
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 3, 38 pages.

https://doi.org/10.62056/ah2ip2fgx
Check for updates

Discrete Logarithm Factory
Haetham Al Aswada , Emmanuel Thomé and Cécile Pierrot

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

Abstract. The Number Field Sieve and its variants are the best algorithms to solve
the discrete logarithm problem in finite fields (except for the weak small characteristic
case). The Factory variant accelerates the computation when several prime fields are
targeted. This article adapts the Factory variant to non-prime finite fields of medium
and large characteristic. A precomputation, solely dependent on an approximate finite
field size and an extension degree, allows to efficiently compute discrete logarithms in
a constant proportion of the finite fields of the given approximate size and extension
degree. We combine this idea with two other variants of NFS, namely the tower
and special variant. This combination improves the asymptotic complexity. We also
notice that combining our approach with the MNFS variant would be an unnecessary
complication as all the potential gain of MNFS is subsumed by our Factory variant
anyway. Furthermore, we demonstrate how Chebotarev’s density theorem allows to
compute the density of finite fields that can be solved with a given precomputation.
Finally, we provide experimental data in order to assess the practical reach of our
approach.

1 Introduction
Context. The discrete logarithm problem in a cyclic group G with a generator g ∈ G is
the computational problem of finding an integer x modulo |G| for a given target T ∈ G,
such that T = gx. Despite the growing interest in post-quantum cryptography, the discrete
logarithm problem is still at the basis of many currently-deployed public key protocols.
This article deals with the discrete logarithm problem in the group of invertible elements
of a finite field, G = F∗

pn , excluding small characteristic finite fields due to the existence of
quasi-polynomial time algorithms [BGJT14,GKZ18,KW22]. Therefore, our attention is
restricted here to medium and large characteristic finite fields. We recall the usual notation1

LQ(α, c) = exp((c+o(1)) ·(log Q)α(log log Q)1−α) where o(1) tends to 0 as Q = pn tends to
infinity. With this notation, a family of finite fields of size Q and characteristic p is said to
be of medium characteristic if p = LQ(α) with 1/3 < α < 2/3, and of large characteristic
if this statement holds with 2/3 < α. This latter case includes prime fields where n = 1
and p = LQ(1).

The Number Field Sieve. Initially proposed as an integer factoring algorithm in the
90’s [LLMP90,BLP93], the Number Field Sieve (NFS) was later adapted to the discrete
logarithm problem in prime fields [Gor93], and medium and large characteristic finite
fields [JLSV06]. Currently, the most efficient algorithms to compute discrete logarithm in
medium or large characteristic finite fields is still (a variant of) NFS. Numerous variants
exist, depending on the sub-case, but they all compute discrete logarithms in finite fields

E-mail: haetham.al-aswad@inria.fr (Haetham Al Aswad), emmanuel.thome@inria.fr (Emmanuel
Thomé), cecile.pierrot@inria.fr (Cécile Pierrot)

aThe author acknowledges support of the grant funded by AID Agence de l’Innovation de Défense.
1We use LQ(α) instead of LQ(α, c) when the value of c does not matter.

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-08 Accepted: 2024-09-02

https://doi.org/10.62056/ah2ip2fgx
https://crossmark.crossref.org/dialog/?doi=10.62056/ah2ip2fgx&domain=pdf&date_stamp=2024-09-25
https://orcid.org/0000-0003-2960-8231
https://orcid.org/0000-0002-5669-2195
https://orcid.org/0000-0001-5417-7133
mailto:haetham.al-aswad@inria.fr
mailto:emmanuel.thome@inria.fr
mailto:cecile.pierrot@inria.fr
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Discrete Logarithm Factory

Table 1: Variants of NFS and their asymptotic complexities. All complexities are in
LQ(1/3, c). This table indicates the exact value and then an approximation of c in each
case. Each algorithm applies to finite fields that satisfy the constraint expressed in bold
above it. Some complexities are given as lower bounds, which are reached when the input
satisfies some additional constraints. The complexities of SNFS and STNFS for medium
characteristic are functions of another parameter λ that is omitted here.

NFS variant Characteristic range
medium large
Every finite field

plain (96/9)1/3 ≈ 2.20 (64/9)1/3 ≈ 1.92
Multiple ((72 + 32

√
6)/15)1/3 ≈ 2.16 ((92 + 26

√
13)/27)1/3 ≈ 1.90

Composite extension degree
Tower ≥ (48/9)1/3 ≈ 1.75 (64/9)1/3 ≈ 1.92

Multiple+Tower ≥ ((3 + 4
√

(2/3))/10)1/3 ≈ 1.71 ((92 + 26
√

13)/27)1/3 ≈ 1.90
Sparse characteristic

Special ≥ (64/9)1/3 ≈ 1.92 (32/9)1/3 ≈ 1.53
Sparse characteristic and composite extension degree

Special+Tower ≥ (32/9)1/3 ≈ 1.53 (32/9)1/3 ≈ 1.53

in time Lpn(1/3, c) for some constant 0 < c < 2.3 that depends on the precise sub-case.
The special variant, SNFS [JP14] applies when the characteristic p is sparse, i.e., is the
evaluation of a polynomial of relatively small degree and small coefficients, resulting in a
more efficient algorithm than NFS, in both medium and large characteristic finite fields.
The multiple variant, MNFS [Mat03, BP14, Pie15, SS16b] has a lower complexity than
NFS in medium and large characteristic. The Tower variant, TNFS2 [KB16,KJ17,SS19]
is more efficient than NFS in medium characteristic finite fields when the extension
degree is composite. When the characteristic is sparse and of medium size, and when the
extension degree is composite, TNFS can be coupled with SNFS resulting in the STNFS
algorithm [KB16,KJ17]. See Table 1 for a summary. In the boundary case between medium
and large characteristic, complexities are functions of p and harder to express than with a
simple L(1/3, c) expression with constant c. See later Figure 7 and expressions given in
§A.1 for this particular parameter range.

The general framework is common to all variants of NFS. First one sets up an algebraic
context within which the target finite field Fpn is presented in two or more distinct ways
as quotient rings of number fields, bound together in a commutative diagram. Setting
up this algebraic context is referred to as the polynomial selection, and to a large extent
the polynomial selection is the main difference between most variants mentioned above.
Then smooth elements are found in a relation collection step, that permits afterwards to
solve a linear system and get the logarithm of some particular elements. Arbitrary discrete
logarithms are reconstructed in the last step: the individual logarithm step.

The state of the art for the computation of discrete logarithms in finite fields of small
extension degree has been regularly updated. In particular, recent work has shown that
the TNFS variant is practical. De Micheli, Gaudry and Pierrot [DGP21] reported in 2021
the first implementation of TNFS and performed a record computation on a 521-bit finite
field with extension degree n = 6. One year later, Robinson [Rob22] reported a record
computation using TNFS on a 512-bit finite field of extension degree n = 4. On the “usual”
NFS side, the latest record on a prime field Fp was done with NFS in 2019 in a 795-bit
finite field [BGG+20], although that computation was a lot more massive than the one

2Sometimes referred to as the extended Tower Number Field Sieve (exTNFS).

Haetham Al Aswad, Emmanuel Thomé, Cécile Pierrot 3

in [DGP21]. Table 2 lists some of these recent computations. SNFS is also very practical
as well, and is able to target finite fields of much larger sizes, such as a 1024-bit prime
field in [FGHT17].

Table 2: Discrete logarithm records [Gré17] in finite fields of various extension degrees,
performed with NFS. TNFS is only implemented for the Fp4 and the Fp6 records.

Finite field Bitsize of pn Year Team and work
Fp 795 2019 Boudot, Gaudry, Guillevic, Heninger,

Thomé, Zimmermann [BGG+20]
Fp2 595 2015 Barbulescu, Gaudry, Guillevic, Morain [BGGM15]
Fp3 593 2016 Gaudry, Guillevic, Morain [GGM16]
Fp4 512 2022 Robinson [Rob22]
Fp5 324 2017 Grémy, Guillevic, Morain [GGM17]
Fp6 521 2021 De Micheli, Gaudry, Pierrot [DGP21]
Fp12 203 2013 Hayasaka, Aoki, Kobayashi,Takagi [HAKT14]

Attacking one key versus attacking many keys. This article studies how the
cryptanalysis cost for several public keys evolves with the number of targeted keys. We
identify two distinct situations. When the finite field is fixed, an adversary willing to
compute several discrete logarithms at the same time can take advantage of the fact
that the first steps of NFS only depend on the field, not on the specific target element
whose logarithm is desired. This is how the Logjam attack [ABD+15] was carried out, by
precomputing data depending on the finite field only, and useful afterwards for all the
individual logarithm computations.

In this work, we look at the problem from a different angle. A certain finite field
bitsize is fixed, for example following a given cryptographic recommendation. Is there a
more efficient way to solve the discrete logarithm problem in several finite fields, which
have the same extension degree and the same given bitsize, rather than using NFS (or its
variants) on each field separately? In particular, is there a configuration where some kind
of precomputation would be beneficial? Whether or not the precise set of fields is known
in advance, such an attack scenario is referred to as a Factory-like computation, owing
to the state-of-the-art algorithms described below. Most of this article assumes that the
target finite fields are not known in advance.

Factoring Factory and discrete logarithm Factory. In 1993, Coppersmith presented
the Factorization Factory algorithm [Cop93] to factor many numbers in a more efficient
way than applying NFS on each of the numbers. The idea is to amortize the cost of
a precomputation over many factorizations, by finding smooth elements in a relation
collection phase that is only half done but that can be used for each of the different
factorizations. With a reduction of the overall factoring effort by more than 50%, Kleinjung,
Bos and Lenstra used this idea and managed to factor 17 Mersenne numbers [KBL14].
Coppersmith’s idea was adapted to the computation of discrete logarithm in several prime
finite fields by Barbulescu in his PhD thesis [Bar13, §7.2].

Non-prime finite fields arise in the wild. The relevance of the existing Factory-like
methods that we just mentioned is lessened by their applicability to prime fields only. The
purpose of this article is to address this issue. Discrete logarithms in cryptography are
not restricted to prime fields. Several cryptographic protocols rely on the hardness of
the discrete logarithm problem in non-prime fields. For instance, pairing-based protocols
entail considering families of finite fields of fixed extension degree. In this context, most
often extension degrees are composite (e.g. n = 12). To give but one example, we find non

4 Discrete Logarithm Factory

Table 3: Approximation of asymptotic complexities of NFS, MNFS, NFS Factory and
their variants, expressed as LQ(1/3, c). This table indicates an approximation of c in each
case. When the characteristic p is expressed as p = LQ(2/3, cp), it represents the boundary
case between medium and large characteristic. At this boundary, the complexities are
given as a function of cp. For this reason we give a figure and not a formula. Besides, in
medium characteristic finite fields, both the complexities of SNFS and STNFS depend
on an integer parameter λ. Tables 8 and 9 give the complexities for various values of
λ. Moreover, the Multiple variant does not couple with the Special variants SNFS and
STNFS.

Our work (Factory)
Algorithm Range Usual Multiple Precomputation Computation

approach variant in each field
Prime fields 1.92 1.90 2.01 [Bar13] 1.64 [Bar13]

Large p 1.92 1.90 2.01 1.64
NFS p = LQ(2/3) Figure 7

Medium p 2.20 2.16 2.45 1.73
TNFS Medium p 1.75 1.71 1.94 1.37
SNFS Large p 1.53 — 1.85 1.39

Medium p Table 8
STNFS Medium p Table 9

prime fields in the Elliptic Curve Direct Anonymous Attestation protocol that is embedded
in the current version of the Trusted Platform Module [TCG19]. The emergence of
SNARKs [Gro16,GWC19,CHM+20], which also require pairing friendly curves accentuates
the interest for these non-prime fields.

Our work. In this article, we generalize the discrete logarithm Factory algorithm to
finite fields of any extension degree. Several difficulties arise. The primary challenge lies in
the need to adapt the algebraic framework of NFS: the goal is to construct several branches
of a diagram landing in several different finite fields, but starting from the same shared
branch. The way in which this diagram is created depends very much on the polynomial
selection, and thus on the considered variant. We manage to combine the Factory idea with
several variants: NFS, TNFS, SNFS and STNFS. Interestingly, our complexity analysis
shows that the combination of the Multiple NFS variant with our Factory approach does
not make it better (MNFS Factory brings no improvement over NFS Factory). The second
difficulty appears in the characterization of the primes for which a given Factory algorithm
can apply. We show that this can be quantified precisely based on the Chebotarev density
theorem.

For each variant combined with Factory we provide, based on usual NFS heuristics,
an improved asymptotic complexity for the computation of discrete logarithms, with the
requirement of a one-time precomputation that is solely dependent on the bitsize of the
finite fields. This complexity analysis is clearly another difficult point of our work because
of the accumulated technicalities. Let us give the example of TNFS when we target several
finite fields of size close to Q. With a one-off precomputation that approximately costs
LQ(1/3, 1.94), we lower the complexity of TNFS per field from roughly LQ(1/3, 1.75) to
LQ(1/3, 1.37). Our work obtains several results of this kind for various sub-cases: Table 3
recapitulates the asymptotic complexities we obtain in this work.

Besides, we employ an analytic approach in order to assess the crossover point above
which our Factory approach for NFS and TNFS is likely to be profitable. When applied
to TNFS with 1024-bit finite fields of extension degree n = 6, our estimates suggest that

Haetham Al Aswad, Emmanuel Thomé, Cécile Pierrot 5

TNFS Factory is computationally more efficient than applying TNFS on each finite field
separately when solving discrete logarithms in several tens of such finite fields.

Possible impact. One of the scenarios we have in mind involves the potential risk of
compromising the security of standardized key sizes. Recommended key sizes correspond
to the sizes of finite fields considered secure against the most efficient algorithms for
attacking the discrete logarithm problem, namely NFS and its variants. Each previously
recommended or current key size (e.g. 1024 bits, 2048 bits, 4096 bits, etc.) is associated
with a specific level of security. As a result, the distribution of finite fields used in practical
applications is not uniform across all possible sizes, but rather organized into groups or
packages. Consequently, an attacker seeking to compromise multiple keys potentially
across different finite fields, can leverage the idea of Factory. By adjusting the parameters
and finding the most advantageous trade-off in terms of the number of compromised finite
fields and the cost they are willing to invest in precomputation, they can minimize the
overall expense. In any case, the aggregation of finite fields within packages resulting from
protocol standardization has the potential to weaken a significant proportion of the public
keys generated according to these standards.

Outline of the article. We start with a short refresher concerning NFS and its variants
in Section 2. Section 3 presents the Factory idea adapted to non prime finite fields and
explains how we can predict how many fields can be addressed with a given Factory
setup. Section 4 details then the asymptotic complexity results of this algorithm, while in
Section 5 we discuss the feasibility and impact of this method on moderate key sizes, for
instance to target several 795-bit prime fields or several 1024-bit finite fields of extension
degree 6.

