] as uniform matroids where rank(Mi) = di. From a technical point of view the
difference is minor. Their results can be adapted either by: (1) constraining sampling,
or (2) showing that the output is random and iterate. However, one cannot apply an
extractor for uniform matroids in a blackbox way to extract, e.g., linearly independent
vectors, since the only guarantee for the output is that the vectors are pairwise distinct.
To summarize, Attema et al [ACK21] provides a tighter analysis for a special case of
special sound protocols, where additionally provers are oblivious to their conditional success
probability conditioned on the interaction so far.

Fiat-Shamir heuristic. Recall that a public coin protocol may be converted into a
non-interactive protocol using the Fiat-Shamir transform [FS86]. This replaces each verifier
message by the output of a hash function evaluated on the common input and the current
partial transcript. This is important in practice to reduce the number of rounds.

Douglas Wikström 3

The Fiat-Shamir heuristic suggests that we may analyze such protocols by replacing
the hash function by a random oracle. The random oracle model was generalized and
formalized by Bellare and Rogaway [BR93]. When we analyze the protocol in the random
oracle model we are effectively assuming that it suffices to consider adversaries which treat
the hash function as if it was ideal and never inspect its definition.

However, the adversary may still exploit the fact that it may query the random oracle
repeatedly on inputs of its choice. This enables it to probe a tree of partial executions
until it can extend at least one interaction with the random oracle to a complete accepting
transcript that it outputs as its non-interactive proof.

Grafting protocols. It is more convenient to think of the interaction between the prover
and the random oracle as a grafting protocol where the prover may extend the execution
from any previous existing verifier message by grafting a new branch, i.e., a reply, to a
verifier message. The verifier is easily adapted correspondingly to give the prover this
ability. An execution is then considered to be accepting if any path from the root to a leaf
in the resulting tree of transcripts, corresponding to a transcript of the basic protocol, is
accepting.

We stress that neither party rewinds to a previous point in the execution; branches are
grafted to the existing tree of executions which remains part of the view. Furthermore, the
branches are added in a particular order by the prover, i.e., each prover-verifier message
exchange may be associated with an integer index which orders them chronologically. This
means that an execution of the grafting protocol may be identified with a topologically
ordered subtree of the tree of all possible executions of the basic protocol.

Provided that the verifier messages have high entropy the computation of a Fiat-Shamir
proof is statistically close in distribution to the execution of the corresponding grafting
protocol. Thus, we study knowledge extraction for grafting protocols.

1.1 Contribution
The main contributions of our work are: (1) an exact security analysis of Fiat-Shamir
protocols, and (2) a novel technique for analyzing protocols in the random oracle model.

We state the former result informally below for easy reference and focus on the
application of the novel technique that we use to handle the main technical problem that
differentiate the non-interactive case from the interactive case. We believe that this can
be adapted to analyze other constructions in the random oracle model as if they where
interactive protocols.

1.1.1 Exact security of Fiat-Shamir proofs.

It is well known [Sch91] that if a prover convinces a verifier with probability ∆ in a three-
message special sound protocol, then a witness can be extracted in expected time p/(∆ − ϵ),
where p is polynomial and ϵ is the knowledge error. Wikström [Wik18] generalized the
notion to constant-round special sound protocols and gave an exact and tight bound. The
concrete contribution of this work is a corresponding theorem for grafting protocols.

Theorem 1 (Informal). Let (P, V) be a (2r + 1)-message (M1, . . . ,Mr)-special sound
protocol with soundness error ϵS and knowledge error ϵK for a knowledge extractor that for
any instance and prover that convinces the verifier with probability ∆ > ϵK , for a constant
c is expected to execute the protocol c/(∆ − ϵK) times.

Then its (2ℓ+1)-message grafting protocol has soundness error ℓϵS and knowledge error
ℓϵK for a knowledge extractor that for any instance and prover that convinces the verifier
with probability ∆ > ℓϵK is expected to execute the grafting protocol 4 · 3r+1ℓ · c/(∆ − ℓϵK)
times.

4 Special Soundness in the Random Oracle Model

In applications we may often choose parameters of the protocol to reduce the soundness
and knowledge errors by a factor of 1/ℓ. Thus, in practice the Fiat-Shamir transform
causes a loss of roughly log ℓ + O (1) bits of security. The constant factor is well below
constant factors due to implementation considerations and may be ignored in practice.

1.1.2 Novel proof technique.

A careful choice of notation, novel concepts, and a technical lemma, allow us to effectively
reduce the problem of constructing an extractor to the combinatorial problem of finding
an accepting basis in a suitably defined matroid tree, but the distribution of the verifier
messages is influenced by the adversary and not necessarily uniform. The main technical
challenge is to prove that this distribution can be sampled efficiently. Apart from this the
analysis from [Wik18] applies mutatis mutandi. We think that this approach may be the
main and lasting contribution of our work.

Remark. A few months after our discovery Attema, Fehr, and Klooss largely indepen-
dently discovered a theorem [AFK22] similar to our main theorem. Interestingly, their
work is based on Attema et al. [ACK21], while we rely on the work of Wikström [Wik18].
We are currently working on a general framework that generalizes these and other related
results.

1.2 Proof Strategy
Grafting protocols. We first formalize the computation of a non-interactive Fiat-Shamir
proof, based on a special sound protocol, as the execution of a grafting protocol. In such
protocols the verifier allows the prover to repeatedly: (1) spawn a new execution of the
basic protocol, or (2) extend an existing partial execution of the basic protocol by grafting
an additional round to it.

Thus, at any point during execution the transcript may be viewed as a tree of partial
executions that grows one edge for each round. We stress that the prover may choose the
location of each grafted round and that this may depend on both the structure of the tree
and the verifier messages seen so far. The verifier accepts if there exists an embedded
accepting transcript of the basic protocol corresponding to a path from the root to a leaf.

This captures the computation of a Fiat-Shamir proof faithfully except that the prover
may only execute a round after the previous rounds have been executed, i.e., it is effectively
restricted to queries to the random oracle that do not amount to guessing any reply
correctly. The entropy of verifier messages is typically high in applications, and applying
the Fiat-Shamir transform at all to a round with small entropy is pointless unless we
assume additional properties about the protocol. Thus, for generic protocols a prover
can only guess correctly with exponentially small probability, and the grafting protocol is
essentially a faithful model.

Extraction problem for grafting protocols. An extractor for a special sound protocol
repeatedly and recursively: (1) samples an accepting transcript, and (2) samples other
accepting transcripts from a prefix of the first. If this fails within reasonable time it
gives up and rewinds before restarting the recursive procedure. Additionally, the verifier
messages at a given depth are sampled such that the children of each node form a basis of
a matroid determined by the protocol.

An extractor that treats the prover as a blackbox must rewind it to extract a suitable
tree of transcripts. Rewinding is easy to visualize for interactive protocols, but for a
grafting protocol this means that leaves are pruned in the reverse order in which they
were grafted to the tree of partial executions. Furthermore, when the protocol is executed
with fresh randomness from a partial grafting transcript the tree of partial transcripts

Douglas Wikström 5

may regrow into a differently shaped tree and not only have different verifier messages
associated with the nodes.

To understand the added complexity in the extraction problem for grafting protocols
it is worthwhile to consider an embedded accepting transcript in a grafting transcript.
An example of a tree of transcripts with an embedded transcript is given at the top of
Figure 1.2. To rewind the execution of the embedded execution to a given round requires
rewinding the execution of the grafting protocol.

The problem is that even if we complete an accepting execution from the rewinded state
there is no guarantee that the resulting embedded accepting transcript is a completion of
the prefix of the original embedded accepting transcript. Indeed, the prover may spawn
a new execution of the special sound protocol, or graft additional rounds to any of the
existing partial executions to form a new embedded accepting transcript.

