TACR Communications in Cryptology https://doi.org/10.62056 /a36cy Tqiu

ISSN 3006-5496, Vol. 1, No. 3, 24 pages.

Plaintext-based Side-channel Collision Attack

Lichao Wu! ®, Sébastien Tiran?, Guilherme Perin® ® and Stjepan Picek*

! Technical University of Darmstadt, Darmstadt, Germany
2 Independent Researcher, Delft, The Netherlands
3 Leiden University, Leiden, The Netherlands
4 Radboud University, Nijmegen, The Netherlands

Abstract. Side-channel Collision Attacks (SCCA) is a classical method that exploits
information dependency leaked during cryptographic operations. Unlike collision
attacks that seek instances where two different inputs to a cryptographic algorithm
yield identical outputs, SCCAs specifically target the internal state, where identical
outputs are more likely. Although SCCA does not rely on the pre-assumption of
the leakage model, it explicitly operates on precise trace segments reflecting the
target operation, which is challenging to perform when the leakage measurements
are noisy. Besides, its attack performance may vary dramatically, as it relies on
selecting a reference byte (and its corresponding leakages) to “collide” other bytes.
A poor selection would lead to many bytes unrecoverable. These two facts make its
real-world application problematic.

This paper addresses these challenges by introducing a novel plaintext-based SCCA.
We leverage the bijective relationship between plaintext and secret data, using
plaintext as labels to train profiling models to depict leakages from varying operations.
By comparing the leakage representations produced by the profiling model instead of
the leakage segmentation itself, all secret key differences can be revealed simultaneously
without processing leakage traces. Furthermore, we propose a novel error correction
scheme to rectify false predictions further. Experimental results show that our
approach significantly surpasses the state-of-the-art SCCA in both attack performance
and computational complexity (e.g., training time reduced from approximately three
hours to five minutes). These findings underscore our method’s effectiveness and
practicality in real-world attack scenarios.

Keywords: Side-channel Analysis - Side-channel Collision Attack - Deep Learning.

1 Introduction

Side-channel analysis (SCA) represents a powerful implementation attack on cryptographic
algorithms. Side-channel analysis on symmetric-key cryptography implementations is
typically divided into non-profiling and profiling attacks depending on the availability
of a cloned device identical (or similar) to the target device. Non-profiling attacks
operate without a clone device. The adversary gathers measurements encapsulating secret
information, conducting statistical analysis to deduce the secrets. Conversely, profiling
attacks assume the adversary has unrestricted access to a cloned device. Using this device,
the adversary studies and comprehends the device’s side-channel behavior and utilizes this
understanding to extract secret information from the target device.

Side-channel collision attacks (SCCA), a unique type of non-profiling attacks, were
first introduced in [SWPO03]. Benefiting from the independence of any leakage model, the
authors used SCA data to detect collisions in the internal state of an AES implementation.
Recently, Staib et al. incorporated deep learning into SCCA (DL-SCCA) [SM23]. Like

E-mail: stjepan.picek@ru.nl (Stjepan Picek)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-07 Accepted: 2024-09-02

https://doi.org/10.62056/a36cy7qiu
https://crossmark.crossref.org/dialog/?doi=10.62056/a36cy7qiu&domain=pdf&date_stamp=2024-09-30
https://orcid.org/0000-0002-7139-732X
https://orcid.org/0000-0003-3799-7636
https://orcid.org/0000-0001-7509-4337
mailto:stjepan.picek@ru.nl
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Plaintext-based Side-channel Collision Attack

SCCA, DL-SCCA first preprocesses the leakage traces into segments representing the
processing of each targeted intermediate data, characterizing these trace segments, and
finally recovering the key difference by comparing with a different trace segmentation with
deep learning. Unfortunately, the limitations of SCCA remain despite the performance
improvement, constraining its application to practical attack scenarios. Indeed, SCCA is
significantly less studied and used than other profiling and non-profiling counterparts. We
summarize SCCA’s main limitation into three aspects:

o Trace Segmentation. Trace segmentation is the most intricate procedure for SCCA.
Indeed, the traces segment is compared to extract secret information; imprecise
segmentation could directly impact attack performance. Conventional SCCA relies
on simple power analysis to identify the target operation, which is less precise and
unsuitable when the target operation has indistinguishable leakage patterns. The
latest DL-SCCA employs a multi-stage trace segmentation method involving deep
learning-based sensitivity analysis and visual inspection. Regrettably, this method
does not change the nature of SCCA, which relies on a precise leakage measurement
and depends on human inspection (e.g., model tuning and finding leakages). Errors
may be introduced at each trace segmentation stage, and the generality of this
method is questionable.

