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Abstract. Vessels can be recognised by their navigation radar due to the char-
acteristics of the emitted radar signal. This is particularly useful if one wants to
build situational awareness without revealing one’s own presence. Most countries
maintain databases of radar fingerprints but will not readily share these due to
national security regulations. Sharing of such information will generally require some
form of information exchange agreement.
However, all parties in a coalition benefit from correct identification. We use secure
multiparty computation to match a radar signal measurement against secret databases
and output plausible matches with their likelihoods. We also provide a demonstrator
using MP-SPDZ.
Keywords: multiparty computation · radar identification · demonstration

1 Introduction
Distinguishing your friends from your foes is a crucial prerequisite for any activity, and for
military operations in particular. Not letting your foe know they have been identified is an
additional bonus. To this end, surveillance systems may for instance listen for signals from
onboard navigation radars and compare these to pre-collected fingerprints of known radar
systems. A process often referred to as fingerprinting, with the end goal to later compare
new radar signals against the fingerprints to hopefully identify the emitted source.

The radar fingerprints and how these are gathered, and the actual fingerprint database
is usually highly classified, and thus difficult to share with partners. At the same time the
mission may benefit from a successful identification. Hence, we explore the applicability of
multiparty computation (MPC) for this scenario, and report on the results.

MPC enables parties to jointly compute a function on each party’s private input.
This is useful as instead of issuing the need for a centralised coalition database for radar
fingerprints, MPC can be applied, leveraging the pre-existing databases of each country
to attain the equivalent capability. We use the MP-SPDZ framework to prototype our
experiment.

Concretely, we model a scenario where vessels enter an area surrounding an offshore
installation. On-land antennas detect the signal, and (secret) share the signal with a
number of confidential fingerprint databases. These players are then tasked with finding
the best match against the union of these databases, hopefully before the vessel reaches
the installation.

We implement the following ideal functionality.
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2 MPC signal matching

Private input from player 1 A description of an unknown, detected radar fingerprint,
characterised by two integers; radio frequency (RF) and pulse repetition interval
(PRI), see Section 2.2.

Private input from players 2..n Tables containing vessel ID, average RF and average
PRI, and a covariance matrix describing the spread of RF and PRI see Section 4.1
for details and how we preprocess the covariance matrix.

Output to all players A list of plausible matches and for each a number corresponding
to the likelihood of this being a correct match.

Influence and leakage We follow the convention described by Cramer, Damgård and
Nielsen [CDN15, p. 63], which allows the adversary to corrupt and control player i.

The concrete computations are described in detail in Section 4.1. Notice that any
adversary that corrupts both player 1 (which supplies the current measurement) and any
other player (which holds a partial database) will be able to use the output to create
or improve a database entry. This limitation is inherent to the physical setup, which is
outside our control.

The motivation for this work is two-fold: Primarily, we want to demonstrate that
a real-life problem has a solution. Secondly, we use it as an experiment to investigate
the maturity of MPC; can a readily available implementation provide all functionality
for a viable demonstration? This work is strictly scoped as an application of MPC. It
would be interesting as a follow-up work to investigate if one could optimise protocols to
solve the problem more efficiently. The answer to both of these objectives is still positive,
which has two implications. Firstly, the above functionality can be implemented and run
in a reasonable time, even before specific optimisations have been considered. Secondly,
it verifies that current implementations of MPC may be ready for a wider audience in
much the same way as Zama [Zam22] has enabled any hobby programmer to experiment
with FHE. We believe this is a necessary checkpoint on the path to wider adoption. An
improved variant of this work may eventually see use in the Norwegian Armed Forces and
its allies.

1.1 Related applications
The first publicly known application of MPC was Denmark’s sugar beet auctions [BCD+09].
Kavani and Popa1 maintain a hub for real- world MPC deployments. There are currently
19 entries in the catalogue. Nine of these are related to cryptocurrencies. There does not
seem to be any examples involving government parties, and we are not aware of any other
such examples having been described publicly.

The closest example in the Kavani and Popa’s list comes from the healthcare sector.
By the author’s own description, VaultDB is “is a framework for securely computing
SQL queries over private data from two or more sources” [RAB+22], and the authors
have successfully analysed more health records for more than 13 million people without
compromising privacy.