Linearization and grafted sequences. The prover messages are a deterministic
function of the verifier messages induced by the prover, which means that we can view: (1)
the entire protocol execution, and (2) the verdict of the verifier as a single predicate and
focus on the verifier messages.

The added complexity that comes with a tree of partial transcripts is partially superficial,
since the actual execution of the grafting protocol proceeds linearly and the transcript is
simply a list of messages that appears in topological order with respect to the tree if we
encode the position of a grafted round as an integer index.

Furthermore, although each index for grafting a round is adversarially controlled, it
is a deterministic function of the verifier messages thus far in the execution. Thus, the
distribution of the list of verifier messages is induced by the prover and can be efficiently
sampled. We call the sequence of verifier messages that is generated by this process a
grafted sequence. An example corresponding to a tree of transcripts ordered topologically
is given in the middle of Figure 1.2.

Shadow sequences and sampling. From a complete accepting grafted sequence z of
the verifier we know the positions of the verifier messages belonging to the corresponding
embedded accepting transcript, and the corresponding prover messages can be computed
deterministically.

Thus, given a grafted sequence z, we can partition it into a shadow sequence of the form
w = (w1, . . . , wr), where wi ends with the ith verifier message of the embedded transcript
(except wr which is slightly different). This is illustrated at the bottom of Figure 1.2. We
think of w as a shadow, since prefixes are not stable under the addition of elements. More
precisely, suppose that z is a grafted sequence with shadow sequence w, and that the
shadow prefix w[i] equals the prefix z[k] if we concatenate its components. If z′ is a grafted
sequence with the same prefix z[k], then the prefix w′

[i] of its shadow sequence may have
no common elements with w[i].

We may still think of each shadow element wi as sampled from a ground set of a shadow
matroid M∗

i , which inherits the essential combinatorical structure from the corresponding
matroid Mi of the special sound protocol, but the distribution is influenced by the prover.

If we from any prefix w[i] of an accepting shadow sequence w with reasonable probability
could sample a complete shadow sequence w′, then we would have reduced the extraction
problem for grafting protocols to that of basic special sound protocols, i.e., the analysis
from [Wik18] would apply with minor syntactical changes.

Sampling shadow sequences. Unfortunately, we can only sample grafted sequences
directly. Suppose that w is the shadow sequence of a grafted sequence z and that the
prefix w[i] corresponds to a prefix z[k] of z. Then if a randomly sampled z′ conditioned on
z′

[k] = z[k] is accepting with probability ∆ we can certainly sample an accepting grafted

6 Special Soundness in the Random Oracle Model

sequence z′ from the prefix z[k] in time roughly 1/∆, but in general the probability that
its shadow sequence w′ satisfies w′

[i] = w[i] may be arbitrarily low.
Similarly, if we ignore the requirement on acceptance, and focus on keeping the prefix

of the shadow sequence it is not hard to see that a random prefix can be extended with
conditional probability roughly 1/ℓ throughout the recursive process.

We show that both properties can be maintained simultaneously throughout an exe-
cution with constant probability of failure in each step of the process and thereby allow
sampling accepting shadow sequences that extend the prefixes that appear in the algorithm.

1
2

3 4
10

6
7 8

9
5

11
12

13 14 20
16

17 18

19 15 21 22 23 24 25 26 27 28 29 36 31 32 33 34 35 30

1 2 3 · · · 10 · · · 20 · · · 36

1 2 3

Tree of partial transcripts

Grafted sequence

Shadow sequence

Figure 1: A tree of partial transcripts for a 7-message grafting protocol with enumerated
grafted branches, the corresponding grafted sequence with predecessor pointers for an
embedded accepting transcript of the basic protocol (using thicker lines), and the corre-
sponding shadow sequence.

2 Background
We need a number of definitions and concepts from [Wik18], but the reader may in a
first reading think of linear independence over a vector space instead of independence in
a matroid. This is natural and common in applications [BGR98, Nef01, FS01, Wik05].
Truncated challenges, which is common in real applications, means considering the induced
submatroid of a vector space. Thus, the language of submatroids not only captures the
type of independence we care about, it captures an important practical optimization
rigorously as a special case.

Recall that a matroid M = (S, I) consists of a ground set S and a set I of subsets of S
that is closed downwards and satisfy the independent set exchange property. A basis is
a set B ∈ I such that B ∪ {x} ̸∈ I for every x ∈ S \ B. The rank rank(M) of a matroid
is the unique maximal number of elements in a basis. The span of a set A is defined
by span(A) = {x ∈ S | rank(A ∪ {x}) = rank(A)}. A flat is a set which is its own span.
Appendix F provides explicit definitions. Throughout di denotes the rank of a matroid Mi.

A matroid tree ({v0},M1, . . . ,Mr), where v0 is an arbitrary singleton, represents the
set of verifier messages in a special sound protocol as well as the independence relations
needed from a set of accepting transcripts to allow computation of the witness. A subtree
is a basis if for each node at depth i − 1 its children form a basis of Mi.

Definition 1 (Matroid Tree). The matroid tree associated with a list of matroids M =
({v0},M1, . . . ,Mr) is the vertex-labeled rooted unordered directed tree of depth r such
that: the root is labeled v0 and every node at depth i − 1 has edges to |Si| children which
are uniquely labeled with the elements of the ground set Si.

Definition 2 (Basis). A basis of a matroid tree M of depth r is a maximal subgraph such
that for every i ∈ [r] the set of children of every node at depth i − 1 is a basis of Mi.

Douglas Wikström 7

The subdensity captures the fraction of elements of the ground set which is outside a
flat. This was introduced in [Wik18] to allow analysis of protocols where verifier messages
are chosen from a subset of the algebraic structure which defines the independence sets.

Definition 3 (Subdensity). Let M = (S, I) be a matroid of rank d. Then its ith subdensity
is ωM,i if |A|/|S| ≤ ωM,i for every flat A of rank i − 1, and it has maximal subdensity
ωM = ωM,d.

After abstracting the execution of a protocol and the verdict of the verifier as a predicate
ρ on verifier messages the extraction problem amounts to finding a basis of a matroid tree.
Let S = ×i∈[r]Si and ∆ρ(M) = Pr [ρ(v) = 1], where v is sampled uniformly over S.

Definition 4 (Accepting Basis Extractor). A probabilistic polynomial time algorithm
Xκ parametrized by κ ∈ {0, 1}∗ is a (ϵκ, Dκ(∆))-accepting basis extractor with extraction
error ϵκ for a matroid tree M, where Dκ(∆) for fixed κ is a family of distributions on N
parametrized by ∆ ∈ [0, 1], if for every M-predicate ρ : S → {0, 1} and ∆ρ(M) ≥ ∆0 > ϵκ:
X ρ(·)

κ (M, ∆0) outputs a ρ-accepting basis of M, where the distribution of the number of
ρ(·)-queries is bounded by Dκ(∆0).

In other words, an accepting basis extractor finds a tree of accepting interactions, but
only outputs the corresponding tree of challenges, since the prover messages are defined by
the verifier’s challenges. Furthermore, the challenges which are children of a node at depth
i − 1 are independent with respect to the ith matroid. The running time is expressed in
terms of a distributional bound, since we typically have a concentrated distribution for
free, which is useful to derive exact bounds in applications.

3 Grafting Protocols
Before we introduce grafting protocols we need some notation. The ith message of the
prover is a pair (pi, ai), where pi is the index of a previous verifier message onto which the
new branch is grafted and ai is a prover message of the basic protocol. The verifier always
sends its next challenge message immediately, so there is no need for an additional index for
the verifier’s messages. One round of interaction is therefore always a triple (pi, ai, vi+1),
where pi = 0 if the prover starts a fresh execution of the basic protocol. Every path in the
tree of partial executions of the basic protocol then has the form (aj1−1, vj1 , . . . , aji−1, vji

),
where pji

= ji−1, i.e., it is an embedded transcript of the basic protocol. To ensure that
the distribution of verifier messages is correct, the grafting verifier keeps state and samples
each message from the appropriate ground set.

