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Abstract.
The Module Learning With Errors (MLWE)-based Key Encapsulation Mechanism
(KEM) Kyber is NIST’s new standard scheme for post-quantum encryption. As
a building block, Kyber uses a Chosen Plaintext Attack (CPA)-secure Public Key
Encryption (PKE) scheme, referred to as Kyber.CPAPKE. In this paper we study
the robustness of Kyber.CPAPKE against key mismatch attacks.
We demonstrate that Kyber’s security levels can be compromised if having access
to a few mismatch queries of Kyber.CPAPKE, by striking a balance between the
parallelization level and the cost of lattice reduction for post-processing. This
highlights the imperative need to strictly prohibit key reuse in Kyber.CPAPKE.
We further propose an adaptive method to enhance parallel mismatch attacks, ini-
tially proposed by Shao et al. at AsiaCCS 2024, thereby significantly reducing
query complexity. This method combines the adaptive attack with post-processing
via lattice reduction to retrieve the final secret key entries. Our method proves
its efficacy by reducing query complexity by 14.6 % for Kyber512 and 7.5 % for
Kyber768/Kyber1024.
Furthermore, this approach has the potential to improve multi-value Plaintext-
Checking (PC) oracle-based side-channel attacks and fault-injection attacks against
Kyber itself.
Keywords: Lattice-based cryptography · Mismatch attacks · Kyber · Post-quantum
standardization · KEM.

1 Introduction
The rapid development of quantum computing has significantly heightened the urgency to
evolve cryptographic standards that can withstand new quantum threats. Recognizing this,
the National Institute of Standards and Technology (NIST) initiated a standardization
process in 2016 to foster the development of post-quantum cryptography (PQC). Among
the various branches of PQC, lattice-based cryptography [AD97, Reg05] stands out for
its efficiency and strong provable security. This branch has led to the selection of the
Module Learning With Errors (MLWE)-based Key Encapsulation Mechanism (KEM)
Kyber [SAB+20] for standardization, highlighting its prominence in the field. NIST’s stan-
dardized version of the scheme is now known as Module-Lattice-based Key-Encapsulation
Mechanism Standard (ML-KEM) [Nat23].
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The majority of post-quantum KEMs that are resistant to chosen-ciphertext attacks
(CCA) originate from public key encryption (PKE) schemes that are secure against chosen-
plaintext attacks (CPA). These schemes are subsequently enhanced to achieve CCA security
through transformations such as the Fujisaki-Okamoto (FO) method [FO99]. A growing
trend (e.g., [HDV22, JMZ23, DGK24, ZJZ24]) in post-quantum KEM research involves
adopting CPA-secure schemes without the FO transformation for ephemeral-key settings,
tailored for protocols such as TLS 1.3, to enhance efficiency. However, before these schemes
are practically deployed, it is crucial to conduct comprehensive security assessments.

A particularly relevant attack type to the CPA-secure KEMs without CCA security is
keypair-reuse attacks. In 2016, Fluhrer initiated key-reuse attacks against lattice-based
encryption [Flu16]. Later, Ding, Fluhrer, and Saraswathy extended these attacks to
lattice-based key exchange and introduced the concept of a key mismatch attack [DFR18].
In a key mismatch attack, one communicating party’s public key is reused. An adversary
impersonates the other party, sends maliciously formed responses and recovers the secret
key bit by bit, by repeatedly verifying if the two derived shared keys match. This type
of attack can be applied to many lattice-based KEMs, with subsequent improvements
in query complexities reported in various studies [BBLP18, BGRR19, BDH+19, QCD19,
OWT20, GMR20, HV20, QCZ+21, GM23].

Inspired by a recent work on a multi-positional key mismatch attack [GM23] and
recent developments in multi-value PC (Plaintext-Checking) oracle based side-channel
attacks [TUX+23, RRD+23], Shao et al. developed techniques for conducting mismatch
attacks against multiple key coefficients in parallel [SLZ24], significantly reducing the
required number of queries by recovering a bit of information about multiple coefficients
at once, in a single query.

The investigation of security regarding key mismatch attacks is of significant practical
interest, particularly concerning the potential commonality of key-pair reuse. Notably, in
crucial internet protocols such as TLS 1.3, static public keys are used in certain modes,
increasing the likelihood of programming errors that lead to the reuse of ephemeral key
pairs. Furthermore, the results in current research [SLZ24] suggest that a moderate level
of key pair reuse–e.g., fewer than 40 times for Kyber512–might still be acceptable in
post-quantum KEMs, potentially allowing real-world implementations to intentionally
permit some degree of key reuse for efficiency reasons.

This study concentrates on the Kyber.CPAPKE building block of the MLWE-based
KEM Kyber (which as a whole has been chosen by NIST for standardization), to assess its
robustness against key mismatch attacks. We analyze how key reuse of Kyber.CPAPKE
affects the concrete security of Kyber and investigate whether a limited amount of reuse
can be considered secure under practical deployment scenarios.

1.1 Contributions
The primary contributions of this paper are as follows:

1. Firstly, we observe that the level of parallelization p in a parallel key mismatch attack
from [SLZ24] is limited by the adversary’s computational capabilities. Consequently,
allowing substantial computational resources for post-processing – such as lattice
reduction – can improve the performance of the attack. To minimize the required
number of queries, we demonstrate how to balance the parallelization level p with
the cost of using lattice reduction to solve for the remaining parts of the secret.
This balance creates a new curve of query vs. computational complexity, which
we illustrate in Figure 4. Our application of this optimization method shows that
just two mismatch queries of Kyber.CPAPKE can compromise the claimed security
levels of all three versions of Kyber. Importantly, the security of the system declines
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sharply with the onset of more key reuse, highlighting the necessity for its strict
prohibition.