1.2 Our contribution
We primarily describe our attempt to solve a real-world coalition problem using MPC.
This provides a rare glimpse of a world that is often kept secret from the public and
cryptographers alike. We do not claim to have implemented an optimal solution, nor
was this a result of a comprehensive threat analysis. It serves as a demonstration to

1“MPC Deployments”, https://mpc.cs.berkeley.edu

https://mpc.cs.berkeley.edu
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communities still unaware of the possibilities for secure, private computations, and it also
provides a real-world scenario to the cryptography community.

Additionally, we present a method to avoid redundant computation on sparse data by
introducing a sorting algorithm Sparse Oblivious Keyword Sort (SOKS) that extracts k
number of rows from a 2D array. The algorithm’s communication complexity depends on
k therefore it offers an alternative way of sorting that, depending on the sparsity of the
data, could yield better performance, cf. Section 5.2.

1.3 Outline
We provide a brief introduction to MPC, radar fingerprints and the necessary statistics in
Section 2. In Section 3, we report on some of the insights we gathered on sorting with
many parties. We then go on to describe the threat model and the experiment setup in
Section 4, before providing our results in Section 5

2 Background

2.1 Secure multiparty computations
MPC [Yao86, GMW87] is a cryptographic technique allowing multiple parties to jointly
compute a function over their inputs while keeping them confidential. Unlike traditional
computation methods that rely on a central authority, MPC ensures that no single party
learns more than what they can deduce from the output and their own input. For a more
in-depth introduction to MPC, we refer to Lindell [Lin21] and Cramer, Damgård and
Nielsen [CDN15].

MPC has seen tremendous development since the introduction of Shamir’s secret
sharing scheme [Sha79] and Beaver’s multiplication triples [Bea92]. It is outside the scope
of this work to provide a complete survey of MPC. Instead, we briefly recall some of the
most important concepts and tools required for this work.

The security of MPC guarantees that any adversary is unable to tell the difference
between the real protocol, and an ideal simulator. It is impossible to learn anything from
the latter, so any leakage would also provide a distinguishing feature. The adversary may
be malicious or semi-honest: a semi-honest adversary will follow the protocol but will try
to learn information from allowed data. Conversely, a malicious adversary will – in plain
words – cheat in any way computationally possible.

The adversary is controlling one or more parties and may do so in a static or adaptive
way. Static adversaries must choose the parties to corrupt before the protocol starts,
whereas adaptive adversaries may choose to corrupt parties as they see fit during the
protocol execution.

Finally, we also limit the number of parties the adversary may control. Common limits
are less than a third, less than half, and sometimes even a dishonest majority. Protocol
designers must choose the adversarial capabilities they want to defend against. A protocol
with security against a malicious dishonest majority will require more computations than
one with security against no more than 1/3 semi-honest parties.

These protocols are building blocks for applications such as ours. For this work, we have
chosen to protect against a malicious majority. We therefore use the protocol MASCOT
by Keller, Orsini and Scholl [KOS16], as implemented in MP-SPDZ [Kel20]. We refer to
the original publication for details of its operation. Notice that the consequence of this
choice is that the runtime will provide an upper bound over all security model choices.

We can compute any circuit using MPC. However, programmers might be stumped as
they realise that common tools such as branching, looping and random access generally
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are unavailable in MPC, as these control operations will leak a secret state2.
Consequently, efficiently implementing suitable selective computation for MPC protocols

becomes crucial, especially for complex calculations, as it substantially reduces runtime.
Assume we have an algorithm to perform heavy calculations on non-zero entries of a

secret array x. Unfortunately, random access is not possible when doing secure multiparty
computation, leading to the necessity of performing calculations on all entries, unless
we structure the data. Let k be the maximum number of non-zero elements. We can
then sort and access the k last elements of the sorted array, thereby avoiding redundant
computation.

In MPC we require oblivious sorting algorithms, meaning that the access pattern does
not reveal information about the underlying data. Bitonic sort [Bat68] is one such classical
algorithm. In comparison with regular computing MPC also introduce additional costs
with respect to the number of parties m, meaning that depending on the number of items
n the dominant complexity could be the one with respects to m, cf. Figure 2. Further in
this work, we introduce SOKS which transform the quadratic complexity on the number
of items into being dependent on k. Meaning that depending on the value of k it could
yield better performance, cf. Section 5.2.