2 Background
Notations. From now on, p always denotes a prime number. When the extension
degree n of the finite field Fpn is composite, η and κ denote non trivial factors of n
such that n = ηκ. Asymptotic estimates use the classical O and o notations, as well
as the soft-O notation f = Õ(g) which means that there exists a constant c such that
f(x) = O(g(x) logc(x)), as x tends to infinity. We recall that an integer is x-smooth if
we can write it as product of integers that are all smaller than x. Likewise, an ideal is
x-smooth if it factors into a product of prime ideals whose (absolute) norm is less than x.

2.1 The (Tower) Number Field Sieve
We start with a short refresher on the Tower variant of the Number Field Sieve, of which
the “usual” NFS can be considered a special case.

Commutative diagram. We target the finite field Fpn . Let η be a divisor of n. The
classical TNFS setup considers the intermediate number field Kh = Q(ι) where ι is a root
of h, a polynomial of degree η over Z that remains irreducible modulo p. For a number
field K, we let OK be its ring of integers. For simplicity, we assume throughout this article
that OKh

= Z[ι]/h. This implies in particular that h is monic. (For the usual NFS, we
rather let η = 1, Kh = Q, and OKh

= Z; in particular there is no requirement that n be
composite.)

Above Kh, define two number fields K0 = Kh[x]/f0(x) and K1 = Kh[x]/f1(x) where
f0, f1 are irreducible polynomials over OKh

that share an irreducible factor φ of degree κ
modulo the unique ideal p over p in Kh. In particular, f0 and f1 have degree at least κ.
Let αi be root of fi in Ki for i = 0, 1. Because of the conditions on the polynomials h,

6 Discrete Logarithm Factory

OKh
[x]

K0 ⊃ OKh
[x] /f0(x) K1 ⊃ OKh

[x] /f1(x)

OKh
/p[x]/φ(x) ∼= Fpn

mod φ, mod p mod φ, mod p

Diag. 4: Commutative diagram of Tower NFS.

f0 and f1, there exist two ring homomorphisms from OKh
[x] to the target finite field Fpn

through the number fields K0 and K1. This allows to build a commutative diagram as in
Figure 4. For simplicity, we assume that f0 and f1 are defined over Z, although this is
only possible when κ and η are coprime.

The polynomial selection refers to the way the diagram of Figure 4 is built. For an
appropriate notion of size that is defined in the intermediate number fields, the relation
collection step accumulates relations between “small” elements in the number fields. Their
virtual logarithms in the target finite field are then recovered by the linear algebra step,
and the process is made more general by the individual logarithm step which leverages the
acquired information to compute logarithms of arbitrary elements of the target number
field.

Polynomial selection. Several methods to do NFS polynomial selection are known. For
example, the Conjugation, JLSV or Sarkar-Singh’s methods [BGGM15,JLSV06,SS16b]
can be used. Each polynomial selection method yields different degrees and coefficient
sizes. A table summing up all the parameters for f0 and f1 output by various polynomial
selections for NFS and its variants (Multiple, Tower, Special and composition of two of
them) is given in [DM21, Section 3.4.2]. In this work we do not deal with all the polynomial
selections.

Relation collection. The goal of the relation collection step is to select, among the
set of polynomials ϕ(x, ι) ∈ OKh

[x] at the top of the diagram, the candidates that yield a
relation. A relation is found if the polynomial ϕ(x, ι) mapped to principal ideals in OK0

and OK1 are smooth (respectively B0- and B1-smooth). Most often the search space for
relation collection consists of linear polynomials ϕ(x, ι) = a(ι) − b(ι)x ∈ OKh

[x], and for
usual NFS this simplifies to searching for polynomials a − bx with integers coefficients a, b,
since OKh

= Z in that case. The ideals that occur in the factorizations in OK0 and OK1

constitute the factor basis F . More precisely, we define it as the disjoint union F = F0 ⊔F1
with, for i = 0, 1:

Fi(Bi) = {prime ideals of OKi of norm ≤ Bi and inertia degree 1 over Kh}.

To test the Bi-smoothness on each side, one needs to evaluate the norms Ni(a(ι) − b(ι)αi)
for i = 0, 1. To do so, we can write:

Ni(a(ι) − b(ι)αi)
∗= Resy(Resx(a(y) − b(y)x, fi(x)), h(y)). (1)

where the equality ∗= holds up to sign and up to powers of the leading coefficients of h
and fi. Since resultants are integers, this allows to test the Bi-smoothness over integer
values. The relation collection stops when we have enough relations to construct a system

Haetham Al Aswad, Emmanuel Thomé, Cécile Pierrot 7

of linear equations that may be full rank. The unknowns of these equations are the virtual
logarithms of the ideals of the factor basis.

Linear algebra. A good feature of the linear system created is that the number of non-
zero coefficients per line is very small. This allows to use sparse linear algebra algorithms
such as Coppersmith’s block Wiedemann algorithm [Cop94], for which parallelization is
partly possible. The output of this step is a kernel vector corresponding to the virtual
logarithms of the ideals in the factor basis.

Individual discrete logarithm. The final step consists in finding the discrete logarithm
of one or several target elements. This step is subdivided into two substeps: a smoothing
step and a descent step. The smoothing step is an iterative process where the target
element is randomized until the randomized value lifted back to one of the number fields Ki

is B′
i-smooth for a smoothness bound B′

i > Bi. The second step consists in decomposing
every factor of the lifted value, in our case prime ideals with norms less than a smoothness
bound B′

i, into elements of the factor basis for which we now know the virtual logarithms.
This eventually makes it possible to reconstruct the discrete logarithm of the target element.

TNFS differs from NFS in this step as there exist improvements for the smoothing step
when the target finite field has proper subfields [Gui19,AAP23].

2.2 Other variants of NFS
Special NFS. When the characteristic is sparse (the meaning of which will be made
precise later on), both NFS and TNFS can be adapted so that the polynomials in the
sieving step have lower norms, resulting in better asymptotic complexities. This is called
the Special variant of NFS and written SNFS or STNFS. The key idea as explained
in [JP14] lies in a dedicated polynomial selection that takes advantage of the sparsity of
the characteristic.

Multiple NFS. NFS and TNFS can be coupled with a multiple variant too [Mat03,
BP14,Pie15,SS16b], the main idea being to have a lot of different intermediate number
fields where a polynomial from the sieving can be smooth. MNFS and MTNFS give the
best asymptotic complexities. It makes sense to ask whether an MNFS Factory variant is
worthwhile. It turns out that the answer is no. Such a combination would not lower the
complexity of the per-field step, as we briefly discuss in Section 4.

2.3 Smoothness probability
As is classical with analysis of NFS-based algorithms, we assume throughout the paper
that the probability of a norm being smooth is the same as that of a random integer of
the same size. To assess this latter probability, we use the following restatement of results
from [CEP83]:

Proposition 1. Let (α1, α2, c1, c2) be four real numbers such that 1 > α1 > α2 > 0 and
c1, c2 > 0. As Q tends to infinity, the probability that a random positive integer below
LQ(α1, c1) splits into primes less than LQ(α2, c2) is

LQ

(
α1 − α2, (α1 − α2) c1 c−1

2
)−1

.

The norms are given by Equation (1). In the classical (non-Tower) NFS, the definition
of the resultant as the determinant of the Sylvester matrix gives a bound that follows from
Hadamard’s inequality:

| Res(ϕ, fi)| ≤ ∥ϕ∥deg fi
∞ · ∥fi∥deg ϕ

∞ · (deg fi + 1)deg ϕ/2(deg ϕ + 1)deg fi/2.

8 Discrete Logarithm Factory

When analyzing Tower variants, the degree of h appears in the resultant. Since we assumed
that OKh

= Z[ι], we can assume that all coefficients of ϕ(x, y) are integers, all below a
bound ∥ϕ∥∞. We obtain

| Resy(Resx(ϕ, fi), h)| ≤ ∥ϕ∥deg h·deg fi
∞ · ∥fi∥deg h·degx ϕ

∞ · ∥h∥deg fi·degy ϕ
∞ · c

where the factor c is a combinatorial contribution that can be uniformly bounded depending
on deg fi and deg h, and is negligible compared to the other factors in all cases we consider
in this article. Note also that in all cases of interest, we have degy ϕ < deg h and (unless
specified otherwise) degx ϕ = 1.

3 Discrete logarithm Factory
3.1 Common Setting
Whether it is deployed for integer factorization or for discrete logarithm in medium or
large characteristic finite fields, the Factory algorithm revolves around the same idea. The
primary objective is to share a portion of the relation collection step in NFS (or a variant).
Our common setting is as follows.

Common Setting. A family of instances (Qi, ni), indexed by i, is defined. Both Qi and
ni increase along with i. We conduct an asymptotic study as i tends to infinity. How Q
and n evolve relative to eachother defines several regimes, which are studied separately.

For each instance (hereafter denoted without the subscript i for brevity), Q denotes an
approximate finite field cardinality, and n an extension degree. A given instance focuses
on the set of finite fields Fpn of approximate cardinal Q—therefore we have pn ≈ Q. Our
goal is to define a precomputation algorithm that allows efficient computation of discrete
logarithms in a significant proportion—dependent on the instance parameters Q and n—of
them.

In the following, we explain how one instance of the Factory algorithm works: we
consider finite fields Fpn

1
,Fpn

2
, . . . of extension degree n and approximate cardinal Q ≈ pn

1 ≈
pn

2 ≈ · · · .

To achieve this, our Factory approach consists of two steps. Figure 5 illustrates this.

The “one-off” step. Inputs are Q and n. We construct half of the diagram of Figure 4,
namely Kh and K0. Then, a first search aims to find (and store for later use) elements
ϕ in the search space that are B0-smooth when mapped to K0, for a fixed smoothness
bound B0. All parameters of this step —including B0 and the number of elements ϕ to
test— depend on Q and n.

The “per-field” step. Consider one of the pi’s of the common setting. Complete the
diagram of Figure 4 (define a number field Ki) so that the target finite field is Fpn

i
. The

relation collection step proceeds by determining which of the stored ϕ are B∗-smooth when
mapped to Ki, where B∗ is another smoothness bound. Because this per-field step works
in a similar way for primes of similar size, parameters such as B∗ are identical for all the
fields. The remaining steps of NFS (or the variant) are unchanged.

The complexities we formulate are functions of Q and n. Just like finite field discrete
logarithm distinguishes between small, medium, and large characteristic, we will make
distinctions based on how Q and n evolve asymptotically. Likewise, we will define several
variants that are adapted to n factoring in a certain way, or the primes pi being of a special
form.

Haetham Al Aswad, Emmanuel Thomé, Cécile Pierrot 9

OKh
[X] K3

OKh
[X] /(f1(X)) ⊂ K1 K2

OKh
[X] /(f0(X)) ⊂ K0 Fp3n

OKh
/p1[X]/(φ1(X)) ∼= Fp1n Fp2n

mod φ1

mod p1 mod φ1
mod p1

mod φ2

mod p2

mod φ2

mod p2

Diag. 5: Example of a commutative diagram for Factory for three target finite fields.
The blue central branch is where the one-off precomputation takes place. This extends
Diagram 4 to multiple right sides (here, K1, K2 and K3).

3.2 A baseline: Factory algorithm for prime fields

The factorization Factory algorithm was introduced by Coppersmith [Cop93] and its
adaptation to the discrete logarithm problem in prime finite fields was proposed by
Barbulescu [Bar13].

We follow the common setting of §3.1 but restrict ourselves to n = 1. The one-off step
sets Kh = Q (hence η = 1), and starts with the well known base-m method. Choose a
degree d and an integer m close to Q1/d. Define K0 by f0(X) = X − m. For the per-field
step, write the base-m expansion of pi as pi =

∑d
k=0 akmk and set fi(X) =

∑d
k=0 akXk.

Then, f0 and fi share a common root modulo pi, which is m. Define Ki as Q[X]/fi (the
polynomial fi is generally irreducible). This completes Diagram 4.

3.3 Factory for non prime finite fields: polynomial selection

The novelty of this article is the generalization of the Factory approach to finite fields of
arbitrary extension degree. Since n > 1, both number fields K0 and Ki must be of degree
greater than one over Q, hence the base-m polynomial selection cannot be used.

We follow the notations of §2.1. In particular, η = deg h is non trivial only in the tower
cases (TNFS, STNFS). In order to simplify the exposition, we assume that η and κ are
coprime, which allows us to search for f0 and fi in Z[X] rather than in OKh

[X]. Both f0
and fi must be coprime and irreducible, and share an irreducible factor φi of degree κ
modulo pi. Then Fpn

i
is represented as (OKh

/piOKh
) [X]/(φi). In the different polynomial

selection methods that we now review, we assume that the polynomial h has been fixed
beforehand, and we only detail how the polynomials f0, and fi are chosen (in conjunction
with pi).

Generalized-Joux–Lercier [BGGM15] Factory. Choose f0 ∈ Z[X] irreducible, of
degree d + 1 > κ for some integer d, and with small integer coefficients.

Let pi be a prime number such that h is irreducible modulo pi, and f0 admits an
irreducible factor modulo pi of degree κ, which we lift to an integer polynomial as
φi(X) = Xκ +

∑κ−1
j=0 φi,jXj with −pi/2 < φi,j ≤ pi/2 for 0 ≤ j ≤ κ − 1. Build the lattice

10 Discrete Logarithm Factory

of dimension (d + 1) × (d + 1) whose basis matrix is:

Mpi
=



pi

. . .
pi

φi,0 φi,1 . . . 1
.

φi,0 φi,1 . . . 1



κ rows d + 1 − κ rows

The shortest vector output by the LLL algorithm when applied to Mpi
gives the coefficients

of a polynomial fi that is a multiple of φi modulo pi. We safely assume that fi is irreducible
over Z; in the unlikely event that it is not, we replace it with the appropriate irreducible
factor that reduces modulo pi to a multiple of φi. Remark that as the dimension of Mpi is
d + 1, and its determinant is pκ

i , lattice reduction guarantees that the degree of fi is at
most d, and its coefficients have sizes in Õ

(
pi

κ/(d+1)).
Conjugation [BGGM15] Factory. Select g0 and g1 two polynomials with small integer
coefficients with deg g1 < deg g0 = κ. Select µ a quadratic irreducible polynomial over Z
with small coefficients. Define the polynomial f0 as ResY (µ(Y), g0 + Y g1). The degree of
f0 is 2κ with coefficients in O(1).

Let pi be a prime number such that h is irreducible modulo pi, and µ has a root λi

in Fpi
such that φi := g0 + λig1 is irreducible modulo pi. Define fi = vg0 + ug1, where

u/v ≡ λi mod p is a rational reconstruction of λi. Then f0 = 0 mod φi mod pi and
fi = vφi mod pi. Thus both polynomials share φi as an irreducible factor modulo pi, and
f0 is irreducible over Q. Moreover, fi is of degree κ with coefficient sizes in O(√pi).

Joux–Pierrot [JP14] Factory, first approach: starting from a fixed integer u.
The original SNFS algorithm proposes only one polynomial selection, that is used for
sparse characteristic in both medium and large characteristic finite fields. However, if we
want to combine SNFS with Factory, two different approaches are possible.