3.1 Functions of Transcripts
After each prover message during an execution of the grafting protocol on common input
x the current transcript has the form

(
x, (p1, a1, v2), . . . , (pi−1, ai−1, vi), (pi, ai)

)
for some

i. We call this a truncated transcript and denote it by t[i], where t may be a complete or
truncated transcript itself. This allows us to define a natural depth function.

Definition 5 (Depth Function). The depth function δ takes a truncated transcript of a
grafting protocol as input and is defined by

δ(t[i]) =
{

1 if pi = 0
1 + δ(t[pi]) otherwise .

When the truncated transcript is clear from the context we abuse notation and simply
write δ(pi) to mean δ(t[i]).

8 Special Soundness in the Random Oracle Model

Definition 6 (Index Function). The index function ι(·) takes a truncated transcript of a
grafting protocol as input and is defined by ι(t[i]) = (j1, . . . , jd), where d = δ(t[i]), jd = pi,
and jl = pjl+1 for l = d − 1, . . . , 1.

These functions merely gives a way to refer to the unique embedded partial transcript
that was most recently extended by a round of interaction. Finally, we introduce notation
for extracting the embedded transcript itself using the index function.

Definition 7 (Path Projection). The path projection τ(·) takes a truncated transcript of
a grafting protocol as input and is defined by

τ(t[i]) = (x, aj1−1, vj1 , . . . , ajd−1, vjd
, ai) , where (j1, . . . , jd) = ι(t[i]) .

Note that if d = r, then the embedded transcript is complete and is either accepting or
rejecting.

3.2 Grafting Verifier
We give an explicit transformation of a public coin verifier into a grafting verifier for
completeness. It is implicit that it rejects if an index pi provided by the prover is invalid,
i.e., if there does not exist a verifier message with the index pi in the existing partial
transcript onto which a round can be grafted.

Without loss of generality we assume that the verifier sends exactly ℓ messages and
that the prover’s final message corresponds to a final reply of an accepting execution of
the basic protocol, if any exists at all.

Definition 8 (Grafting Verifier). If (P, V) is a (M1, . . . ,Mr)-special sound protocol, then
on common input x its ℓ-grafting verifier G[V] proceeds as follows:

1. Initialize an empty table H[·]

2. For i = 0, . . . , ℓ − 1:

(a) Wait for a message (pi, ai) from the prover.
(b) If H[τ(t[i])] ̸= ∅, then set vi+1 = H[τ(t[i])], and otherwise choose vi+1 ∈ Sδ(pi)

randomly, set H[τ(t[i])] = vi+1, and hand vi+1 to the prover.

3. Wait for a message (pℓ, aℓ) from the prover.

4. Return the verdict V
(
τ(x, (pi, ai, vi+1)i∈[0,ℓ−1], pℓ, aℓ)

)
of the verifier V.

Each verifier message is chosen from the ground set associated with the appropriate
round in the basic protocol due to the depth function. To avoid grafting more than once
at a given index with the same prover message the verifier uses a table. This mirrors the
same property of a random oracle, i.e., once sampled it returns the same output every
time it is queried on the same input.

We are interested in malicious provers which graft branches during the execution, but
for completeness we describe in Appendix D the corresponding honest prover which is
merely a wrapper of the honest prover of the basic protocol.

3.3 Grafting Protocols vs Non-interactive Fiat-Shamir Proofs
We may interpret the execution of a grafting protocol as the prover computing a Fiat-
Shamir proof in the random oracle model using a random oracle RO as follows. Relative to
the current truncated transcript t[c] a prover message (pi, ai) with i ≤ c uniquely identifies
an embedded transcript τ(t[i]). For this embedded transcript the next verifier message

Douglas Wikström 9

vi+1 is independently and uniformly distributed in the appropriate matroid ground set
and sampled exactly once.

When the min entropy of the verifier message in each round is high this is essentially
equivalent to the computation of a Fiat-Shamir proof, where the next verifier message is
defined by vi+1 = RO(τ(t[i])). Indeed, if the min entropy η is high, then the probability
that a prover queries the random oracle in advance at a point partially defined by random
verifier messages that it has not yet received is bounded by ℓ2−η.

In general we cannot expect that it is infeasible to: (1) determine if a prover message
is likely to be part of an accepting execution, or (2) use re-randomization to generate
arbitrarily many such prover messages from one. This means that a prover can probe up
to ℓ verifier messages. Thus, if the min entropy is not exponentially smaller than 1/ℓ the
protocol may loose all soundness, i.e., it is unwise to apply the Fiat-Shamir transform at
all.

More precisely, let G[V]RO be the verifier that simply replaces the use of the table H[·]
by an application of the random oracle RO (for a suitable range) and derives a challenge
vi+1 ∈ Sδ(pi) deterministically from the output of the random oracle identically to how
vi+1 is derived from a uniformly distributed random tape by G[V]. It is easy to see that
transcripts of executions with G[V]RO and G[V] are identically distributed. Indeed, we
may think of the random oracle as a table.

All we need to show is that a Fiat-Shamir prover may be seen as a prover interacting
with G[V]RO except with statistically small probability, but this is standard. If a verifier
has min entropy η, then the probability that an adversary queries RO on a transcript t[i]
without querying it on the prefix t[i−1] first is bounded by 2−η, and it makes at most ℓ
queries. Thus, the statistical distance between the two settings is at most ℓ2−η by the
union bound.

4 Grafted Sequences
Recall that in [Wik18] the extraction problem is reduced to the problem of extracting
an accepting basis of a matroid tree relative a prover predicate that captures both the
execution of the protocol and the verdict of the verifier.

We proceed similarly to abstract the extraction of a tree of transcripts of a grafting
protocol which correspond to an accepting basis tree in the basic protocol, but in our case
the distribution of verifier messages depends on the prover.

A grafting function determines, from the list of verifier messages so far, at which point
an additional branch is grafted to a sequence, i.e., given a sequence as input it outputs an
integer index of an existing element in the sequence. This abstracts the choice made by
the prover in a grafting protocol. A depth function makes explicit the depth at which a
branch is grafted.

Definition 9 (Grafting Function). A function f such that f(∅) = 0 and f(z1, . . . , zi) ∈
[0, i] for every z1, . . . , zi ∈ {0, 1}∗ and every i ∈ N is a grafting function.

Definition 10 (Depth Function). The depth function δf of a grafting function f is defined
as follows:

δf (z1, . . . , zi) =
{

1 if f(z[i]) = 0
1 + δf (z[f(z[i−1])]) otherwise .

A grafted sequence is an abstraction of a transcript of a grafted protocol where the
verifier messages are explicit, and the prover messages are implicit.

Definition 11 (Grafted Sequence). An (M, f)-grafted sequence of length ℓ, where M =
(M1, . . . ,Mr) is matroid tree with Mi = (Si, Ii) is a sequence z = (z1, . . . , zℓ) such that

10 Special Soundness in the Random Oracle Model

δf (z[i−1]) ≤ r and zi ∈ Sδf (z[i−1]) for every i ∈ [ℓ]. We denote the set of (M, f)-grafted
sequences of length ℓ by GM,f,ℓ.

Similarly to how we extracted indices from a grafted protocol transcript we extract
indices of the verifier messages of an (implicitly defined) embedded truncated transcript
of the basic protocol. It is not meaningful to define a path projection since the prover
messages are defined by the complete grafted sequence.

Definition 12 (Index Function). The index function ιf takes a grafted sequence z ∈ GM,f,ℓ

as input and outputs indices (j1, . . . , jd) defined by j′ = f(z), d = δf (z[j′−1]), jd = j′, and
ji = f(z[ji+1−1]) for i = d − 1, . . . , 1.