2.1.1 MP-SPDZ

MP-SPDZ is a high-level cryptographic framework developed for secure multiparty compu-
tation. It provides a developer-friendly interface that allows us to design and implement
privacy-preserving protocols without having to implement with the low-level details [Kel20].
This abstraction simplifies the development process and makes it easier to create complex
privacy-preserving applications using MPC.

The framework is based on a line of research starting from 2012 [DPSZ12, DKL+13,
KPR18].

2.2 Radar fingerprints
A radar emits pulses of signals, and then waits for reflections. The main characteristics of
a radar system is the PRI and the RF. Based on these, we can create a fingerprint of the
particular equipment. Radars of the same model will typically have similar characteristics.
However, due to imperfections in clocks and other components, even individual products
may be identifiable from small variations in these, and other, parameters.

The radars may operate in a number of modes, for instance depending on whether the
vessel is in the open sea, or perhaps navigating near a busy harbour. One may also shape
the waveform to optimise the radar, but this will also make it even more recognisable.

For the purpose of this work, we only consider PRI and RF. Based on measurements
from a number of vessels3, we create fingerprints based on the average PRI and the average
RF recorded for a pulse of signals, but we allow a variation of up to ±3 MHz in the RF
and 10 % in the PRI, due to clock drift.

Furthermore, we assume that the signals follow a two-dimensional standard distribution
and store the covariance matrix of the signals. Hence, if a new signal falls within two
potential fingerprint ranges, we can perform meaningful computations on which vessel is
more likely. The details of this computation are described below.

We can triangulate the position by using two or more antennas. Hence, we can get
both the identity and the position of a vessel by passively listening for any emitted signal.

2Branching can be emulated by computing the condition b and each branch α1, α2 separately, and
finally computing bα1 + (1 − b)α2, ensuring the maximum amount of work.

3Unfortunately, these measurements are exempted from public disclosure. The provided example
fingerprints are therefore synthetic.
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Figure 1: Clusters with overlapping tolerance boxes. The axes have been redacted.

2.3 Mathematical background
Multivariate statistics and numerical linear algebra provide the essential tools to construct
our classification functionality for radar signals.

2.3.1 Multivariate statistics

Recall that 99.7 % of values drawn from a one-dimensional normal distribution lies within
three standard deviations of the distribution mean. Hence, given normal distribution
Q ∼ N

(
µ, σ2)

and observation x, calculating how many standard deviations x is away
from µ indicates how likely it is that x can haven been drawn from Q. Let d denote the
number of standard deviations that an observation x deviates from the mean µ, calculated
as d =

∣∣ x−µ
σ

∣∣ =
√

(x−µ)2

σ2 . To extend this concept to multidimensional distributions, we
can analogously consider the covariance matrix as the multidimensional counterpart of σ2,
allowing us to construct an equivalent expression in the multidimensional context. This is
the Mahalanobis distance.
Definition 1 (Mahalanobis distance). Given a probability distribution Q on Rn with mean
µ = (µ1, . . . , µn)⊤ and positive definite covariance matrix Σ, the Mahalanobis distance of
a point x ∈ Rn from Q is

D(x,Q) =
√

(x− µ)⊤ Σ−1 (x− µ).

Since
√
· is a monotonically increasing function, it will often suffice to consider the

more convenient quadratic form,

D2(x,Q) = (x− µ)⊤ Σ−1 (x− µ) .

Theorem 1 (Distribution of D2(x,Q)). Suppose that Q is p-variate normal distribution
with mean µ and a positive definite covariance matrix Σ. Then,

D2 (x,Q) = (x− µ)⊤ Σ−1 (x− µ)

follows a χ2 distribution with p degrees of freedom.
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2.3.2 Numerical linear algebra

The following theorem will provide useful when calculating the squared Mahalanobis
distance of a point x from a distribution Q.

Theorem 2 (Cholesky decomposition [Cho24]). Let A be a real symmetric positive definite
matrix. Then A admits a unique decomposition of the form

A = CC⊤,

for a lower triangular matrix C with real and positive diagonal entries.