For the first approach we choose two integers λ > 1 and u ≈ Q1/(λn), as well as
a polynomial R of degree at most κ − 1 with coefficients 0, 1, or −1, until f0(X) :=
Xκ + R(X) − u is irreducible over Q.

Let Pi be a polynomial of degree di close to λ and with small coefficients. Assume
that pi := Pi(u) is prime and h and f0 are irreducible modulo pi. Define fi(X) =
Pi (Xκ + R(X)). Then f0 divides fi modulo pi since Xκ + R(X) = u mod f0 and
Pi(u) = pi. Thus f0 and fi share f0 mod pi as an irreducible factor of degree κ modulo pi.
As above, we may assume that f0 is irreducible over Z. Moreover, as explained in [JP14],
R can be chosen of degree O(log(κ)), resulting in fi of degree diκ and coefficient sizes in
Õ(log(κ)di).

Joux–Pierrot [JP14] Factory, second approach: starting from a fixed P . Choose
an integer λ > 1 and a polynomial P of degree λ with small coefficients, as well as a
polynomial R of degree at most κ − 1 with coefficients 0, 1, or −1, until f0(X) :=
P (Xκ + R(X)) is irreducible over Q. As explained in [JP14], R can be chosen of degree
O(log(κ)), resulting in f0 of degree λκ and coefficient sizes in Õ(log(κ)λ).

Let ui be an integer such that ui ≈ Q1/(λn) and pi := P (ui) is prime and both h and
Xκ + R(X) − ui are irreducible modulo pi. Define fi(X) = Xκ + R(X) − ui. Then fi is
an irreducible factor of f0 modulo pi, and is irreducible over Q.

Table 6 summarizes the degrees and sizes of the coefficients of the polynomials output
by the methods that we just mentioned. To fix terminology, in the remainder of the paper

Haetham Al Aswad, Emmanuel Thomé, Cécile Pierrot 11

Table 6: Degrees and infinity norms of the polynomials given by the different polynomial
selections used for our Factory variants. This table assumes that pn

0 ≈ pn
i ≈ Q.

Polynomial
selection

Properties of
f0 and fi deg(f0) deg(fi) ∥f0∥∞ ∥fi∥∞

GJL d + 1 > κ d Õ(1) Õ
(
pn/(d+1))

Conjugation 2κ κ Õ(1) Õ
(√

p
)

Joux–Pierrot, 1st approach κ λd, d ≈ λ Õ
(
Q1/(λn)) Õ

(
log(κ)d

)
Joux–Pierrot, 2nd approach λκ κ Õ

(
log(κ)λ

)
Õ
(
p1/λ

)

we will sometimes refer to NFS Factory when η = 1 and TNFS Factory if both η and κ are
greater than one. As is the case with non-Factory variants, the Generalized-Joux–Lercier
method is well suited to the large characteristic case, while the Conjugation method is
intended for the medium characteristic case. The boundary case is not a clear cut. As
regards “special” primes, whenever either of the Joux–Pierrot constructions can be used
we use the terms SNFS Factory (when η = 1) or STNFS Factory (in the tower case).

3.4 Fantastic primes and how many are there?
Each of the polynomial selection methods in §3.3 lays out requirements on the primes
pi. How many of the primes pi work with a given setup of the one-off step depends on
properties of the number field tower that is used to define K0. This is actually controlled
by the Chebotarev density theorem.

3.4.1 Chebotarev density Theorem in towers of number fields.

Consider the tower Q ⊂ Kh ⊂ K0. The field K0 need not be a normal field, so let us also
define its normal closure L and let G = Gal(L/Q). By Galois correspondence, this tower
is connected to the chain of subgroups {1} < GK0 < GKh < G, where GX denotes the
subgroup of G that fixes the subfield X ⊂ L. The group G acts on the cosets G/GKh ,
which are partitioned in a set of smaller cosets G/GK0 . The Frobenius symbol

[
L/Q

p

]
(defined up to conjugation) and the Chebotarev density Theorem [Mil20, Chapter 8] tell
us two things. Here, we consider only primes that are coprime to disc(L/Q) and to all
leading coefficients of the defining polynomials.

• The decomposition of a prime number p ∈ Q as a product of prime ideals in Kh and
K0 (and, eventually, in L) can be read off directly from the orbits of the action of the
cyclic subgroup generated by

[
L/Q

p

]
on the cosets G/GKh , G/GK0 , and so on. For

example its orbits on G/GKh have sizes n1, . . . , nk if and only if p factors into prime
ideals of degrees n1, . . . , nk in Kh. If we take a closer look at how

[
L/Q

p

]
acts on the

smaller cosets G/GK0 , then these orbits split into orbits of sizes (ni,j)1≤i≤k,1≤j≤ki

(with
∑

j ni,j = ni) if and only if the i-th prime ideal above p in Kh splits into factors
of degrees ni,1, . . . , ni,ki

in K0. This extends to towers of arbitrary height.

• For S a subset of the set of prime numbers, define the density of S as

lim
X→∞

#{x < X | x ∈ S}
#{x < X | x is prime}

.

12 Discrete Logarithm Factory

Chebotarev’s theorem says that the density of primes whose decomposition patterns
along the tower matches the orbit sizes of the action of a conjugacy class C ⊂ G is
exactly the ratio |C|/|G|.

Computationally accessible data. In theory, the above results are strong enough to
predict the density of primes that work with the setup of any given one-off step. Alas,
the computation of the Galois group of (the normal closure of) K0 may be out of reach.
In some specific cases, it is possible to compute the densities based on data related to
smaller fields. We will discuss a few such cases below. Supplementary material of this
work includes a short Magma program that computes these densities, given a tower of
number fields.

Intervals and explicit bounds. It will be of some use in this paper to discuss the
density of primes that we can use in intervals rather than over all primes. This is a well
studied problem, which happens to be easy in the instances we will be looking at (and
very challenging otherwise). Namely, we will be interested in intervals of the form [x, xA]
for A > 1, and in such cases the error bounds given by [LO77] suffice to prove that we
have the expected density. We will not discuss this point further.

3.4.2 Some specific cases.

Here we allow some simplifying assumptions. A baseline is given in the case where K0 and
Kh are defined over Q (we already made this assumption in §2.1), and that their normal
closures have no isomorphic subfields. Then the decompositions of h and f0 modulo prime
numbers are independent. In this case, the probability that h is irreducible modulo pi,
and f0 has an irreducible factor of degree κ modulo pi is given by

Gal(h)η · # Gal(f0)κ

Gal(h) · # Gal(f0) .

In this expression, Gal(f)k is the set of elements of Gal(f) which have a cycle of length k
in their action on the roots of f . The formula above applies to both the Generalized-Joux–
Lercier Factory approach, and the Joux–Pierrot Factory, first approach. Note, of course,
that in the non-tower cases, we have η = 1 and thus # Gal(h) = # Gal(h)η = 1.

Conjugation Factory. In the Conjugation setup given in §3.3, the condition is more
specific. Let α be a root of f0 in K0. Then θ = −g0(α)/g1(α) is a root of µ, and M = Kh(θ)
is a subfield of K0, of degree 2 above Kh. The number field tower that is of interest to us is
Q ⊂ Kh ⊂ M ⊂ K0. The primes pi that work in the Conjugation setup are those for which
there exists a prime ideal p ⊂ OK0 such that [p ∩ OKh

: pZ] = η, [p ∩ OM : p ∩ OKh
] = 1,

and [p ∩ OK0 : p ∩ OM] = κ. If the Galois group of K0 and its subfields can be computed,
we can determine how many Frobenius symbols reveal that at least one such prime ideal
exists above p. By Chebotarev’s theorem, this also gives the density of such primes.

Joux–Pierrot Factory, second approach. This case seems to be outside the scope
of investigation by the methods that we just mentioned. As described in §3.3, an integer
ui varies, and the cases of interest are when pi = P (ui) is prime and the polynomial
Xκ + R(X) − ui is irreducible mod pi. Contrary to the cases above, this polynomial varies
together with pi. Short of a better solution, we hypothesize the following.

Assumption 1. In the context of the Joux–Pierrot construction (second approach), in
a large interval (a, b), the number of integers u satisfying the conditions that p = P (u)
is prime and Xκ + R(X) − u is irreducible modulo p is about 1/κ times the number of
integers a < u < b for which P (u) is prime.

Haetham Al Aswad, Emmanuel Thomé, Cécile Pierrot 13

In addition to the above, the Joux–Pierrot setup, when instantiated in the tower case,
also requires that h is irreducible modulo pi. We will assume that this latter condition is
independent of the irreducibility of Xκ + R(X) − u.

It is straightforward to test Assumption 1 over arbitrary examples. We did so for
various choices of η, κ, and λ = deg P , and found good accordance of experimental data
with Assumption 1.

3.4.3 Limitations of the Galois point of view.

There are two main caveats to estimates given by the Galois theory approach. First,
explicitly computing Galois groups is not always easy, and while these computations are
extremely easy in the examples we considered, we cannot rule out that it becomes out or
reach in certain cases. Second, even if we can mathematically write what the proportion
is, it can actually be that this formula predicts a density of zero, which is not very useful.
We can, for example, fabricate examples in the Conjugation method with κ = ℓ2 for a
prime ℓ and for which Gal(f0) = Z/(2ℓ)Z × Z/ℓZ. In such a case, no prime ideal of degree
ℓ2 exists, and obviously such setups would be of no use for computing discrete logarithms!

This being said, the high-level view tells us that the factorization patterns modulo
primes definitely follow predictable patterns. Empirical observations are a quick and easy
way to get an idea of the correct ratios (in fact, these same empirical observations can
be leveraged to get insights about what the Galois groups are). For a Factory approach
to apply to as many primes as possible, it certainly makes sense to assess what happens
modulo a moderate collection of primes.

3.5 Two constructions for 500 and 600-bit target finite fields
As an illustration, we show two different constructions, together with an evaluation of the
proportion of primes (i.e. characteristics) that can be reached. The ratios of primes that
we mention can be computed with the Magma script that is provided as supplementary
material with this work.

NFS Factory with Conjugation. The authors of [GMT16] report a discrete logarithm
computation on Fp3 with NFS (that is, no tower is at play: we have η = 1) for the 593-bit
prime p = 908761003790427908077548955758380356675829026531247. The Conjugation
method was used, and it produced:

f0 = ResY (X3 − 3X − 1 − Y (X2 + X), 28Y 2 + 16Y − 109)
= 28X6 + 16X5 − 261X4 − 322X3 + 79X2 + 152X + 28

f1 = 24757815186639197370442122X3 + 40806897040253680471775183X2

−33466548519663911639551183X − 24757815186639197370442122

The absolute Galois group Gal(f0) comprises eighteen permutations. Eight of them
act on the cosets of the Galois tower in a way that is consistent with p splitting in M
and being inert in K0. This predicts that a fraction of 4/9 of the primes work, which we
observe experimentally. For instance, let

p2 = 925345433540865564015707127491171005390356157011113,

modulo which f0 factors into an irreducible polynomial of degree 3 and three linear
polynomials. If we apply the method given in §3.3, we find another polynomial f2, written
below, that allows to complete Diagram 5. Furthermore, the largest coefficient in absolute

14 Discrete Logarithm Factory

value of f2 is less than 1.45 × √
p2.

f2 = 17678995119854355812622458X3 + 43866070922692969501665811X2

−9170914436870097936201563X − 17678995119854355812622458

TNFS Factory with Conjugation. In [DGP21], a 521-bit discrete logarithm computa-
tion was carried out on Fp6

1
with p1 = 135066410865995223349603927 using TNFS where

polynomials were chosen with the Conjugation method as:

h = X3 − X + 1,

f0 = X4 + 1 = ResY (X2 + 1 + XY, Y 2 − 2),
f1 = 11672244015875X2 + 1532885840586X + 11672244015875

In this case, the tower K0 ⊃ M ⊃ Kh ⊃ Q corresponds to the chain of Galois groups
Z/2Z < (Z/2Z)2 < (Z/2Z)3 < (Z/2Z)3 ⋉ (Z/3Z). We can also write this chain as
⟨α⟩ < ⟨α, β⟩ < ⟨α, β, γ⟩ < ⟨α, β, γ, σ⟩, with α2 = β2 = γ2 = σ3 = 1 and the only non-
abelian relation being ασ = σ2α. The GK0 -cosets can be written as GK0β{0,1}γ{0,1}σ{0,1,2},
the GM -cosets can be written as GM γ{0,1}σ{0,1,2}, the GKh-cosets can be written as
GKhσ{0,1,2}. The multiplication by τ = βσ on the right has a single orbit of size 3 on the
GKh-cosets, which splits into two orbits, still of size 3, on the GM -cosets. These become
two orbits of size 6 on the GK0 -cosets. The only elements of G with this pattern are τ and
τ−1, which makes for 1

12 of the possible Frobenius elements. This correctly predicts the
fraction of primes pi for which this number field tower works in a Factory setting.

For example, we can consider p2 = p1 + 456, modulo which the polynomial h is irre-
ducible, Y 2 − 2 has a root, and f0 factors into two irreducible polynomials of degree 2. The
Conjugation method yields f2 := 11622094549025X2 − 115506194478X + 11622094549025,
which completes Diagram 5. Its largest coefficient in absolute value is less than 1.01 × √

p2.

4 Asymptotic analysis
This section provides the complexities of the one-off step and the per-field step in each of
the NFS variants that we combine with Factory. In Table 3 we compare our results to the
analyses found in the literature for the non-Factory NFS variants [BGGM15,KB16,Pie15,
SS16a, JP14]. Recall that our common setting is as in §3.1, and that as far as analysis
goes, we will assume the classical NFS heuristics of §2.3.

Notations. For Q a finite field size, we let cA, c0, c∗ be constants such that A =
LQ(1/3, cA) denotes the relation search space, i.e., the number of elements ϕ tested for
smoothness in K0. The smoothness bounds are denoted B0 = LQ(1/3, c0) for K0 and
B∗ = LQ(1/3, c∗) for all the Ki with i > 0. We let N0 (resp. N∗) denote bounds on the
norms of the sieve elements norms once mapped to K0 (resp. to Ki for i > 0). In all
variants, parameters are such that N0 = LQ(2/3, cN0) (likewise for N∗) where cN0 and
cN∗ depend on cA and other parameters. By Proposition 1, an element in K0 of norm N0
is B0-smooth with probability P0 = LQ(1/3, cN0/(3c0))−1. Likewise, for other fields Ki

we define P∗ and we have P∗ = LQ(1/3, cN∗/(3c∗))−1.

Methodology. The one-off step is performed by a sieve algorithm that detects elements
that are B0-smooth once mapped to K0. The asymptotic complexity of this step is A1+o(1).
The number of elements stored for later use is the number of sieve elements that are
B0-smooth once mapped to K0, that is AP0 = LQ(1/3, cA − cN0/(3c0)).

The per-field step starts by detecting which of the stored elements are B∗-smooth
once mapped to Ki. We can perform this detection with either a batch technique, or by

Haetham Al Aswad, Emmanuel Thomé, Cécile Pierrot 15

smoothness tests on each element using the ECM algorithm. The batch technique has
quasi-linear complexity in the stored table size, and the complexity of the ECM algorithm
to test an element for B-smoothness with B = LQ(1/3) is LQ(1/6). Regardless of the
technique used, the complexity of detecting which of the stored elements are B∗-smooth is
(AP0)1+o(1), which is similar to the complexity in memory of the algorithm.

