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Abstract. We generalize and abstract the problem of extracting a witness from a
prover of a special sound protocol into a combinatorial problem induced by a sequence
of matroids and a predicate, and present a parametrized algorithm for solving this
problem.
The parametrization provides a tight tradeoff between the running time and the
extraction error of the algorithm, which allows optimizing the parameters to mini-
mize: the soundness error for interactive proofs, or the extraction time for proofs of
knowledge.
In contrast to previous work we bound the distribution of the running time and not
only the expected running time. Tail bounds give a tighter analysis when applied
recursively and a concentrated running time.

1 Introduction
The notion of zero-knowledge proofs is fundamental in cryptography. It was introduced by
Goldwasser, Micali, and Rackoff [GMR89] as a way for one party to interactively convince
another party that a given statement is true without disclosing anything else. Another
related notion formalized by Bellare and Goldreich [BG92], are proofs of knowledge. Here
the prover convinces the verifier that it holds some piece of information, e.g., it could show
that it holds a witness of an NP relation. This notion makes sense even for statements
that are true by definition, but for which a witness is hard to compute.

The completeness of a protocol is the probability that an honest prover convinces
an honest verifier on a true statement, i.e., the probability that the protocol serves its
purpose for honest parties. The soundness of an interactive proof system is captured by
its soundness error. This is an upper bound on the probability that an honest verifier in
an interaction with a (possibly malicious) prover accepts a false statement as true.

A protocol is said to be a proof of knowledge if there is an extraction algorithm such
that for every prover and every statement a witness is output in expected time poly/(∆−ϵ),
where ∆ is the probability that the honest verifier is convinced and ϵ is the knowledge
error. The expected value is taken only over the internal randomness of the extractor.
The knowledge error captures the probability that a prover can convince a verifier in the
protocol without knowing a witness of the statement in the sense that it can be extracted
efficiently.

It is important to understand that the extractor has complete control over the prover,
e.g., it may rewind and complete multiple executions from any point of the execution, and
uses the prover as an oracle. A knowledge error ϵ implies a soundness error of at most ϵ,
since we may view the existence of the extractor as a probabilistic proof [AS08] that a
witness exists, but the reverse implication does not necessarily hold since the extractor
must be efficient.

We refer the reader to [Gol00] for a thorough discussion and historial notes.

E-mail: dog@kth.se (Douglas Wikström)
aPartially supported by the TrustFull project funded by the Swedish Foundation for Strategic Research.

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-08 Accepted: 2024-09-02

https://doi.org/10.62056/aep2c3w9p
https://crossmark.crossref.org/dialog/?doi=10.62056/aep2c3w9p&domain=pdf&date_stamp=2024-10-02
https://orcid.org/0000-0003-4157-1371
mailto:dog@kth.se
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


2 Special Soundness Revisited

1.1 Special Soundness and Extraction
A three-message public-coin protocol [GMR89, Bab85] is defined to be special sound if
a witness can be computed efficiently from two accepting transcripts with a common
first prover message, but distinct verifier messages. This notion was introduced by
Cramer et al. [CDS94] as a generalization of a property of Schnorr’s proof of knowledge of
a discrete logarithm [Sch91].

In the natural generalization of Cramer et al.’s notion we require that the accepting
transcripts form a tree, i.e., the executions are identical to start with and then successively
branch to form a tree, where the verifier messages at each branching point are “independent”.
The notion of independence is protocol dependent, but it is readily captured using matroids
and usually corresponds to inequality [Sch91] or linear independence [BGR98].

Recall that in proofs of knowledge [BG92] we consider the prover as a deterministic
next-message function to allow rewinding. Moreover, in public coin protocols the verifier’s
messages do not depend on the prover’s messages, so we can consider the prover and
verifier jointly as a predicate on a sequence of verifier messages.

We construct and analyze an algorithm that extracts a tree such that every path
satisfies the predicate and the children of each node is a basis relative to a given matroid.
This reduces the problem of constructing a knowledge extractor for a special-sound protocol
to the inherently protocol-dependent construction of a procedure that computes a witness
from such a tree of accepting transcripts.

2 Contributions
The main contribution of this work is an exact extraction theorem that can be applied
directly and rigorously to special sound protocols to get exact security guarantees. The
generalization of special soundness using matroids captures a natural class of protocols.

The concrete motivation of this work is the need for exact analysis of the real-world
applications of generalizations of Schnorr’s protocol [Sch91], e.g., batch proofs of Bellare
et al. [BGR98] and proofs of shuffles, e.g., [Nef01, FS01, Gro03, TW10]. Exact reductions
are necessary in such applications, since it is otherwise not possible to choose concrete
security parameters with any real-world guarantee of security.

Our results reduce the exact analysis of soundness and knowledge extraction such
protocols to proving that a witness can be computed from a tree of accepting transcripts
that are sufficiently independent. Our main theorem is parametrized, since this is necessary
to allow derivation of optimized concrete security parameters of any such protocol. Below
we give an informal statement.

Theorem 1 (Informal). If (P, V) is an r-round public coin protocol such that a witness
can be computed in polynomial time T from a rooted tree of accepting transcripts provided
that: (a) each node at depth i has di children, (b) the transcripts are “independent”, and
(c) the probability that a randomly chosen completion from depth i−1 of a partial transcript
is “independent” from previous transcripts in the ith round is at least 1 − ωi, then:

1. There exists an extraction algorithm X such that if a prover P∗ convinces V with
probability ∆, then the expected number of queries to P∗ needed by X to extract such a
tree of accepting transcripts is c

∏
j∈[r] dj/(∆−ϵ), where the constant

∑
i∈[r] ωi < ϵ < 1

can be chosen arbitrarily and the constant c > 0 is derived explicitly from ϵ.

2. There is a knowledge extractor such that: if ∆ > ϵ, then a witness can be extracted
in time c

∏
j∈[r] dj/(∆ − ϵ) + T .

3. The distribution of the running time of X satisfies a concentration bound determined
by d1, i.e., for large d1 the running time is almost strictly polynomial.
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In applications the matroid subdensity ωi is exponentially small, the extraction error ϵ
must be chosen exponentially small, and c is a constant of practical size. The degree d1
needed at the root of the transcript tree is large in many applications, e.g., it may be the
number of ciphertexts decrypted in a given batch.

Implicit in our approach is that it may be applied rigorously to protocols embedded
within larger protocols using extension rather than composition, in particular when
instances are maliciously chosen. We give concrete examples and discuss the extension of
protocols in Section B.

More broadly, matroids may be the right language to capture and analyze independence
requirements which appear in security proofs in various guises. Similarly, arguing about
distributions instead of expected values should be the norm in exact security analysis,
since it gives tighter bounds, more insight, and simplifies rigorous reuse of previous work.

Related work. In prior work Bootle et al [BCC+16] gives a forking lemma for interactive
constant-round protocols, but it is not exact.

Our result was made public 2018. Follow-up work by Attema et al [ACK21] study
(d1, . . . , dr)-special-soundness. Unfortunately, it is not clearly stated that this is equivalent
to special soundness for uniform matroids as defined here, i.e., matroids where every set of
at most r elements is an independence set.

For such uniform matroids the sample space can always be made small. Thus, their
focus is on the special case of small sample spaces and uniform matroids. They also use
the alternative definition of proofs of knowledge where the extractor may fail with small
probability, but this is merely a presentational detail.

We analyze the general case where there is a requirement on independence between
accepting transcripts to extract a witness, which is typical in proofs over groups. The
motivation of our work was the need for an exact analysis of, and concrete security
parameters for, batch proofs of decryption [BGR98] and proofs of shuffles [TW10] which
are deployed in real-world national and local electronic voting systems, including rigorous
analysis of restricted sample spaces. The special case studied in [ACK21] does not suffice,
since it only considers uniform matroids, i.e., there is no guarantee that a witness can be
computed from the extracted transcripts.

In the general case the difference between sampling with or without replacement is
not essential, since an exponentially large set of values are eliminated from sampling with
each additional accepting challenge found. In [ACK21] the method of sampling matters,
since a single value is eliminated from sampling with each accepting transcript found when
uniform matroids are considered.

However, our analysis applies in a straightforward way by replacing geometric and
negative binomial distributions by their hypergeometric and negative hypergeometric
siblings and adjust the tail bounds, which is effectively what is done in [ACK21] using
combinatorial language instead of statistical language and the alternative definition of a
proof of knowledge.

Other follow-up results such as [HKR19, dPLS19, JT20, AL21] are less relevant to
understand our contribution, since they have a different or broader focus.

3 Knowledge Extraction
Before we introduce a definition of special soundness based on matroids we introduce
notation and discuss knowledge extraction in general. Recall that ⟨P∗, Vc⟩(x) denotes the
verdict of V regarding an interaction with a prover P∗ on common input x and using a
random tape c = (v1, . . . , vr) of challenges. We may define a predicate on a sequence of
verifier messages that captures the verdict of the verifier at the end of an interaction.



4 Special Soundness Revisited

Definition 1 (Prover Predicate). The prover predicate ρ[P∗] for a public-coin protocol
(P, V) is defined by ρ[P∗](v) = ⟨P∗, Vc⟩(v0), where v = (v0, . . . , vr) and c = (v1, . . . , vr),
i.e., v0 is the instance and c is the list of challenges of the verifier.

We state the definition for public coin protocols for clarity, but it is natural for any
proof of knowledge by considering c to be the random tape of the verifier instead. In fact,
any non-trivial proof of knowledge requires the extractor to find a set of transcripts, since
otherwise it is possible to compute the witness directly from a single execution, or no
execution at all. It is conceivable that even partial or rejecting transcripts are useful to
the extractor, but in the worst case only accepting transcripts give any knowledge of the
witness. For zero-knowledge protocols it is easy to see that it does not suffice to collect
a random set of accepting transcripts, since the witness could then be computed after a
number of sequential executions. Thus, we consider only accepting transcripts that form a
tree.