Let x ∈ Rn be a point and Q ∼ Nn (µ,Σ). Then consider the squared Mahalanobis
distance D2

x = D(x,Q)2 = (x− µ)⊤ Σ−1 (x− µ). Recall that for D2
x to be defined Σ must

be non-singular. Hence, it follows that it must be symmetric positive definite. Thus, by
Theorem 2, Σ−1 admits a Cholesky decomposition. This yields

D2
x = (x− µ)⊤ Σ−1 (x− µ)

= (x− µ)⊤ (CC⊤)−1 (x− µ)
= (x− µ)⊤

C−⊤C−1 (x− µ)

=
(
C−1 (x− µ)

)⊤ (
C−1 (x− µ)

)
.

Every equality above follows from elementary properties of matrix inversion and transposi-
tion, and so

η = C−1 (x− µ) =⇒ D2
x = ∥η∥2

2. (1)

Hence, calculating D2
x follows from solving Cη = x− µ. In particular since C is a lower

triangular matrix, this can be done efficiently through forward substitution.

3 Sorting in MPC
Sorting is an intensively researched problem in computer science and has also received some
attention for MPC. The lack of random access is a significant limitation. Oblivious Radix
Sort (ORS) [HICT14] is an accessible algorithm for addressing this objective. Nonetheless,
it exhibits an exponential round and communication complexity in the number of parties
involved in the protocol. ORS is the inbuilt method for sorting 2D arrays4 in MP-SPDZ,
making multidimensional sorting in MP-SPDZ impractical for protocols with a substantial
number of participating parties.

3.1 Oblivious Radix Sort and and Oblivious Keyword Sort
We briefly present the central ideas of Oblivious Radix Sort (ORS) and Oblivious Keyword
Sort (OKS) for the benefit of the interested reader. Both ORS and OKS take as input a
vector κ⃗ of keys a matrix D with the data. The reader may also skip this section with no
loss of continuity.

At the core of ORS we have the Reveal-Sort algorithm, which sorts partially known
keys ⃗̄κ and secret-shared data D̄, both of which may be different from the actual data
and keys we want to sort. The parties produce random shuffles of the key, and that can
be revealed in each execution. Hence, one can apply the random permutation to both ⃗̄κ
and D̄, and then reveal the permuted ⃗̄κ′. Sorting ⃗̄κ′ is essentially to create a permutation,

4By sorting an 2D array, we essentially mean sorting a table by one of its columns
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Algorithm 1: Sparse Oblivious Keyword Sort (SOKS)
Data: Sparse 2D array: A = Jα1K, . . . , JαnK
Result: Sorted array Υ = Jυ1K, . . . , JυkK
B ←

(
A⊤)

1 ; /* B set to be the first column of A */
B̃ ← SortB;
for i ∈ {1, . . . , k} do

JυiK←
∑n

j=1
(
Jβ̃iK == j

)
· JαjK;

end
return Υ = Jυ1K, . . . , JυkK

and this permutation can also be applied to the corresponding D̄′. The output will be a
correctly sorted version of D̄ [HICT14].

The authors then apply a binary decomposition to the original keys κ, agree on a
shared permutation h on {1, . . . n}, and then apply Reveal-Sort repeatedly, starting with
h and the most significant bit of κ⃗, giving a radix sort algorithm. In the final iteration,
the original data D is introduced and sorted.

When the number of parties and the size of the underlying field is fixed, this results in
an O(1) round complexity and an O(n logn) communication complexity, where n is the
number of rows to be sorted.

OKS was introduced by Zhang [Zha11] as a protocol for sorting D based on comparison.
OKS can be divided into two parts, the transformation part and the sorting part.

In the transformation part, the keys κ⃗ are transformed to a new set of keys κ⃗′, such
that if κi ≤ κj for some indices i and j, the transformed keys would satisfy κ′

i < κ′
j . This

steps then stores a new array C, where each entry Ci holds the position of κ′
i if κ⃗′ were to

be sorted. In the sorting part D gets sorted obliviously according to the entries of C.
The resulting protocol achieves O(1) round complexity and O(n2) communication

complexity.

3.2 Modified Oblivious Keyword Sort for sparse two-dimensional
arrays

Zhang [Zha11] has proposed a significant improvement to ORS regarding round and
communication complexity, a constant round sorting algorithm for arbitrary keZhang11ay
indexed data structures called oblivious keyword sort (OKS). Unlike ORS, OKS exhibits
quadratic communication complexity in the number of parties. This significantly reduces
the complexity associated with a larger number of participating parties, m.