4.1 Shadow Sequences
We introduce shadow sequences and shadow matroids as a conceptual step to emphasize
the similarity with the analysis in [Wik18]. The goal is to define a shadow sequence in
such a way that we (almost) may think of it as a sequence of verifier challenges in an
interactive protocol.

Definition 13 (Shadow Sequence). If z is a grafted sequence over GM,f,ℓ, (j1, . . . , jd) =
ιf (z), j0 = 0, and wi = (zji−1+1, . . . , zji) for i ∈ [1, d − 1], and wd = (zjd−1+1, . . . , zℓ), then
σf (z) = (w1, . . . , wd) is its shadow sequence.

The last shadow element ends at index ℓ and not index jd, so there may be some
spurious elements beyond the last embedded verifier message of the basic protocol. This is
necessary, since they influence the prover’s last message, but the reader may safely ignore
this since it does not influence the analysis in any significant way.

For every grafted sequence z there is a shadow sequence w = σf (z) and we may view
a predicate ρ over grafted sequences as a predicate ρ∗ over shadow sequences. The last
component of the ith shadow element is an element from Si. Thus, the ith shadow element
is contained in the following matroid.

Definition 14 (Shadow Matroid). If M = (S, I) is a matroid, then its shadow matroid
M∗ = (S∗, I∗) is defined by S∗ = {0, 1}∗ × S × {0, 1}∗ and letting C be an independence
set in I∗ if and only if B = {b | (a, b, c) ∈ C} is an independence set in I and |C| = |B|.

Intuitively, we would like to think of a shadow sequence as a redundant representation
of a list of verifier messages in the basic special sound protocol, but the prefixes/postfixes
influence the implicitly defined prover messages and the output of the grafting function, so
this remains an intuitive view.

4.2 Grafting Function and Predicate of a Prover
We define a grafting function in terms of a grafting protocol and use the definition of a
prover predicate from [Wik18], which is restated below with adapted notation for easy
reference. The purpose of these definitions is to abstract from protocols and consider a pair
of a grafting function and a predicate instead. This leaves us with a clean combinatorial
problem.

Definition 15 (Grafting Function of Prover). The grafting function f [P∗, V] of P∗ for
an ℓ-grafting protocol of a public-coin protocol (P, V) and common input x is defined as
follows: On input z = (z1, . . . , zi), simulate (P∗, G[V]) using z as the random tape for G[V]
until P∗ outputs its ith message (pi, ai) and output pi.

In other words the grafting function is defined by simply running the verifier and
observing the index where it grafts each new round in the tree of interactions.

Douglas Wikström 11

Definition 16 (Prover Predicate). The prover M-predicate ρ[P∗, V, x] of P∗ for the
ℓ-grafting protocol of a public-coin protocol (P, V) and common input x is defined by
ρ[P∗, V, x](z) = ⟨P∗, G[V]z⟩(x), where z = (z1, . . . , zℓ).

The prover predicate is satisfied on a sequence of verifier messages if the grafting verifier
would accept in an interaction with the prover.

4.3 Random Grafted Sequences
Suppose that M = (M1, . . . ,Mr) is a matroid tree and let f be a grafting function.
A random variable over GM,f,ℓ representing the verifier messages of an execution of a
grafting protocol is readily defined by stipulating that each verifier message is uniformly
and independently distributed over a ground set of the matroid identified by the depth
function.

Definition 17 (Random Grafted Sequence). The distribution of a random grafted sequence
Z over GM,f,ℓ is defined by P Zi|Z[i−1]

(
·
∣∣z[i−1]

)
= |Sδf (z[i−1])|−1.

Although each element Zi is uniformly and independently distributed, the sequence
is not necessarily uniformly distributed, since the choice of ground set is determined by
previous elements and the grafting function. Consequently, the distribution of the shadow
sequence W = σf (Z) is not necessarily uniform.

5 Random Shadow Sequences
In each recursive call of the extractor the probability that the current prefix of a shadow
sequence leads to an accepting sequence is assumed to be some quantity ∆, but we must
also be able to efficiently sample extensions of the prefix.

The problem is that even if the prefix has probability ∆ to lead to an accepting grafted
sequence it may be the case that the resulting grafted sequence does not have the same
prefix viewed as a shadow sequence. Indeed, the partitioning of the grafted sequence into
a shadow sequence is determined by the grafted sequence as a whole. Conversely, if we
focus on sampling a shadow sequence with a given prefix, then the acceptance probability
under this conditioning may be significantly lower than ∆. Thus, we must prove that a
random prefix has both properties at once with reasonable probability. We formalize the
property we need below.

Definition 18 (Extendable Shadow Prefix). Let M = (M1, . . . ,Mr) be a matroid tree, let
f be a grafting function, let Z be a random grafted sequence over GM,f,ℓ, define J = ιf (Z),
and W = σf (Z), and let ρ : GM,f,ℓ → {0, 1} be a predicate. Define for every index
i ∈ [0, r − 1], shadow sequence prefix w ∈ [W[i]], and bound β ∈ (0, 1):

ζρ
w = Pr

[
ρ(Z) = 1

∣∣Z[k] = w
]

Accept probability (1)
θρ

w = Pr
[
Ji = k

∣∣ρ(Z) = 1 ∧ Z[k] = w
]

Probability of intact prefix (2)
ξρ(w, ∆, β) =

(
ζρ

w ≥ ∆ ∧ θρ
w ≥ β2/ℓ

)
Prefix w is extendable (3)

Thus, an extendable prefix w from the support [W[i]] of W[i] allows sampling a comple-
tion with notable probability such that the resulting shadow sequence has w as a prefix,
i.e., we can sample a completion of w as a shadow sequence, and not only as a grafted
sequence.

More precisely, we can always sample a complete grafting sequence Z starting with
w[i] and if ξρ(w[i], ∆, β) = 1, then we have ρ(Z) = 1 ∧ Ji = k with probability at least
β2∆/ℓ. Below we show that this implies ρ∗(W) = 1 and W[i] = w[i]. Thus, we need

12 Special Soundness in the Random Oracle Model

roughly ℓ/(β2∆) sampled grafted sequences starting from w[i] to find an accepting shadow
sequence starting from w[i]. We maintain a sufficient acceptance probability by application
of the following well known lemma, which is proven in Appendix E.

Lemma 1 (Markov Conditioning). If H = (X, Y) is a random variable, E is an event in
[H], δx = PrH [E |X = x], and PrH [E] ≥ ∆, then PrH [δX < α∆ |E] ≤ α.

5.1 Coinciding Indices
It should be clear that if z and z′ share a prefix z[k] corresponding to a prefix w[i] of the
shadow sequence w of z, and the ith element of the shadow sequence w′ of z′ end at index
k, then w′

[i] = w[i].

Lemma 2 (Pinching). For every z, z′ ∈ GM,f,ℓ and every i ∈ [1, r − 1], with j = ιf (z) and
w = σf (z), and similarly for j′ and w′, we have

z′
[j′

i
] = z[ji] and j′

i = ji =⇒ j′
[i] = j[i] and w′

[i] = w[i] .

Proof. If we define pt = f(z[t−1]) for t ∈ [ℓ] and similarly for p′
t and z′

[t−1], then by
assumption p′

[i] = p[i]. Thus, if j′
i = ji, then j′

[i] = j[i] which implies that w′
[i] = w[i].

Suppose that we sample a grafted sequence z and let w[i] be a prefix of its shadow
sequence w, which viewed as a prefix of the grafted sequence has the form z[k] for some
k. If we sample a fresh completion z′

[k+1,ℓ] of z[k], and define w′ = σf (z[k], z′
[k+1,ℓ]) and

j′ = ιf (z[k], z′
[k+1,ℓ]), then Lemma 2 says that it is sufficient to require that j′

i = ji to
guarantee that w′

[i] = w[i]. The next lemma is used to prove that over the random choice
of w[i] this happens with reasonable probability.