2. Secondly, we introduce a novel methodology that leverages an adaptive approach,
for improving the parallel mismatch attacks of Shao et al. [SLZ24]. This approach
significantly improves query complexity compared to the original work. The im-
provement stems from combining the adaptive attack with post-processing via lattice
reduction to recover the final secret key entries. We demonstrate the effectiveness of
our approach by achieving a 14.6% and 7.5% reduction in query complexity against
the Kyber.CPAPKE of Kyber512 and Kyber768/Kyber1024, respectively. Such
improvement has been verified through an implementation1. One key limitation of
the work of [SLZ24] is the inability to be adapted to all possible parallelization levels
of p. We address this by strategically reserving a few positions within each block
for post-processing. This simple modification allows for efficient attacks with any
chosen parallelization level.

3. Finally, we investigate further applications of our proposed method. In particular, this
method can significantly enhance multi-value PC-oracle-based side-channel attacks
targeting the CCA-secure variant of the Kyber KEM. Additionally, it highlights the
critical impact of fault-injection attacks on CCA-secure Kyber KEM, where a small
number of faults may substantially decrease the complexity required for full key
recovery.

1.2 Organization
The rest of the paper is organized as follows. In Section 2, we present the necessary
background including CPA-secure versions of Kyber, and the model of (parallel) mismatch
attacks. In Section 3, we survey previous mismatch attacks on Kyber. Then we introduce
our new attack methodology in Section 4, including our implementation and cost analysis
of it. This is followed by a discussion on the implications of our findings on side-channel
and fault-injection attacks in Section 5, plus a couple of more suggestions on how to
improve our attack. Finally, we conclude the paper and suggest future research directions
in Section 6.

2 Background
Let us introduce a CPA-secure instantiation of Kyber. Note that in the official documents
of Kyber, the CPA-secure versions are limited to ephemeral keys, but this constraint might
be ignored in practice. To assess their key reuse resilience we create these CPA-secure
instantiations. Our notations and terminology are similar to previous work on mismatch
attacks, such as [QCZ+21].

• We let x||y be the concatenation of two strings x and y.

• Let H(·) be a hash function.

• Let ←$ denote sampling from a distribution.

• The transpose of the matrix A we denote by Atr.

• The central binomial distribution whose output is computed as
∑η

i=1(ai − bi), where
ai and bi are independently and uniformly randomly sampled from {0, 1}, we denote
by Bη.

1Available at https://github.com/AdrianAstrm/Adaptive-and-Parallel-Key-Mismatch-Attack-o
n-Kyber.

https://github.com/AdrianAstrm/Adaptive-and-Parallel-Key-Mismatch-Attack-on-Kyber
https://github.com/AdrianAstrm/Adaptive-and-Parallel-Key-Mismatch-Attack-on-Kyber
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Alice Bob

1. Generate matrix a ∈ Rl×l
q

sA, eA ←$ Bl
η 2. m←$ {0, 1}256

PA ← a ◦ sA + eA Generate matrix a ∈ Rl×l
q

Output: (sA, PA) PA sB ←$ Bl
η, eB ←$ Bl

η′ , e′
B ←$ Bη′

PB ← a ◦ sB + eB

vB ← Ptr
A ◦ sB + e′

B

+ Decompressq(m, 2)

3. uA ← Decompressq(c1, 2dPB ) c1 ← Compressq(PB , 2dPB )

vA ← Decompressq(c2, 2dvB ) PB , c1, c2 c2 ← Compressq(vB , 2dvB )

m′ ← Compressq(vA − str
A ◦ uA, 2) KB ← H(m||(PB , (c1, c2)))

KA ← H(m′||(PB , (c1, c2)))

Figure 1: The CPA-secure version of Kyber.

2.1 CPA-Secure Version of Kyber
Kyber [SAB+20] is the KEM part of CRYSTALS (Cryptographic Suite for Algebraic
Lattices), based on the Module Learning with Errors (MLWE) problem. In the fourth round
NIST selected Kyber as their scheme for PKE/KEM. Just like in the work of [QCZ+21],
we describe a potential instantiation of a CPA-secure version of Kyber KEM in Figure 1
by invoking the functions of Kyber.CPAPKE from [SAB+20].

By Rq we denote the polynomial ring Zq[x]/(xn + 1), for q = 3329 and n = 256. Let ◦
(+ or −) be the corresponding multiplication (addition or subtraction) in the ring. Let
l denote the rank of the module, which is set to be 2, 3, and 4, for the three different
versions, Kyber512, Kyber768 and Kyber1024 respectively. By calling a pseudorandom
function from a public seed Alice and Bob generate a matrix a. Kyber employs two central
binomial distributions Bη and Bη′ , as shown in Figure 1. Kyber512 uses (η, η′) = (3, 2)
and both Kyber768 and Kyber1024 use (η, η′) = (2, 2). Kyber512 and Kyber768 use
(dPB

, dvB
) = (10, 4), while Kyber1024 uses (dPB

, dvB
) = (11, 5). The Compressq(x, p)

function maps x from module q to module p by computing

Compressq(x, p) = ⌈x · p/q⌋ mod +p,

where r′ = r mod +p represents the unique element r′ in the range −p
2 < r′ ≤ p

2 such
that r′ ≡ r (mod p). Its inverse function is defined as

Decompressq(x, p) = ⌈x · q/p⌋.

When applying Compressq(x, p) or Decompressq(x, p) to a vector/polynomial, then we
compute the output coefficient by coefficient.