However, further improvements can be made to the OKS algorithm under additional
assumptions. Suppose the goal of the protocol is to perform a large computation on a
small subsample of rows, given a specific condition. The output of this computation is of
primary interest, and the goal is to obtain an array where the k ≪ n relevant rows are
grouped together. Since we are primarily interested in these relevant rows, and they will
all be treated the same, we may assume that each row has a unique identifier, such as a
row number. If not, a new column can be added to provide this information.

The original OKS algorithm includes a transformation step that modifies the first
column of the input data to ensure that all entries are unique while preserving their
original order. Under the assumptions outlined above, this transformation step is no longer
necessary and can be omitted. Instead, the first column can be sorted directly using
an efficient one-dimensional sorting algorithm. For convenience, this can be done using
Batcher’s Merge Sort [JKU11], although any efficient oblivious one-dimensional sorting
algorithm that does not exhibit exponential round and communication complexity in m
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Figure 2: Runtime comparison of ORS and SOKS for 2D arrays of length n and number
of non-zero entries k.

would suffice.
A more detailed explanation of the idea is as follows: Let A = (r1, . . . rn) be some 2D

array, i.e. ri = (ri,1, . . . ri,m) Assume that we want to sort by the first column, and that it
consists of the row numbers, i.e. ri,1 = i. Use an indicator function on any of the data of
the row, and multiply the result with all fields, yielding some A′ = (r′

1, . . . r
′
n). This will

change the rows we want to ignore to (0, . . . , 0), leaving k non-zero rows. Make a copy
c = (r′

1,1, . . . r
′
n,1) of only the first column, and sort it. Naturally, the non-zero elements

will gather at one end. Moreover, the non-zero entries in c holds the original index of the
corresponding row in A.

Given the sorted 1D array c, we can “sort” the remainder of A. Let c = (c1, . . . cn) be
the sorted 1D array and let χci

(r′
j) = 1 if ci = r′

j,1 and 0 otherwise. Set Â = (r̂1, . . . r̂n)
where r̂i =

∑n
j=1 χci

(r′
j)·r′

j . Observe that assuming ri,1 = i evaluating χci
(r′

j) is equivalent
to checking whether or not ci equals j. To see this, note that r′

j,1 = rj,1 = j if the j’th
row is not ignored. Hence the binary output of the comparison ci == j equals the value of
χci

(r′
j).

We are then left with a 2D array with k of the original rows, correctly sorted by the
first column.

The advantage of SOKS diminishes as the size of the array and the treshold k increases.
This outcome is expected, as ORS has better asymptotic complexity in the size of the
array. We have compared SOKS and ORS using the MASCOT protocol with an integer
size of 18. The sorting algorithms were applied to arrange an array of size n× 3 with k
rows containing non-zero values. A visual comparison of SOKS and ORS can be seen in
Figure 2.

In summary, SOKS (Algorithm 1), presents a viable and efficient alternative to ORS
for sorting 2D spares arrays in MPC under the assumptions presented in this section. We
believe these assumptions are likely to be commonly encountered in MPC applications,
making SOKS a viable solution for addressing them. It has constant round and quadratic
communication complexity in terms of the number of parties involved, making it a practical
choice for protocols with a large number of participants. Further, it offers an alternative
way of extracting k number of rows from a 2D array, which later, cf. Section 5.2, is shown
to be more efficient than ORS when k is of certain values.
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4 Threat model and experiment setup
Let P = {P2, . . . , Pn} be the countries in a coalition, each having a fingerprint database.
P1 (which may belong to the same country as one of the above) conducts a radar signal
measurement x = (xPRI, xRF) of an unknown vessel and seeks to identify its ship type.
The goal is to correctly match x to the possible radar fingerprints across the databases.

As we are not developing new MPC protocols, the question of malicious or semi-honest
security is here a question of performance, not mathematics. For this work, we have
assumed malicious adversaries – after all, the databases are usually highly classified. Any
production choice will be a trade-off between availability and risk willingness. There might
also be operational considerations outside the realm of cryptography. For now, we use
MASCOT [KOS16].

We have been provided with real radar signal observations, from which we have
generated fingerprints. Unfortunately, the observations are exempt from public disclosure.
As such, the accompanying sample fingerprints are synthetic, sampled at random from the
same RF and PRI ranges as the real fingerprints.