Definition 2 (Accepting Transcript Tree). Let V be a verifier of a (2r + 1)-message
public coin protocol. A rooted unordered directed tree T with vertex labels ℓ(·) is an
accepting transcript tree for V if every leaf has depth r and for every path (u0, . . . , ur) in
T : (v0, a0, . . . , vr, ar) is accepting, where ℓ(ui) = (vi, ai).

Note that v0 corresponds to the instance of the execution that may be chosen jointly.
This notation makes more sense when one considers the protocol as embedded into a larger
protocol where the instance is chosen as the result of a random process under the influence
of the adversary. Furthermore, if the prover starts, then the first verifier message is empty.
Thus, for any proof of knowledge we may divide the problem of extracting a witness into:
(i) the problem of finding a suitable accepting transcript tree, and (ii) computing the
witness from such an accepting transcript tree.

In a suitable accepting transcript tree the paths from the root to the leaves must be in
“generic position” with respect to a protocol-dependent equation system that determines
when a witness can be computed efficiently.

Special sound protocols is a class of protocols where the independence requirements on
an accepting transcript tree can be described concisely in terms of the verifier messages as
elements of matroids. Thus, we introduce notation to project the labels of a transcript
tree to their verifier message parts to allow us to express such conditions.

Definition 3 (Challenge Tree). The challenge tree V(T ) of an accepting transcript tree T
with vertex labels ℓ(·) has the same nodes and vertices, but labels defined by ℓ′(u) = v,
where ℓ(u) = (v, a).

4 Matroids
Recall that a matroid M = (S, I) consists of a ground set S and a non-empty set I. Each
element of I is called an independence set and is a set of elements from the ground set S
which satisfy natural independence properties: (i) if the elements of a set are independent,
then so are the elements of any subset, and (ii) we can extend a set of independent elements
until it forms a basis, which is a set of independent elements of maximal size. The number
of elements needed to form a basis is called the rank of the matroid, since all bases have
the same number of elements. A subset of the ground set induces a submatroid. A flat is
a maximal submatroid for a given rank. For completeness we provide one standard way of
formalizing matroids in Appendix D and concrete examples below.

The two most common examples of matroids in the literature are essentially vector
spaces over finite fields and matroids that capture inequality, but the ground sets may be
restricted for practical reasons.
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Example 1 (Inequality Matroid). The inequality matroid (S, I) over a ground set S has
as independent set I the set of all subsets of S of size at most two.

Example 2 (Vector Space as Matroid). A vector space ZN
q over a finite field Zq, where

q is prime, can be viewed as a matroid
(
ZN

q , I
)
, where I is the set of all sets of linearly

independent vectors.

Example 3 (Flats and Submatroids). Consider a vector space ZN
q as a matroid. Then a

flat is simply a linear subspace. A subset S = [0, 2t]N of its groundset, where t < log q,
induces a submatroid (S, I) where I is the set of all sets of linearly independent vectors
in S. The induced matroid is not a vector space or even a group, but it inherits the
combinatorial properties of the vector space to some extent.

We denote the singleton matroid with a singleton ground set {u} and independence set
{∅, {u}} by {u} and introduce some additional notation that allow us to consider a list of
matroids as a tree.

Definition 4 (Matroid Tree). The matroid tree associated with a list of matroids M =
({v0},M1, . . . ,Mr) is the vertex-labeled rooted unordered directed tree of depth r such
that: the root is labeled v0 and every node at depth i − 1 has edges to |Si| children which
are uniquely labeled with the elements of the ground set Si.

A matroid tree is unordered, but the children of each node are labeled uniquely. Thus,
we abuse notation and identify a node with its label. We use M to denote both the matroid
tree and the list of matroids.

Definition 5 (Basis). A basis of a matroid tree M of depth r is a maximal subgraph such
that for every i ∈ [r] the set of children of every node at depth i − 1 is a basis of Mi.

4.1 Restricted Verifier Messages and Submatroids

In the above examples every submatroid of the same rank has the same cardinality, which
means that the fraction |A|/|S| is the same for every flat A of a given rank. In our
applications we need this fraction to remain exponentially small, but we need to relax the
requirement to make room for oddities introduced in cryptographic protocols.

Consider a protocol where, conceptually, the verifier picks challenges from the vector
space ZN

q , i.e., the ground set of the matroid in Example 2. This set may be unnecessarily
large in practice, so to improve efficiency the verifier messages could instead be chosen
over {0, 1}nv×N ⊂ ZN

q for some nv < log q.
In our formalization this simply means that we consider the submatroid induced by

the subset {0, 1}nv×N . The submatroid inherits the relevant independence sets, but is
“ragged” in that elements are eliminated from the ground set.

Definition 6 (Subdensity). Let M = (S, I) be a matroid of rank d. Then its ith subdensity
is ωM,i if |A|/|S| ≤ ωM,i for every flat A of rank i − 1, and it has maximal subdensity
ωM = ωM,d.

Above we intentionally refrain from defining the ith subdensity to be |A|/|S| and settle
for an upper bound, since this quantity may be hard to derive exactly.

Note that we have ωM,1 = 0 for every non-trivial matroid M. In Example 2 the ith
subdensity is qi−N−1 and in Example 1 the 2nd subdensity is 1/|S|. In the induced
submatroid discussed above this is instead 2nv(i−N−1).
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5 Special Soundness
Accepting transcript trees of Schnorr’s protocol [Sch91] (see Definition 17) from which
a witness can be computed efficiently can be characterized as those where the verifier
messages are independent with respect to the inequality matroid of Example 1.

This characterization generalizes in a natural way to any set of verifier messages,
any number of rounds, and any number of independent accepting transcripts needed for
extraction, and given our extraction theorem the matroids capture the soundness and
knowledge properties of the protocol. Furthermore, it allows the extraction theorem to be
applied directly to the analysis of protocols embedded in larger protocols, and even more
broadly as explained in Section B.

Definition 7 (Special Soundness). A (2r + 1)-message public coin-protocol (P, V) is(
(M1, . . . ,Mr), p

)
-special-sound for an NP relation R, where Mi = (Si, Ii) is a matroid, if

the ith message of V is chosen randomly from Si, and there exists a witness extraction
algorithm W that given an accepting transcript tree T such that V(T ) is basis subtree of
({x},M1, . . . ,Mr) outputs a witness w such that (x, w) ∈ R in time p.

In Section C we generalize the definition to capture what we call piece-wise special
sound protocols. The knowledge extractor for such a protocol invokes a constant number of
extractors of the form we have considered above, but it may also use information gathered
from previous calls in the next in order to extract all the information needed to compute
the witness.

6 The Extraction Problem
Suppose that M0, . . . ,Mr are matroids with ground sets S0, . . . , Sr respectively. We
consider an unordered complete tree such that the children of a node at depth i − 1 are
identified (or more precisely labeled) with the elements of Si. To ensure that this is a
tree and not a forest we require that S0 is a singleton set. The element it contains is
mostly used as a placeholder for the root, but it is essential that it remains a variable for
applications in general settings.

The predicate from Definition 1 that captures both the computations performed by
the prover during execution and the computations performed by the verifier to reach a
verdict has the following form.

Definition 8 (Predicate). An M-predicate, where M = (M0, . . . ,Mr) is a matroid tree, is
a function of the form ρ :×i∈[0,r] Si → {0, 1}.

The goal is to find a basis subtree such that: for every inner node at depth i − 1 its
children is a basis of Mi, and the predicate ρ evaluates to 1 on every path in the subtree
from the root to a leaf. We call this an accepting basis.

Definition 9 (Accepting Basis). A basis B of a matroid tree M is ρ-accepting for an
M-predicate ρ if ρ(v) = 1 for each path v of maximal length in B.

6.1 What Can We Expect?
The required tree structure implies that any extractor must find at least d =

∏
i∈[r] di

accepting executions, where di is the rank of Mi. If we treat ρ as an oracle, then a first
guess might be that the expected number of queries of an optimal extractor is O (d/∆),
where ∆ = Pr [ρ(v) = 1].

However, we also need to take into account the restrictions imposed by the matroids
on the nodes at each level. Consider a node u at depth i − 1. In general we cannot expect
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to simply pick a basis of Mi to be children of u and extend them to paths accepted by ρ,
since the conditional probabilities of success for the children are not necessarily sufficiently
large. One natural idea is to sequentially identify children and build both a basis B for
Mi and recursively build subtrees for which the children are the roots.

Suppose that we are in the process of doing this and have an independence set B of
j < di children for which we have extracted subtrees. Then the next child of u must be
chosen in Si \ span(B), so without a deeper understanding of the distribution of accepting
paths we must accept an additive loss of ωMi,j = |span(B)|/|Si| in the success probability.
Collecting statistics about the distribution of accepting paths precise enough to avoid this
has similar complexity as solving the extraction problem itself and is therefore too costly.
Thus, a somewhat more realistic goal for an efficient extractor is an expected running time
of O (d/(∆ − ϵ)), where ϵ =

∑
i∈[r] ωMi

and ωMi
= maxj∈[di] ωMi,j .

Minimizing ϵ is important for protocols where we do not care about the running time
of the extractor and only use it as a probabilistic proof to argue that a witness exists. This
establishes ϵ as the soundness error of the protocol viewed as an interactive proof. However,
if we view the protocol as a proof of knowledge, then the running time of the extractor
plays an important role, since it influences the running time of a security reduction of an
invoking protocol, which in turn determines the running time of an algorithm that breaks
a complexity assumption. Minimizing ϵ increases the constant factor drastically.

6.2 On the Distribution of the Running Time
In the discussion above we have only considered the expected running time µ of a potential
extractor X . When this is not enough, the standard approach is to apply Markov’s
inequality and conclude that X completes within time 2µ with probability at least 1/2,
so the number of attempts we need to extract a witness has geometric distribution with
probability 1/2.