2.2 The Threat Model – Parallel Mismatch Attacks
This work focuses on the key mismatch threat model against an ephemeral-only KEM,
which reuses the keypair. Alice reuses her keypair (sA, PA). The adversary Eve takes
advantage of this by impersonating Bob to recover Alice’s secret key sA by communicating
with Alice. We build an oracle to simulate the decapsulation of Alice with input including
the pair (PB , c) chosen by Eve and the corresponding shared key KB . We let (c1, c2) be
denoted by c. The oracle O calls Alice’s decapsulation function and obtains the shared
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key KA. It outputs 1 if the shared keys KA and KB match and 0 otherwise. The goal of a
mismatch attack is to recover Alice’s key by selecting the chosen pairs of the form (PB , c)
and iteratively querying the oracle O. In a parallel mismatch attack Eve enumerates
multiple keys KB , learning multiple bits of information about sA by observing which key
matches Alice’s key KA.

3 Mismatch Attacks
In this section we cover previous work on mismatch attacks against Kyber. We give fairly
detailed descriptions of how to choose the parameters for the different approaches, to make
it easier to understand our suggested improved algorithm in Section 4. Throughout the
whole section we explain how to perform the attacks on Kyber1024. Attacks against other
versions of Kyber simply require changing a few parameter values.

In a mismatch attack, Eve impersonates Bob and recovers Alice’s secret key sA step by
step. Now consider Figure 1. Alice computes m′ purely as a function of (PB , c). We see
that the keys KA and KB match if and only if Alice’s computed message m′ matches the
message m that Eve chooses. Thus, Eve maliciously sets the parameters (PB , c) and m
such that the output of the oracle tells her something about the secret sA. In other words,
whether or not KA and KB match tells Eve something about the values in sA.

3.1 One-Positional Mismatch Attacks
The simplest works on mismatch attacks recover one position at a time. Let us explain in
some detail how this works. We focus on the position with index 0. When the subscript A
is understood we let si denote sA[i].

Eve chooses the message m = [1, 0, . . . , 0]. She sets PB = [⌈ q
32⌋, 0, . . . , 0]. She computes

c1 = Compressq(PB , 2dPB ) and lets c2 = [h, 0, . . . , 0]. Here h is a parameter that is
adjusted depending on what information about the secret Eve wants to extract. Alice
calculates uA = Decompressq(c1, 2dPB ) = PB and vA = Decompressq(c2, 2dvB ) =
[⌈ q

32 h⌋, 0, . . . , 0]. Finally, Alice gets

m′[0] =Compressq((vA − str
AuA)[0], 2) (1)

=Compressq(vA[0]− (str
AuA)[0], 2) (2)

=
⌈

2
q

(⌈ q

32h
⌋
− sA[0]

⌈ q

32

⌋)⌋
mod 2. (3)

Now given a split of the possible values of si into any possible two adjacent intervals.
It can be shown that by adjusting h, the value of m′[0] can teach Eve which of these two
intervals s0 belongs to. Let us now show why Alice’s received message is equal to 0 - by
construction - on all positions with non-zero index. Because vA[i] = 0, for all indexes
i ̸= 0, for all these indexes the value of m′ simplifies to

m′[i] =Compressq((vA − str
AuA)[i], 2) (4)

=Compressq(vA[i]− (str
AuA)[i], 2) (5)

=
⌈

2
q

(
−sA[i]

⌈ q

32

⌋)⌋
mod 2. (6)

Before applying the outer rounding the expression is bounded in absolute value by
2/3329 · 2 · 105 = 0.126 . . . < 1/2. The value is thus always equal to 0 after being rounded
to the nearest integer. Therefore m′[i] = 0, for i ̸= 0.
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-2 -1 0 1 2

-3 -2 -1 0 1 2 3

Figure 2: Illustrations of the mismatch attacks on all versions of Kyber from [QCZ+21].
The figure is a slight modification of Figure 3 from [GM23]. The bottom half of the figure
covers Kyber768 and Kyber1024, while the top half covers Kyber512.

For details on how to modify the attack to recover sA[i], for i ̸= 0, see for exam-
ple [GM23]. In [QCZ+21] the authors derived the so called Hamming bound for this type
of attack. This bound corresponds to the best possible if queries splitting the possible
values of sA[i] into any possible two subsets are available. This bound is reached by using
Huffman coding.

They also showed how to select the parameter h in each step to get close to the
Hamming bound. See Figure 2 for an illustration. Each colored line corresponds to a
query, splitting the remaining possible secret values into two adjacent intervals. The
blue/red/green/yellow line corresponds to the first/second/third/fourth query needed to
recover the secret value. Given that the secret values are sampled from a central binomial
distribution the attack needs an expected

2
(

1
16 + 4

16 + 6
16

)
+ 3

(
1
16 + 4

16

)
= 37

16 = 2.3125

queries to recover one coefficient for Kyber768/Kyber1024 and

2
(

15
64 + 20

64

)
+ 3

(
1
64 + 6

64 + 15
64

)
+ 4

(
1
64 + 6

64

)
= 164

64 = 2.5625

queries to recover one coefficient for Kyber512, respectively. In [GM23] it was shown that
for one-positional mismatch attacks against Kyber, the attack of [QCZ+21] is (most likely)
optimal.

3.2 Multi-Positional Mismatch Attacks
In [GM23] the authors remove the constraint of recovering only one coefficient at a time and
thereby break the Hamming bound of [QCZ+21]. Let us explain their idea for attacking
two positions at a time.