Lemma 3 (Coinciding Indices). Let Z = (Z1, . . . , Zℓ) be a random variable, let ι : [Z] →
[0, ℓ−1] be a function from the support of Z to indices, define K = ι(Z), X = (Z1, . . . , ZK),
and let Y be independently distributed with P Y |X (· |x) = P Z[k+1,ℓ]|Z[k]

(· |x), where x has
length k. If we define θx = Pr [ι(X, Y) = k |X = x], then for every β ∈ (0, 1/2):

Pr
[
θX < β2/ℓ

]
≤ 2β . (4)

Proof. We show that we can apply Lemma 1. By definition we have

PX,K (x, k) = P Z[k]|K (x |k) PK (k) , (5)

where it is understood that PX,K (x, k) = 0 if the length of x is not equal to k. Thus, to
sample x we may: sample a length k, sample z[k] as a prefix of a complete sequence z
conditioned on ι(z) = k, and set x = z[k]. Furthermore, from independence we have

Pr [ι(X, Y) = k |X = x] = Pr
[
ι(Z) = k

∣∣Z[k] = x
]

(6)

which means that θx = Pr
[
ι(Z) = k

∣∣Z[k] = x
]
.

If we let β ∈ (0, 1) and define B = {k | PK (k) < β/ℓ}, then we trivially have
Pr [K ∈ B] <

∑
k∈[0,ℓ−1] β/ℓ = β. For every k ̸∈ B we have Pr [ι(Z) = k] = Pr [K = k] ≥

β/ℓ from the definitions of K and the set B. For k ̸∈ B and every α ∈ (0, 1) Lemma 1
then implies that

Pr
[
θZ[k] < αβ/ℓ

∣∣ι(Z) = k
]

≤ α , (7)

Douglas Wikström 13

which implies that

Pr [θX < αβ/ℓ] =
∑

k∈[0,ℓ−1]

PK (k) Pr
[
θZ[k] < αβ/ℓ

∣∣ι(Z) = k
]

(8)

≤ Pr [K ∈ B] +
∑
k ̸∈B

PK (k) Pr
[
θZ[k] < αβ/ℓ

∣∣ι(Z) = k
]

(9)

≤ β + α
∑
k ̸∈B

PK (k) ≤ α + β . (10)

The proof is completed by setting α = β.

5.2 Extendable Shadow Sequence
The following theorem follows from the two lemmas above and the union bound.

Theorem 2 (Extendable Shadow Sequence). Let M = (M1, . . . ,Mr) be a matroid tree,
let f be a grafting function, let Z be a random grafted transcript over GM,f,ℓ, and define
J = ιf (Z) and W = σf (Z). Let ρ : GM,f,ℓ → {0, 1} be a predicate. For every i ∈ [r − 1],
w ∈ [W[i−1]] such that ζρ

w ≥ ∆, α ∈ (0, 1), and β ∈ (0, (1 − α)/2).

Pr
[
ξρ(W[i], α∆, β) = 1

∣∣ρ∗(W) = 1, W[i−1] = w
]

≥ 1 − α − 2β . (11)

Proof. We show that we can apply Lemma 1 and Lemma 3 by choosing notation appro-
priately. We define the random variable (Ji, X), by

PJi,X (·) = P Ji,W[i]|W[i−1]
(· |w) (12)

In other words, X effectively captures the distribution of the ith shadow element and its
ending index conditioned on the i − 1 previous shadow elements in w. Next we define
H = (X, Y) by defining an independently distributed random variable Y

P Y |X (· |x) = P Z[k+1,ℓ]|Z[k]
(· |x) , (13)

where k denotes the length of x. The random variable Y represents the sampling of a
completion of a grafting sequence starting with x. Finally, we define K = #(X), i.e., K
is the index of what we expect to be the last element of the ith element of the shadow
sequence.

By assumption Pr [ρ(H) = 1] ≥ ∆. Thus, if we define ζρ
x = Pr [ρ(H) = 1 |X = x], then

from Lemma 1 we have the bound Pr [ζρ
X < α∆ |ρ(H) = 1] ≤ α.

If we define θρ
x = Pr [Ji = k |ρ(H) = 1 ∧ X = x], where k is the length of x, then

Lemma 3 implies that Pr
[
θρ

X < β2/ℓ
∣∣ρ(H) = 1

]
≤ 2β. The union bound finally gives

Pr [θρ
X ≥ α∆ ∧ ζρ

X ≥ β |ρ(H) = 1] ≥ 1 − α − 2β , (14)

which concludes the proof.

6 Accepting Basis Extractor for Shadow Sequences
To construct an extractor for grafting protocols we first show that shadow sequences can
be sampled. This trivially gives a basic extractor and a basic sampler of shadow sequences
corresponding to the basic algorithms in [Wik18]. The recursive extractor follows by
syntactic changes, since it is is defined in terms of the expected value and tail bound for
each recursive call and the tail bounds do not change.

14 Special Soundness in the Random Oracle Model

6.1 Shadow Sampler

Theorem 2 says that from a suitable prefix w[i] of a shadow sequence we can sample a
complete accepting shadow sequence w that keeps the prefix fixed, but we also need to
ensure that wi+1 ∈ M∗

i+1 \ span(B∗), where B∗ is a shadow version of an independent
set B ∈ Ii+1, to ensure that we end up with a basis of M∗. This can be accomplished
by sampling every grafting element at depth i + 1 from Si+1 \ span(B) instead of from
Si+1. There are at most ℓ such elements in a sequence so the statistical distance between
this modified distribution and the original is at most ℓωMi+1 . Theorem 2 then implies the
following lemma, which is proven in Appendix B for completeness. Here Geo(∆) denotes
the geometric distribution.

Lemma 4 (Shadow Sampler). There exists a shadow sampler Wf,ρ such that for every
grafting function f , predicate ρ, and α ∈ (0, 1), and any input (M, w[i], B, ∆0) such that
ξρ

(
w[i], ∆0, β0

)
= 1 with ∆0 > ℓωMi+1 :

1. the distribution of the number of calls to ρ is bounded by Geo(β2
0∆′

1/ℓ), and

2. the output w has prefix w[i], ρ∗(w) = 1, and wi+1 ∈ M∗
i+1 \ span(B∗), and

Pr
[
ξρ

(
w[i+1], ∆1, β1

)
= 1

]
≥ β1,

where ∆′
1 = ∆0 − ℓωMi+1 , ∆1 = α∆′

1, and β1 = 1
3 (1 − α):

We need to change the syntax slightly to accommodate for prefixes needed to sample
correctly, but the shadow sampler makes it trivial to construct a basic sampler Sf,ρ

α

that from an extendable shadow prefix samples the next shadow element conditioned on
acceptance. We similarly denote by Bf,ρ

α the basic extractor for shadow sequences that
takes an input w[r−1] and invokes the shadow sampler dr times with the parameter α,
storing the new elements in an initially empty set B∗, to find accepting a set of transcripts
with the prefix w[r−1] such that their rth elements form a basis over M∗

r .

6.2 Accepting Basis Extractor

The recursive extractor Rκ[R], parametrized by a parameter κ, and making recursive
calls to R, is virtually identical to that in [Wik18], since it is defined in terms of expected
values and tail bounds of a recursive call or the basic extractor. Analytically the situation
is equivalent to the original analysis of the basic strategy except for three changes: (1)
ℓωMi

replaces the subdensity ωMi
, (2) we loose a factor 3 for each recursive call due to the

threefold use of the union bound, and (3) the expected running time of the basic extractor
increases by a factor of ℓ/(1 − αr−1)2. Thus, if we set νi = 1/αi, then we may simply
restate the main theorem from [Wik18] with these changes, but we provide a proof in
Appendix C.