The RF range is between 9.3 and 9.5 GHz. Hence, we can reduce the magnitude of our
data by a linear translation. Meanwhile, the PRI measurements, which vary significantly
in configuration, find a reasonable representation in microseconds.

In pursuit of improved computational efficiency, one can use these observations to further
simplify the data. Floating-point operations, particularly division, demand substantial
resources due to their bit-intensive nature for larger values. Our primary focus is on
harnessing addition and multiplication operations to expedite computations. However, it’s
crucial to work with as small numbers as possible. To achieve this, two key adjustments
have been implemented: firstly, subtracting 9.2 GHz from RF, and secondly, truncating
PRI values to microseconds and scaling them to integers. These refinements collectively
aim to reduce computation time while maintaining sufficient precision.

Each database entry consists of a cluster ID, average RF, average PRI, and a covariance
matrix. Recall that the fingerprint by definition is the midpoint surrounded by a ±3 MHz
and ±10 % tolerance box.

4.1 Fingerprint and signal identification
The box surrounding the average represents all points that could thinkably belong to the
radar. However, quite a few of these boxes could overlap. A measurement in this overlap
results in a number of plausible matches. This is illustrated in Figure 1. To effectively
distinguish these fingerprints, we need a more advanced approach involving a maximum
likelihood classifier. We have established a constant k, representing the maximum number
of intersecting tolerance boxes for any point on the plane.

The protocol receives a radar measurement, denoted as x, from party P1, and a
multidimensional array database from each of the remaining n− 1 parties as input.

A measurement falling outside of a tolerance box should be assumed to be coming
from an unknown vessel. Hence, the first part of the classification protocol examines if
the measurement falls within any of the tolerance boxes. This reduces the number of
redundant calculations performed by the algorithm. For the remaining fingerprints we
conduct the following hypothesis test.

Hypothesis 0 (H0). x comes from Q ∼ N2 (µ,Σ)

Hypothesis 1 (H1). x does not come from Q

Recall from Theorem 1 that under the assumption of H0 the Mahalanobis distance,
(x− µ)⊤ Σ−1 (x− µ), is χ2 distributed with two degrees of freedom. In particular, one can
calculate the probability of a given observation y ∼ N2 (µ,Σ) falling outside the ellipse
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defined by (x− µ)⊤ Σ−1 (x− µ) = D2
x. This probability is given by the complimentary

cumulative density function (CCDF) of χ2
2.

F̄χ2
2

(
D2

x

)
= P

(
χ2

2 > D2
x

)
= 1− Fχ2

2

(
D2

x

)
= 1−

(
1− e− D2

x
2

)
= e− D2

x
2 .

Specifically, this is the p-value of the above test. Furthermore, since the CCDF of χ2
2 is

strictly decreasing it suffices to consider the squared Mahalanobis distance directly. That
is, the larger the distance, the smaller the p-value, indicating that there is evidence for
rejecting H0. We can now apply the notions outlined in Section 2.3.2 to calculate D2

x

efficiently. Notably, not calculating the exact p-value reduces the number of fixed-point
operations done by the protocol, resulting in faster computation.

Let us revisit Equation 1. To perform this calculation effectively, having the Cholesky
decomposition of matrix Σ greatly assists us.

Σ =
[
σ11 σ12
σ12 σ22

]
=

[
l11 0
l21 l22

] [
l11 l21
0 l22

]
=⇒ σ11 = l211, σ12 = l11l21, σ22 = l222 + l221.

This yields the following form of Eq. 1:[
l11 0
l21 l22

] [
η1
η2

]
=

[
x1 − µ1
x2 − µ2

]
fwd.sub=⇒

{
η1 = x1−µ1

l11

η2 = (x2−µ2)−l21η1
l22

.

Lastly, we compute the squared L2 norm of η,

∥η∥2
2 = η2

1 + η2
2 = (x1 − µ1)2

l211
+ (x2 − µ2)2 − 2 (x2 − µ2) l21η1 + l221η

2
1

l222

= (x1 − µ1)2
σ22 + (x2 − µ2)2

σ11 − 2 (x1 − µ1) (x2 − µ2)σ21

σ22σ11 − σ2
21

.