e Leakage Comparision. The key recovery of SCCA relies on the comparison of
the trace segment. A direct comparison could be problematic due to the timing
misalignment and distortion of the leakage features. DL-SCCA improves this by
employing a DL model trained on one trace segmentation (representing the processing
of a single intermediate data) to attack a different trace segment. However, this
incremental improvement does not eliminate the SCCA restriction. As shown in the
original paper [SM23], selecting different trace segments for training significantly
varies the success rate of the key recovery, ranging from 0% to 100%. Indeed, both
SCCA and DL-SCCA rely on 1) Temporal consistency, the timing of leakage features
between two trace segments must be well aligned for the trained model to extract
information from features at the identical location; 2) Spatial consistency, the leakage
features between two traces segments should be alike. Any discrepancy between
features could diminish attack performance, which connects with the well-known
SCA portability problem [BCH™20].

e Error Tolerance. The effectiveness of SCCA and DL-SCCA attacks relies entirely
on the reference trace segment or the trained deep learning model. In practical
attack contexts, the target intermediate data may have different physical leakages,
challenging SCCA’s key recovery capability in recovering all key bytes.

This paper introduces a novel plaintext-based side-channel collision attack (PSCCA)

to circumvent the abovementioned limitations. Our main contributions are:

1. We propose a novel approach for SCCA that extracts the target leakages based on
the plaintext. This method eliminates the need for trace segmentation, operating
directly on the raw traces.

2. We introduce a novel plaintext-based collision method. This method represents and
compares the target leakages with the extracted features, overcoming the temporal
and spatial consistency issues.

3. Gathering the above two contributions, we employ multi-task learning to expedite
the training process while maintaining attack performance. Our method can recover
all key differences in five minutes with a single profiling model.

4. We present a novel error correction method that can rectify wrong key guesses based
on the relationship of other key bytes.

5. We provide a comprehensive experimental analysis showcasing the exceptional attack
performance of the proposed method. Our method outperforms the state-of-the-art

L. Wu, A. S. Tiran, G. Perin, and S. Picek 3

non-profiling SCA and DL-SCCA even without error correction. When applied, the
success rate is further increased.

6. We perform hyperparameters evaluation on several critical hyperparameters relevant
to our attack: data augmentation, batch size, and training epochs. Moreover, we
discuss the efficiency of error correction in different settings.

The source code is available in https://github.com/lichao-wu9/PSCCA.

The rest of this paper is organized as follows. Section 2 provides the necessary
background information. Section 3 discusses related works. Section 4 details the threat
model and then provides a theoretical analysis of the method. Section 5 presents the
scheme, and then a case study and discussion on the proposed attack are given. In
Section 6, we provide experimental results, benchmarks, and the evaluation of critical
hyperparameters. Section 7 discusses the proposed method and potential countermeasures.
Section 8 concludes the paper and discusses potential future research directions.

2 Background

This section starts by introducing our notation. Then, it provides the relevant information
about the side-channel analysis, side-channel collision attack, and evaluation metrics.

2.1 Notation

We denote sets using calligraphic letters such as X', while the related uppercase letters
X represent random variables and random vectors X that are defined over the domain
of X. The corresponding lowercase letters x and x symbolize realizations of X and X,
respectively. Furthermore, functions, represented as f, are given in a sans-serif font.

The symbol k represents a candidate key byte from a key space . A denotes the xor
key difference between two different key bytes. A dataset T comprises traces, symbolized
as t;, which have corresponding associations with plaintext/ciphertext pairs d; € D and
keys k;, or k; ; and d; ; when partial key recovery on byte j is under consideration. Given
our emphasis on byte processing, we exclusively utilize byte vector notation for both
plaintext/ciphertext and the key, while the trace index is omitted.

2.2 Side-channel Analysis

As briefly mentioned in the introduction section, side-channel analysis (SCA) on symmetric
block ciphers can be broadly classified into two categories: profiling SCA and non-profiling
SCA, based on the availability of a fully-controlled cloned device.