3.2.1 Two-Positional Mismatch Attacks on Kyber

We will show how to obtain s0 and s128. Eve lets m be equal to 0 on all positions,
except that m[0] = 1 and/or m[128] = 1. She lets PB be 0 on all positions, except that
PB[0] = b1 · ⌈ q

32⌋ and PB[128] = b2⌈ q
32⌋, for b1, b2 ∈ {−1, 0, 1}. Also, she sets c2 to 0 on

all positions, except that c2[0] = h1 and c2[128] = h2.2 Next, let us compute m′[0] and
m′[128].

2To retrieve the positions si and s128+i, where 1 ≤ i ≤ 127, we can for example make the following
adjustments. Let m be equal to 0 on all positions except that m[i] = 1 and/or m[128 + i] = 1. Also, let
c2 be 0 on all positions, except that c2[i] = h1 and c2[128 + i] = h2.
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m′[0] =Compressq(vA[0]− (str
AuA)[0], 2) (7)

=
⌈

2
q

(⌈ q

32h1

⌋
−

(
sA[0]b1

⌈ q

32

⌋
− sA[128]b2

⌈ q

32

⌋))⌋
mod 2, (8)

m′[128] =Compressq(vA[128]− (str
AuA)[128], 2) (9)

=
⌈

2
q

(⌈ q

32h2

⌋
−

(
sA[0]b2

⌈ q

32

⌋
+ sA[128]b1

⌈ q

32

⌋))⌋
mod 2. (10)

For an integer i, with 1 ≤ i ≤ 127 we get

m′[i] =Compressq(−(str
AuA)[i], 2) (11)

=
⌈

2
q

(
−

(
sA[i]b1

⌈ q

32

⌋
− sA[128 + i]b2

⌈ q

32

⌋))⌋
mod 2, (12)

m′[128 + i] =Compressq(−(str
AuA)[128 + i], 2) (13)

=
⌈

2
q

(
−

(
sA[i]b2

⌈ q

32

⌋
+ sA[128 + i]b1

⌈ q

32

⌋))⌋
mod 2. (14)

For both of these positions the expression within the outer rounding function is bounded
in absolute value by 2/3329 · 2 · 2 · 105 = 0.252 . . . < 1/2. Hence these values are always
rounded to 0 and thus m′[i] = 0, for i ̸= 0, 128.

Let a two-dimensional grid represent all possible combinations of values that (s0, s128)
can take. The authors of [GM23] go into great details on geometrical interpretations of
how to interpret different possible splits you can make in two dimensions, depending on
how you set the parameters.

The one-dimensional cuts from Section 3 correspond to making horizontal or vertical
(planar) cuts in this two-dimensional grid. You can also make triangular-shaped cuts
originating from any of the corners of the grid. Finally, by combining two planar cuts
or two triangular cuts, you can perform rectangular cuts or intersecting triangular cuts
respectively. In [GM23] the authors show how to optimize mismatch attacks using these
types of splits. As our improvement in Section 4 essentially does one-dimensional cuts,
but in parallel, we refer to [GM23] for further details on two-dimensional cuts.

3.2.2 Hyperrectangular Cuts

In [GM23] the authors also showed how to generalize the one-dimensional mismatch attacks
in another way. Instead of making planar cuts in one or two dimensions at a time, they
make planar cuts with respect to an arbitrary subset of the positions, at a time. Let
us explain their idea. Let I ⊂ {0, 1, . . . , n − 1} be the set of indexes that we want to
make planar splits with respect to. Let m[i] = 1, for i ∈ I, and m[i] = 0, for i ̸∈ I. Let
PB [0] = ⌈ q

32⌋ and let PB be equal to 0 on all other positions. Let c2[i] = hi, for i ∈ I and
let c2[i] = 0, for i ̸∈ I. Here hi are the parameters deciding the precise planar cut with
respect to each dimension. For i ∈ I we now get

m′[i] =Compressq(vA[i]− (str
AuA)[i], 2) (15)

=
⌈

2
q

(⌈ q

32hi

⌋
− sA[i]

⌈ q

32

⌋)⌋
mod 2. (16)
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For i ̸∈ I we get

m′[i] =Compressq(vA[i]− (str
AuA)[i], 2) (17)

=
⌈

2
q

(
−sA[i]

⌈ q

32

⌋)⌋
mod 2, (18)

which simplifies to 0 just like in the one-dimensional mismatch attack.

3.3 Post-Processing with Lattice Reduction
Other than the information from the mismatch queries the adversary has access to LWE
samples. Having recovered parts of the secret through mismatch queries, solving for the
remaining parts of the secret using lattice reduction was initially studied in [GM23, MJZ22].
In both works it was showed that the number of queries needed to recover the full key was
significantly reduced using this type of post-processing.

4 Adaptive Parallel Mismatch Attacks
Now let us introduce our adaptive mismatch attacks. To do so, let us first introduce
parallel mismatch attacks generally in Section 4.1. There we cover the parallel mismatch
attacks of Shao et al. [SLZ24], but also the parallel PC oracle attacks of [TUX+23,
RRD+23], translated to the mismatch attack setting. In Section 4.2 we introduce our
improved, adaptive version of parallel mismatch attacks against Kyber. Finally, we discuss
our implementation of our adaptive, parallel mismatch attack in Section 4.3 and the
computational cost analysis of it in Section 4.4.

4.1 Parallel Mismatch Attacks
In a recent paper [SLZ24] Shao et al. showed how to do parallelized mismatch attacks,
packing what was previously p different queries into a single query. Their strategy is very
similar to recent work on parallel PC oracle attacks in [TUX+23, RRD+23]. At the cost of
O(2p) time the authors were able to gain (up to) p bits of information at a time instead of
just (up to) 1 bit. This allowed them to trivially break the Shannon bound3 and drastically
improve upon mismatch attacks on Kyber.