Due to the slow nature of fixed-point division, one should strive to avoid divisions if
possible. Notice that for lbl ∈ {11, 22, 21}, c{2,1,3} = σlbl/

(
σ22σ11 − σ2

21
)

(resp.) depends
only on values from a single party, and can therefore be precomputed. Let y1 = x1 − µ1
and y2 = x2 − µ2. Then, ∥η∥2

2 can be computed as a linear combination

c1y
2
1 + c2y

2
2 − 2c3y1y2,

where c1, c2 and c3 are fixed-point values.

4.2 Implementation
Recall that we assume that P1 provides the radar signal, while the other parties provide
(partial) databases. For the 2-party variant, the latter is the complete database. For the
general case, all of the databases are consolidated into a single tensor prior to the rest of
the classification process. Consequently, broadening the 2-party setting to an arbitrary
m-party setup is a straightforward extension. For the sake of brevity and without loss of
generality, this section focuses exclusively on the 2-party protocol.

We must iterate over all fingerprints to identify potential matches. Any fingerprint entry
that does not contain x within its specified tolerance box is systematically nullified. This
process yields a sparse tensor only containing information about the potential matches.

Recall that the process of performing maximum likelihood classification requires some
extra computation per item in the database. Therefore, an optimal approach would involve
applying the classifier solely to the non-zero entries. However, this strategy is unfeasible
due to the absence of random access. We solve this issue by sorting the list, and only
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Algorithm 2: Implementation
Data: Measurement: x = (JxpriK, JxrfK), Database: ∆ = Jδ1K, . . . , JδnK
Result: Array of probable fingerprints: Ψ = Jψ1K, . . . , JψkK
τ ← Empty array of length n;
Ψ← Empty array of shape k × 2;
for i ∈ {1, . . . , n} do

if contained(JxpriK, JxrfK, Jδi,2K, Jδi,3K) then
JτiK← Jδi,1K

else
JτiK← J0K

end
end
τ.sort() ; /* To hide the origin of each label */
Reveal τ ;
for j ∈ {1, . . . , k} do

Jψj,1K← JτjK;
Jψj,2K← mahalanobis(JKK, Jδτj

K, JxpriK, JxrfK);
end
return Ψ = Jψ1K, . . . , JψkK

Algorithm 3: Contained
Data: Measurement: x = (JxpriK, JxrfK), Mean of RF values in cluster: Jδ2K, Mean

of PRI values in cluster: Jδ3K
Result: 1 if measurement x is contained in tolerance box. 0 otherwise.
c← 0 ;
c← c+ (JxrfK <= Jδ2K + 30000);
c← c+ (JxrfK >= Jδ2K− 30000);
c← c+ (JxpriK <= Jδ3K + 9400);
c← c+ (JxpriK >= Jδ3K− 9400);
return (c == 4)

applying the classification on the k last entries within this array. This gives accurate
classification of fingerprints that closely resemble the new measurement. Implementing this
protocol was conveniently done in MP-SPDZ. We outline this procedure in Algorithm 2,
our code is available on Github5.

The subprotocol contained outputs true if the measurement is contained in the tolerance
box corresponding to cluster i. The mahalanobis procedure performs the calculation derived
in Section 4.1. The pseudocode of the subprocedures is listed in Algorithm 3 and 4.

All data points are in the same order of magnitude. Instead of computing ±10 % for
each fingerprint, we use the fixed value 9400 to describe all tolerance boxes, which saves a
number of multiplications.

5 Results
We executed our experiment on a commercial laptop (16 GB RAM, Intel i5 8265U, 1.6 GHz
CPU) running Ubuntu 22.04 LTS and MP- SPDZ v0.3.7. To eliminate variation in network
speed all parties were run on the same machine locally.

5https://github.com/FFI-no/Paper-radar-signature-matching

https://github.com/FFI-no/Paper-radar-signature-matching
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Algorithm 4: Mahalanobis
Data: Measurement: x = (JxpriK, JxrfK), Database entry: JδK, Array of

precomputed coefficients: JKK
Result: Mahalanobis distance from x to distribution corresponding to JδK
y1 ← JxpriK− Jδ3K;
y2 ← JxrfK− Jδ2K;

s1 ← y2
1 · JK[1]K ;

s1 ← y2
2 · JK[2]K ;

s1 ← −2y1y2 · JK[3]K ;
return s1 + s2 + s3

Let n = 88 be the number of fingerprints from our data analysis. The maximum
number of tolerance boxes that overlap at a single point is bounded by k = 10.