Profiling side-channel attacks aim to connect a set of inputs (leakage traces) to outputs
(a probability vector of key guesses). Profiling attacks have two stages. In the profiling
stage, the adversary builds a profiling model, represented as fé‘/l , which is determined by
a leakage model M and a group of learning parameters 6. In this paper, the terms f3’
and fg are used interchangeably. This model maps inputs (side-channel measurements) to
outputs (classes obtained by evaluating the leakage model during a sensitive operation)
using a set of NV profiling traces. Then, in the attack stage, the trained model processes
each attack trace and produces a probability vector p, reflecting the likelihood of the
related leakage value or label. The adversary chooses the best key candidate based on
this probability vector. Given an effective profiling model, only a few measurements from
the target device would be enough to reveal the secret. Typical profiling attacks methods
include the template attack [CRR02], stochastic models [SLP05], and supervised machine
learning-based attacks [HGM™11, MPP16, PHJ*17].

Non-profiling attacks assume less powerful adversaries. An adversary collects a series
of traces created during the cryptographic operation of different plaintexts. Then, the

https://github.com/lichao-wu9/PSCCA

4 Plaintext-based Side-channel Collision Attack

adversary guesses part of the key by analyzing the correlation between the key-related
intermediate values and the leakage measurements. Non-profiling attacks often follow a
"divide-and-conquer’ approach. Initially, the adversary groups the traces based on the
predicted intermediate value tied to the current key guess. If the groups show clear
differences (the ’difference’ depends on the attack method), it suggests that the current
key guess is likely correct. Non-profiling attacks may require multiple measurements
(possibly millions) to reveal secret assets. Simple power analysis (SPA) and differential
power analysis (DPA) [KJJ99a] are commonly used for non-profiling attacks (but they can
also be used for profiling attacks [MOPO08]). Other examples include correlation power
analysis (CPA) [BCO04], and some machine learning-based attacks [Tim19, DLH"22].

2.3 Side-channel Collision Attack

Side-channel collision attack (SCCA) is considered a non-profiling SCA (as it does not rely
on a profiling device) but follows a different attack principle [SWP03, Bog07]. It exploits
data inter-dependence leaked during cryptographic procedures by targeting the collision of
an internal state, which is more likely to coincide between two cryptographic operations.

Concretely, an adversary monitors the side-channel information while the system
processes different inputs and then searches for repeated leakage patterns signifying a
collision event. When a collision is detected, the adversary uses this information to infer
insights about the inter-dependencies of different key sections or the algorithm’s internal
state. For instance, let us consider the SubBytes operation of the Advanced Encryption
Standard (AES) with the same substitution box (Sbox). The same data has been processed
if two different Sbox operations lead to an identical side-channel pattern. Since the Sbox
operation is bijective (that is, it establishes a one-to-one correspondence between two sets),
we obtain the following equations for plaintext byte and key byte i and j:

SbOX(ki) dl) = SbOX(k’j) dj)
=> k;®dd; :kj @dj (1)
=> k;®k; =d; ®d;.

We represent the result of k; ®k; as A; ;. Since A; ; represents the correct key difference,
it is further denoted as A*. Unlike other SCA techniques focusing on key recovery, SCCA
strives to expose the linear difference between various keys. After all key differences are
predicted, an adversary guesses one key byte to achieve full key recovery, as the rest of
the key can then be calculated based on this linear difference. Therefore, the remaining
keyspace shrinks to 28.

2.4 Evaluation Metrics

This work employs the maximum log-likelihood distinguisher to obtain a cumulative sum
S(A) for each A candidate:

Q
S(A) = log(prob(A)), A € K, (2)

i=1

where prob(A) denotes the probability of each A € K being chosen as the correct value;
@ represents the number of attack traces. The result of an attack is represented by a A
guessing vector g = [g1, g2, - - ., gk}, which is computed for @ traces in the attack phase.
This vector orders the A candidates in descending likelihood, with g; being the most
probable candidate and g|c| the least probable one. The position of A* within the A
guessing vector g is utilized to estimate the effort needed to reveal the secret key difference,
and the corresponding rank is referred to as the A rank. In the experimental section,

L. Wu, A. S. Tiran, G. Perin, and S. Picek 5

each attack is conducted ten times, and we calculate the success rate, representing the
percentage of successful attacks out of ten.

Since the side-channel collision attack engages multiple subbytes, we are also interested
in the overall efficiency of the attack in retrieving A; ; with different subbytes. Therefore,
we also assess the overall success rate, indicating the percentage of successful recoveries of
the key difference among all tested A; ;.