However, the discussion above suggests that the running time of an extractor may be
concentrated due to the large number of relatively independent samples needed to extract
the tree. To see this, consider a tree where the accepting paths are uniformly distributed.
Then we would expect the number of samples needed by the extractor to have (almost)
negative binomial distribution with parameter d =

∏
i∈[r] di and probability ∆ − ϵ.

Unfortunately, the tree is constructed by the adversary, so for many nodes the condi-
tional probability ∆′ of finding an extension to an accepting path may be very low. Any
unsupervised attempt to simply call a recursive routine that extracts a subtree at such a
point will give a running time that is at best geometrically distributed with probability ∆′.
Given even a moderately large d, the probability of encountering such a node is high, and
the total running time would then be a sum that is dominated by the running times of the
extractions from such nodes (see Jansson [Jan17] for how bounds on sums of geometric
distributions with different probabilities behave).

Thus, every strategy must have a mechanism to interrupt all subroutine calls that take
too long to complete. Thus, we may hope that the number of queries made is essentially a
constant times a random variable with negative binomial distribution with parameter d1
and probability ∆ − ϵ, where the scaling factor depends on the cost of a recursive call, and
this is the type of result we achieve.

6.3 Strategy
In Section 6 we abstracted a prover and a verifier as a predicate. An accepting basis
extractor extracts a set of transcripts from which a witness can be computed. We give a
rigorous definition Section 7. In general any strategy that treats the prover as a blackbox
has limited information about the suitability of verifier messages beyond if a complete
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transcript is accepting or not. Thus, we are restricted to try to extract a tree of transcripts
in some topological order.

The base case at depth r − 1 for a depth r tree consists of simply sampling accepting
leafs. It is easy to see that this requires a number of queries that is bounded by the
negative binomial distribution. This is described in Section 8.2, where we also describe
how a sample can be validated probabilistically.

The general strategy is natural and described in Section 8.3. Since it is recursive we
describe it as if we start at the root. We sample paths until we find an accepting path v.
Consider the child u of the root in such a path. If the conditional probability of finding an
accepting path through u is δu, then Markov’s inequality implies that it is at least α∆
with probability 1 − α for α ∈ (0, 1).

We can invoke the algorithm recursively using u as a root and interrupt the execution
if it takes too long, but if the recursive call is costly it is worthwhile to first validate that
u is reasonably good.

We can do this by sampling random paths through u and sample a new node if we
do not encounter sufficiently many accepting paths within a given number of attempts.
We then balance the cost of sampling against the cost of failed attempts to execute the
strategy recursively. For nodes close to the root sampling is relatively cheap compared to
the cost of an interrupted execution.

This strategy gives a number of parameters for each recursive call. A parameter α
determines how close to ∆ we want δu to be. A parameter β captures the additional loss we
have if we validate the candidate, since we cannot do this perfectly. The probability that
validation gives the right result is determined by a parameter γ, and finally a parameter λ
determines the probability that a recursive call completes.

We derive expressions for the extraction error and the expected value, and give a tail
bound for the number of queries made by the extractor in terms of these parameters.
This allows choosing good parameters for an exact security analysis of any special-sound
protocol.

7 Accepting Basis Extractors
For a matroid tree M we let S =×i∈[0,r] Si, where Mi = (Si, Ii) and S0 = {v0} for some
v0. Recall that Si is the set of possible ith verifier messages, so S is the set of possible
lists of verifier messages. We define the probability that the predicate ρ is satisfied for a
list of verifier messages chosen uniformly at random by ∆ρ(M) = |{ρ(v) = 1 | v ∈ S}|/|S|.
When M is clear from the context we drop M and write ∆ρ.

Let D and D′ be distributions over N. We say that D is bounded by D′ if D stochastically
dominates D′, i.e., if for random variables X and X ′ distributed according to D and D′,
respectively, and every x ∈ N: Pr [X ≤ x] ≥ Pr [X ′ ≤ x].

Definition 10 (Accepting Basis Extractor). A probabilistic polynomial time algorithm
Xκ parametrized by κ ∈ {0, 1}∗ is a (ϵκ, Dκ(∆))-accepting basis extractor with extraction
error ϵκ for a matroid tree M, where Dκ(∆) for fixed κ is a family of distributions on N
parametrized by ∆ ∈ [0, 1], if for every M-predicate ρ : S → {0, 1} and ∆ρ(M) ≥ ∆0 > ϵκ:
X ρ(·)

κ (M, ∆0) outputs a ρ-accepting basis of M, where the distribution of the number of
ρ(·)-queries is bounded by Dκ(∆0).

This definition is more precise than the definition of a proof of knowledge in that it
bounds the distribution, and not only the expected value, of the number of queries made
by the extractor. The extractor and the corresponding extraction error ϵκ and distribution
Dκ(∆0) can be modified using the parameter κ.
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We require a lower bound ∆0 on the accept probability ∆ρ as an explicit input to the
extractor to guarantee the expected behavior, but this is typically known as the result of a
contrapositive assumption about a given prover.

We stress that the extraction error ϵκ is a property related to a particular algorithm
and parameter κ and is neither necessarily the soundness error nor the knowledge error of
the protocol from which the matroid tree is derived. It merely provides an upper bound
on both when the running time is not too large and a witness can be efficiently computed
from an extracted accepting basis.

8 Constructing Accepting Basis Extractors
We split the description of extractors into subroutines and analyze them separately to em-
phasize the structure of the main algorithm and the interplay between the parameters that
we consider below. When convenient we use generating functions to describe distributions,
e.g., a distribution D over N has probability generating function GD(z).

8.1 Notation for Bounds
Consider a random variable X taking values in N. Furthermore, suppose that it has
distribution D(s, ∆) parametrized by s ∈ N+ and ∆ ∈ [0, 1]. Recall that the negative
binomial distribution is parametrized in this way and that its tail bound does not depend
on ∆. This property is shared by the distributions we encounter, so we denote by tD

s(k) a
tail bound that satisfies Pr

[
X ≥ kµD(s,∆)

]
≤ tD

s(k), where µD(s,∆) is the expected value
of D(s, ∆). We similarly think of hD

s(k) = 1 − tD
s(k) as a head bound. We need to express

optimal parameters to head bounds as functions. We denote the smallest possible k that
satisfies a lower bound λ by

kD
s(λ) = min{k ∈ (1, ∞) | hD

s(k) ≥ λ} . (1)

When s is fixed we drop it from our notation and consider the distribution to carry this
information, e.g., D0(∆) could be defined as D(s, ∆) in which case tD0(k) = tD

s(k) and
similarly for other quantities.

However, if instead the value of k is fixed, and s appears as a parameter, then we can
increase hD

s(k) by increasing s which gives

sD
β(γ) = min{s ∈ N+ | hD

s(1/β) ≥ γ} , (2)

where we replace k by β = 1/k for notational convenience. Note that changing s changes
the distribution. We have the following two concrete tail bounds

tNB
s (k) = e−(1−1/k)2ks/2 (3)

tCG
s (k) = e−(k−1−ln k)s (4)

for the negative binomial distribution NB(s, ∆) for some probability ∆, and a product
of s compound geometric distributions (see Definition 32), respectively. The (shifted)
geometric distribution is denoted Geo(∆). At one point we also need to bound below the
expected value, i.e., we need a bound of the form Pr

[
X ≤ µNB(s,∆)/k

]
≤ nNB

s (k), where
nNB

s (k) = e−(k−1)2 s
3k . Due to asymmetry this bound is slightly weaker. (See Theorem 8

and Theorem 9.)

8.2 Basic Algorithms
Definition 11 (Basic Extractor). The basic extractor algorithm B takes as input a tuple
(M, ∆0), where M = (M0,M1), and proceeds as follows:
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1. Set B = ∅.

2. Repeat while |B| < d1:

(a) Sample v ∈ S0 × (S1 \ span(B)) randomly.
(b) If ρ(v) = 1, then set B = B ∪ {v1}.

3. Return B.

Lemma 1 (Basic Extractor). The algorithm B is a (ωM1 , NB(d1, ∆′
1))-accepting basis

extractor for M, where ∆′
1 = ∆0 − ωM1 .

In the analysis of the basic extractor and the algorithms below we need to consider the
conditional probability that a node can be extended to an accepting path. Thus, we define
δu = Pr [ρ(V ) = 1 |V1 = u ], where V is uniformly distributed in S.

Definition 12 (Basic Sampler). The basic sampler algorithm BS takes as input a tuple
(M, B, ∆0), where B ∈ I1 is not a basis and ∆0 ∈ (0, 1], and repeats:

1. Sample v ∈ S0 × (S1 \ span(B)) ××i∈[2,r] Si randomly.

2. If ρ(v) = 1, then return v1.

Lemma 2 (Basic Sampler). If ∆ρ ≥ ∆0 > ωM1 , then the distribution of the number of
queries to ρ(·) made by BSρ(·)(M, B, ∆0) is bounded by GBS(M,∆0)(z) = GGeo(∆′

1)(z), where
∆′

1 = ∆0 − ωM1 . Furthermore, if U denotes its output, then Pr [δU ≥ α∆′
1] ≥ 1 − α.

Proof. A sample satisfies ρ(v) = 1 with probability at least ∆′
1, so the number of samples

needed is bounded by Geo(∆′
1). For the second claim we let V be uniformly distributed in

S and let U be the node denoted by v1 in the algorithm. Set B⊥ = S1 \ span(B). Then by
definition we have

Pr [U = u] = Pr [V1 = u |ρ(V ) = 1 ∧ V1 ∈ B⊥ ] and (5)
δu = Pr [ρ(V ) = 1 |V1 = u ∧ V1 ∈ B⊥ ] (6)

so

Pr [U = u] /δu = Pr [V1 = u ∧ V1 ∈ B⊥]
Pr [ρ(V ) = 1 ∧ V1 ∈ B⊥] (7)

which implies

E [1/δU ] =
∑

u∈B⊥

Pr [U = u] /δu ≤ 1
∆′

1

∑
u∈B⊥

Pr [V1 = u] ≤ 1
∆′

1
. (8)

Markov’s inequality then implies that

Pr [δU < α∆′
1] = Pr

[
1

δU
>

1
α∆′

1

]
≤ α (9)

so Pr [δU ≥ α∆′
1] ≥ 1 − α as claimed.