Furthermore, the program was compiled using an integer length (-F) of 22, which is
sufficient to accommodate the largest numbers in the dataset. Specifically, the largest
integers we are working with have magnitudes less than 2 · 106, which is within the range
representable by 22 bits. The integer length is also chosen small to reduce the protocol’s
resource requirements.

To accurately represent the precomputed coefficients used in the Mahalanobis procedure,
the fixed-point parameters (f, k) = (19, 38) were chosen. The value k = 38 was selected to
accommodate the largest fixed-point values encountered in the protocol. The parameter
f = 19 represents the number of bits used to denote the decimal part of any fixed-point
number. This value of f was determined through testing, providing satisfactory precision
for our computations while minimising computational cost.

The number of participating parties is denoted by m, where one party acts as the sensor
who only provides a radar signal x = (xPRI, xRF). The other m− 1 parties are databases
with a total of n radar fingerprints. Table 1 shows the runtime of the computation for the
number of parties involved. Note that for all executions, we used the same x.

Table 1: Runtime for fingerprint matching, with m = 2, 3, 4, 5 parties. Two signficant
digits.

m 2 3 4 5
Runtime (sec.) 31 86 200 400

We have also created a user and audience friendly visual demonstrator, which can be
run by cloning the repository and following the instructions.

5.1 Practicability
Detecting radar signals depends on the strength of the signal. Consider an antenna
mounted 400 m above ground. They will be able to detect a radar signal emitted about
20 m above sea level, up to 100 km away. Define the detection zone as being two of these
mounted side by side on the coastline pointing at the sea. Using this setting we establish
a baseline for measuring the practicability of our results.

Imagine a vessel moving at a realistic 13 knots (24 km/h, 15 mph). For m = 2 we
used 31 seconds to identify the vessel. In the same time, the vessel will have travelled
approximately 200 m. Compare that to the range of the antennas: it has traversed 0.2 %
of the radius of the detection zone.

We may also consider a fast-moving vessel at 60 knots (110 km/h, 70 mph). With
four databases (i.e., m = 5) we got a result in 400 seconds. This vessel would have moved
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Figure 3: A screenshot from the demonstrator. The map is © norgeskart.no (CC-BY 4.0).

12.3 km before being identified, still well within the 100 km zone.

5.2 Trade-offs between sorting methods
While we ended up not having to use neither ORS nor SOKS, we still present some of the
insights we gathered.

From our experiment we found that the most efficient solutions had to be balanced
in terms of the complexity of k and m. The array length n was fixed for all experiments.
In the case of one database, m = 2, ORS sorts faster than SOKS. When using three
databases, i.e., m = 4, SOKS exhibits greater speed due to its non-exponential complexity
in the number of participating parties, while ORS encounters limitations, affecting both
the round and communication complexity. For our case with k = 10, we find that for
m = 4, it is more efficient to use SOKS, giving a threshold of K = 4.

The threshold K depends on k, which we demonstrate with an example. Fix m = 4,
then consider k = 10. Using SOKS outperformed the ORS by 10.05 % in an experiment.
However, with k = 20 ORS is faster by 7.61 % in the same experiment.

6 Conclusion
We have provided another specimen to the MPC application zoo, in a category that is –
to the best of our knowledge – not previously explored in the open. Even with the most
rigid security model, we provide an answer to the matching problem well within the time
requirements for the example scenario we present.



14 MPC signal matching

For further development, we must consider the fact that some fingerprints could include
description of waveforms, as well as accepting more than a single measurement as input.

While the MPC protocol gives strong security guarantees, the protocol itself may leak
information. For instance, it is likely that P1, the provider of the measurement, also holds
one of the fingerprint databases. If the best match is not among their entries, they will
now have gathered some information for a new entry: They know the measurement, and
they know the best answer. The other parties don’t know the exact measurement but may
know the approximate vicinity if one of their own entries turned up among the plausible
matches.

However, this is an underlying issue with the process itself, and not one that any
cryptographic technique can compensate for. The alternative is simply not getting a
correct identification. Whether or not this is worth the cost is a decision that belongs to
the information owners.

Finally, a production-level implementation should also include MPC experts to optimise
the underlying protocols.
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