The per-field step proceeds with a sparse linear algebra phase that costs (B0 +B∗)2+o(1),
and an individual logarithm computation of negligible complexity compared to the two
previous steps. The complexity of the per-field step is (AP0 + (B0 + B∗)2)1+o(1).

We want to minimize the complexity of the per-field step (Equation (2) below). Some
necessary conditions apply: we need enough equations for the linear algebra step (Equa-
tion (3) below), and we want to balance the costs of smoothness detection and linear
algebra, as is done in many asymptotic analyses of NFS (Equation (4) below). This
rewrites as:

minimize: max(c0, c∗) (2)
under conditions

cA − cN0/(3c0) − cN∗/(3c∗) ≥ max(c0, c∗) (3)
and 2 max(c0, c∗) = cA − cN0/(3c0) (4)

where cN0 and cN∗ are polynomials of degree at most one in cA, and do not depend on c0
and c∗.

If the system above has a solution, then it has a solution with c0 = c∗. Indeed, if
c0 > c∗, then replacing c∗ by c̃∗ = c0 satisfies Conditions (3) and (4), and provides the
same minimum value given by (2). On the other hand, if c0 < c∗, then replace c0 by
c̃0 = c∗ and replace cA by c̃A < cA so that the right-hand side of Equation (4) does not
change. This can be done because cA − cN0/(3c0) increases as a function of cA. Then
Condition (3) still holds and the minimum value in (2) is unchanged.

Therefore we may take B0 = B∗ = LQ(1/3, c) and slightly rearrange the system into
the following equivalent form.

minimize: c (5)
under conditions

3c2 ≥ cN∗ (6)
and 6c2 − 3cAc + cN0 = 0 (7)

MNFS Factory. We briefly discuss the possibility of an MNFS Factory variant. If
V := LQ(1/3, cv) polynomials are selected at the per-field step to construct a MNFS
diagram, then the system of equations to solve becomes

Minimize c
6c2 − 3(cA + cV)c + cN0 = 0

3c2 − 3cV c − cN∗ = 0
c − cV > 0

, (8)

where B = LQ(1/3, c) is the smoothness bound on the shared side and B∗ := LQ(1/3, c−cv)
is the smoothness bound on the other sides. By combining the two first equations we get
that for any (ca, cV) we have c = (cN0 + 2cN∗)/(3cA − 3cV), where cN0 and cN∗ are both
constants with respect to cV , regardless of the polynomial selection method employed.
Therefore, the optimal values for c is always achieved at cV = 0. In other words, the
optimal solution is reached without the Multiple variant: and MNFS Factory variant
cannot lower the complexity of the per-field step.

16 Discrete Logarithm Factory

4.1 NFS Factory and TNFS Factory
Theorem 1 presents the complexities of NFS Factory and TNFS Factory in the large
characteristic, boundary, and medium characteristic cases.

Theorem 1 (Complexities of NFS Factory and TNFS Factory). Let α ∈ (1/3, 1) and
cp > 0 be two constants. In the common setting of §3.1, we study the regime where
inputs Q and n are such that Q1/n = LQ(α, cp). Let f0 (and h for the tower variants) be
polynomials constructed for the one-off step by one of the methods in 3.3. For a proportion
σ of the prime numbers pi such that Q ≤ pn

i ≤ Q · Qo(1), the Factory algorithm succeeds.
The proportion σ can be computed along the lines of §3.4 (either with Galois theory or
empirically). The one-off step costs LQ (1/3, cA), the storage cost is LQ (1/3, 2c), and the
per-field cost is LQ (1/3, 2c). The values of cA and c depend on the characteristic size and
the algorithm employed:

1. Large characteristic: 2/3 < α < 1.

(a) NFS Factory. f0 is constructed by the GJL method. The optimal values are
2c = 2((2 +

√
6)/6)2/3 ≈ 1.64, and cA = c

√
6 ≈ 2.01.

2. Boundary: α = 2/3 (hence Q1/n = LQ(2/3, cp)).

(a) NFS Factory with GJL. Under the condition cp ≥ γ, the situation is identical
to the case above, the threshold value γ being

√
6c
2 ≈ 1.11.

(b) NFS Factory with Conjugation. Let t be a fixed integer that denotes the
sieve dimension (i.e., degx ϕ = t − 1). f0 is constructed by the Conjugation
method. The optimal value for c is the smallest real solution of Equation (9),
resulting in cA = 6cptc2/(3cptc − 2).

18cptX3 − 24X2 − 3c2
pt(t − 1)X + 2cp(t − 1) = 0 (9)

3. Medium characteristic: 1/3 < α < 2/3.

(a) NFS Factory. f0 is constructed by the Conjugation method. The optimal
values are 2c = 2((1 +

√
2)/3)2/3 ≈ 1.73 and cA = 2c

√
2 ≈ 2.45.

(b) TNFS Factory. h and f0 are constructed by the Conjugation method. The
degree of h is denoted η and is a non trivial factor of n. Denote κ = n/η.
In the optimal case where κ = 1/cκ(log(Q)/ log log(Q)))1/3+o(1) with cκ =√

2((2+2
√

2)/3)1/3 ≈ 1.66, the optimal values are 2c = ((2+2
√

2)/3)2/3 ≈ 1.37,
and cA = 2c

√
2 ≈ 1.94.

Table 3 recapitulates the complexities announced in Theorem 1 together with the
previous state-of-the-art complexities of NFS and its variants.
Remark 1. It is worth noting that if the large characteristic regime of Theorem 1 is pushed
towards α = 1, the asymptotic complexities of the one-off step and the per-field step for
large characteristic finite fields are the same as in NFS Factory for prime fields. However,
the parameter values that allow to reach the minimal complexity for the per-field step
are not. Specifically, our parameter γ in the proof of Theorem 1 and the corresponding
parameter 1/δ in [Bar13, page 98] are different.

Proof. We prove the complexity announced for NFS Factory for large characteristic finite
fields in Theorem 1. The rest of the proof is in in Appendix A, since it follows the same
patterns.

We study the case where Q1/n = LQ(α) with 2/3 < α < 1. The case of finite fields with
α = 1, i.e., prime finite fields, is detailed in [Bar13, §7.2]. The Generalized-Joux–Lercier

Haetham Al Aswad, Emmanuel Thomé, Cécile Pierrot 17

method is detailed in §3.3 and the degrees and coefficient sizes of the polynomials it outputs
are given by Table 6. The sieve for the one-off step is performed in dimension 2, because
deg ϕ = 1 turns out to be the best choice for large characteristic finite fields. It follows that
∥ϕ∥∞ ≤

√
A. Furthermore, we set a constant γ such that d = 1/γ (log(Q)/ log(log(Q)))1/3.

Following the bound given in §2.3, the upper bounds on the norms can be expressed as N0 =
Õ
(
A(d+1)/2) = LQ (2/3, cA/(2γ)) and N∗ = Õ

(
Ad/2Q1/(d+1)) = LQ (2/3, cA/(2γ) + γ),

from which we obtain the expressions of cN0 and cN∗ .
We detail the resolution of the system that minimizes Constraint (5), while verifying

Conditions (6), and (7) in this variant. Thanks to Equation (7), we get cA = (12c2γ)/(6cγ−
1). Substituting cA in Condition (6) we get (−6cγ2 + (18c3 + 1)γ − 9c2)/(6cγ − 1) ≥ 0.
The discriminant of the numerator is 324c6 − 180c3 + 1, which has one negative real root
and one positive real root, namely ρ = ((2 +

√
6)/6)2/3. If 0 < c < ρ, then the numerator

of Condition (6) is negative for all γ, which implies that the denominator must be negative,
contradicting the fact that cA > 0. Therefore, c ≥ ρ. In fact, c = ρ is a valid solution. The
solution to the system is given by

c =
(

2 +
√

6
6

) 2
3

≈ 0.82, γ =
√

6c

2 ≈ 1.11, cA = c
√

6 ≈ 2.01.

The complexity of the one-off step is LQ(1/3, cA) ≈ LQ(1/3, 2.01), and the complexity of
the per-field step is LQ(1/3, 2c) ≈ LQ(1/3, 1.64).

Still in the context of the common setting given in §3.1, we want to know how much
leeway we have in the choice of pi. The size of pi only affects N∗. As long as pn

i ≤ Q1+o(1),
it is easy to see that the asymptotic results above are unchanged.

Remark 2 (Comparisons at the boundary). Multiple algorithms compete in the boundary
case. In addition to the complexities given by Theorem 1, other state of the art results are
usual (non-Factory) NFS, as well as the MNFS variant. Both can use either the GJL or
Conjugation constructions [BGGM15,Pie15]. Their costs are:

• NFS with GJL: LQ

(
1/3, (64/9)1/3) ≈ LQ(1/3, 1.92) if cp ≥ (8/3)1/3 ≈ 1.39

• MNFS with GJL: LQ(1/3, (2(46 + 13
√

13)/27)1/3) ≈ LQ(1/3, 1.90) if cp ≥ ((7 +
2
√

13)/6)1/3 ≈ 1.33.

• NFS with Conjugation: LQ

(
1/3, 2/(cpt) + 2

√
1/(cpt)2 + cp(t − 1)/6

)
.

• MNFS with Conjugation: LQ

(
1/3, 2/(cpt) + 2

√
5/(9(cpt)2) + cp(t − 1)/6

)
.

Figure 7 depicts the interplay of these different results, together with the complexities of
Theorem 1.

4.2 SNFS Factory and STNFS Factory
SNFS is designed for finite fields where the characteristic p is a sparse prime, where the
adjective “sparse” is taken here with the ad hoc meaning that we can write p = P (u), where
P is a polynomial of small degree and coefficients (subject to specific size constraints),
and u is an integer. Theorem 2 presents the complexities of SNFS in large and medium
characteristic finite fields and of STNFS Factory.

Theorem 2 (Complexities of SNFS Factory and STNFS Factory). Let α ∈ (1/3, 1) be a
constant. In the common setting of §3.1, we study the regime where inputs Q and n are
such that Q1/n = LQ(α). Let f0 (and h for the tower variant) be polynomials constructed
for the one-off step by one of the methods of §3.3. For a proportion σ of a set P of sparse

18 Discrete Logarithm Factory

Fig. 7: Asymptotic complexities of NFS, MNFS, and NFS Factory when p = Lpn(2/3, cp).
The complexities are Lpn(1/3, c) and c is a function of cp in each case. Tomato lines (resp.
darkblue curves) are for algorithms that use GJL (resp. Conjugation) method.

prime numbers pi, the Factory algorithm succeeds. The one-off step costs LQ (1/3, cA), the
storage cost is LQ (1/3, 2c), and the per-field cost is LQ (1/3, 2c). The values of cA and c
depend on the characteristic size and the algorithm employed:

1. Large characteristic: 2/3 < α < 1:

(a) SNFS Factory. Let λ = 1/(cλn) ·(log(Q)/ log log(Q))1/3 with cλ = (8/9)1/3 ≈
0.96, and u an integer close to Q1/(nλ). The polynomial f0 is constructed with
the Joux–Pierrot first approach method. The prime pi is chosen from the set
P = {P (u) | P ∈ Z[x], P (u) is prime, deg(P) = λ + o(1), and ∥P∥∞ = O(1)}.
A proportion σ = # Gal(f0)n

Gal(f0) of these primes work. The optimal values are
2c = (8/3)1/3 ≈ 1.39 and cA = 2(8/9)2/3 ≈ 1.85.

2. Medium characteristic: 1/3 < α < 2/3. Let λ > 1 an integer and P a polynomial of
degree λ and with coefficients in O(1). In both cases below, the prime pi is chosen
from the set P = {P (u) | P (u) is prime, Q ≤ P (u)n ≤ Q · Qo(1)}.

(a) SNFS Factory. The polynomial f0 of degree λn is constructed with the
Joux–Pierrot second approach method. Based on Assumption 1, a proportion
σ = 1

n of the primes in P work. The optimal values are c ≥ c̃ = ((λ + 4 +
2
√

2λ + 4)/(9λ))1/3 and cA = 2c(1 + 2λ/(X − 2λ)), with X = (9c3 + 1)λ −
2λ + (−72c3λ + (81c6 − 18c3 + 1)λ2)1/2. When λ ≥ 4, we must have c > c̃. See
Appendix A for more details.

(b) STNFS Factory. The polynomials h and f0 are constructed with the the
Joux–Pierrot second approach method. The degree of h is denoted η and is a
non trivial factor of n. Denote κ = n/η. Based on Assumption 1, a proportion
σ = 1

κ · # Gal(h)η

Gal(h) of the primes in P work. The optimal values are obtained

Haetham Al Aswad, Emmanuel Thomé, Cécile Pierrot 19

when κ = 1/cκ(log(Q)/ log log(Q))1/3+o(1) (cκ is given in Appendix A), and are
as follows. c ≥ c̃ = ((λ + 4 + 2

√
2λ + 4)/(18λ))1/3, cA = 2c(1 + 2λ/(X − 2λ)),

with X = (18c3 + 1)l + (−144c3l + (324c6 − 36c3 + 1)l2)1/2. When λ ≥ 3, we
must have c > c̃. See Appendix A for more details.

Proof. We give the proof of Theorem 2 in Appendix A.

Table 3 recapitulates the complexities announced in Theorem 2 together with the
previous state-of-the-art complexities of SNFS and its variants. Moreover, Tables 8 and 9
present the complexities of SNFS and STNFS in the medium characteristic case for various
values of λ.
Remark 3 (Comparisons at the boundary). Our study indicates that coupling Factory with
SNFS in the boundary case Q1/n = LQ(2/3, cp) does not always yield better complexities.
While reducing the complexity of the main phase (sieving and linear algebra in each fields),
it leads to an increase in the complexity of the individual logarithm step. Consequently,
for certain ranges of cp, the resulting complexity becomes significantly large. We omit the
analysis for this case.

Table 8: Asymptotic complexities (in LQ(1/3, ·)) of SNFS (without Factory) and the two
steps of SNFS Factory (case 2a of Theorem 2) in medium characteristic finite fields. The
parameter λ is an integer that is an input to the Joux–Pierrot polynomial selection, second
approach §3.3. When λ ≥ 4, we adjust the parameters to keep the individual logarithm
step negligible. c̃ is given by Equation (11) in §A.4.1.

λ SNFS (without Factory) SNFS Factory
one-off per-field

λ = 2 2.20 2.45 1.73
λ = 3 2.12 2.50 1.58
λ = 4 2.07 2.16 2(1.1 × c̃) ≈ 1.64
λ = 5 2.04 2.15 2(1.1 × c̃) ≈ 1.57

4.3 Conclusion of the asymptotic analysis
In Appendix B, we prove that the individual logarithm step is negligible compared to
the per field step in all the variants discussed in this section. Therefore, the complexities

Table 9: Asymptotic complexities (in LQ(1/3, ·)) of STNFS (without Factory) and the
two steps of STNFS Factory (case 2b of Theorem 2) in medium characteristic finite fields
of composite extension degree and appropriately sized factors. The parameter λ is an
integer that is an input to the Joux–Pierrot polynomial selection, second approach §3.3
When λ ≥ 3, we adjust the parameters to keep the individual logarithm step negligible. c̃
is given in Equation (A.4.2) in §A.4.2.