Definition 13 (Sample Validator). The sample validator algorithm Vs,k proceeds as
follows on input (M, ∆0), where s ∈ N+, k ∈ (1, ∞), and ∆0 ∈ (0, 1]:

1. Set h = 0 and c = 0.

2. While h < s and c < sk/∆0:
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(a) Sample v ∈×i∈[0,r] Si randomly.
(b) Set h = h + ρ(v) and c = c + 1.

3. If h = s, then return 1 and otherwise return 0.

Lemma 3 (Sample Validator). The number of queries made by Vρ(·)
s,k (M, ∆0) is bounded

by sk/∆0. If ∆ρ ≥ ∆0, then Pr
[
Vρ(·)

s,k (M, ∆0) = 1
]

≥ hNB
s (k), and if ∆ρ < ∆0

k , then
Pr

[
Vρ(·)

s,k (M, ∆0) = 1
]

≤ nNB
s (k).

Proof. The claims follow directly from the tail and head bounds of the negative binomial
distribution (see Theorem 9).

The validating sampling algorithm repeatedly samples paths until an accepting path is
found. This is repeated until the first element of the found path is considered good by the
validation algorithm.

Definition 14 (Validating Sampler). The validating sampler algorithm VSα,β,γ proceeds
as follows on input (M, B, ∆0), where α, β, γ ∈ (0, 1), ∆0 ∈ (0, 1], and B ∈ I1 is not a
basis:

1. Define ∆′
1 = ∆0 − ωM1 , k = 1/β, and s = sNB

β (γ).

2. Repeat:

(a) Compute v1 = BSρ(·)(M, B, ∆0).
(b) If Vρ(v0,·)

s,k

(
({v1},M2, . . . ,Mr), α∆′

1
)

= 1, then return v1.

Lemma 4 (Validating Sampler). If ∆ρ ≥ ∆0 > ωM1 , then the distribution of the number
of queries of VSρ(·)

α,β,γ(M, B, ∆0) is bounded by

GVS(M,α,β,γ,∆0)(z) = GGeo((1−α)γ)

(
GBS(M,∆0)(z)zsNB

β (γ)/∆1
)

, (10)

where ∆′
1 = ∆0−ωM1 and ∆1 = αβ∆′

1, and its output U satisfies Pr [δU ≥ ∆1] ≥ ϕ(α, β, γ),
where ϕ(α, β, γ) = 1 − αβnNB

s (1/β)/((1 − α)γ).

Proof. We know from Lemma 2 that the distribution of the number of queries made by
BSρ(·) in a given iteration is bounded by BS(M, ∆0). Lemma 3 implies that the number of
queries made by Vρ(v0,·)

s,k is upper bounded by ks/(α∆′
1) = sNB

β (γ)/∆1 so the distribution
of the total number of queries in the ith iteration is bounded by

G(z) = GBS(M,∆0)(z)zsNB
β (γ)/∆1 . (11)

Lemma 2 implies that if Ui denotes the output of BSρ(·) in the ith iteration, then
Pr [δUi ≥ α∆′

1] ≥ 1 − α. From Lemma 3 and how k and s are defined in the algorithm
we know that provided that δUi ≥ α∆′

1 the validator outputs 1 with probability at least
hNB

s (k) ≥ γ. Thus, the distribution of the number of samples considered is bounded by
Geo((1 − α)γ). This implies that GGeo((1−α)γ)(G(z)) bounds the distribution of the total
number of queries as claimed.

Similarly to the previous claim we have Pr [δUi
< αβ∆′

1] < αβ for every i from
Lemma 2. Denote by Ai the output of Vρ(v0,·)

s,k

(
({Ui},M2, . . . ,Mr), α∆′

1
)
, i.e., it is the

indicator variable for the event that VSα,β,γ returns Ui. Then Lemma 3 implies that
Pr [Ai = 1 |δUi

< αβ∆′
1 ] ≤ nNB

s (k) which gives

Pr [δUi
< αβ∆′

1 |Ai = 1] <
αβnNB

s (1/β)
Pr [Ai = 1] ≤ αβnNB

s (1/β)
(1 − α)γ · (12)
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8.3 Recursive Algorithm
We now have the subroutines we need. We sequentially sample good candidates for roots
of accepting bases of subtrees and make sure that the roots are independent with respect
to M1. If extracting an accepting basis for a subtree takes too long, then we interrupt the
execution and find a new candidate.

To be able to seamlessly talk about both the basic sampler and the validating sampler,
and the distributions of queries we use the following notation. The sampling algorithm is
defined by:

Sρ(·)
α,β,γ(M, B, ∆) =

{
BSρ(·)(M, B, ∆) if β = 1
VSρ(·)

α,β,γ(M, B, ∆) otherwise
(13)

The distribution of the number of queries (for a fixed oracle) is denoted by:

S(M, α, β, γ, ∆) =
{

BS(M, ∆) if β = 1
VS(M, α, β, γ, ∆) otherwise (14)

The domain of the bounding function ϕ(α, β, γ) is extended to β ∈ (0, 1] by setting
ϕ(α, β, γ) = 1 − α when β = 1.

Definition 15 (Recursive Extractor). Let M = (M0, . . . ,Mr) be a matroid tree and
assume that R is a (ϵ1, D1(∆))-accepting basis extractor for matroid trees of the form
({v1},M2, . . . ,Mr), where v1 ∈ S1. The recursive extractor Rκ[R], where κ = (α, β, γ, λ),
α, λ, γ ∈ (0, 1), β ∈ (0, 1], proceeds as follows on input (M, ∆0).

1. Set ∆1 = αβ(∆0 − ωM1), k = kD1(λ), and µ = µD1(∆1).

2. Set B = ∅ and T = ∅.

3. While |B| < d1:

(a) Compute v1 = Sρ(·)
α,β,γ(M, B, ∆0).

(b) Extract subtree t = Rρ(v0,·)(({v1},M2, . . . ,Mr), ∆1
)
, but interrupt the execu-

tion and set t = ⊥ if it attempts to make more than kµ queries.
(c) If t ̸= ⊥, then set B = B ∪ {v1} and T = T ∪ {t}.

4. Return the accepting basis tree T .

Remark 1 (Reusing Samples). The accepting paths with common prefix drawn by the
sampling algorithm may be re-used by the extractor, but this will only make a noticable
difference deep down in the tree due to the relatively large number of additional accepting
paths that need to be found higher up in the tree and the fact that paths from the sampler
may have to be discarded. To keep the presentation simple we only use this fact in the
proof of Theorem 2.

Lemma 5 (Recursive Extractor). The algorithm Rκ[R] is a (ϵ0, D0(∆))-accepting basis
extractor, where ϵ0 = ϵ1/(αβ) + ωM1 and

GD0(∆0)(z) =
d1∏

i=1
GGeo(ϕλ)

(
GS(M,α,β,γ,∆0)(z)zkD1 (λ)µD1(∆1)

)
, (15)

defined by ϕ = ϕ(α, β, γ) and ∆1 = αβ(∆0 − ωM1).
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Proof. From Lemma 2 and Lemma 4 we know that the number of queries made in Step 3a
has distribution bounded by S(M, α, β, γ, ∆0).

Denote the candidate node in the ith iteration by Ui, i.e., the value denoted v1 in the
algorithm, and denote the output of Rρ(v0,·)(({Ui},M2, . . . ,Mr), ∆1

)
in the ith iteration

(or ⊥ if it is interrupted) by Ti. Then both Lemma 2 and Lemma 4 imply that we have
Pr [δUi

≥ ∆1] ≥ ϕ, and by our choice of scalar k we have Pr [Ti ̸= ⊥ |δUi
≥ ∆1 ] ≥ λ, so

Pr [Ti ̸= ⊥] ≥ ϕλ. This means that the distribution of the number of iterations required
to succeed once is bounded by Geo(ϕλ), and we need d1 successes.

Corollary 1 (Recursive Extractor). The distribution D0(∆) satisfies

µD0(∆0) =


d1

(1−α)λ

(
α 1

∆1
+ kD1(λ)µD1(∆1)

)
if β = 1

d1
ϕλ

(
αβ+sNB

β (γ)
(1−α)γ

1
∆1

+ kD1(λ)µD1(∆1)

)
otherwise

(16)

tD0
d1

(k) ≤ tCG
d1

(k) for k ∈ (1, ∞) . (17)

8.4 Accepting Basis Extractor
We now let the recursive extractor R invoke itself recursively until it suffices to invoke
the basic extractor B. For each additional recursive call needed, there is growth in the
extraction error, but this only depends on the quantity ν = 1/(αβ), apart from the matroid
subdensities which are fixed. Given a fixed ν we may optimize all other parameters to
minimize the expected number of queries, since our tail bound does not depend on the
expected value. All we need to do this is the rank of the matroid and a bound on the
distribution of the number of queries needed in the next recursive call.

Theorem 2 (Extractor). For every ν1, . . . , νr−1 ∈ (1, ∞) there exist parameters κi =
(αi, βi, γi, λi) such that the algorithm Xκ = Rκ1

[Rκ2
[· · · Rκr−2

[B] · · · ]], is a (ϵ0, Dκ(∆0))-
accepting basis extractor for matroid trees of depth r where:

ϵ0 =
∑
i∈[r]

ωMi

∏
j∈[i−1]

νj (extraction error) (18)

µD0(∆0) ≤
c0

∏
j∈[r] dj

∆0 − ϵ0
(expected number of queries) (19)

tD0
d1

(k) ≤ tCG
d1

(k) for k > 1 , (tail bound) (20)

where the constant c0 is defined by cr−1 = 1 and ci = fS(di+1, νi+1, ci+1) for i = r−2, . . . , 0,
using fS(d, ν, c) = min

{
fBS(d, ν, c), fVS(d, ν, c)

}
, where

fBS(d, ν, c) = ν2

(ν − 1) · min
k

{
k

hCG
d (k)

}
· c , (21)

fVS(d, ν, c) = min
α,s,k

{
ν

ϕ(α, να, γ)

(
1 + s

α′hNB
s (να)hCG

d (k) · di

Di+1,r
+ k

hCG
d (k) · c

)}
(22)

with Di,r =
∏

j∈[i,r] dj, α ∈ (0, 1/ν), α′ = 1 − α, s ∈ N+, and k ∈ (1, ∞).