3 Related Works

The side-channel analysis community has researched profiling attacks for over two decades.
The first profiling attack was introduced by Chari et al., which established the template
attack [CRR02]. Other "classic" profiling attacks include the stochastic model [SLP05]. The
field has also seen a rise in the application of machine learning techniques, initially employing
simpler methods like random forest [LMBM13] and support vector machines [HGM™11],
as the most common examples. Since 2016, significant attention has been given to deep
learning techniques for profiling SCA. The first work utilizing convolutional neural networks
(CNNs) established the potential of deep learning in breaking various targets [MPP16].
Current research has made considerable advancements, breaking datasets perceived as
challenging a few years ago, even with a single measurement [LZCT21, WPP22a, PWP22].
While deep learning-based SCA provides excellent results, multiple challenges still need
to be addressed [PPM7T23]. One of the main ones is moving away from the “classical”
profiling paradigm.

However, profiling attacks do not apply to black-box adversaries without access to
a profiling device. In these cases, non-profiling SCA becomes relevant. The differential
power analysis, a classical non-profiling SCA, is widely adopted in academia and indus-
try [KJJ99b]. The concept of using deep learning in non-profiling SCA was first proposed
by B. Timon [Tim19], which involved training multiple neural networks corresponding to
different key guesses. Later, advancements by Hoang et al. introduced a multi-output
classification technique for non-profiling SCA, which significantly improved the efficiency
and effectiveness of the attack [HDD22]. Finally, multi-output classification (MOC) and
multi-output regression (MOR) models for non-profiling SCA were investigated by Do et
al. [DLH*22].

Side-channel collision attacks (SCCA) have received less attention than profiling and
non-profiling attacks. The concept of SCCA was first introduced to use SCA data to
detect collisions in the internal state of an AES implementation [SWP03]. The advantage
of this strategy is its independence from any leakage model. Initially limited to single
collision, these attacks were refined to include all possible collisions in the measurement
set [MME10, MS16]. Furthermore, SCCAs can bypass countermeasures previously deemed
“impossible” through conventional profiling SCA without knowing mask shares [WPP23].
The integration of deep learning into SCCA, known as Deep Learning Side-Channel Collision
Attack (DL-SCCA), was recently proposed by Staib et al. [SM23]. This methodology
designates a target byte as a reference, employing corresponding trace segments and
plaintexts to train a deep learning model. The trained model is subsequently applied to
a distinct trace segment to predict the key relationship. However, identifying the trace
segment in this method is performed through deep learning-based sensitivity analysis and
visual inspection, which could be problematic from a realistic perspective.

4 Plaintext-based Side-channel Collision Attack

This section first introduces the threat model we follow. Afterward, the proposed plaintext-
based side-channel collision attack is presented.

6 Plaintext-based Side-channel Collision Attack

4.1 Threat Model

This paper follows the known plaintext attack, an attack model where the attacker can
access both the plaintext and ciphertext!. Typically, we assume the adversary has access
to a device running the target cipher and possesses a fixed yet undisclosed key. The
adversary can instruct the device to perform encryption or decryption operations but
cannot manipulate their values. An adversary lacks information about the hardware
implementation, the countermeasure settings, and the source code. To execute attacks, the
adversary captures multiple side-channel leakages using an oscilloscope and subsequently
analyzes these leakage traces in conjunction with plaintexts and/or ciphertexts. Finally,
we assume that the physical leakages of various intermediate data follow a similar leakage
model without any assumptions about the distinguishability of leakage patterns. Addi-
tionally, unlike other non-collision SCAs, we do not assume that the leakage of the target
implementation adheres to a specific leakage model.

4.2 The Curse of Trace Segmentation

Consider a leaking device using a fixed secret key. Cryptographic processes include a key
byte k; and a string of data d;, considered as an n-bit word. Typically, n = 8 due to
the byte-oriented nature of AES, which is widely examined in related works [ZBHV19,
WPP22a, SM23]. The physical leakage of the key-related cryptographic operation, denoted
as L;, can be modeled by a leakage function ¢ applied to intermediate data I(k;, d;) plus
additive noise Z; ~ N(0,0?), shown in Eq. (3) [BCO04].