Their attack is somewhat similar to the hyperrectangular cuts described in Section 3.2.2.
We describe it in detail for Kyber1024. Let us describe a slight generalization of the
attack of [SLZ24]. Let I ⊂ {0, 1, . . . , 127} be an index set with p positions. Our attack
targets positions i and i + 128, where i ∈ I. Eve lets PB be equal to 0 on all positions,
except that PB [0] = b1⌈ q

32⌋ and PB [128] = b2⌈ q
32⌋, where |b1|+ |b2| ≤ 3. Let c2[i] = 0, for

i ̸∈ I and c2[i] = hi, for i ∈ I. Finally Eve computes c1 = Compressq(PB , 2dPB ) and
sends (PB , c1, c2) to Alice. Alice then calculates uA = Decompressq(c1, 2dPB ) = PB

and vA = Decompressq(c2, 2dvB ). Here, vA[i] = ⌈ q
32 hi⌋, for i ∈ I and vA[i] = 0, for

i ̸∈ I. Finally, Alice gets

m′[i] =Compressq(vA[i]− (str
AuA)[i], 2) (19)

=
⌈

2
q

(⌈ q

32hi

⌋
−

(
sA[i]b1

⌈ q

32

⌋
− sA[i + 128]b2

⌈ q

32

⌋))⌋
mod 2, (20)

3That bound of course assumes that the attacker can only gain up to 1 bit of information per query.
The new lower bound of the mismatch attack is the Shannon entropy divided by p, assuming that the
attacker does no post-processing.
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for i ∈ I, and

m′[i] =Compressq(vA[i]− (str
AuA)[i], 2) (21)

=
⌈

2
q

(
−

(
sA[i]b1

⌈ q

32

⌋
− sA[i + 128]b2

⌈ q

32

⌋))⌋
mod 2, emptytexttt (22)

for i ̸∈ I. Next, Eve enumerates all the 2p different messages of m that are non-zero with
respect to the indexes in I, until she finds one such that m and m′ match4. On expectation
it takes Eve 2p−1 steps to find the matching message m. Finding a matching message will
teach Eve something about all the values sA[i] and sA[i + 128], for i ∈ I, at the same time.
In non-parallel mismatch attacks, we simply compare against a single message m, leading
to a totally insignificant computational effort. However, checking whether KA and KB

match takes time. As we step up p, while we can attack more positions at a time, we also
increase the computational cost of the attack. Thus we get a trade-off between time and
mismatch queries.

Assume w.l.o.g. that b1 ̸= 0. If also b2 ̸= 0, then we make p triangular cuts in parallel.
If b2 = 0, then we make p planar cuts in parallel. Note that for all the p parallel cuts,
either all of them must be planar or all of them must be triangular.

Notice that when doing parallel mismatch attacks, it makes no sense to try rectangular
cuts in parallel or intersecting triangular cuts in parallel5. This can also be seen in [SLZ24]
where the authors only make planar or triangular cuts in each step6.

4.1.1 Parameter Selection Strategy

The strategy of [TUX+23, RRD+23] - translated to our setting - is to for each attacked
position make one-dimensional queries to minimize the number of queries needed to recover
the least likely secret value. Among the strategies that achieve this minimal number,
they choose the strategy that minimizes the expected number of queries. Notice that
while they do not describe their strategy applied to mismatch attacks, their strategy can
be applied to mismatch attacks. For Kyber768/Kyber1024 their attacks correspond to
those of [QCZ+21], but in parallel. For Kyber512, they modify the attack to guarantee
recovering the secret in 3 queries. Note that while the strategy of [QCZ+21] is faster on
expectation for attacking one position at a time, it is slower when attacking many positions
in parallel. If p is large, then it is highly likely that at least one of the p secret values is
equal to -3 or 3, making the attack strategy of [QCZ+21] take 4 queries to fully recover all
p values7.

The authors of [SLZ24] do parallel mismatch attacks where they attack p pairs of
positions in parallel, instead of just p positions. For Kyber512 they devise a strategy that
always recovers p pairs in 6 queries. This matches the performance of [TUX+23, RRD+23].
For Kyber768/Kyber1024 their corresponding strategy recovers p pairs in 5 queries. This
improves upon the strategy of [TUX+23, RRD+23] and is considered the state-of-the-art
for parallel mismatch attacks against Kyber768/Kyber1024. In either case, this process is
repeated

⌈256
2p
⌉ (23)

4Which in turn is tested by noting that KA and KB match.
5Both of these types of queries correspond to making two cuts and getting the answer to the AND of

the results. If the keys match, then we get a YES answer for both queries. If the keys do not match, then
we do not learn which of the two answers correspond to a NO. For the parallel mismatch attacks we need
to match the answers with respect to all p parallel queries.

6Even though they do not explain why they do not do the other types of splits.
7Unlike our adaptive attacks, described in Section 4.2, they perform queries until all p values are fully

recovered. Thus, in their attack it is not possible to take advantage of recovering some of the positions in
less than 3 queries.
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Table 1: The expected number of queries needed to recover 2p positions using different
parallel mismatch attack strategies.

Kyber512 Kyber768/Kyber1024
Non-adaptive single [TUX+23, RRD+23] 6 6
Non-adaptive pairwise [SLZ24] 6 5
Adaptive single (this paper) 5.125 4.625

times to recover a full block of 256 positions. Notice that for fairly large values of p, like
p = 32, this starts to be a limitation. The smallest value larger than 32 that decreases the
expression in (23) is p = 64, which leads to a very drastic increase in computational effort.