Both strategies give convoluted expressions, but we choose to not simplify, since they
tell a story and are readily computed numerically. The first factor in fBS(d, ν, c) represents
how aggressively we use Markov’s bound, i.e., how good we want a sample to be. The
second factor represents the tradeoff between the number of attempts needed to complete a
recursive call and how long it is allowed to run. This factor appears as a term in the second
factor of the validating sampling strategy as well, but here it is balanced with the first
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term where s represents how many samples are used for validation. This is only worthwhile
when Di+1,r and c are large. Note that it is easy to compute optimal parameters for the
algorithm for any concrete protocol.

Proof of Theorem 2. The tail bound follows directly from Corollary 1.

Bounding the extraction error. If we set ζi = αiβi for i ∈ [r − 1] and ζr = 1, then
we have ∆i = ζi(∆i−1 − ωMi

) for i ∈ [r] which expands to

∆r = ∆0
∏
i∈[r]

ζi −
∑
i∈[r]

ωMi

∏
j∈[i,r]

ζj . (23)

The basic extractor requires that ∆r−1 − ωMr = ∆r > 0 to work, so the extraction error is
given by

ϵ0 =
∑
i∈[r]

ωMi∏
j∈[i−1] ζj

=
∑
i∈[r]

ωMi

∏
j∈[i−1]

νj . (24)

Deriving parameters. Next we consider the problem of deriving αi, βi, γi, and λi

from ζi. Define Xκ,i = Rκi
[Rκi+1

[· · · Rκr−2
[B] · · · ]]. We will express the expected running

time of Xκ,i on the form ciDi+1,r/(∆i − ϵi) for a constant ci provided that its oracle and
input (Ni, ∆i) are reasonably good. More precisely, it is called with an oracle of the form
ρ(v0, . . . , vi−2, ·) and a matroid tree Ni = ({vi−1},Mi, . . . ,Mr) for some values vi ∈ Si.
Denote by ∆0 the original estimated probability used as input to Xκ,1 and define

∆′
i = ∆i−1 − ωMi

, ∆i = ζi∆′
i , and ϵi = ζi(ϵi−1 − ωMi

) (25)

for i ∈ [r]. We set α′
i = 1 − αi for notational convenience below.

Basic sampling strategy. Consider first the strategy where the non-validating sampler is
used, i.e., we have βi = 1 and ζi = αi. If we exploit the fact that the path through the
sampled node can be re-used we have

µDi−1(∆i−1) = di

α′
iλi

kDi(λi)µDi(∆i) (26)

= 1
αiα′

i

· kDi(λi)
λi

· ci · Di,r

∆i−1 − ϵi−1
. (27)

If we choose an optimal λi, then

ci−1 = 1
αiα′

i

· kDi(λi)
λi

· ci = fBS(di, νi, ci) . (28)

Validating sampling strategy. Next we consider the strategy where samples are validated
before use and we are not extracting leaves in the recursive call, i.e., we have i < r − 2,
βi < 1, and ζi = αiβi. In this case re-using leaves has limited value and we have

µDi−1(∆i−1) = di

ϕiλi

(
ζi + sNB

βi
(γi)

α′
iγi

· 1
∆i

+ kDi(λi)µDi(∆i)

)
(29)

= 1
ζiϕi

(
ζi + sNB

βi
(γi)

α′
iγiλi

· di

Di+1,r
+ kDi(λi)

λi
· ci

)
Di,r

∆i−1 − ϵi−1
. (30)

If we choose parameters optimally, then we have

ci−1 = 1
ζiϕi

(
ζi + sNB

βi
(γi)

α′
iγiλi

· di

Di+1,r
+ kDi(λi)

λi
· ci

)
≤ fVS(di, νi, ci) . (31)
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8.5 Interpretation
In the following we assume that ∆0 is a tight lower bound for ∆ρ. The expected running
time of the extractor is poly/(∆0 − ϵ0) as expected for a proof of knowledge with knowledge
error ϵ0.

We may choose νi arbitrarily close to one and conclude that a witness can be extracted
provided that ∆0 is slightly larger than ϵ =

∑
i∈[r] ωMi , which coincides with our intuition

about the soundness of special-sound protocols in general, i.e., to convince a verifier of a
false statement it suffices in general to guess a challenge value correctly in at least one
round. This is optimal in the sense that it is necessary to exploit dependencies between
the rounds in the protocol to establish a smaller soundness error.

Note that Bellare and Goldreich’s definition of a proof of knowledge [BG92] is satisfied
regardless of how small we make νi > 1. However, if we choose νi based on a given
∆0 such that ∆0 > ϵ0, then the expected number of queries of the extractor has the
form f(∆0)/(∆0 − ϵ0), where f(∆0) grows superexponentially when ∆0 approaches ϵ0.
Conversely, we may set νi ≈ 2 to minimize the expected running time of the extractor and
accept an extraction error of the form

∑
i∈[r] 2i−1ωMi

. This begs the question: What is
the knowledge error of the protocol?

A protocol is said to be a proof of knowledge with knowledge error ϵ∗ if there is an
extractor that outputs the witness in expected time poly/(∆ρ − ϵ∗). On the one hand we
can make ϵ∗ arbitrarily close to ϵ (and it cannot be smaller), but on the other hand this
causes a drastic loss in security in terms of the running time of the extractor. Squeezing ϵ∗
in this way is arguably an abuse of the definition, but we still think that it is more natural
to view the knowledge error as a property of the extractor and not of the protocol.
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Proof of Corollary 1. The expected value follows from linearity and Wald’s equation
[Wal44] (or directly from Lemma 10). More precisely, it follows from the equalities
µGeo(ϕλ) = 1/(ϕλ), ∆′

1 = ∆0 − ωM1 , ∆1 = αβ∆′
1, and

µS(M,α,β,γ,∆0) =


1

∆′
1

if β = 1
1

(1−α)γ

(
1

∆′
1

+ sNB
β (γ)
∆1

)
otherwise

(32)

and the fact that ϕ = 1 − α when β = 1. The tail bound follows directly from Theorem 8
for this type of compound geometric distribution.

B Additional Context

B.1 The Set of Accepting Transcript Trees is Not a Matroid
As explained in Section 3, for any knowledge extractor there is an implicitly defined set J
of minimal accepting transcript trees from which a witness can be computed efficiently.
Let S be the set of all possible transcripts and define I to consist of the union of J and all
subsets of any element A ∈ J . This is a natural attempt to define a matroid (S, I) over the
set of transcripts. The set I is non-empty, and A ∈ I and B ⊂ A implies that B ∈ I, but
the augmentation property of matroids does not hold in general. Indeed, if A, B ∈ I and
|A| > |B| there is nothing that guarantees that we can include any transcript a ∈ A \ B
into B and expect it to remain a subset of some set in J .

This structure does not even necessarily satisfy the relaxed requirements of a gree-
doid [KL81], since the maximal elements of the set I may have different sizes and there is
not necessarily a feasibility oracle. This should not be surprising to the reader, since we
can express hard combinatorial optimization problems as knowledge extraction problems.

Thus, in this paper we show that a large and natural class of protocols can be described
and analyzed exactly using the standard mathematical notion of matroids; not that the
independence requirements of every protocol has this simple structure.

B.2 Counting Predicate Queries Suffices
We have no control over how the prover distributes its running time over the execution of
the protocol. Counting queries may be viewed as the worst case where the vast majority
of the work is performed right before the last round.

Above we have ignored all overhead costs in the extraction algorithms and focused
on the number of oracle queries. The only potentially non-linear operation performed by
the algorithms that is not already captured by the evaluation of the predicate is sampling
from the complement of a flat in a matroid. Note that small subdensity does not imply
that verifying independence is efficient. Consider the following definition.

Definition 16 (Sampling Cost). Let M be a matroid of rank d. Then M has sampling
cost cM if there exists a probabilistic algorithm Alg with running time cM such that setting
a0 = ∅ and computing (ai, bi) = Alg(ai−1) for i = 1, . . . , d gives a uniformly distributed
basis {b1, . . . , bd} of M.

The value ai is used to store any pre-computation used by Alg to complete the task
within the required time. One can give more precise running times for the extractors by
including the cost for sampling in the the analysis, but we choose to not do this, since for
the matroids of protocols the running time of the sampling algorithm is typically linear in
i with a unit cost corresponding to a multiplication in a field or similar.
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B.3 Direct Applications
We have phrased Theorem 2 in an abstract way not only to emphasize the simple combi-
natorial structure and to be able to give a rigorous proof, but also because it allows the
theorem to be applied directly to a broad range of settings. Below we give two illustrative
examples.

B.3.1 Schnorr’s Protocol.

We consider a common practical variant of Schnorr’s protocol [Sch91] where the verifier’s
challenge is sampled randomly from a subset {0, 1}nv ⊂ Zq instead of from the whole field,
where nv is an auxiliary security parameter. Consider a group homomorphism ϕ : Zq → Gq,
where q is an odd prime, and Gq is a group of order q. The protocol can be used to prove
knowledge of a pre-image w ∈ Zq of z ∈ Gq, such that ϕ(w) = z.

Definition 17 (Schnorr’s Protocol). On common input z ∈ Gq and private input w, such
that ϕ(w) = z, the prover and verifier proceed as follows.