Li = o(\(ki, &) + Zi, d; € D. (3)

The purpose of a side-channel collision attack (SCCA) is to reveal a key difference A
by identifying the smallest difference between L; and L;, denoting the leakage trace from
two identical operations processing different data within one cryptographic function:

A; ;= argmin Y(I(ki, di)) — Y (I(kj, dj)) + (Zi — Z5), dj = di © A, (4)
A

where k; and k; are fixed and unknown values representing the secret subkeys of two
trace segments. As the collision between I(k;, d;) and I(k;, d;) is not consistently present
in a single encryption/decryption operation, an adversary must first guess the value of
A = k; @ kj, then extract L; and L; from different traces that satisfy k; @ d; = k; @ dj,
finally making comparison of trace segments. However, as briefly mentioned in Section 1,
this process can be problematic. First, a precise identification of target operations
necessitates distinct leakage traces. If leakage patterns become indistinguishable due to
factors like clock jitters or noise from other hardware components—a common issue in
practical SCAs [WPP23]—the trace segmentation could become complex or even unfeasible.
Although an extensive understanding of the source code [WPP23] or the ability to alter
the source code to, e.g., place separators before and after the target process could be
helpful for leakage identification, a stronger attack assumption is required, reducing the
chance of a successful attack in a black-box setting following our threat model.

Next, A fundamental assumption of SCCA is that the target cryptographic operations
have similar leakage patterns in two trace segments so they can be used for comparison
and determine if the underlying intermediate data has a collision. Ideally, the target
operation’s leakage patterns are unique and noise-free, facilitating easy comparison for an
adversary. However, even hardware with a naive cryptographic implementation can be
subject to environmental noise or clock jitters. Consequently, the corresponding leakage

1Although the proposed method is named plaintext-based side-channel collision attack, we do not
assume that the plaintext knowledge is mandatory to an adversary. In contrast, since we target the
symmetric ciphers, the knowledge of either the plaintext or ciphertext enables the proposed attack.

L. Wu, A. S. Tiran, G. Perin, and S. Picek 7

patterns could differ in the time or amplitude domain even if the underlying cryptographic
operation is the same. One might suggest that leakage randomness due to environmental
noise could be compensated with a low-pass filter or averaging techniques, but it will
also reduce information leakages. Even worse, clock jitter complicates this process and
introduces variability in execution time. To counter this, an adversary could apply elastic
alignment [vWWBL1] or align on a specific feature subset. Still, these methods may ignore
features pertinent to the target operations, potentially reducing attack effectiveness.

In conclusion, trace segmentation is the primary hurdle that hinders the broader
application of SCCA-related methods. Simply operating on raw leakage features, such as
the latest DL-SCCA [SM23], may not suffice to overcome this obstacle. An ideal approach
should autonomously identify the target operation, extract relevant information, and
generate a representation of leakages. Consequently, an adversary could compare these
representations with various A guesses to determine the correct value.

4.3 Learning from Plaintext

In the context of profiling SCA, a profiling model fg encapsulates the relationship between
the physical leakages and intermediate data modeled by a leakage model M. When an
attack trace t is fed into fg, the output is a probability vector corresponding to all possible
intermediate data for the byte i:

pbi = f@(t)7 (5)

Since we focus on a specific subkey byte, k; and k are used interchangeably. Previous works
show that plaintext can be severed as an input to augment profiling SCAs [HHO20, HGG18].
In SCCA, as the adversary is unaware of the key in use, I(k, d;) cannot be leveraged to
estimate 6. Since k remains constant on the target device, the label I(k,d;) and d; are
bijective:

The bijectivity between the label I(k, d;) and d; depends on the choice of |. For example,
Sbox output is often employed as a label function (and intermediate data) for AES attacks.
Then, given a fixed key k;, d; and Sbox(d; @ k;) are bijective. If Eq. (6) holds, d; and
I(k,d;) can be interchangeably mapped using mapping functions map parameterized by k:

I(k,d;) = mapy(d;). (7)

As map is a fixed function that does not influence the profiling process, in the context
of profiling models, we obtain:

fo, (t) = mapj, (fo(t)), (8)

where fg, refers to the profiling model trained with plaintexts, and map}, is a fixed function
that map the probability of intermediate data I(k, d) to its corresponding plaintext d, for
all d € D. Given their bijectivity, the same leakage features are learned when profiling
with d; or I(k,d;). As a result, the models based on these features, fg, and mapj (fg), can
be regarded as equivalent.

Eq. (8) indicates that a profiling model can be established based on plaintext to extract
leakage information. We leverage this characteristic to form the proposed plaintext-based
side-channel collision attack (PSCCA), which will be detailed in the next sections.