We consider families of distributions D(s, ∆) parametrized by s ∈ N+ and ∆ ∈ [0, 1],
which satisfy a tail bound of the form Pr

[
X ≥ kµD(s,∆)

]
≤ tD

s(k), where X is distributed
according to D(s, ∆) and µD(s,∆) is the expected value of D(s, ∆). For compound geometric
distributions we have tCG

s (k) = e−(k−1−ln k)s from [Wik18].

Theorem 3 (Extractor). For every ν1, . . . , νr−1 ∈ (1, ∞) with νi ≥ νi+1 there exist
parameters κi = (αi, λi) such that the algorithm Xκ = Rκ1

[Rκ2
[· · · Rκr−2

[B] · · ·]], is a

Douglas Wikström 15

(ϵ0, Dκ(∆0))-accepting basis extractor for shadow matroid tree of M where:

ϵ0 = ℓ
∑
i∈[r]

ωMi

∏
j∈[i−1]

νj (extraction error) (15)

µD0(∆0) ≤ ℓ ·
c0

∏
j∈[r] dj

∆0 − ϵ0
(expected number of queries) (16)

tD0
d1

(k) ≤ tCG
d1

(k) for k > 1 , (tail bound) (17)

where the constant c0 is defined by

c0 = 3r+1 ν2
r−1

(νr−1 − 1)2

∏
i∈[r−1]

ν2
i

(νi − 1) · min
ki∈(0,1)

{
ki

hCG
di

(ki)

}
. (18)

7 Interpretation
We refer the reader to [Wik18] for an in depth intuitive interpretation of the overall
recursive formulas. To see that the extraction error ϵ0 is tight up to a factor r first recall
that it upper bounds the soundness error. Then consider a protocol such that: (1) guessing
the verifier message of the special sound protocol in any round is sufficient to convince the
verifier of a false statement, and (2) that the prover can determine if a guess is correct
before the execution is continued. For such a protocol the soundness error is roughly
ϵ =

∑r
i=1 ωMi

. In the grafting protocol the prover may probe any round independently
with ℓ queries, so the soundness error is bounded by ℓ maxi∈[r]{ωMi} ≥ ϵ0/r.

When ∆0 ≫ ϵ0 the factor ℓ in the extraction error can be ignored and if we set νi = 2
the running time is 4 · 3r+1ℓ times the running time in the interactive case. Consider a
prover that effectively executes the basic special sound protocol without grafting any forks
until the (r − 2)th round where it probes ℓ − r − 3 round r − 1 messages before completing
the last round in exactly one randomly chosen partial execution. Then forking in round
r − 2 requires roughly ℓ samples. Thus, the factor ℓ is necessary and the running time is
relatively tight up to a small constant 4 · 3r+1 factor.

To summarize, our results show that for any constant r and any (2r + 1)-message
special sound protocol the application of the Fiat-Shamir heuristic comes at a cost of a
factor ℓ in extraction error and O (ℓ) extraction time, respectively, but with the same type
of distribution as in the interactive case. In practice the matroid subdensities can typically
be decreased by a factor of 1/ℓ by a different choice of parameters for the protocol and
cancel the effect on the extraction error at modest cost in efficiency. Thus, the loss of
security from the application of the Fiat-Shamir heuristic in practice is typically no more
than log ℓ + O (1) bits of security which is intuitively appealing.

References
[ACK21] Thomas Attema, Ronald Cramer, and Lisa Kohl. A compressed $\varsigma

$-protocol theory for lattices. In Tal Malkin and Chris Peikert, editors, Ad-
vances in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings,
Part II, volume 12826 of Lecture Notes in Computer Science, pages 549–579.
Springer, 2021. doi:10.1007/978-3-030-84245-1_19.

[AFK22] Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-shamir transformation
of multi-round interactive proofs. In Eike Kiltz and Vinod Vaikuntanathan,

https://doi.org/10.1007/978-3-030-84245-1_19

16 Special Soundness in the Random Oracle Model

editors, Theory of Cryptography - 20th International Conference, TCC 2022,
Chicago, IL, USA, November 7-10, 2022, Proceedings, Part I, volume 13747
of Lecture Notes in Computer Science, pages 113–142. Springer, 2022. doi:
10.1007/978-3-031-22318-1_5.

[AL21] Martin R. Albrecht and Russell W. F. Lai. Subtractive sets over cyclotomic rings
- limits of schnorr-like arguments over lattices. In Tal Malkin and Chris Peikert,
editors, Advances in Cryptology - CRYPTO 2021 - 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021,
Proceedings, Part II, volume 12826 of Lecture Notes in Computer Science, pages
519–548. Springer, 2021. doi:10.1007/978-3-030-84245-1_18.

[AS08] Noga Alon and Joel H. Spencer. The Probabilistic Method, Third Edition.
Wiley-Interscience series in discrete mathematics and optimization. Wiley,
2008.

[Bab85] László Babai. Trading group theory for randomness. In Robert Sedgewick, editor,
Proceedings of the 17th Annual ACM Symposium on Theory of Computing, May
6-8, 1985, Providence, Rhode Island, USA, pages 421–429. ACM, 1985. URL:
http://doi.acm.org/10.1145/22145.22192, doi:10.1145/22145.22192.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe
Petit. Efficient zero-knowledge arguments for arithmetic circuits in the discrete
log setting. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in
Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part II, volume 9666 of Lecture Notes in Computer
Science, pages 327–357. Springer, 2016. doi:10.1007/978-3-662-49896-5_
12.

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In
Ernest F. Brickell, editor, Advances in Cryptology - CRYPTO ’92, 12th Annual
International Cryptology Conference, Santa Barbara, California, USA, August
16-20, 1992, Proceedings, volume 740 of Lecture Notes in Computer Science,
pages 390–420. Springer, 1992. doi:10.1007/3-540-48071-4_28.

[BGR98] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular
exponentiation and digital signatures. In Kaisa Nyberg, editor, Advances in
Cryptology - EUROCRYPT ’98, International Conference on the Theory and
Application of Cryptographic Techniques, Espoo, Finland, May 31 - June 4,
1998, Proceeding, volume 1403 of Lecture Notes in Computer Science, pages
236–250. Springer, 1998. doi:10.1007/BFb0054130.

[BL04] Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation and
extraction. SIAM J. Comput., 33(4):738–818, 2004. doi:10.1137/S0097539
703427975.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS 2006, Alexandria,
VA, USA, October 30 - November 3, 2006, pages 390–399. ACM, 2006. doi:
10.1145/1180405.1180453.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi

https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-030-84245-1_18
http://doi.acm.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1137/S0097539703427975
https://doi.org/10.1137/S0097539703427975
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453

Douglas Wikström 17

Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, CCS ’93, Proceedings of
the 1st ACM Conference on Computer and Communications Security, Fairfax,
Virginia, USA, November 3-5, 1993., pages 62–73. ACM, 1993. URL: http:
//doi.acm.org/10.1145/168588.168596, doi:10.1145/168588.168596.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In Yvo Desmedt,
editor, Advances in Cryptology - CRYPTO ’94, 14th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 21-25, 1994,
Proceedings, volume 839 of Lecture Notes in Computer Science, pages 174–187.
Springer, 1994. doi:10.1007/3-540-48658-5_19.

[dPLS19] Rafaël del Pino, Vadim Lyubashevsky, and Gregor Seiler. Short discrete log
proofs for FHE and ring-lwe ciphertexts. In Dongdai Lin and Kazue Sako,
editors, Public-Key Cryptography - PKC 2019 - 22nd IACR International
Conference on Practice and Theory of Public-Key Cryptography, Beijing, China,
April 14-17, 2019, Proceedings, Part I, volume 11442 of Lecture Notes in
Computer Science, pages 344–373. Springer, 2019. doi:10.1007/978-3-030-1
7253-4_12.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, Advances in
Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings,
volume 263 of Lecture Notes in Computer Science, pages 186–194. Springer,
1986. doi:10.1007/3-540-47721-7_12.