λ STNFS without Factory STNFS Factory
one-off per-field

λ = 2 1.75 1.94 1.37
λ = 3 1.68 1.73 2(1.1 × c̃) ≈ 1.38
λ = 4 1.64 1.71 2(1.1 × c̃) ≈ 1.30
λ = 5 1.62 1.70 2(1.15 × c̃) ≈ 1.31

20 Discrete Logarithm Factory

presented here represent the overall asymptotic complexities for Factory in each case.
Table 3 provides a summary of the complexities for NFS, all relevant variants included. We
see that the Factory approach reduces the complexity of computing discrete logarithms for
a wide range of finite fields, at the expense of a one-off computation. In our analysis, we
choose to minimize the complexity of the per-field step at the expense of a larger one-off
step, but other trade-offs are possible.

Covering an arbitrary large density of prime numbers with several one-off
steps. In each NFS Factory variant, a given one-off step allows to target a constant
proportion of finite fields of a given extension degree and size (see §3.4). We note however
that this proportion typically depends on the extension degree n, which questions whether
we live up to the promise of the common setting of §3.1, which is to succeed with significant
probability as we consider instance sizes going to infinity. We can do better. If we combine
several one-off steps, the number of “missed” primes drops exponentially, and nearly all
prime numbers can be covered without affecting the asymptotic complexity. For example,
consider finite fields of extension degree n and approximate cardinal Q. Assume that the
ratio of successful primes is consistently at least 1

2n . We believe that such a lower bound
holds generically, except for pathological polynomial choices that should be easy to avoid.
Prepare 2 log(Q) different one-off steps. Doing so forces us to mildly increase the upper
bounds on the polynomial sizes, but calculation shows that the complexities come out
unaffected by this change. The proportion of missed primes is then upper bounded by
(1 − 1/(2n))2 log(Q) ≤ Q−1/n ≈ 1/p. Therefore we expect that only O(1) primes around
p ≈ Q1/n are missed.

Possible optimizations if the target fields are known in advance. We assume
here that we slightly depart from the common setting of §3.1 in that the target finite fields
are known before the one-off computation begins. Following the reasoning above, it is
possible to adaptively choose polynomials so that only a few one-off steps are needed to
cover all primes. Additionally, the one-off and per-field steps can conceivably be merged
in a single computation, which removes the need to store the output of the first sieve. The
techniques of [BL14] would apply in this situation.

Logjam-Factory attack: multiple targets in each finite field. It is possible to
combine a Logjam attack as in [ABD+15] with Factory in order to target not one, but
several targets in several finite fields. After performing the one-off and per-field steps on
a finite field, we learn the logarithms of the factor base elements related to some target
field. Subsequently, an individual logarithm step recovers the logarithm of any target
in this field with a negligible cost compared to the per-field step. Specifically, we can
recover the logarithms of LQ(1/3, c1 − c2) targets without increasing the per-field step’s
asymptotic complexity, where LQ(1/3, c1) and LQ(1/3, c2) are the respective complexities
of the per-field step and the individual logarithm steps.

5 Estimation of practical cost
Our asymptotic complexity results are promising, but hardly solve the question of the
concrete parameter range where the Factory approach may be worthwhile. The assessment
of the practicality of this approach, or of any NFS-related cryptanalysis proposal, can
typically be done in a variety of ways, from the most to the least accurate.

1. Actual computations can be carried out. This is the case for large computational
records such as the discrete logarithm record on a 795 bit prime finite [BGG+20].

Haetham Al Aswad, Emmanuel Thomé, Cécile Pierrot 21

The computational cost for this approach is high. For example, computations for a
1000-bit finite field are unattainable at this point (with academic resources).

2. Try to simulate each step and obtain a projection of the running time, as for example
in [GS19].

3. Ignore all concerns related to actual data, and rely on the L(1/3, c) formula, taking
o(1) = 0 in its expression. This approach is common, but it has obvious shortcomings.
(see [LV01] §2.4.4, p 263, or [LGST21]).

Our results remain asymptotic in nature, but this section tries nevertheless to provide
insight that goes beyond the L(1/3) estimates.

5.1 NFS Factory
In the NFS-DL context, there is some material that can be used as a base to provide
experimental data. For a prime bit size around 800 bits, the record in [BGG+20] is a
significant undertaking, and experimental data is provided publicly in reproducible form3.
We used this as a base to understand whether a Factory approach could make sense at
this size.

Comparison with [BGG+20], for the same degree. Our rationale for choosing
parameters is as follows. The “ideal” setting of a Factory approach has little reason to
use the same polynomial degrees as a non-factory computation. Indeed, Theorem 1 shows
that their asymptotics differ. However, as a first step for a comparison with this record
computation it makes sense to rely on the same data: this way, the amount of effort that
is put in the selection of an exceptionally good polynomial for a given p can be put on an
equal footing across different primes.

In [BGG+20], relations involving 35-bit primes were obtained by exploring an area of
231 (a, b) pairs for each special-q in the range [150e9, 300e9) which contains about 232.4

of them. The yield is about 0.75 relation per special-q (counting only unique relations).
Smoothness estimates based on the Dickman rho function, given the size of the norms
that are considered in the computation, are slightly more optimistic and suggest a yield
around 2.5 relations for each special-q. Good explanations for this are that we need to take
duplicate relations into account, first, and also that actually finding the smooth numbers
in this range is quite a bit of work, and despite all effort that went into the implementation,
some part of them are inevitably missed. As a reference, the rough cost estimate of the
whole relation collection in this computation, again based on the Dickman rho estimates,
is about 263.4. The meaning of this number does not matter much beyond the comparison
to our Factory variant that follows.

For the Factory approach to make sense, we need to reduce the smoothness bounds.
We explored the option of reducing them by two bits (hence 33-bit primes only), which
should readily yield a factor 16 improvement of the linear algebra cost. We chose an area of
233 (a, b) pairs for each special-q in the range [600e9, 1200e9). Smoothness estimates based
on the Dickman rho function suggest that we should have a yield around 0.13 relation
per special-q. We ran the cado-nfs lattice sieving program for these parameters, and we
obtained a yield closer to 0.07 relation per special-q (again, unique relations only), which is
only slightly off. Nevertheless, this is enough to form a complete relation set. We estimate
that the cost of the precomputation in this case would be about 267.4 (so about 16 times
more than in the record computation), and in terms of core-years, the timings that we
obtained give a projected time which increases by a factor that is closer to 25. Based
on [BGG+20], this should be close to 50,000 core-years. The data that would need to be

3https://gitlab.inria.fr/cado-nfs/records.

https://gitlab.inria.fr/cado-nfs/records

22 Discrete Logarithm Factory

stored after the precomputation would be about 260 (a, b) pairs. Counting 10 bytes for
each, and given the current price of hard disk storage, such a facility would cost about a
hundred million USD. With this precomputed data, our estimates are that we would reach
a per-field cost in the whereabouts of 260 for relation collection. Recall that linear algebra
cost was reduced even further, so the expected speedup is about 10-fold.

These concrete settings are a good sign that for a cost that is about 25 times the cost
of the 795-bit record computation in [BGG+20], we can compute discrete logarithms in
any 795-bit prime field in a fraction of one-tenth of the cost of [BGG+20]. An attacker
can thus use the Factory approach profitably if more than a few dozen fields are targeted.

Comparison with [BGG+20], for a different degree. As discussed above, asymp-
totics suggest that the degree of a Factory computation should be larger than in the
single-field case. Compared to our previous experiment, an alternative parameter setting
that seems to work would be to work with degree 5 instead of degree 4. Here, we do not
have the same level of confidence than above in the quality of the polynomials, sieving
parameters, and actual timings that we obtained. Based on Dickman rho estimates, we
obtained parameter sets that suggest a factor of two improvement compared to the previous
paragraph, which is certainly well within the error margin.

Comparison for 1024-bit fields. A similar approach can be followed for 1024-bit fields.
Code is not exactly ready to tackle this problem size, and we are left with an approach
that is based on Dickman rho estimates. It does seem that in this case as well, improving
the per-field cost by a factor of 16 is possible with adequate parameter choices. (The
strategy remains similar: decrease smoothness bounds, use larger special-q’s, and increase
the sieve table size for each of them.)

5.2 TNFS Factory
The purpose of this section is to compare computational cost estimates of TNFS and
TNFS Factory on finite fields with extension degree equal to 6 with sizes Q = p6 ranging
between 300 and 2000 bits. For each finite field size two setups are possible: η = 2 and
κ = 3 or η = 3 and κ = 2.

Polynomial selection. Previous records such as [DGP21, Rob22] suggest that the
Conjugation method (§3.3) performs best in practice. Our analysis supports this and
indicates that it should be the best method in practice for TNFS Factory as well. Let
h ∈ Z[X] a degree η irreducible polynomial with small coefficients, and f0 and f1 in Z[X]
of respective degrees 2κ and κ, output by the Conjugation method. Following Table 6,
we assume that ∥h∥∞ = 1, ∥f0∥∞ = 1, and ∥f1∥∞ = √

p. (This is supported by reported
experiments: in [DGP21], these values were respectively equal to 1, 1, and approximately
1.0043 × √

p.) The number fields of Diagram 4 are defined as Kh := Q(ι), K0 := Q(ι, α0)
and K1 := Q(ι, α1), where ι, α0 and α1 are the respective roots of h, f0 and f1,

One-off step for TNFS Factory and relation collection for TNFS: The special-q
technique [Pol93]. The aim of the one-off step in TNFS Factory is to find elements
ϕ(x, ι) = a(ι) − b(ι)x such that ϕ(α0, ι) is B-smooth, where B is a smoothness bound, and
a and b are polynomials of degree at most η − 1. The aim of the relation collection in
TNFS is to find similar ϕ such that both ϕ(α0, ι) and ϕ(α1, ι) are B-smooth. In both cases,
a special-q technique should be used to divide the search space into groups of elements
that share a common prime ideal q in their factorization in one of the number fields.

For TNFS Factory, given an ideal q ⊂ OK0 , a sieve algorithm is applied to detect which
of the elements ϕ(α0, ι) ∈ q are B-smooth (not counting the ideal q in the factorization).

Haetham Al Aswad, Emmanuel Thomé, Cécile Pierrot 23

Furthermore, the sieve algorithm only considers 2η-dimensional vectors (a, b) := Mq(i, j)T

where Mq is a reduced basis of the lattice that is of determinant q and (i, j)T is within an
Euclidean ball of some radius R. If the Euclidean norm of (i, j) corresponding to (a, b) is
written r, relaying on §2.3 we estimate the norm of ϕ(αi, ι) by Ni(r, q) := Sη deg(fi)∥fi∥η

∞,
for i = 0, 1, where S = r × q1/(2η) is the bound on the coefficients of (a, b). (Here we
assume ∥h∥∞ = 1, and ignore the extra combinatorial factor). Moreover, let V2η(r) be the
volume of the 2η-dimensional ball of radius r, and ρ be the Dickman-de Bruijn function.
We estimate the number of B-smooth elements among all elements that are divisible by q
as: ∫ R

r=0
ρ

(
log(N0(r, q)) − log(q)

log(B)

)
dV2η(r).

In turn, the total number of B-smooth elements (i.e., the output size of the one-off step)
is the product of the above estimate by the number of special-q considered. Further-
more, we estimate the computational cost of the one-off step by the number of special-q
considered times the cost of the sieve algorithm per special-q, which we approximate as
V2η(R) log log(B).

For TNFS, a sieve is performed in both number fields to detect elements that are
B-smooth in both number fields. Alternatively, it is also possible to combine a sieve
algorithm on the special-q side with a batch smoothness detection algorithm on the other
side. The number of expected relations for q (assuming it is on the K1 side) is:∫ R

r=0
ρ

(
log(N0(r, q))

log(B)

)
ρ

(
log(N1(r, q)) − log(q)

log(B)

)
dV2η(r).

Again, this must be multiplied by the number of special-q considered to get the total
number of expected relations, and the cost of the relation collection step is the number
of special-q times 2V2η(R) log log(B) if a sieve is performed on both sides. If a sieve is
performed on one side and batch smoothness detection on the other side, then this estimate
drops to the number of special-q times V2η(R) log log(B), plus a quasi-linear cost in the
number of smooth elements output by the sieve.

Computation per field for TNFS Factory and linear algebra for TNFS. The
per-field step of TNFS Factory starts by detecting which of elements stored after the
one-off step are B-smooth in Ki. This can be done with batch smoothness detection with
a quasi-linear cost in the number of the stored elements. The total number of relations
produced is estimated as:∫ R

r=0
ρ

(
log(N0(r, q)) − log(q)

log(B)

)
ρ

(
log(N1(r, q))

log(B)

)
dV2η(r).

Then a sparse linear algebra phase computes the discrete logarithms of the factor basis
for a cost that we estimate as (2 Li(B))2, where Li is the logarithmic integral function.
Similarly, the linear algebra cost for TNFS is (2 Li(B))2.

We neglect the cost of the individual logarithm step in both cases. Anyway this cost
is not only small, but also of roughly identical cost with both algorithms. Appendix B
supports this statement.

Estimation. Figure 10 shows the cost estimates of TNFS and TNFS-factory. For TNFS
Factory, we searched for parameters that minimize the cost of the per-field step, under
the condition of having enough relations. For TNFS without Factory, we searched for
parameters that minimize the sum of the costs of the relation collection and the linear
algebra steps, under the condition of having enough relations.

24 Discrete Logarithm Factory

When the factors of n are set to η = 3, κ = 2, the norm sizes are estimated to
N0(r, q) = S12 and N1(r, q) = S6Q1/4. The norm N0 is too small compared to the norm
on the other side and the factory algorithm considers the special-q on the side 0. This
results in the one-off step doing the “easy” work. This is confirmed by Figure 10 in which
we observe that the cost of TNFS is lower than the cost of the one-off step, which is
itself lower than the cost of the per-field step. TNFS-Factory provides no benefit in this
scenario.

When the factors of n are set to η = 2, κ = 3, the norm sizes are estimated to
N0(r, q) = S12 and N1(r, q) = S6Q1/6. In this setup the norms are more balanced on both
sides. This provides an interesting setup for the factory algorithm as shown in Figure 10.

Figure 10 shows that TNFS with the setup η = 2, κ = 3 is better that TNFS with
the other setup for finite fields of sizes larger than 800 bits. Hence, TNFS-Factory is
interesting when considering finite fields of size larger than 800 bits.

Best parameters for 1024-bit finite field Fp6 . We denote [qmin, qmax] the special-q
range. The best parameters we found for TNFS-Factory are R = 196, qmin ≈ 235.8, qmax ≈
238.3, B = 233. As a consequence, our calculations show that the estimated cost of the
one-off step is 267.8, and the estimated cost of the per-field step is 260.8.