To explain their strategy of making the performance optimal for the worst-case pairs,
let us compare against the strategy for Kyber768/Kyber1024, from Figure 10 of [GM23].
On expectation, only around 4.1 queries are needed to recover a secret key pair. However,
for the least likely key pairs 7 queries are needed. For somewhat large values of p, like
p = 32, the limiting performance factor of a pure mismatch attack is the number of queries
needed to recover the least likely secret key pairs, not the expected number to recover a
secret key pair.

Notice that in all three works [TUX+23, RRD+23, SLZ24] the attacks are non-adaptive.
In [TUX+23, RRD+23] the attack starts recovering new positions first when the current p
positions are all fully recovered. The same is true for the p pairs in the attack of [SLZ24].

A trivial way of working around the problem in (23) of fine-tuning p to fit the compu-
tational resources is to solve a few positions using post-processing with lattice reduction.
This way we can make use of having computational resources slightly larger than what is
needed to let p = 32. If we for example leave 25 positions per 256 positions block, then we
can let p = 33. We do not need to increase p all the way up to 64 to improve.

4.2 Our Adaptive Parallel Mismatch Attacks
Let us now introduce our improved, adaptive version of parallel mismatch attacks. Our
main improvement over [SLZ24] is to revisit the mismatch attack of [QCZ+21], but to do
it in parallel in a more efficient way. We let I = {0, 1, . . . , p− 1} and let b2 = 0. Thus, we
decide to perform planar cuts in parallel. Instead of performing queries until everyone of
the entries with indexes in I is recovered, we work adaptively. As soon as a position is
uniquely determined, we replace that position of I by the next non-solved entry in the
current block.

While this strategy is slow for large p when recovering every single position8, as long
as we leave at least p positions for recovery by post-processing, the performance of it is
greatly improved. If the size of each block is large compared to p, then we can model
the adaptive parallel mismatch attack as p one-dimensional mismatch attacks going on in
parallel. Using the performance for one position from [QCZ+21] we then need an expected
2.5625 or 2.3125 to recover p positions when attacking Kyber512 or Kyber768/Kyber1024
respectively.

Now let us summarize the expected number of queries needed to recover 2p positions
using our work versus previous works.

Compared to the previous state-of-the-art we reduce the expected number of queries
by roughly 14.6 % for Kyber512 and 7.5 % for Kyber768/Kyber10249.

8Since the performance of the strategy is ultimately limited by the number of queries needed to recover
the least likely secret key values.

9As the computational cost of the mismatch attack is proportional to the number of queries (see
Section 4.4), we actually improve slightly more than described here.
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This model starts to break down for two reasons for large p, both of which have to do
with the the relative size of p compared to the block size 256.

• When p is large compared to the block size 256, then we cannot reach the asymptotic
performance of 2.3125/2.5625 queries per p positions.

• At the end of a block there might be less than p positions to solve for, at which
point we can no longer have a parallelization level of p. As discussed already, we
partly mitigate this by leaving the last positions for post-processing and moving on
to attacking the next block, as soon as less than p positions of the block remain to
be found.

The details of how well the model works as a function of p is covered in Section 4.3.
A small additional benefit of our attack is that it allows us to use an arbitrary number
of queries, instead of a multiple of 3 or 5/6 like in [TUX+23, RRD+23] and [SLZ24]
respectively.

4.3 Implementation Results
We implemented our algorithm in C, extending the work of [QCZ+21]. To better understand
the precise performance of our algorithm we ran experiments using the implementation,
summarized in Figure 3. For Kyber512 and Kyber1024 we plot the expected cost to recover
p secret entries - using our adaptive approach, the non-adaptive approach of [TUX+23,
RRD+23] and for Kyber1024 the pairwise approach of [SLZ24]10 - as a function of p11.
For all algorithms we improve upon the expected performance by leaving the last positions
for post-processing and moving on to the next block, as soon as less than p entries remain
to be solved for.

For our adaptive approach each data point is computed as the average of the result of
running the attack 100 times. For p ≤ 22 we ran the whole attack. For p > 22 we "cheated"
by knowing which m matches m′. We ran the rest of the attack like normal, but skipped
the computationally heavy part of enumerating to find the matching vector m. That way
we were able to study how the query performance of the attack for large p, without having
the computational resources to perform the whole attack12.

For Kyber512 we see that the performance of our adaptive attack roughly matches
the simple theoretical value of recovering p positions in 2.5625 queries, for small values of
p. Gradually the performance gets worse and gets beaten by the non-adaptive approach
of [TUX+23, RRD+23] for p ≥ 112. We do not care about studying the attack for p > 128,
as it is cheaper to solve the underlying LWE problem of Kyber512 than running parallel
mismatch attacks for values of p that large.

For Kyber1024, for small values of p our adaptive approach roughly matches the simple
theoretical value of recovering p positions in 2.3125 queries for small values of p. For
76 ≤ p ≤ 128, the pairwise approach of [SLZ24] outperforms our method. Notice however,
that the pairwise approach attacks 2p positions at the time, making it impossible to
perform it for p > 128. For p > 128 our adaptive approach performs better than or equal
to the non-adaptive approach of [TUX+23, RRD+23] for all p. As the secret distribution
is the same for Kyber768 and Kyber1024, we can omit a separate figure for the attack
performance on Kyber768. Notice however, that for Kyber768 we do not care about the
performance of the attack for p > 192, as it is cheaper to solve the underlying LWE
problem of Kyber768 than running parallel mismatch attacks for values of p that large.

10For Kyber512 the pairwise approach does not improve upon the non-adaptive approach of [TUX+23,
RRD+23].

11As Kyber768 uses the same distribution for the secret entries as Kyber1024, we do not need to also
plot results for Kyber768.

12At a parallelization level of 256 of course nobody has the computational resources to perform the
attack once, let alone do it a hundred times.
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Figure 3: Expected number of queries needed to recover p positions, as a function of p,
using different parallel mismatch attacks against Kyber512 and Kyber1024 respectively.