[FS01] Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle.
In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, 21st Annual
International Cryptology Conference, Santa Barbara, California, USA, August
19-23, 2001, Proceedings, volume 2139 of Lecture Notes in Computer Science,
pages 368–387. Springer, 2001. doi:10.1007/3-540-44647-8_22.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989. doi:
10.1137/0218012.

[Gol00] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge
University Press, New York, NY, USA, 2000.

[HKR19] Max Hoffmann, Michael Klooß, and Andy Rupp. Efficient zero-knowledge
arguments in the discrete log setting, revisited. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, CCS
2019, London, UK, November 11-15, 2019, pages 2093–2110. ACM, 2019.
doi:10.1145/3319535.3354251.

[JT20] Joseph Jaeger and Stefano Tessaro. Expected-time cryptography: Generic
techniques and applications to concrete soundness. In Rafael Pass and Krzysztof
Pietrzak, editors, Theory of Cryptography - 18th International Conference, TCC
2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part III, volume
12552 of Lecture Notes in Computer Science, pages 414–443. Springer, 2020.
doi:10.1007/978-3-030-64381-2_15.

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting.
In Michael K. Reiter and Pierangela Samarati, editors, CCS 2001, Pro-
ceedings of the 8th ACM Conference on Computer and Communications Se-

http://doi.acm.org/10.1145/168588.168596
http://doi.acm.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-030-17253-4_12
https://doi.org/10.1007/978-3-030-17253-4_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-44647-8_22
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1145/3319535.3354251
https://doi.org/10.1007/978-3-030-64381-2_15

18 Special Soundness in the Random Oracle Model

curity, Philadelphia, Pennsylvania, USA, November 6-8, 2001., pages 116–
125. ACM, 2001. URL: http://doi.acm.org/10.1145/501983.502000,
doi:10.1145/501983.502000.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes.
In Ueli M. Maurer, editor, Advances in Cryptology - EUROCRYPT ’96,
International Conference on the Theory and Application of Cryptographic
Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, volume 1070 of
Lecture Notes in Computer Science, pages 387–398. Springer, 1996. doi:
10.1007/3-540-68339-9_33.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. J. Cryptol-
ogy, 4(3):161–174, 1991. doi:10.1007/BF00196725.

[Wik05] Douglas Wikström. A sender verifiable mix-net and a new proof of a shuffle.
In Bimal K. Roy, editor, Advances in Cryptology - ASIACRYPT 2005, 11th
International Conference on the Theory and Application of Cryptology and
Information Security, Chennai, India, December 4-8, 2005, Proceedings, volume
3788 of Lecture Notes in Computer Science, pages 273–292. Springer, 2005.
doi:10.1007/11593447_15.

[Wik18] Douglas Wikström. Special soundness revisited. IACR Cryptol. ePrint Arch.,
2018:1157, 2018. URL: https://eprint.iacr.org/2018/1157.

A Definitions
We recall the definitions introduced in [Wik18].
Definition 19 (Accepting Basis). A basis B of a matroid tree M is ρ-accepting for an
M-predicate ρ if ρ(v) = 1 for each path v of maximal length in B.
Definition 20 (Accepting Transcript Tree). Let V be a verifier of a (2r + 1)-message
public coin protocol. A rooted unordered directed tree T with vertex labels ℓ(·) is an
accepting transcript tree for V if every leaf has depth r and for every path (u0, . . . , ur) in
T : (v0, a0, . . . , vr, ar) is accepting, where ℓ(ui) = (vi, ai).
Definition 21 (Challenge Tree). The challenge tree V(T) of an accepting transcript tree
T with vertex labels ℓ(·) has the same nodes and edges, but labels defined by ℓ′(u) = v,
where ℓ(u) = (v, a).
Definition 22 (Special Soundness). A (2r + 1)-message public coin-protocol (P, V) is(
(M1, . . . ,Mr), p

)
-special-sound for an NP relation R, where Mi = (Si, Ii) is a matroid, if

the ith message of V is chosen randomly from Si, and there exists a witness extraction
algorithm W that given an accepting transcript tree T such that V(T) is basis subtree of
({x},M1, . . . ,Mr) outputs a witness w such that (x, w) ∈ R in time p.

B Proof of Lemma 4
The extractor in [Wik18] repeatedly samples complete lists of accepting verifier messages
with a slight bias to guarantee independence properties. We intend to essentially execute
the original extractor with a shadow predicate ρ∗ over a shadow matroid tree M∗.

The original analysis assumes that the lists of verifier messages are sampled uniformly
from a matroid, but what is actually necessary for the analysis to work is that they are
sampled identically as in the protocol. Thus, nothing prevent us from invoking a modified
extractor for our shadow matroid tree, provided that the verifier messages are sampled
with the right distribution. Consider the following algorithm.

http://doi.acm.org/10.1145/501983.502000
https://doi.org/10.1145/501983.502000
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/11593447_15
https://eprint.iacr.org/2018/1157

Douglas Wikström 19

Definition 23 (Grafted Sequence Sampler). The grafted sequence sampler Zf for a grafting
function f takes as input a tuple (M, ℓ, z, b, B), where M = (M1, . . . ,Mr) is a matroid tree
with Mi = (Si, Ii), z ∈ GM,f,k, and B ∈ Ib is not a basis and proceeds as follows.

1. For i = k + 1, . . . , ℓ:

(a) Compute d = δf (z) and sample zi randomly in Sd \ span(B) if d = b, and in Sd

otherwise.
(b) Append zi to z.

2. Return z.

The running time of the algorithm is, apart from sampling in the complement of span(B),
identical to executing the protocol, i.e., its running time corresponds to evaluating the
predicate ρ if we ignore the cost of sampling verifier messages.

The algorithm is used below to sample an accepting shadow sequence which has a prefix
w[i−1] and we need wi to not be contained in a set B∗ ∈ I∗

b , but at the time of sampling
the grafted elements we do not know which sample from Si will determine independence
in I∗

b . Thus, we make sure that all grafted elements from Sb that make up wi are from
Sb \ B instead, where B is the projection of B∗ to their middle elements. It may seem that
this approach introduces an unnecessarily large error in the distribution of the output,
i.e., roughly ℓωMb

instead of ωMb
, but this seems unavoidable. Next we use the grafted

sequence sampler to implement a shadow sampler.

Definition 24 (Shadow Sampler). The shadow sampler algorithm Wf,ρ, where f is a
grafting function, takes as input a tuple (M, ℓ, w[i], B), where M = (M0, . . . ,Mr) is a
matroid tree, ρ : GM,f,ℓ → {0, 1}, w[i] is a prefix of a shadow sequence corresponding to a
grafted sequence z[k] ∈ GM,f,k, and B ∈ Ii+1 is not a basis. Repeat:

1. Compute z = Zf (M, ℓ, z[k], i + 1, B) and set j = ιf (z) and w′ = σf (z).

2. If ρ(z) = 1 and ji = k, then return w′.

Let z be the grafted sequence sampled by Wf,ρ such that w′ = σf (z) is returned, and
set j = ιf (z). By construction w[i] is a prefix of w′ viewed as grafted sequences and it only
returns if ji = k. Thus, Lemma 2 implies that w′

[i] = w[i]. Furthermore, Wf,ρ only returns
if ρ(z) = 1 which implies that ρ∗(w′) = 1. Finally, every element from Si+1 is sampled
from the subset Si+1 \ span(B), which implies that wi+1 ∈ S∗

i+1 \ span(B∗). This proves
the first claim of Lemma 4.

If ξρ(w[i], ∆0, β0) = 1, then in each iteration the probability of returning is at least
β2

0∆0/ℓ. Thus, the distribution of the number of calls to ρ is bounded according to the
second claim. The third claim of Lemma 4 follows directly from Theorem 2.