For TNFS without Factory, the best parameters we found are R = 138, qmin ≈
233.7, qmax ≈ 236.3, B = 235. We computed that this implies an estimated cost of TNFS
around 264.4.

What is the value of these estimates? Estimating the practical cost of NFS and its
variants is a difficult problem and we do not claim to get precise results in this section. It
would be possible to be more accurate. Actual computations in the 1000-bit range are
out of reach at this point, but a middle ground could be to make the simulation more
accurate by basing it on sample runs that closely follow the expected form of the input
of the different stages of the algorithm. Unfortunately, the implementation available of
TNFS does not yet allow such estimates. This is left for a future work.

Nevertheless, our approach (which follows, for example, what is done in [GS21]) tells
more than if we content ourselves with the L(1/3, c) estimates only, as is too often
encountered. Furthermore, we believe that the qualitative comparison of TNFS versus
TNFS Factory is likely to be modeled correctly by our approach. In that sense, since
267.8/(264.4 − 260.8) ≈ 11, our estimation suggests that when considering some tens of
finite fields Fp6 of size 1024 bits, TNFS Factory is more advantageous than applying TNFS
on each of the target finite fields. To be precise, we also need to take into account the
constraints on the decomposition of the primes in the number fields Kh and K0. If the
Galois considerations of §3.4 predict that these constraints are met for, say, a fraction
of 1

12 of the primes, this means that the number of primes to consider for the Factory
approach to be profitable is around 100.

6 Conclusion
The Factory variant for NFS brings a shift in the attacker’s approach by targeting a specific
size, such as 1024 bits, rather than a particular finite field. Through a costly one-time
computation, the attacker gains the ability to efficiently target finite fields of the same
size. Our practical estimates suggest that in the kilobit range, this Factory approach is
more efficient than the non-Factory approach if several tens of finite fields are considered.

A given one-off step is only able to target a constant proportion of the finite field
characteristics, but we show how this proportion can be computed. By combining a few
one-off steps, it is possible to reach almost all primes without affecting the asymptotic
complexity significantly.

Haetham Al Aswad, Emmanuel Thomé, Cécile Pierrot 25

Fig. 10: Cost estimates of TNFS and TNFS Factory (log2 of the approximate number of
operations) for finite fields of degree 6, as a function of the finite field size (log2 Q, in bits).

26 Discrete Logarithm Factory

Furthermore, the flexibility provided by the potential trade-off between the costs of
the one-off and the per-field steps enables accommodation of the available computation
power and memory. This allows for better optimization based on the specific resources at
hand. This technique can be leveraged to accelerate discrete logarithm computations for
desired finite field sizes, perhaps even in software like SageMath or Magma.

A drawback of Factory in practical use is its subexponential memory complexity. The
required table for storage grows subexponentially in size. However, if the attacker has
prior knowledge of the specific finite fields being targeted (not just their size), it is possible
to alleviate this in the manner of the Factoring Factory algorithm, as explored in [BL14].
The memory requirements then become equivalent to those for NFS and its variants.

References
[AAP23] Haetham Al Aswad and Cécile Pierrot. Individual discrete logarithm with

sublattice reduction. Designs, Codes and Cryptography, pages 1–33, 2023.
doi:10.1007/s10623-023-01282-w.

[ABD+15] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,
Matthew Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Em-
manuel Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago
Zanella-Béguelin, and Paul Zimmermann. Imperfect forward secrecy: How
Diffie-Hellman fails in practice. In 22nd ACM Conference on Computer and
Communications Security, 2015. doi:10.1145/2810103.2813707.

[Bar13] Razvan Barbulescu. Algorithmes de logarithmes discrets dans les corps finis.
PhD thesis, Université de Lorraine, 2013. URL: https://hal.univ-lorrain
e.fr/tel-01750438.

[BGG+20] Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel
Thomé, and Paul Zimmermann. Comparing the difficulty of factorization and
discrete logarithm: A 240-digit experiment. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 62–
91. Springer, Heidelberg, August 2020. doi:10.1007/978-3-030-56880-1_3.

[BGGM15] Razvan Barbulescu, Pierrick Gaudry, Aurore Guillevic, and François Morain.
Improving NFS for the discrete logarithm problem in non-prime finite fields.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 129–155. Springer, Heidelberg, April 2015. doi:
10.1007/978-3-662-46800-5_6.

[BGJT14] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé.
A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields
of small characteristic. In Phong Q. Nguyen and Elisabeth Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 1–16. Springer, Heidelberg,
May 2014. doi:10.1007/978-3-642-55220-5_1.

[BL14] Daniel J. Bernstein and Tanja Lange. Batch NFS. In Antoine Joux and Amr M.
Youssef, editors, SAC 2014, volume 8781 of LNCS, pages 38–58. Springer,
Heidelberg, August 2014. doi:10.1007/978-3-319-13051-4_3.

[BLP93] J. P. Buhler, A. K. Lenstra, and C. Pomerance. Factoring integers with
the number field sieve. In Lenstra and Lenstra, Jr. [LL93], pages 50–94.
doi:10.1007/BFb0091539.

https://doi.org/10.1007/s10623-023-01282-w
https://doi.org/10.1145/2810103.2813707
https://hal.univ-lorraine.fr/tel-01750438
https://hal.univ-lorraine.fr/tel-01750438
https://doi.org/10.1007/978-3-030-56880-1_3
https://doi.org/10.1007/978-3-662-46800-5_6
https://doi.org/10.1007/978-3-662-46800-5_6
https://doi.org/10.1007/978-3-642-55220-5_1
https://doi.org/10.1007/978-3-319-13051-4_3
https://doi.org/10.1007/BFb0091539

Haetham Al Aswad, Emmanuel Thomé, Cécile Pierrot 27

[BP14] Razvan Barbulescu and Cécile Pierrot. The Multiple Number Field Sieve for
Medium and High Characteristic Finite Fields. LMS Journal of Computation
and Mathematics, 17:230–246, 2014. URL: https://hal.inria.fr/hal-009
52610, doi:10.1112/S1461157014000369.

[CEP83] E. Rodney Canfield, Paul Erdős, and Carl Pomerance. On a problem of
Oppenheim concerning “factorisatio numerorum”. Journal of Number Theory,
17(1):1–28, 1983. doi:10.1016/0022-314X(83)90002-1.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely,
and Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal and up-
datable SRS. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part I, volume 12105 of LNCS, pages 738–768. Springer, Heidelberg, May 2020.
doi:10.1007/978-3-030-45721-1_26.

[Cop93] Don Coppersmith. Modifications to the number field sieve. Journal of Cryp-
tology, 6(3):169–180, March 1993. doi:10.1007/BF00198464.

[Cop94] Don Coppersmith. Solving homogeneous linear equations over GF(2) via
block Wiedemann algorithm. Math. Comp., 62(205):333–350, 1994. doi:
10.1090/S0025-5718-1994-1192970-7.

[DGP21] Gabrielle De Micheli, Pierrick Gaudry, and Cécile Pierrot. Lattice enumeration
for tower NFS: A 521-bit discrete logarithm computation. In Mehdi Tibouchi
and Huaxiong Wang, editors, ASIACRYPT 2021, Part I, volume 13090 of
LNCS, pages 67–96. Springer, Heidelberg, December 2021. doi:10.1007/97
8-3-030-92062-3_3.

[DM21] Gabrielle De Micheli. Discrete Logarithm Cryptanalyses : Number Field Sieve
and Lattice Tools for Side-Channel Attacks. Theses, Université de Lorraine,
May 2021. URL: https://hal.univ-lorraine.fr/tel-03335360.

[FGHT17] Joshua Fried, Pierrick Gaudry, Nadia Heninger, and Emmanuel Thomé. A
kilobit hidden SNFS discrete logarithm computation. In Jean-Sébastien Coron
and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210
of LNCS, pages 202–231. Springer, Heidelberg, April / May 2017. doi:
10.1007/978-3-319-56620-7_8.

[GGM16] Pierrick Gaudry, Aurore Guillevic, and François Morain. Discrete logarithm
record in GF(p3) of 592 bits (180 decimal digits), August 2016. URL: https:
//listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;ae418648.1608.

[GGM17] Laurent Grémy, Aurore Guillevic, and François Morain. Breaking DLP in
GF (p5) using 3-dimensional sieving. working paper or preprint, July 2017.
URL: https://inria.hal.science/hal-01568373.

[GKZ18] Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. On the discrete
logarithm problem in finite fields of fixed characteristic. Transactions of the
American Mathematical Society, 370(5):3129–3145, 2018. doi:10.1090/tran
/7027.

[GMT16] Aurore Guillevic, François Morain, and Emmanuel Thomé. Solving discrete
logarithms on a 170-bit MNT curve by pairing reduction. In Roberto Avanzi and
Howard M. Heys, editors, SAC 2016, volume 10532 of LNCS, pages 559–578.
Springer, Heidelberg, August 2016. doi:10.1007/978-3-319-69453-5_30.

https://hal.inria.fr/hal-00952610
https://hal.inria.fr/hal-00952610
https://doi.org/10.1112/S1461157014000369
https://doi.org/10.1016/0022-314X(83)90002-1
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/BF00198464
https://doi.org/10.1090/S0025-5718-1994-1192970-7
https://doi.org/10.1090/S0025-5718-1994-1192970-7
https://doi.org/10.1007/978-3-030-92062-3_3
https://doi.org/10.1007/978-3-030-92062-3_3
https://hal.univ-lorraine.fr/tel-03335360
https://doi.org/10.1007/978-3-319-56620-7_8
https://doi.org/10.1007/978-3-319-56620-7_8
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;ae418648.1608
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;ae418648.1608
https://inria.hal.science/hal-01568373
https://doi.org/10.1090/tran/7027
https://doi.org/10.1090/tran/7027
https://doi.org/10.1007/978-3-319-69453-5_30

28 Discrete Logarithm Factory

[Gor93] Daniel M. Gordon. Discrete logarithms in GF(P) using the number field sieve.
SIAM J. Discret. Math., 6(1):124–138, 1993. doi:10.1137/0406010.

[Gré17] Laurent Grémy. Computations of discrete logarithms sorted by date, 2017.
https://dldb.loria.fr/.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016. doi:
10.1007/978-3-662-49896-5_11.

[GS19] Aurore Guillevic and Shashank Singh. On the alpha value of polynomials in
the tower number field sieve algorithm. Cryptology ePrint Archive, Report
2019/885, 2019. https://eprint.iacr.org/2019/885.

[GS21] Aurore Guillevic and Shashank Singh. On the alpha value of polynomials in
the Tower Number Field Sieve algorithm. Mathematical Cryptology, 1(1):1–39,
2021. URL: https://journals.flvc.org/mathcryptology/article/view/
125142.

[Gui19] Aurore Guillevic. Faster individual discrete logarithms in finite fields of
composite extension degree. Mathematics of Computation, 88(317):1273–1301,
January 2019. doi:10.1090/mcom/3376.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. Cryptology ePrint Archive, Report 2019/953, 2019. https:
//eprint.iacr.org/2019/953.

[HAKT14] Kenichiro Hayasaka, Kazumaro Aoki, Tetsutaro Kobayashi, and Tsuyoshi
Takagi. An experiment of number field sieve for discrete logarithm problem
over GF(pn). JSIAM Letters, 6:53–56, 2014. doi:10.14495/jsiaml.6.53.

[JLSV06] Antoine Joux, Reynald Lercier, Nigel Smart, and Frederik Vercauteren. The
number field sieve in the medium prime case. In Cynthia Dwork, editor,
CRYPTO 2006, volume 4117 of LNCS, pages 326–344. Springer, Heidelberg,
August 2006. doi:10.1007/11818175_19.

[JP14] Antoine Joux and Cécile Pierrot. The special number field sieve in Fpn -
application to pairing-friendly constructions. In Zhenfu Cao and Fangguo
Zhang, editors, PAIRING 2013, volume 8365 of LNCS, pages 45–61. Springer,
Heidelberg, November 2014. doi:10.1007/978-3-319-04873-4_3.

[KB16] Taechan Kim and Razvan Barbulescu. Extended tower number field sieve: A
new complexity for the medium prime case. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 543–571.
Springer, Heidelberg, August 2016. doi:10.1007/978-3-662-53018-4_20.

[KBL14] Thorsten Kleinjung, Joppe W. Bos, and Arjen K. Lenstra. Mersenne factoriza-
tion factory. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part I, volume 8873 of LNCS, pages 358–377. Springer, Heidelberg, December
2014. doi:10.1007/978-3-662-45611-8_19.

[KJ17] Taechan Kim and Jinhyuck Jeong. Extended tower number field sieve with
application to finite fields of arbitrary composite extension degree. In Serge
Fehr, editor, PKC 2017, Part I, volume 10174 of LNCS, pages 388–408.
Springer, Heidelberg, March 2017. doi:10.1007/978-3-662-54365-8_16.

https://doi.org/10.1137/0406010
https://dldb.loria.fr/
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://eprint.iacr.org/2019/885
https://journals.flvc.org/mathcryptology/article/view/125142
https://journals.flvc.org/mathcryptology/article/view/125142
https://doi.org/10.1090/mcom/3376
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://doi.org/10.14495/jsiaml.6.53
https://doi.org/10.1007/11818175_19
https://doi.org/10.1007/978-3-319-04873-4_3
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-45611-8_19
https://doi.org/10.1007/978-3-662-54365-8_16

Haetham Al Aswad, Emmanuel Thomé, Cécile Pierrot 29

[KW22] Thorsten Kleinjung and Benjamin Wesolowski. Discrete logarithms in quasi-
polynomial time in finite fields of fixed characteristic. Journal of the American
Mathematical Society, 35:581–624, 2022. URL: https://hal.science/hal-0
3347994, doi:10.1090/jams/985.

[LGST21] Aude Le Gluher, Pierre-Jean Spaenlehauer, and Emmanuel Thomé. Refined
analysis of the asymptotic complexity of the number field sieve. Mathematical
Cryptology, 1(1):71–88, 2021. URL: https://journals.flvc.org/mathcryp
tology/article/view/125488.

[LL93] A. K. Lenstra and H. W. Lenstra, Jr., editors. The development of the number
field sieve, volume 1554 of Lecture Notes in Math. Springer–Verlag, 1993.
doi:10.1007/BFb0091534.

[LLMP90] Arjen K. Lenstra, Hendrik W. Lenstra Jr., Mark S. Manasse, and John M.
Pollard. The number field sieve. In 22nd ACM STOC, pages 564–572. ACM
Press, May 1990. doi:10.1145/100216.100295.

[LO77] J. C. Lagarias and A. M. Odlyzko. Effective versions of the Chebotarev
density theorem. In A. Fröhlich, editor, Algebraic Number Fields: L functions
and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), pages
409–464. Academic Press, 1977.

[LV01] Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes.
Journal of Cryptology, 14(4):255–293, September 2001. doi:10.1007/s00145
-001-0009-4.

[Mat03] Dimitry Matyukhin. On asymptotic complexity of computing discrete loga-
rithms over GF(p). Discrete Mathematics and Applications, 13:27–50, 2003.
doi:10.1515/156939203321669546.