1. P chooses r ∈ Zq randomly, computes α = ϕ(r), and hands α to V.

2. V chooses c ∈ {0, 1}nv randomly and hands c to P.

3. P computes d = wc + r mod q.

4. V accepts if and only if zcα = ϕ(d).

The soundness of the protocol is captured by the inequality matroid ({0, 1}nv , I), where
I = {X ⊂ {0, 1}nv : |X| ≤ 2} is the set of subsets of {0, 1}nv of size at most two. A
convenient notation for this matroid is {0, 1}nv

2 .

Lemma 6. Schnorr’s protocol is
(
{0, 1}nv

2 , O
(
n2) )

-special sound,

Proof. An accepting transcript tree T such that V(T ) is a basis subtree of the matroid
tree is a pair of accepting transcripts (z, α, c, d) and (z, α, c′, d′) such that {c, c′} is a basis
of {0, 1}nv

2 . The witness extraction algorithm computes w = (c − c′)−1(d − d′), which
takes time O

(
n2)

. The output w is a witness, since ϕ(w) = ϕ((c − c′)−1(d − d′)) =
ϕ(d − d′)(c−c′)−1 = z.

Corollary 2. There exists a (ϵ, D(∆))-accepting basis extractor X for Schnorr’s protocol
such that ϵ = 2−nv , µD(∆) ≤ 1

∆−ϵ , and tD(k) = e−2(k−1−ln k).

B.3.2 Batching protocol.

The ability to capture the soundness of Schnorr’s protocol in a simple way may be viewed
as a sanity check, since it inspired the definition of special soundness. Our next example
is a batching protocol where multiple instances are combined into one before Schnorr’s
protocol is applied. We stress that this is an example from a broad class of protocols which
illustrates how our approach captures concentration in the distribution of the running
time.

More precisely, suppose that the prover holds a preimage xi of a common input
yi = ϕ(xi) for i ∈ [N ]. We can of course simply construct product groups and apply
Schnorr’s protocol with minor syntactical changes, but the batching technique of Bellare
et al. [BGR98] is more efficient.

A vector space ZN
q is a matroid where a set of vectors is an independent set if and

only if its members are linearly independent. Below we denote by {0, 1}ne×N the matroid
induced by restricting the ground set to {0, 1}ne×N .
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Definition 18 (Batching Protocol). On common input yi ∈ Gq for i ∈ [N ], and private
input xi ∈ Zq such that ϕ(xi) = yi for i ∈ [N ] the prover and verifier proceed as follows.

1. V chooses e ∈ {0, 1}ne×N randomly and hands e to P.

2. P and V execute Schnorr’s protocol on common input z =
∏

i∈[N ] yei
i and private

input w =
∑

i∈[N ] xiei mod q and V outputs the resulting verdict.

Lemma 7. The batching protocol is
(
({0, 1}ne×N , {0, 1}nv

2 ), O
(
N3n2) )

-special sound.

Proof. An accepting transcript tree T such that V(T ) is a basis subtree of the matroid
tree is a set of accepting transcripts{

(ej , αj , cj , dj), (ej , αj , c′
j , d′

j)
}

j∈[N ] (33)

such that {e1, . . . , eN } is a basis of the vector space matroid and {cj , c′
j} is a basis of the

inequality matroid for j ∈ [N ].
The witness extraction algorithm first uses the witness extraction algorithm of Schnorr’s

protocol for j ∈ [N ] to compute: wj such that ϕ(wj) = zj from (zj , αj , cj , dj) and
(zj , αj , c′

j , d′
j), where zj =

∏
i∈[N ] y

ej,i

i .
Then it defines the vector w = (w1, . . . , wN ) and the matrix E = (ej,i)j,i∈[N ], and

computes the matrix A = (al,j)l,j∈[N ] in ZN×N
q such that AE = (⟨al, e′

i⟩)l,i∈[N ] is the
identity matrix, where: al denotes the lth row of A, e′

i denotes the ith column of E, and
⟨·, ·⟩ is the inner product over ZN

q . The matrix A exists since {e1, . . . , eN } is a basis, and
it can be computed in time O

(
N3n2)

using Gaussian elimination.
The witness extraction algorithm computes xl = ⟨w, al⟩ for l ∈ [N ] and outputs

x1, . . . , xN . This is a witness, since

ϕ(⟨w, al⟩) =
∏

j∈[N ]

ϕ(wj)al,j =
∏

j∈[N ]

z
al,j

j =
∏

j∈[N ]

( ∏
i∈[N ]

y
ej,i

i

)al,j

=
∏

i∈[N ]

y
⟨al,e′

i⟩
i , (34)

and ⟨al, e′
i⟩ equals 1 if l = i and 0 otherwise.

Corollary 3. There exists a (ϵ, D(∆))-accepting basis extractor X for the batching protocol
such that ϵ = 2−ne + 21−nv , µD(∆) ≤ 16·N

∆−ϵ , and tD(k) = e−N(k−1−ln k) if N > 10.

Proof. We set ν1 = 2 and apply Theorem 2.

The tail bound is powerful when N is large and allows us to think of the extractor as
running in strict polynomial time in most applications. The constant 16 tends to 8 for
large N .

B.4 Application to Embedded Protocols
Above we consider special sound protocols in isolation, but they are almost always used
as subprotocols within larger protocols. Conceptually it is natural to consider a special
sound protocol as a component of a larger global protocol and think of the common input
as generated somehow prior to execution.

For interactive proofs composition is straightforward since soundness is guaranteed for
all instances. Indeed, if an interactive proof has soundness error ϵ and it is executed k
times within the global protocol, then the probability that a false statement is accepted in
any execution is bounded by kϵ.

However, when a special sound protocol is used as a proof of knowledge or compu-
tationally sound proof, it is easier to turn the global protocol into an extension of the
special sound protocol and apply our theorem directly to the extended protocol than to
decompose the global protocol into components with complex and artificial requirements
on their composition.
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B.4.1 What if the first prover message is randomly chosen?

Before we delve into the general case, we address something that the reader may have
already observed in our analysis of Schnorr’s protocol above.

We treat the prover as deterministic, but in most applications the first prover message
α of Schnorr’s protocol is chosen randomly by a probabilistic prover. Indeed, it must be
randomly chosen for the protocol to be zero knowledge.

To apply our analysis we simply note that we may view the random tape of the prover
as the first message of the verifier. When the protocol is viewed in this way, it is a(
({0, 1}∗, {0, 1}nv ), p

)
-special sound protocol, where is {0, 1}∗ the trivial matroid where

every subset of size at most one is a basis. Thus, our analysis applies mutatis mutandi,
but the running time of the extractor is now bounded by a geometric distribution and
therefore less concentrated.

B.4.2 Extending an embedded protocol.

The above is an example of a more general principle. Any global protocol with any number
of parties which executes a special sound protocol as a subprotocol may be viewed as
an extended protocol as follows. All honest, trusted parties, ideal functionalities, and the
verifier of the special sound protocol are simulated by an extended verifier. All corrupted
parties, including the prover of the special sound protocol are simulated by an extended
prover.

In other words, we divide the parties of a multiparty protocol into two groups and
consider the global protocol as an interactive protocol between the two groups of parties
and entities. The prefix of the execution generates an instance on which the special sound
protocol is then executed.

More precisely, the random tapes of all corrupted parties and all the randomness used
in the prefix may be viewed as a single verifier message of the extended verifier. This
means that there is simply an additional message from the verifier of the special sound
protocol at the start of the protocol drawn from the ground set of a trivial matroid.

Then we can clearly apply the theorem directly, but there is no statement at the start
of the global protocol, so what does this even mean?

In the analysis of protocols we use knowledge extractors either to reach a contradiction
to a computational assumption, or to extract values needed in the simulation of a larger
protocol.

B.4.3 Extract to Solve a Computational Problem.

Consider an application of an identification scheme [FS86]. Each party holds a secret key
of a public key and to identify themselves they prove knowledge of their secret key. In this
application we expect an illegitimate prover to fail to use another party’s public key unless
it is able to solve a computationally hard problem, i.e., if such a prover convinces the
verifier then there should be an efficient algorithm for solving the computational problem.

For example, suppose that an honest party in the protocol chooses a secret key w ∈ Zq,
computes a public key z = ϕ(w), and that we use Schnorr’s protocol as an identification
scheme. If a corrupt party executes Schnorr’s protocol with an honest party this should
lead to a contradiction, since it should be unable to masquerade as the owner of z.

We can construct the reduction as follows. First we modify the extended protocol
such that every execution where the owner of z plays the prover is simulated using the
zero-knowledge simulator. This means that the secret key is no longer necessary to sample
an extended execution. Then we apply the theorem and conclude that there exists an
extractor that for some common input z′ appearing as a message from the extended verifier
computes a witness w′ such that z′ = gw′ .
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We note that z can be used by the extractor as long as it is randomly distributed. If
the extractor uses at most Q queries and the reduction simply replaces a randomly chosen
common input by z at a randomly chosen point in the extraction process, then z′ = z with
probability 1/Q. Furthermore, the discrete logarithm problem is random self-reducible
which means that we can replace every common input by a randomization z′ of z instead,
and always succeed. Here the tail bound on the distribution of the running time translates
into a tighter strict polynomial time reduction.

Turning this informal argument into a rigorous proof with an exact security reduction
amounts to introducing notation and applying our theorem.

Computationally sound proofs are closely related to this example, but here only part
of the statement is chosen randomly by the extended verifier (or it is generated jointly)
and the extracted witness leads to a contradiction with non-neglible probability, which is
the computational soundness error.

B.4.4 Extract to Enable Simulation.

In the global protocol special sound protocols are often used as proofs of knowledge in such
a way that the overall simulator must extract the witnesses of all accepting executions
to complete. The security proof of the global protocol the reduction may be based on an
indistinguishability assumption, e.g., the Decision Diffie-Hellman assumption.