4.4 Computational Cost of Parallel Mismatch Attacks
Each time we want to test whether KA and KB match, we need to compute a hash value,
decrypt a message and finally compare the values of two vectors. See Section 4.2 of [SLZ24]
for some more details of the procedure. Here the decryption operation is the dominant
part of the total time. We estimate it to be 215 bit operations.

Each query corresponds to brute-forcing all possible binary keys that are zero everywhere
except for indexes defined by the set I, with |I| = p. On expectation we need to test 2p−1

keys to find a matching one. Assume that we manage to recover r = r(p, qt) positions via
a mismatch attack using a total of qt queries. The number of recovered positions can be
estimated as

r(p, qt) ≈
⌊

p
qt

re

⌉
, (24)

where re corresponds to the expected number of queries needed to recover p positions with
the chosen parallel mismatch attack algorithm, as estimated in Figure 3. For a given p
and qt we should of course choose the algorithm that according to Figure 3 recovers the
most positions of the secret.

We need to solve for the remaining 256 · l− r(p, qt) positions via lattice reduction. The
total cost of the mismatch attack and the post-processing becomes

215 · 2p−1 · qt + L(l · 256− r(p, qt)), (25)

where L(n · l−r(p, qt)) is the cost of solving the underlying LWE problem for the remaining
l · 256 − r(p, qt) positions not recovered from the mismatch attack. The latter cost is
estimated using the Lattice-Estimator13 [APS15].

For a given number of available queries, we should choose the parallelization level p
and the mismatch strategy that minimizes the cost according to (25).

For all versions of Kyber we perform this type of optimization14 and plot the relationship
between query and bit complexity in Figure 4. Notice that for all versions of Kyber we
drastically reduce the bit complexity below the security level by having access to as few
as two mismatch queries15! In terms of reducing the bit security, there is a diminishing

13https://github.com/malb/lattice-estimator.
14The script for performing the optimization is available at https://github.com/ErikMaartensson/Ada

ptiveAndParallelMismatchAttack. The repository also contains a script used to generate Figure 3.
15As we cannot recover any positions fully with a single mismatch query, we assume that a single query

does not reduce the bit security. However, partial information about p positions from a single query does
actually already make the problem easier.

https://github.com/malb/lattice-estimator
https://github.com/ErikMaartensson/AdaptiveAndParallelMismatchAttack
https://github.com/ErikMaartensson/AdaptiveAndParallelMismatchAttack
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Figure 4: Bit complexity of a parallel mismatch attack with postprocessing, as a function
of the number of mismatch queries.

return in terms of how much each new query simplifies the computational effort.
For higher numbers of queries, we can compare against the results of Section 6.1

of [SLZ24]. They do not attempt to optimize the total computational cost for a given
number of queries. Instead, they fix different, fairly small, values for p and compute the
remaining post-processing cost as a function of the number of available mismatch queries.

The authors of [SLZ24] claim that when using p = 26 and 78 queries, the post-processing
cost is only 232 when attacking Kyber1024. As their attack actually requires the number
of queries to be a multiple of 5, let us study their claim according to our model. In 80
queries with p = 26 we recover a total of 26 · 2 · 80/5 = 832 positions. According to the
lattice estimator the cost of solving Kyber1024 with 192 positions remaining is roughly
255.56. The corresponding cost for the mismatch queries is 215 · 225 · 80 = 246.32. Thus,
the total cost is still roughly 255.56, as the post-processing cost dominates. Thus, by our
calculation, when using their mismatch attack strategy, they can lower the total cost by
making p a bit larger.

In comparison, we only need 58 queries to reach a total complexity cost of 255.11. It
could be that our model for the cost of post-processing is too pessimistic, but we apply
it consistently to our strategy and the strategy of [SLZ24]. Thus, in an apples-to-apples
comparison, our strategy is superior.

5 Discussion
In this section we discuss how our new attack methodology improves upon parallel PC
oracle attacks and fault-injection attacks. We also discuss a couple of more attempts of
improving our adaptive parallel mismatch attacks.
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5.1 Improving Parallel PC Oracle-Based Side-Channel Attacks
PC oracle-based chosen-ciphertext side-channel attacks [GJN20, RRCB20, UXT+22]
against CCA-secure KEMs are a significant attack type, akin to key mismatch attacks.
Both methods select ciphertexts. While the key mismatch attack focuses on the CPA-secure
version, the PC oracle-based chosen-ciphertext side-channel attack targets the CCA-secure
version since it can exploit side-channel information to circumvent the protection offered
by CCA transformations, such as the FO transform.

The high degree of similarity between these two attack categories suggests that nearly
all enhancements in key mismatch attacks can benefit PC oracle-based side-channel attacks.
For instance, the one-positional key mismatch attacks introduced in [QCZ+21] and the
multi-positional key mismatch attacks [GM23] can enhance the query complexity of (binary)
PC oracle-based side-channel attacks.

Shao et al. [SLZ24] introduced a parallel mismatch attack applicable to improving
parallel or multi-value PC oracle-based side-channel attacks [TUX+23, RRD+23]. As we
refine the work of Shao et al., the enhancements we propose in this paper can boost the
efficiency of parallel or multi-value PC oracle-based side-channel attacks. The chosen
ciphertexts are generated using the same method as the ciphertext selection approach
described in Section 4.2.