[Mil20] James S. Milne. Algebraic number theory (v3.08), 2020. URL: https:
//www.jmilne.org/math/.

[Pie15] Cécile Pierrot. The multiple number field sieve with conjugation and general-
ized Joux-Lercier methods. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 156–170. Springer,
Heidelberg, April 2015. doi:10.1007/978-3-662-46800-5_7.

[Pol93] John M. Pollard. The lattice sieve. In Lenstra and Lenstra, Jr. [LL93], pages
43–49. doi:doi.org/10.1007/BFb0091538.

[Rob22] Oisín Robinson. An implementation of the extended tower number field sieve
using 4d sieving in a box and a record computation in Fp4 . arXiv preprint
2212.04999, 2022. doi:10.48550/arXiv.2212.04999.

[SS16a] Palash Sarkar and Shashank Singh. A general polynomial selection method
and new asymptotic complexities for the tower number field sieve algorithm.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I,
volume 10031 of LNCS, pages 37–62. Springer, Heidelberg, December 2016.
doi:10.1007/978-3-662-53887-6_2.

[SS16b] Palash Sarkar and Shashank Singh. New complexity trade-offs for the (multiple)
number field sieve algorithm in non-prime fields. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS,
pages 429–458. Springer, Heidelberg, May 2016. doi:10.1007/978-3-662-4
9890-3_17.

https://hal.science/hal-03347994
https://hal.science/hal-03347994
https://doi.org/10.1090/jams/985
https://journals.flvc.org/mathcryptology/article/view/125488
https://journals.flvc.org/mathcryptology/article/view/125488
https://doi.org/10.1007/BFb0091534
https://doi.org/10.1145/100216.100295
https://doi.org/10.1007/s00145-001-0009-4
https://doi.org/10.1007/s00145-001-0009-4
https://doi.org/10.1515/156939203321669546
https://www.jmilne.org/math/
https://www.jmilne.org/math/
https://doi.org/10.1007/978-3-662-46800-5_7
https://doi.org/doi.org/10.1007/BFb0091538
https://doi.org/10.48550/arXiv.2212.04999
https://doi.org/10.1007/978-3-662-53887-6_2
https://doi.org/10.1007/978-3-662-49890-3_17
https://doi.org/10.1007/978-3-662-49890-3_17

30 Discrete Logarithm Factory

[SS19] Palash Sarkar and Shashank Singh. A unified polynomial selection method
for the (tower) number field sieve algorithm. Advances in Mathematics of
Communications, 13(3):435–455, 2019. doi:10.3934/amc.2019028.

[TCG19] The Trusted Computing Group. Trusted Platform Module, 2019. Latest version
Nov. 2019. https://trustedcomputinggroup.org/resource/tpm-library
-specification/.

A Proofs of Theorem 1 and Theorem 2
A.1 The boundary case α = 2/3 in Theorem 1
We are here in the regime where Q1/n = L(1/3, cp) for some cp.

A.1.1 The boundary case with GJL (case 2a).

The asymptotic analysis in the large characteristic case applies as soon as the parameter d =
1/γ (log(Q)/ log(log(Q)))1/3 is larger than or equal to n = 1/cp (log(Q)/ log(log(Q)))1−α,
which is equivalent to cp ≥ γ since 1 − α = 1/3. For this range of finite fields, we get
exactly the same asymptotic complexities as in the large characteristic case.
Remark 4. Unlike the Conjugation case that benefits from increasing the sieve dimension
t, analysis shows that such a strategy does not pay off with GJL.

A.1.2 The boundary case with Conjugation (case 2b).

The polynomials output by the Conjugation method have degrees 2n and n, and coef-
ficient sizes as in Table 6. Let t ∈ Z be the sieve dimension. The norms of the sieve
elements are N0 = Õ

(
A(2n)/t

)
= LQ (2/3, 2cA/(cpt)) and N∗ = Õ

(
An/tQ(t−1)/(2n)) =

LQ (2/3, cA/(cpt) + (t − 1)cp/2). The solution of the system that minimizes Constraint (5)
while verifying Conditions (6) and (7) as function of cp and t is c the largest real solution
of equation:

18cptX3 − 24X2 − 3c2
pt(t − 1)X + 2cp(t − 1) = 0 (10)

and cA = 6cptc2/(3cptc − 2). The asymptotic complexity of the one-off (resp. per-field)
step is LQ(1/3, cA) (resp. LQ(1/3, 2c)).

We want to know how much leeway we have in the choice of pi. The size of pi only
affects N∗. If we change the asymptotic expression of pi to pn

i ≤ Q1+o(1) (instead of
pn

i ≈ Q), then N∗ merely increases to Õ
(
An/tQ(t−1)/(2n)po(1)). Since, po(1) is negligible

compared to any function in LQ(2/3), the asymptotic results above are unchanged. (A
similar observation applies to the other cases as well.)

A.2 The medium characteristic case 1/3 < α < 2/3 in Theorem 1
A.2.1 NFS Factory (case 3a).

Let t = δn (log(Q)/ log(log(Q)))−1/3+o(1) be the sieve dimension, for a positive constant
δ. As Q tends to infinity, t also tends to infinity, so that the constraint that t ∈ Z is
absorbed by the o(1) in the exponent. The coefficients of the sieve elements are bounded
by A1/t. Their norms can be expressed as N0 = Õ

(
A(2n)/t

)
= LQ (2/3, 2cA/δ) and

N∗ = Õ
(
An/tQ(t−1)/(2n)) = LQ (2/3, cA/δ + δ/2). If we inject these expressions of cN0

and cN∗ in system given by Constraint (5) and Conditions (6), and (7), we obtain

c =
(

1 +
√

2
3

)2/3

≈ 0.87, δ = 2
√

2
c

≈ 2.63, cA = 2c
√

2 ≈ 2.45,

https://doi.org/10.3934/amc.2019028
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/

Haetham Al Aswad, Emmanuel Thomé, Cécile Pierrot 31

from which the claimed results follow.

A.2.2 TNFS Factory (case 3b).

We only consider the case where η and κ are coprime. The general case is similar. Let
κ = 1/cκ(log(Q)/ log log(Q)))1/3+o(1) with cκ a constant. As Q tends to infinity, κ also
tends to infinity, so that the constraint that κ is an integer divisor of n can be absorbed
by the o(1) in the exponent, provided of course that the input is such that n has such
a factor. The sieve is done over elements of the form a(ι)X − b(ι) ∈ OKh

[X] with a(ι)
and b(ι) in Z[ι] of degree at most η − 1. According to the norm bounds of §2.3 (with
degx ϕ = 1 and degy ϕ = η − 1), we have Ni(ϕ) = Õ(∥ϕ∥η deg(fi)

∞ ∥fi∥η
∞∥h∥(η−1) deg(fi)

∞) for
all i ≥ 0. More precisely, since ∥ϕ∥∞ ≤ A1/(2η), we get N0 = Õ(Aκ) = LQ(2/3, cA/cκ)
and N∗ = Õ(Aκ/2Q1/(2κ)) = LQ(2/3, cA/(2cκ) + cκ/2). These expressions of cN0 and cN∗

yield the following optimum:

c = 1
2

(
2 + 2

√
2

9

) 2
3

≈ 0.69, cκ = 2
√

c ≈ 1.66, cA = 2c
√

2 ≈ 1.94.

A.3 The large characteristic case in Theorem 2 (case 1a)
We consider the polynomials of the first approach of Joux–Pierrot, as in §3.3. Hence
N0 = Õ(An/tQ(t−1)/(nλ)) and N∗ = Õ(Aλn/t log(n)λ(t−1)). Let

λ = 1/(cλn)(log(Q)/ log log(Q))1/3

with cλ a constant. The norm of the sieve elements are N0 = LQ(2/3, cλ) and N∗ =
LQ(2/3, cA/(2cλ)), since log(n)λ is negligible compared to LQ(αp − 2/3), and αp − 2/3 ≤
1/3 < 2/3. From Condition (7) we get cA = 2c + cλ/(3c). Substituting cA in Condition (6),
we get cλ ≥ 6c2/(18c3 − 1). For a given value c, it is best to choose the smallest possible
value of cλ in order to minimize cA, hence cλ is set to cλ = 6c2/(18c3 − 1). Moreover, c
can be chosen close to zero. In return, cA grows to infinity as c tends to zero. We choose c
to minimize cA, and get

c =
(

1
3

)1/3
≈ 0.69, cλ =

(
8
9

)1/3
≈ 0.96, cA = 2

(
8
9

)2/3
≈ 1.85.

A.4 The medium characteristic case 1/3 < α < 2/3 in Theorem 2
A.4.1 SNFS Factory (case 2a).

The polynomials are chosen with the second approach of the Joux–Pierrot method of
§3.3. Hence N0 = Õ(Aλn/t log(n)λ(t−1)) and N∗ = Õ(An/tQ(t−1)/(nλ)). We set t =
δn(log(Q)/ log log(Q))−1/3+o(1). The norm of the sieve elements are N0 = LQ(2/3, λcA/δ),
since log(n)λ(t−1) is negligible compared to LQ(2/3), and N∗ = LQ(2/3, cA/δ + δ/λ). A
solution of the system is:

c ≥ c̃ =
(

λ + 4 + 2
√

2λ + 4
9λ

)1/3

, (11)

cA = 6c2δ

3cδ − λ
,

δ = λ(9c3 + 1) +
√

−27λc3 + λ2(81c6 − 18c3 + 1)
6c

.

32 Discrete Logarithm Factory

When λ ∈ {2, 3}, we set c = c̃. However, when λ ∈ {4, 5}, only the relation collection and
linear algebra steps of the per-field step can reach complexity LQ(1/3, c̃). As we show in
Appendix B, the individual logarithm step is unfortunately more expensive, and we need
to take c somewhat larger than c̃ in order to keep the individual logarithm step negligible.
Table 8 shows the values taken for c for various values of λ. The complexity of the one-off
step is LQ(1/3, cA), and the complexity of the per-field step is LQ(1/3, 2c).

A.4.2 STNFS Factory (case 2b).

The Special Tower variant targets medium characteristic finite fields of sparse characteristic
p, and composite extension degree n = κη. Let κ = 1/cκ(log(Q)/ log log(Q))1/3+o(1) for
some constant cκ to be determined. Consider pi = P (u), where P is a polynomial of
degree λ with small coefficients, and u ≈ Q1/(λn) an integer. Again we assume that κ and
η are coprime. The polynomials are chosen with the second approach of the Joux–Pierrot
method as in §3.3. The bound of §2.3 gives N0 = Õ(Aλκ/2 log(κ)λ) = LQ(2/3, λcA/(2cκ))
and N∗ = Õ(Aκ/2Q1/(λκ)) = LQ(2/3, cA/(2cκ) + cκ/λ). The solution of the system related
to Equations (5), (6), and (7) is

c ≥ c̃ =
(

λ + 4 + 2
√

2λ + 4
18λ

)1/3

, (12)

cA = 12c2cκ

6ccκ − λ
,

cκ = λ(18c3 + 1) +
√

−144λc3 + λ2(324c6 − 36c3 + 1)
12c

.

When λ = 2, we set c = c̃. However, when λ ≥ 3, the situation is similar to SNFS
Factory, and we need to take c larger than c̃ in order to keep the individual logarithm step
negligible (see Appendix B). Table 9 shows the values taken for c for various values of λ.
The complexity of the one-off step is LQ(1/3, cA), and the complexity of the per-field step
is LQ(1/3, 2c).

B Complexity of the Individual Logarithm step
The individual logarithm step is the last one in NFS and its variants, and also the last
one inside the per-field phase in Factory, coupled or not with other variants. We prove in
this Appendix that the complexity of the individual logarithm step is negligible compared
to the rest of the per-field step for all the variants we studied. Hence, the complexities
given in Table 3 are indeed the complete asymptotic complexities of the per-field step. The
individual logarithm step consists of two main steps: the smoothing and the descent step.

B.1 Smoothing step
The smoothing step consists in reducing the computation of the discrete logarithm of the
target to the discrete logarithm of another element that is B̃-smooth once lifted to one
of the number fields, where B̃ = LQ(2/3, c

B̃
) > B. The smoothing step was improved

for finite fields of composite extension degree in [Gui19, AAP23]. The following lemma
recapitulates the complexity of the smoothing step for all Factory variants. This result
implies that the smoothing step is negligible compared to the complexity of the per-field,
for all Factory variants.

Lemma 1. In all NFS Factory variants, the running time of the smoothing step in Fpn

to output an element B̃-smooth is Lpn(1/3, C = 31/3(23/27)2/3), where B̃ = Lpn(2/3, c
B̃

)
with c

B̃
= (1/3)1/3(27/23)2/3. The approximated values are: C ≈ 1.30, and c

B̃
≈ 0.77.

Haetham Al Aswad, Emmanuel Thomé, Cécile Pierrot 33

Proof. The lemma is a direct consequence of Corollary 6.4 and Corollary 6.5 in [Gui19],
where substituting e and d by 1 is valid for all our Factory variants.

B.2 Descent step
This paragraph is inspired from [Bar13], where the descent step is presented for NFS
Factory in prime finite fields. We adapt the idea to other characteristic sizes and to the
different variants coupled with Factory.

After the smoothing step, the target is B̃-smooth with B̃ = LQ(2/3, c
B̃

) > B, where
c

B̃
is as in Lemma 1. Thanks to the previous steps, we know the virtual logarithms of the

prime ideals in OK0 that are both factors of the target and of norm below B. It remains
to compute the virtual logarithms of those of norm between B and B̃. Let q be such a
prime ideal, of degree one and norm q. Define the special-q lattice Lq of dimension 2η
over Z, and of determinant q, that corresponds to the elements (a(ι), b(ι)) such that the
ideal (a(ι) − b(ι)α0) is divisible by q. Using the LLL algorithm, compute (u0, . . . , u2η−1)
a basis of Lq where ∥ui∥∞ = Õ(p1/(2η)) for i = 0, . . . , 2η − 1. Let ξ ∈ (0, 1) a positive
real number, to be determined later. The first step of the descent step consists in finding
(a(ι), b(ι)) ∈ Lq such that :

N0 (b(ι) − a(ι)α0)
q

is qξ-smooth

and Ni (b(ι) − a(ι)α1) is qξ-smooth.

This permits to express the virtual logarithm of q as a linear combination of virtual
logarithms of prime ideals of norm smaller than qξ. To recover the virtual logarithm of q,
it is sufficient to repeat the process on each of the ideals in the linear combination until
they are all in the factor basis.

We start by proving that the first step of the descent, i.e., finding (a(ι), b(ι)) as above,
is the dominant step of the descent in terms of complexity. To descend the ideal q to
the factor basis, we construct a tree where the root is q and the leaves are ideals in
the factor basis. Each ideal that descends due to a pair (a(ι), b(ι)) introduces at most
log2(N0(b(ι)−a(ι)α0)+log2(Ni(b(ι)−a(ι)α1) new nodes. By Corollary 6.4 in [Gui19], both
norms are smaller than Q. Hence, the arity of the tree is less than 2 log2 Q, and its depth is
smaller than the smallest integer k such that ξk log B̃ ≤ log B. Hence, k = O((log log Q)).
The number of nodes in the tree is less than (2 log2(Q))k = exp(O(log log(Q)2)). Denote
C the complexity of the first descent of q. We prove in the following paragraph that
C = LQ(1/3). Hence, the complexity of descending q to the factor basis is dominated by
exp(O(log log(Q)2)) · C = C. This process is applied on all the prime factors of the target
that are not in the factor basis, their number is in O(log Q). In short, the complexity
of the descent step is the complexity of descending q, that is the complexity of finding
(a(ι), b(ι)) as described above.