In a typical game hopping security reduction [Sho04] this leads to the following situation.
A hypothetical experiment, parametrized by an adversary, takes an instance of the decision
problem as input and outputs a single bit. The output is encoded as two random
variables D0 and D1, respectively, depending on the type of instance of the decision
problem. The contrapositive assumption that is expected to lead to a contradition is that
|Pr [D1 = 1] − Pr [D0 = 1]| is non-negligible.

Consider the random process leading to an outcome of Db where the extractor is
invoked whenever a prover convinces the verifier in the embedded special sound protocol.
The verifier accepts with some probability ∆b, which itself is a random variable. If D′

b is
an indicator variable for the event that the verifier accepts, then we can conclude that
|Pr [D′

1 = 1] − Pr [D′
0 = 1]| is negligible, since otherwise we could ignore Db and use D′

b

directly distinguish instances of the decision problem without even invoking the extractor.
Thus, for the purpose of this argument we may assume that ∆0 and ∆1 are identically
distributed.

The expected running time is only increased by a polynomial factor when the ex-
traction error ϵ is small, since then ∆b · poly/(∆b − ϵ) ≈ poly. The problem is that
if we choose a bound t on the running time such that Pr [Tb ≥ t] = ϵ, we may have
|Pr [D1 = 1 |T1 ≤ t ] − Pr [D0 = 1 |T0 ≤ t ]| = 0, i.e., we may lose the entire distinguishing
advantage if we truncate executions too aggressively and no amount of resampling can
address this.

In other words, the tightness of the reduction is determined at this point by how well
we can bound Pr [Tb ≥ t]. The knowledge extractor guaranteed by the definition of a proof
of knowledge cannot be applied directly without loss. We would need to sample truncated
executions until it completed in time and bound the total running time as a geometric
distribution.

The extraction theorem provides sufficient guarantees for many protocols, and even
when it does not we may often start with a more concentrated distribution which allows
tighter security proofs.
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C Piece-wise Special Soundness
Some protocols require multiple rounds of extraction because matroids and values that need
to be extracted may depend on what have been extracted so far. This is often the case where
multiple witnesses can be extracted in principle, but only one witness can be extracted
without violating a computational assumption, e.g., proofs of shuffles [FS01, TW10].

This does not quite fit into the framework we have presented, since the matroids are
fixed, but we can still capture the extraction properties of such protocols in a way that
has the same flavor as special soundness. To this end we consider decompositions of NP
relations.

Definition 19 (Decomposable NP Relation). An NP relation R has a decomposition
(R1[·], . . . , Rk[·]), where Rj [·] is a family of NP relations, if (x, w) ∈ R if and only if there
exists y1, . . . , yk such that (x, yj) ∈ Rj [y1, . . . , yj−1] for j ∈ [k].

We need the flexibility to parametrize the independence sets of the matroids, but the
ground sets remain fixed since they are defined by the sets from which the verifier draws
its messages.

Definition 20 (Families of Matroids and Matroid Trees). If M[z] is a matroid with a
fixed ground set S for every z ∈ Z, then M[·] is a family of matroids parametrized Z. A
family of matroid trees of depth r is a list of families of matroids (M0[·], . . . ,Mr[·]).

The idea is now that we can think of a protocol as special-sound if we can decompose the
NP relation into a number of steps and device an extractor for each step using the approach
already presented, but with different independence sets. This may seem unnecessarily
complicated, but turns out to be convenient and preserves the strong properties of special
soundness.

Definition 21 (Piece-wise Special Soundness). A (2r + 1)-message public coin-protocol
(P, V) is piece-wise (M[·], p)-special-sound for an NP relation R with decomposition
(R1[·], . . . , Rk[·]), where Mj [·] is a family of matroid trees of depth r if (P, V) is (Mj [z], pj)-
special-sound for Rj [z] for every z = (y1, . . . , yj) such that (x, yl) ∈ Rl[y1, . . . , yl−1] for
l ∈ [j], and p =

∑
j∈[k] pj .

It is natural to abuse notation and think of a piece-wise special sound protocol as being
special sound, but the decomposition of the NP relation and the parametrized matroids
must be provided along with the algorithms that compute a witnesses from accepting
transcript trees.

D Matroids
We recall one set of definitions for matroids and some of their properties.

Definition 22 (Matroid). A matroid is a pair (S, I) of a ground set S and a set I ⊂ 2S

of independence sets such that:

1. I is non-empty,

2. if A ∈ I and B ⊂ A, then B ∈ I, and

3. if A, B ∈ I and |A| > |B|, then there exists an element a ∈ A \ B such that
{a} ∪ B ∈ I.

Definition 23 (Submatroid). Let (S, I) be a matroid and S′ ⊂ S. The submatroid
induced by S′ is the pair (S′, I ′) defined by I ′ = I ∩ 2S′ .
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Definition 24 (Basis). Let (S, I) be a matroid. A set B ∈ I such that B ∪ {x} ̸∈ I for
every x ∈ S \ B is a basis.

Definition 25 (Rank). The rank of a matroid (S, I) is the unique cardinality of each
basis in I.

Definition 26 (Rank of Set). Let (S, I) be a matroid and A ⊂ S. The rank rank(A) of A
is the rank of the submatroid induced by A.

Definition 27 (Span and Flats). Let (S, I) be a matroid and A ⊂ S. The span of A is
defined by span(A) = {x ∈ S | rank(A ∪ {x}) = rank(A)} and A is a flat if span(A) = A.

E Generic Bounds on Random Variables
We use a few standard bounds in this paper depending on how much we know about a
distribution and how important it is to give a tight bound. Markov’s inequality can be
applied to any distribution for which the expected value can be estimated. There are many
variations of Chernoff’s bound depending on what is most convenient and how precisely it
is stated. We state the bounds in their traditional forms.

Theorem 3 (Markov’s Inequality). Let X be a non-negative random variable over R with
expected value µ and let k ∈ (1, ∞). Then Pr [X ≥ kµ] ≤ 1

k .

Theorem 4 (Chernoff’s Inequalities). Let X1, . . . , Xn be independent binary random
variables such that Pr [Xi = 1] = p and define X =

∑n
i=1 Xi. Then for every δ ∈ (0, 1):

Pr [X < (1 − δ)np] < e− δ2p
2 n and (35)

Pr [X > (1 + δ)np] < e− δ2p
3 n . (36)

We remark that the slight asymmetry due to the factors 1/2 and 1/3 in the exponents
of the bounds is necessary.

F Generating Functions
Probability and moment generating functions are convenient ways to describe distributions
and derive bounds. They can be viewed as tools for manipulation of formal power series,
but they also have an analytic meaning where they converge.

Definition 28 (Probability Generating Function). The probability generating function
of a random variable X over N is defined by GX(z) = E

[
zX

]
for all z ∈ R for which this

converges.

Theorem 5 (Properties of Probability Generating Functions).

1. If X is a random variable over N, then PX (k) =
( 1

k!
)

G(k)
X (0), i.e., the probability

generating function determines PX uniquely.

2. If X and Y are independent random variables over N with probability generating
functions GX(z) and GY (z), then GX(z)GY (z) is the probability generating function
of the sum X + Y .

Definition 29 (Moment Generating Function). The moment generating function of a
random variable X over N is defined by MX(θ) = E

[
eθX

]
for all θ ∈ R for which this

converges.
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Theorem 6 (Properties of Moment Generating Functions).

1. If X is a random variable over N, then E
[
Xk

]
= M(k)

X (0), i.e., the moment generat-
ing function determines all moments of PX uniquely, which in turn determines PX

uniquely.

2. If X and Y are independent random variables over N with moment generating
functions MX(θ) and MY (θ), then MX(θ)MY (θ) is the moment generating function
of X + Y .

The following is a general form of Markov’s inequality from which Chernoff’s inequality
follows using the right choice of θ for the binomial distribution.

Theorem 7 (Cramér’s Theorem). Let X1, . . . , Xn be identically and independently dis-
tributed random variables, and define Y =

∑n
i=1 Xi. Then for every a > µ and θ ∈ (0, ∞)

such that MX1(θ) is finite:

Pr [Y ≥ na] ≤
(

MX1(θ)
eθa

)n

. (37)

Proof. We apply Markov’s inequality and independence to get

Pr [Y ≥ na] = Pr
[
eθY ≥ eθna

]
≤

E
[
eθY

]
eθna

= MY (θ)
eθna

(38)

=
∏

i∈[n] MXi
(θ)

eθna
=

(
MX1(θ)

eθa

)n

. (39)

G Distributions
We are mainly interested in two related types of distributions: geometric distributions and
negative binomial distributions, where the latter appears as a sum of the former, but we
exploit the exponential distribution to bound compound distributions. We write X ∼ D if
a random variable X has distribution D.

G.1 Exponential Distribution
The exponential distribution is the archetypal continuous distribution with an exponentially
decreasing tail.

Definition 30 (Exponential Distribution). The exponential distribution Exp(λ) over the
non-negative reals (0, ∞) is given by its cumulative distribution function F (x, λ) = 1−e−λx,
i.e., a random variable X ∼ Exp(λ) satisfies Pr [X ≤ x] = 1 − e−λx.

Lemma 8 (Properties of the Exponential Distribution). If X ∼ Exp(λ), then

E [X] = λ−1 , Var [X] = λ−2 , and MX(θ) = λ

λ − θ
for θ < λ . (40)

G.2 Geometric Distribution
Consider some experiment that succeeds with probability p, and fails with probability 1−p.
A random variable with unshifted geometric distribution with probability p represents the
number of failures before a successful attempt. When we refer to the geometric distribution
we mean the shifted variation, i.e., we count the total number of attempts including the
successful attempt.
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Definition 31 (Geometric Distribution). A random variable X has geometric distribution
over {x ∈ N | x > 0} with probability p ∈ [0, 1], denoted Geo(p), if PX (x) = (1 − p)x−1p.