In multi-value PC oracle-based side-channel attacks, a multi-class machine learning
model is trained on side-channel information to mimic the oracle used in parallel key
mismatch attacks. The number of classes required for training is 2p, where p represents the
parallelization level. However, due to constraints imposed during training, the achievable
value of p is often limited. Realistic choices for p here lie in the range 8-16. As we see in
Figure 3, for this range, the performance of our adaptive approach is very close to the
theoretical limit covered in Table 1. Thus, we improve upon the query complexity of the
state-of-the-art by roughly 14.6 % for Kyber512 and 7.5 % for Kyber768/Kyber1024 for
this setting. If keeping the number of queries the same, our attack improvement instead
translates to a lower total computational cost of the attack.

5.2 Implications for Fault-Injection Attacks
Fault injections in cryptographic implementations may skip critical instructions, thus
potentially creating PC oracles, as evidenced by [XIU+21, HPP21]. In a recent development,
Mondal et al. [MKB+24] proposed a technique to generate multi-value PC oracles through
fault injections, specifically using a software-based approach known as RowHammer.
This oracle resembles a parallel key-mismatch oracle. Our findings indicate that even
a minimal number of faults can significantly compromise the security of CCA-secure
KEM implementations. This aspect of our research is particularly significant given that
controlling faults is typically more challenging than monitoring traces in side-channel
attacks.

5.3 Other Attempts at Improving Parallel Mismatch Attacks
We made a few more attempts at improving upon the parallel mismatch attack itself, the
post-processing and how to balance these two parts.

5.3.1 Triangular Splits Only

An alternative to our strategy of planar cuts in parallel is to let b2 ̸= 0 and use triangular
splits only, as briefly mention in Section 4.1. We tried to devise a mismatch attack with
this strategy. For Kyber768/Kyber1024 it performs slightly worse than the planar strategy.
For Kyber512 it performs even worse. We also tried scaling down Kyber to have centered
Binomial entries on {−1, 0, 1}. Here the triangular strategy performs marginally better.
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In summary, it seems like the strategy of using only triangular splits is performing worse
the larger set the secret entries are taken from is.

5.3.2 Synchronized Splits in Three Dimensions

The idea from [SLZ24] of making two-dimensional splits in a way to guarantee the minimum
number of splits in the worst-case can be generalized to higher dimensions. Let us assume
that such a splitting strategy exists and see what can be achieved for the different
versions of Kyber. A triplet of entries from Kyber512 can take 73 different values. Since
⌈log2(73)⌉ = ⌈log2(343)⌉ = 9, this strategy recovers 3P entries in 9 queries. This would
unfortunately be identical in performance to the strategy of [TUX+23, RRD+23].

For Kyber768/Kyber1024 we have 53 = 125 possible triplets of entries. Since ⌈log2(125)⌉ =
7, this strategy recovers 3p entries in 7 queries. This would beat [SLZ24], but would be
marginally worse than our adapted strategy, which requires an expected number of
3 · 2.3125 = 6.9375 queries to recover 3p positions.

5.3.3 Potentially More Efficient Post-processing

In a recent paper by May and Nowakowski [MN23] it was shown that having access to
a surprisingly low number of so-called perfect hints about the secret vector, the LWE
problem can easily be solved with LLL. The terminology originally comes from [DDGR20]
and means that the attacker has access to information of the type str

Avi = li, where vi are
known vectors and li are known scalars. In our setting the attacker has recovered a large
number of entries of sA. Each such value corresponds to a hint sA[i] = str

Aei = li, where ei

is a unit vector. In May’s and Nowakowski’s setting, the vectors vi take uniformly random
values from Zq.

Given the perfect hints, May and Nowakowski create a matrix where each column
consists of a vector vi and the corresponding value li. The larger the absolute value of
the determinant of this matrix is, the easier the LWE problem with these hints is. While
uniformly random vectors vi lead to very large determinants, the hints in our setting
lead to very small determinants. In our case, their approach boils down to reducing the
dimension of the problem by the number of hints we are given, which matches the strategy
from Section 4.4.

5.3.4 Enumeration vs. Post-processing

The key enumeration part of parallel mismatch attack is trivial to parallelize and requires
negligible amounts of memory. The lattice reduction attack that the lattice estimator
suggests requires an exponential amount of memory and is highly non-trivial to parallelize.
Thus, it might in practice be faster to leave some more of the total number of secret
entries for the mismatch attack part. As the impact of the memory requirement of lattice
reduction algorithms is an active research area in itself, we consider taking this aspect into
consideration when optimizing the cost out of scope for this work.

6 Conclusions and Future Work
In this paper, we highlight a critical vulnerability in a CPA-secure instantiation of Kyber,
the chosen NIST post-quantum KEM, against key mismatch attacks. We demonstrate
that parallelized attacks with post-processing lattice reduction can jeopardize Kyber’s
claimed security levels with a minimal number of queries. This finding emphasizes the
strict prohibition of key reuse in a CPA-secure version of Kyber. Also, we improve upon
the results in [SLZ24] by employing an adaptive strategy. By reserving a minor portion
of the positions for post-processing, we manage to decrease the anticipated query count
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by approximately 14.6 % for Kyber512 and 7.5 % for Kyber768/Kyber1024, relative
to [SLZ24]. Our advancements could likewise be utilized to further improve the parallel or
multi-value PC oracle-based side-channel attacks against the CCA-secure Kyber KEM as
presented in [TUX+23, RRD+23].

In considering future avenues of research, we propose a real-world evaluation of the
side-channel attack enhancements enabled by our techniques (Section 5.2). This evaluation
should quantify the practical improvement in attack efficacy using an experimental setup.
Additionally, investigating the deployment of parallel mismatch attacks coupled with post-
processing on high-performance computing resources, particularly those with extensive
RAM, presents another exciting avenue for exploration. This research could provide
insights into the practicality of our techniques in real-world scenarios.
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