B.2.1 Complexity of the descent step for NFS Factory and its variants.

For µ = (µ0, . . . , µ2η−1) of infinity norm S, we look for “good” (a(ι), b(ι)) of the form
µ0u0+. . . µ2η−1u2η−1, either by sieving or ECM tests. Hence, ∥(a(ι), b(ι))∥∞ = Õ(Sq1/(2η)).
We take S2η := LQ(1/3, s) for a positive s to be chosen. From the bound in §2.3, we
get Ni(a(ι) − b(ι)αi) = Õ((S2η)deg(fi)/2∥fi∥η

∞qdeg(fi)/2), for i = 0, 1. We assume the two
following usual heuristics. The probability of each of the norms being qξ-smooth is the
same as for a random integer of the same size, and the qξ-smoothness probability of both
norms are independent. Under these assumptions, the probability that both norms are
qξ-smooth is greater than the probability of a random integer of size the product of the

34 Discrete Logarithm Factory

norms being qξ-smooth. Besides, the product of the norms divided by q is of size

N = Õ
(

(S2η)(deg(f)+deg(f1))/2∥f∥η
∞∥f1∥η

∞q(deg(f)+deg(f1))/2−1
)

.

Denote q = LQ(αq, cq), where 1/3 ≤ αq ≤ 2/3, with cq > c if αq = 1/3, and cq < c
B̃

if
αq = 2/3, since B < q < B̃. Hence, qξ = LQ(αq, ξcq). The complexity of a qξ-smoothness
test by ECM is LQ(αq/2, (2αqξcq)1/2). It is negligible compared to LQ(1/3) whenever
αq < 2/3, and is equal to LQ(1/3, (4ξcq/3)1/2) if αq = 2/3.

Large characteristic descent step for Factory. Plugging the properties of the GJL
polynomials, with η = 1, we get

N = Õ((S2)(2d+1)/2Q1/(d+1)q(2d+1)/2−1.

Hence, N = LQ(2/3, s/γ + γ + cq/γ) if αq = 1/3, and N = LQ(αq + 1/3, cq/γ) if αq > 1/3.
The asymptotic complexity of the descent step is the inverse of the probability of N being
qξ-smooth (see §2.3) times the cost of ECM. Thus this complexity is:

LQ

(
1
3 ,

s

3γξcq
+ γ

3ξcq
+ 1

3ξγ

)
if αq = 1

3 ,

LQ

(
1
3 ,

1
3ξγ

)
if 1

3 < αq < 2
3 ,

LQ

(
1
3 ,

1
3ξγ

+
√

4ξcq

3

)
if αq = 2

3 .

When q is small, i.e., αq = 1/3, the complexity of the descent grows as qξ decreases, it
is maximal when ξcq = c. Furthermore, the space of search of (a, b) has to be equal to
the inverse of the probability of N being qξ-smooth, which translates into s = s/(3γξc) +
γ/(3ξc) + 1/(3ξγ) after equalizing ξcq and c. Thus, s = (γ2ξ + c)/((3cγ − 1)ξ). Taking for
instance ξ = 0.999, we get the complexity of the descent in approximately LQ(1/3, 1.19),
which is negligible compared to the smoothing step. The complexity of the descent when
αq is between 1/3 and 2/3 is upper bounded by the complexity when q is of large size,
i.e., αq = 2/3. In this last case, the complexity grows as q grows, it is maximal when
cq = c

B̃
. Hence, the complexity is upper bounded by LQ(1/3, 1/(3ξγ) + (4c

B̃
ξ/3)1/2).

By minimizing the last quantity in ξ, we get ξ = 1/(3c
B̃

γ2)1/3. In short, the complexity
of descending q is approximately LQ(1.3, 1.28), which is also negligible compared to the
smoothing step. In conclusion, the complexity of the descent step in NFS Factory for large
characteristic finite fields is negligible compared to the complexity of the smoothing step.

The analysis giving the best parameter choices for the other variants follows the same
idea. We omit the optimization details. Table 11 recapitulates the asymptotic complexities
for the individual logarithm step in all the variants.

Boundary case descent step for Factory. We target finite fields Fpn
i

where pi ≈
Q1/n = LQ(2/3, cp), with cp a positive constant. When the polynomial selection method
used is GJL, the complexity analysis of the descent step is the same as for NFS Factory in
large characteristic. It is negligible compared to the smoothing step.

When using Conjugation, instead of looking for a “good” (a, b) in Lq, we look for a
“good” vector of dimension t̃, where t̃ is a positive integer greater than or equal to two.
Hence, η = 1, the dimension of Lq is t̃ and its determinant is q. We need to adapt the
formula given for N at the beginning of this Appendix and use instead the formula at the

Haetham Al Aswad, Emmanuel Thomé, Cécile Pierrot 35

Table 11: Asymptotic complexities of the individual logarithm step and the per-field
step in NFS Factory and its variants. This table recaps approximations of c when the
complexities are expressed as LQ(1/3, c).

Algorithm Characteristic Smoothing Descent computation per field
Large 1.30 1.28 1.64

NFS Factory Boundary case Figure 12
Medium 1.30 1.43 1.73

TNFS Factory Medium 1.30 1.28 1.37
SNFS Large 1.30 1.06 1.39

Medium Table 13
STNFS Factory Medium Table 14

beginning of §2.3 with the properties of the polynomials output by Conjugation. In short,
taking S t̃ = LQ(1/3, s), we get

N = Õ((S t̃)3n/t̃Q(t̃−1)/(2n)q3n/t̃−1).

Hence N = LQ(2/3, 3s/(t̃cp) + (t̃ − 1)cp/2 + 3cq/(t̃cp)) if αq = 1/3, and N = LQ(αq +
1/3, 3cq/(t̃cp)) if αq > 1/3. The complexity of the descent step is then:

LQ

(
1
3 ,

s

ξcqcpt̃
+ (t̃ − 1)cp

6ξcq
+ 1

ξt̃cp

)
if αq = 1

3 ,

LQ

(
1
3 ,

1
ξt̃cp

)
if 1

3 < αq < 2
3 ,

LQ

(
1
3 ,

1
ξt̃cp

+
√

4ξcq

3

)
if αq = 2

3 .

Figure 12 plots the asymptotic complexities of different parts of Factory: the smoothing
step, the descent step for both small and large q, and the computation in each step. We
see that both the descent step and the smoothing step are negligible with regard to the
computation per field.

Medium characteristic descent step for Factory. Here the analysis is quite close
from the one at the boundary case for Conjugation. Again, we look for a “good” vector of
dimension t̃, where t̃ is taken equal to δ̃n(log(Q)/ log log(Q))−1/3+o(1). Hence, η = 1, the
dimension of Lq is t̃ and its determinant is q. Taking S t̃ = LQ(1/3, s), we get

N = Õ((S t̃)3n/t̃Q(t̃−1)/(2n)q3n/t̃−1).

Hence we can write the norm N = LQ(2/3, 3s/δ̃ + δ̃/2 + 3cq/δ̃) if αq = 1/3, and N =
LQ(αq + 1/3, 3cq/δ̃) if αq > 1/3. The asymptotic complexity of the descent step depends
on the size of q, it is:

LQ

(
1
3 ,

s

ξcq δ̃
+ δ̃

6ξcq
+ 1

ξδ̃

)
if αq = 1

3 ,

LQ

(
1
3 ,

1
ξδ̃

)
if 1

3 < αq < 2
3 ,

LQ

(
1
3 ,

1
ξδ̃

+
√

4ξcq

3

)
if αq = 2

3 .

36 Discrete Logarithm Factory

Fig. 12: Asymptotic complexities of some steps inside NFS Factory at the boundary case.
Target finite fields have characteristic p such that p = Lpn(2/3, cp). This graph shows how
c varies as a function of cp when the complexities are expressed as Lpn(1/3, c).

The hardest q to descend is the one of small size with a complexity in approximately
LQ(1/3, 1.43). The descent step has a complexity that is dominant compared to the
smoothness step, but negligible compared to the per-field step.

Medium characteristic descent step for TNFS Factory. We consider Conjugation
for the polynomial selection. We get

N = Õ((S2η)3κ/2Q1/(2κ)q3κ/2−1).

Hence, N = LQ(2/3, 3s/(2cκ) + cκ/2 + 3cq/(2cκ)) if αq = 1/3 and N = LQ(2/3, 3cq/(2cκ))
if αq > 1/3. The complexity of the descent step is:

LQ

(
1
3 ,

s

2ξcqcκ
+ cκ

6ξcq
+ 1

2ξcκ

)
if αq = 1

3 ,

LQ

(
1
3 ,

1
2ξcκ

)
if 1

3 < αq < 2
3 ,

LQ

(
1
3 ,

1
2ξcκ

+
√

4ξcq

3

)
if αq = 2

3 .

The hardest q to descend is the one of large size with a complexity in approximately
LQ(1/3, 1.28), which is negligible compared to the complexity of the smoothness step.

Large characteristic descent step for SNFS Factory. Plugging the properties of
the polynomials given by the Joux–Pierrot polynomial selection, we get the norm

N = Õ((S2)n(λ+1)/2Q1/(λn)qn(λ+1)/2−1).

Haetham Al Aswad, Emmanuel Thomé, Cécile Pierrot 37

Table 13: Asymptotic complexities for different part of medium characteristic SNFS
Factory. These complexities are expressed as LQ(1/3, c) and only an approximation of c is
given. The individual logarithm phase, that consists of the smoothing step and the descent
step, is always negligible with regard to the other steps in the computation per field.

λ Smoothing Descent computation per field
λ = 2 1.43 1.30 1.73
λ = 3 1.46 1.30 1.58
λ = 4 1.33 1.30 1.64
λ = 5 1.36 1.30 1.57

Hence, N = LQ(2/3, s/(2cλ) + cλ + cq/(2λ)) if αq = 1/3, and N = LQ(αq + 1/3, cq/(2λ))
if αq > 1/3. The complexity of the descent step is:

LQ

(
1
3 ,

s

6ξcqcλ
+ cλ

3ξcq
+ 1

6ξcλ

)
if αq = 1

3 ,

LQ

(
1
3 ,

1
6ξcλ

)
if 1

3 < αq < 2
3 ,

LQ

(
1
3 ,

1
6ξcλ

+
√

4ξcq

3

)
if αq = 2

3 .

The hardest q to descend is the one of large size with a complexity in approximately
LQ(1/3, 1.06), which is negligible compared to the complexity of the smoothness step.

Medium characteristic descent step for SNFS Factory. We look for a “good”
vector of dimension t̃, where t̃ is taken equal to δ̃n(log(Q)/ log log(Q))−1/3+o(1). Therefore,
η = 1, the dimension of Lq is t̃ and its determinant is q. We use the formula for N of
§2.3, with the properties of the polynomials output by the Joux–Pierrot method. Writing
S t̃ = LQ(1/3, s), we obtain

N = Õ((S t̃)n(λ+1)/t̃Q(t̃−1)/(λn)qn(λ+1)/t̃−1).

Hence, N = LQ(2/3, s(λ + 1)/δ̃ + δ̃/λ + (λ + 1)cq/δ̃) if αq = 1/3, and N = LQ(αq +
1/3, (λ + 1)cq/δ̃) if αq > 1/3. The complexity of the descent step is:

LQ

(
1
3 ,

s(λ + 1)
3ξcq δ̃

+ δ̃

3ξcqλ
+ λ + 1

3ξδ̃

)
if αq = 1

3 ,

LQ

(
1
3 ,

λ + 1
3ξδ̃

)
if 1

3 < αq < 2
3 ,

LQ

(
1
3 ,

λ + 1
3ξδ̃

+
√

4ξcq

3

)
if αq = 2

3 .

As previously, the hardest q to descend is the one of large size. Table 13 presents
approximate values of the complexity for various values of λ. The complexity of the descent
step is always dominant compared to the smoothing step, but still negligible compared to
the per-field step.

Medium characteristic descent step for STNFS Factory. With Joux–Pierrot
selection and the usual notations, we get

N = Õ((S2η)κ(λ+1)/2Q1/(λκ)qκ(λ+1)/2−1).

38 Discrete Logarithm Factory

Table 14: Asymptotic complexities for different part of medium characteristic STNFS
Factory. These complexities are expressed as LQ(1/3, c) and only an approximation of c is
given. The dominant step is indicated in bold.

λ Descent Smoothing computation per field
λ = 2 1.26 1.30 1.37
λ = 3 1.04 1.30 1.38
λ = 4 1.06 1.30 1.30
λ = 5 1.08 1.30 1.31

Hence, N = LQ(2/3, (λ + 1)s/(2cκ) + cκ/λ + (λ + 1)cq/(2cκ)) if αq = 1/3, and N =
LQ(αq + 1/3, (λ + 1)cq/(2cκ)) if αq > 1/3. The complexity of the descent step depends on
λ, it is:

LQ

(
1
3 ,

s(λ + 1)
6ξcqcκ

+ cκ

3ξcqλ
+ λ + 1

6ξcκ

)
if αq = 1

3 ,

LQ

(
1
3 ,

λ + 1
6ξcκ

)
if 1

3 < αq < 2
3 ,

LQ

(
1
3 ,

λ + 1
6ξcκ

+
√

4ξcq

3

)
if αq = 2

3 .

The hardest q to descend is the one of large size. Table 14 presents approximate values of
the complexity for different small values of λ. We see that the asymptotic complexity of
both the descent step is negligible compared to the complexity of the smoothing step. Note
that both the smoothing and the descent are negligible with regard to the computation in
each field when λ is lower of equal to 4, but when λ = 5 the smoothing step starts to be
dominant.

	Introduction
	Background
	The (Tower) Number Field Sieve
	Other variants of NFS
	Smoothness probability

	Discrete logarithm Factory
	Common Setting
	A baseline: Factory algorithm for prime fields
	Factory for non prime finite fields: polynomial selection
	Fantastic primes and how many are there?
	Two constructions for 500 and 600-bit target finite fields

	Asymptotic analysis
	NFS Factory and TNFS Factory
	SNFS Factory and STNFS Factory
	Conclusion of the asymptotic analysis

	Estimation of practical cost
	NFS Factory
	TNFS Factory

	Conclusion
	References
	Proofs of Theorem 1 and Theorem 2
	The boundary case α=2/3 in Theorem 1
	The medium characteristic case 1/3<α<2/3 in Theorem 2
	The large characteristic case in Theorem 2 (case 1a)
	The medium characteristic case 1/3<α<2/3 in Theorem 2

	Complexity of the Individual Logarithm step
	Smoothing step
	Descent step