Lemma 9 (Properties of the Geometric Distribution). If X ∼ Geo(p), then

E [X] = 1
p

(41)

Var [X] = 1 − p

p2 (42)

FX(x) = 1 − (1 − p)x−1 (43)

GX(z) = pz

1 − (1 − p)z (44)

MX(θ) = peθ

1 − (1 − p)eθ
for θ < − ln(1 − p) . (45)

G.3 A Compound Geometric Distribution
Distributions formed by letting the parameters of one distribution be chosen according to
another are called compound distributions. In general compound distributions can only be
bounded, but in some cases they can be described concisely.

Definition 32 (Compound Geometric Distribution). A random variable X has compound
geometric distribution CG(c, p) where c ∈ Nk, c1 = 0, and p ∈ (0, 1]k, if its probability
generating function G1(z) is defined by the equations

Gk(z) = zck GGeo(pk)(z) and (46)
Gi−1(z) = zci−1GGeo(pi−1)(Gi(z)) . (47)

This distribution emerges naturally in Section 5 as the running time of an algorithm
that recursively identifies a sparse subtree which satisfies certain properties at each level.
The geometric distribution captures the number of attempts needed and the constants
represent the added work needed after successful attempts.

Lemma 10 (Properties of the Compound Geometric Distribution). If X ∼ CG(c, p) and
we let ck+1 = 1, then

E [X] =
∑
i∈[k]

∏
j∈[i]

1
pj

ci+1 and (48)

GX(z) =
z

∑
i∈[k+1]

ci ∏
i∈[k] pi

1 −
∑

i∈[k] qi

∏
j∈[i+1,k] pjz

∑
l∈[i+1,k+1]

cl

. (49)

Proof. The claim about the expected value follows immediately from Wald’s equation
[Wal44] (or by conditional expected values):

E [X] = 1
p1

(
1
p2

(
· · · 1

pk−1

(
1
pk

+ ck

)
+ ck−1 · · ·

)
+ c2

)
+ c1 (50)

=
∑
i∈[k]

∏
j∈[i]

1
pj

ci+1 . (51)

We adopt the notation from Definition 32 and set qt = 1 − pt. We aim to derive
Gt(z) = at(z)/bt(z) for t = k, . . . , 1. Note that we have

ak(z) = zck pkz = pkzck+ck+1 and (52)
bk(z) = 1 − qkz = 1 − qkzck+1 , (53)
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and in general we have the relation

Gt−1(z) = pt−1zct−1Gt(z)
1 − qt−1Gt(z) (54)

from which we conclude

Gt−1(z) = pt−1zct−1at(z)
bt(z)

/ (
1 − qt−1at(z)

bt(z)

)
= pt−1zct−1at(z)

bt(z) − qt−1at(z) . (55)

This defines at(z) = z

∑
l∈[t,k+1]

cl ∏
j∈[t,k] pj . Solving the recursion gives

bt(z) = 1 −
∑

i∈[t,k]

qi

∏
j∈[i+1,k]

pjz

∑
l∈[i+1,k+1]

cl (56)

which concludes the proof.

Lemma 11. If 0 < a ≤ b, then ea < 1 + eba.

Proof. The proof follows by considering the Taylor expansion of ea:

ea − 1 = a + a2

2 + a3

3! + a4

4! + . . . (57)

= a

(
1 + a

2 + a2

3! + a3

4! + . . .

)
< aea ≤ aeb . (58)

Lemma 12 (Compound Geometric Distribution). If X ∼ CG(c, p) and Y ∼ Exp(λ), where
µ = E [X] and λ = 1/µ, then MX(θ) < MY (θ) for θ < 1/µ.

Proof. Set Λ =
∑

l∈[2,k+1] cl. We use Lemma 11 (setting a = θ
∑

l∈[i+1,k+1] cl and b = θΛ)
to bound the statement from Lemma 14 in its form as a moment generating function

eθΛMX(θ)−1 =
1 −

∑
i∈[k] qi

∏
j∈[i+1,k] pje

θ
∑

l∈[i+1,k+1]
cl∏

i∈[k] pi
(59)

>
∏

i∈[k]

1
pi

−
∑
i∈[k]

qi

∏
j∈[i]

1
pj

1 + θeθΛ
∑

l∈[i+1,k+1]

cl

 (60)

=
∏

i∈[k]

1
pi

−
∑
i∈[k]

(1 − pi)
∏
j∈[i]

1
pj

− θeθΛ
∑
i∈[k]

(1 − pi)
∏
j∈[i]

1
pj

∑
l∈[i+1,k+1]

cl . (61)

The constant term is essentially a telescoping sum which sums to one, i.e., we have

∏
j∈[k]

1
pj

+
∑
i∈[k]

 ∏
j∈[i−1]

1
pj

−
∏
j∈[i]

1
pj

 = 1 . (62)
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The multiple of θeθΛ can be expressed similarly

∑
i∈[k]

∑
l∈[i+1,k+1]

cl

 ∏
j∈[i]

1
pj

−
∏

j∈[i−1]

1
pj

 (63)

=
∑

l∈[2,k+1]

cl

∑
i∈[l−1]

 ∏
j∈[i]

1
pj

−
∏

j∈[i−1]

1
pj

 (64)

=
∑

l∈[2,k+1]

cl

 ∏
j∈[l−1]

1
pj

− 1

 (65)

=
∑
i∈[k]

∏
j∈[i]

1
pj

ci+1 −
∑

l∈[2,k+1]

cl (66)

= µ − Λ . (67)

Thus, we have

eθΛMX(θ)−1 > 1 − θeθΛ(µ − Λ) (68)

which, using eθ > 1 + θ for θ > 0, finally gives the bound

MX(θ)−1 > e−θΛ − θ(µ − Λ) (69)
> 1 − θΛ − θ(µ − Λ) = 1 − θµ (70)

which can be restated as MX(θ) < 1/(1 − θµ) = λ/(λ − θ) as claimed.

Theorem 8 (Cramér’s Theorem for Compound Geometric Distributions). If Xi ∼ CG(c, p)
for i ∈ [n] are independently distributed and Y =

∑
i∈[n] Xi with µ = E [X1], then for

every k ∈ (1, ∞):

Pr [Y ≥ nkµ] < e−n(k−1−ln k) . (71)

Proof. Theorem 7 implies that for every θ < 1/µ :

Pr [Y ≥ knµ] ≤
(

MX1(θ)
eθkµ

)n

. (72)

From Lemma 12 we know that MX1(θ) < λ/(λ − θ) for all θ < λ, where λ = 1/µ, and if
we set θ = (1 − k−1)/µ the claim follows.

G.4 Negative Binomial Distribution
Consider some experiment that succeeds with probability p, and fails with probability
q = 1 − p. A random variable X with negative binomial distribution with probability p
and success parameter s represents how many attempts are needed to succeed s times.

Definition 33 (Negative Binomial Distribution). A random variable X has negative
binomial distribution, denoted NB(s, p), over {x ∈ N | x ≥ s} with probability p and
success parameter s if PX (k) =

(
k−1
s−1

)
(1 − p)k−sps.

Lemma 13 (Properties of Negative Binomial Distribution). If X ∼ NB(s, p), then

E [X] = s/p (73)
Var [X] = s(1 − p)/p2 , and (74)

MX(θ) =
(

peθ

1 − (1 − p)eθ

)s

for θ < − ln(1 − p) . (75)
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Lemma 14 (Sum of Geometric Distributions). If Xi ∼ Geo(p) for i ∈ [s] are independently
distributed and X =

∑s
i=1 Xi, then X ∼ NB(s, p).

Proof. The multiplicative property of moment generating functions implies that

MX(θ) =
s∏

i=1
MXi

(θ) =
(

peθ

1 − (1 − p)eθ

)s

, (76)

which is the moment generating function of a binomial distribution with probability p and
success parameter s.

Chernoff’s lower and upper bounds hold for negative binomial distribution similarly
to the binomial distribution, but the asymmetry in the bounds is reversed since a lower
bound on a random variable of the former distribution corresponds to an upper bound of
one of the latter.
Theorem 9 (Chernoff’s Inequalities for Negative Binomial Distribution). If X ∼ NB(s, p)
and µ = s/p, then for every k > 1

Pr [X > kµ] < e−(1− 1
k )2 ks

2 and (77)

Pr [X < µ/k] < e−(k−1)2 s
3k . (78)

Proof. To prove the first inequality we set m = kµ = ks/p, let Y1, . . . , Ym be independent
binary random variables such that Pr [Yi = 1] = p, and define Y =

∑m
i=1 Yi. Then

Pr [X > kµ] = Pr [Y < s] , (79)

and the latter expression is of a convenient form to bound using Theorem 4. We have
E [Y ] = mp = ks, so s = µ′/k, where µ′ = E [Y ]. Thus, we set 1 − δ = 1/k and conclude
that

Pr [Y < s] = Pr [Y < µ′/k] < e− δ2µ′
2 = e−(1− 1

k )2 ks
2 . (80)

The second inequality is proved similarly by instead setting m = µ/k = s/(pk), which
gives s = kµ′ with correspondingly defined random variables Y1, . . . , Ym. Setting 1 + δ = k
then implies the inequality

Pr [X < µ/k] = Pr [Y > s] = Pr [Y > kµ′] < e− δ2µ′
3 = e−(k−1)2 s

3k . (81)

H Stochastic Dominance and Bounding Distributions
One approach to compare distributions is to not only bound expected values, variances, or
probabilities of certain events, but instead find families of distributions that are ordered
stochastically. The advantage of this, when possible, is that more structural information
about the original distribution can be retained. We only need first-order stochastic
dominance over N.
Definition 34 (Stochastic Dominance). Let X and Y be random variables over N. Then
Y stochastically dominates X, denoted X ⪯ Y , if FX(z) ≤ FY (z) for every z ∈ N.

This is a somewhat confusing definition when the random variables encode running
times of algorithms, since providing a bound of a running time with distribution DX

amounts to defining a distribution DY such that Y is stochastically dominated by X. This
motivates the following more natural definition.
Definition 35 (Bounding Distribution). Let DX and DY be distributions over N. Then
DX is bounded by DY if Y ⪯ X.
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