C Proof of Theorem 3
We now have the subroutines needed to derive a recursive extractor from the construction
in [Wik18] almost by syntactic changes. The only essential difference is that all algorithms
need the complete prefix of a partial shadow sequence as input to sample completions with
the right distribution.

We need to modify the notion of an accepting basis extractor to allow for the additional
parameter ℓ and the parameter β from Theorem 2.

Definition 25 (Accepting Basis Extractor). A probabilistic polynomial time algorithm Xκ

parametrized by κ ∈ {0, 1}∗ is a (ϵκ, Dκ(ℓ, ∆, β))-accepting basis extractor with extraction
error ϵκ for the matroid tree M′ = ({w[i]},M∗

i+1, . . . ,M∗
r), where Dκ(ℓ, ∆, β) for fixed κ is

20 Special Soundness in the Random Oracle Model

a family of distributions on N parametrized by ℓ ∈ N, ∆ ∈ [0, 1], β ∈ (0, 1), if for every
grafting function f and predicate ρ : GM,f,ℓ → {0, 1} the following holds.

If ∆i > ϵκ, βi > 0, and ξρ(w[i], ∆i, βi) = 1, then X f,ρ
κ (M, ℓ, w[i], ∆i, βi) outputs a

ρ-accepting basis of M′, where the distribution of the number of ρ(·)-queries is bounded
by Dκ(ℓ, ∆i, βi).

Definition 26 (Recursive Extractor). Let M = (M1, . . . ,Mr) be a matroid tree and
assume that R is a (ϵi, Di(ℓ, ∆, β))-accepting basis extractor for matroid trees of the
form ({w[i]},M∗

i+1, . . . ,M∗
r). The recursive extractor Rκ[R], where κ = (αi, λi) and

αi, λi ∈ (0, 1) proceeds as follows on input (M, ℓ, w[i−1], ∆i−1, βi−1).

1. Set ∆i = αi(∆i−1 − ℓωMi
), βi = 1

3 (1 − αi), k = kDi(λi), and µ = µDi(ℓ,∆i,βi).

2. Set B∗ = ∅ and T = ∅.

3. While |B∗| < di:

(a) Compute w = Sf,ρ
αi

(M, ℓ, w[i−1], B∗, ∆i−1, βi−1).

(b) Extract subtree t = Rf,ρ(M, ℓ, w[i], ∆i, βi), but interrupt the execution and set
t = ⊥ if it attempts to make more than kµ queries.

(c) If t ̸= ⊥, then set B∗ = B∗ ∪ {wi} and T = T ∪ {t}.

4. Return the accepting basis tree T .

Above we abuse notation and set B∗ = B∗ ∪ {wi} despite that the ground set of the
shadow matroid M∗

i consists of triples (see Definition 14), i.e., strictly speaking we first
turn wi into a triple where the challenge from the basic protocol we focus on is the middle
element.

The following lemma and corollary follows mutatatis mutandi from the corresponding
proof in [Wik18], where we use indices to illustrate the similarity with the original recursive
formulas.

Lemma 5 (Recursive Extractor). The algorithm Rκ[R] is a (ϵi−1, Di−1(ℓ, ∆i−1, βi−1))-
accepting basis extractor, where ϵi−1 = ϵi/αi + ℓωMi

and

GDi−1(ℓ,∆i−1,βi−1)(z) =
di∏

i=1
GGeo(βiλi)

(
GGeo(β2

i−1∆i−1/ℓ)(z)zkDi (λi)µDi(ℓ,∆i,αi)
)

, (19)

defined by βi = 1
3 (1 − αi) and ∆i = αi(∆i−1 − ℓωMi).

Corollary 1 (Recursive Extractor). The distribution Di−1(ℓ, ∆, β) satisfies

µDi−1(ℓ,∆i−1,βi−1) = 3di

(1 − αi)λi

(
ℓ

β2
i−1∆i

+ kDi(λi)µDi(ℓ,∆i,αi)

)
(20)

tDi−1(k) ≤ tCG
di

(k) for k ∈ (1, ∞) . (21)

If β2
i−1 ≥ β2

i αi, then the term ℓ/(β2
i−1∆i) can be dropped by observing that the

initial sample can be reused in the recursive call and recursive calls are slightly more
expensive. When βi = 1

3 (1 − αi) this is always the case, since (1 − αi−1)2 ≥ αi(1 − αi)2

for αi−1, αi ∈ (0, 1).
Thus, the only change in the expected value compared to the basic case in [Wik18] is a

factor of three in each recursive call (and there are r − 1 levels of recursion), and that the
expected value for the basic extractor is increased by a factor of 32ℓ/(1 − αr−1)2. Setting
νi = 1/αi gives the theorem.

Douglas Wikström 21

D Grafting Prover
An honest grafting prover obviously does not need the liberty to graft additional branches
to an execution.

Definition 27 (Grafting Prover). If (P, V) is a (M1, . . . ,Mr)-special sound protocol, then
on common input x, and private input w such that (x, w) ∈ R, the grafting prover G[P]
proceeds as follows.

1. Start a simulation of P on input (x, w) and when it outputs a message a0, hand
(0, a0) to the verifier.

2. For i = 1, . . . , r:

(a) Wait for a message vi from the verifier.
(b) Continue the simulation of P on input vi, until it outputs a message ai, hand

(i, ai) to the verifier.

E Omitted Proofs
Proof of Lemma 1. We have E [1/δX |E] =

∑
x∈[X] Pr [X = x |E] /δX = 1/ Pr [E] ≤ 1/∆.

Markov’s inequality then implies Pr [δX < α∆ |E] = Pr [1/δX > 1/(α∆) |E] ≤ α.

F Basic Definitions
Readers who are uncomfortable with the language of matroids may safely think of a
matroid M = (S, I) as a vector space ZN

q for a prime integer q and a natural number N .
Then independence means linear independence, the set I of sets of independent vectors
is clearly non-empty and satisfies the requirements below, and a span is simply a linear
subspace spanned by a set of vectors.

Definition 28 (Matroid). A matroid is a pair (S, I) of a ground set S and a set I ⊂ 2S

of independence sets such that:

1. I is non-empty,

2. if A ∈ I and B ⊂ A, then B ∈ I, and

3. if A, B ∈ I and |A| > |B|, then there exists an element a ∈ A \ B such that
{a} ∪ B ∈ I.

Definition 29 (Submatroid). Let (S, I) be a matroid and S′ ⊂ S. The submatroid
induced by S′ is the pair (S′, I ′) defined by I ′ = I ∩ 2S′ .

Definition 30 (Basis). Let (S, I) be a matroid. A set B ∈ I such that B ∪ {x} ̸∈ I for
every x ∈ S \ B is a basis.

Definition 31 (Rank). The rank of a matroid (S, I) is the unique cardinality of each
basis in I.

Definition 32 (Rank of Set). Let (S, I) be a matroid and A ⊂ S. The rank rank(A) of A
is the rank of the submatroid induced by A.

Definition 33 (Span and Flats). Let (S, I) be a matroid and A ⊂ S. The span of A is
defined by span(A) = {x ∈ S | rank(A ∪ {x}) = rank(A)} and A is a flat if span(A) = A.

	Introduction
	Contribution
	Proof Strategy

	Background
	Grafting Protocols
	Functions of Transcripts
	Grafting Verifier
	Grafting Protocols vs Non-interactive Fiat-Shamir Proofs

	Grafted Sequences
	Shadow Sequences
	Grafting Function and Predicate of a Prover
	Random Grafted Sequences

	Random Shadow Sequences
	Coinciding Indices
	Extendable Shadow Sequence

	Accepting Basis Extractor for Shadow Sequences
	Shadow Sampler
	Accepting Basis Extractor

	Interpretation
	References
	Definitions
	Proof of Lemma 4
	Proof of Theorem 3
	Grafting Prover
	Omitted Proofs
	Basic Definitions