4.4 Plaintext-based Collision

The plaintext-based collision is performed in two steps: profiling and attacking. An
overview is shown in Figure 1. For each subkey, the attacker trains a profiling model by
associating a set of raw leakage traces T—containing all intermediate data leakages—with

8 Plaintext-based Side-channel Collision Attack

the corresponding plaintext bytes. As described in Section 4.3, the model is trained based
on the intermediate data’s physical leakage, leveraging the bijectivity between intermediate

data and plaintexts.
l Attacking ‘
Pi
fy ™ d,

Profiling) \
f
ba; | mmp d; D,
J
' Attacking ’

Figure 1: Plaintext-based correlation.

In the attack phase, the traces used before for profiling are used again for attacking.
Providing a subset of traces t from with known plaintext byte d; = u, denoted as t4,—.,
the profiling model fg, outputs an averaged probability vector p(d[t4,—.) for all possible
d in D. The highest probability score will be attributed to the correct plaintext byte value
u. Although this information does not reveal anything to an attacker, the second highest
probability will be attributed to a plaintext byte value v that leads to the most similar
physical leakage of the intermediate data. Indeed, thanks to the bijectivity between the
plaintext and the intermediate data, the top plaintext candidate d¢;-s; and the second-top
plaintext candidate dgseconqg Outputted by the profiling model would imply the leakage
from I(k, d first) and I(k, dsecond), respectively. The physical leakage from I(k, df;rs:) should
resemble that of I(k, dsecond). Otherwise, dsecond would not be ranked as the second most
probable. Consequently, the profiling model will automatically detect the leakage of the
intermediate data without trace segmentation. Formally, following Eq. (3), we have

¥ (I(ki, di =) ~ 2 (I(ki, di = v)), {u,v} €D, 9)

where ~ denotes that two values are similar. The similarity shown in Eq. (9) depends on the
similarity of the physical leakages between the target intermediate data and is, therefore,
dependent on the key value. Now, let us expand p(d|ts,—,) in a vector considering all
possible d; values in D, we have:

pi = {p(d|ta,—0), - - ,p(d|ta,—255)}, d € D. (10)

For another target cryptographic calculation with plaintext byte d;, we can repeat the
same profiling-attacking process with T and fg 4 We get:

pPj = {P(d|tq,=0), - ,p(d|ta;=255)}, d € D. (11)

Recall Eq. (1): a side-channel collision satisty k; @ k; = d; @ d;. If A equals to k; & k;,
we have:

I(d; ® A & kj) (12)
I(d; @ kj)-

Therefore, p; holds for the following relationship given a correct A guess A*:

Pi = Pja- = {P(d® A%[tg,—opa~), - ,P(d D A" tg,—2s50a~)}, d € D. (13)

L. Wu, A. S. Tiran, G. Perin, and S. Picek 9

Eq. (13) encapsulates the core idea of this paper, denoting plaintext-based collision. If
the plaintext used in two intermediate values is the same, the plaintext prediction vector
from one operation can be converted to that of the other with A*. The most likely A; ;
can be retrieved via Eq. (14).

A;; = argmax corr(p;,a, P;); (14)
A

where corr represents the Spearman correlation [HK11] that evaluates the monotonic
relationship between two inputs. The Spearman correlation offers more numerical stability
than the Pearson correlation, as it has a high tolerance when the labels and leakage
features are not linearly correlated. In this context, we are not solely interested in plaintext
prediction (as they are already known) but in the score vector of all classes. For this
reason, the Spearman correlation is best suited for this task.

4.5 FError Correction

Plaintext-based collision eliminates the requirements for leakage segmentation and direct
comparison, thus could potentially lead to a better attack performance. However, it may
introduce incorrect secret guesses due to, for instance, complicated leakage features or
insufficient attack traces. Fortunately, the PSCCA predicts a key difference A, enabling
an adversary to correct prediction outcomes with the help of predictions from other bytes.
Specifically, considering A; ; = k; ® k;, the following relationship holds:

Aij= (ki@ k) @ (kj ©ka)

=0, o PAjq, ad{i,j} (15)
Here, k, denotes an arbitrary key byte, and A; ; can be expressed as the xor of two key
differences A; , and A; , that involve an additional byte. In cases where A; ; is wrongly
predicted while A; , and A;, are accurate, we can ascertain the true value of A; ; using
other predictions.

We ensemble the error correction scheme into our attack. The error correction method
is inspired by the Low-Density Parity Check (LDPC) decoding method [GS12]. Formally,
let the outcome of Eq. (14) denote the probability of each A € K being chosen as A*,
symbolized as p; j(A). We can then correct p; ;j(A) using the following expression:

pij(A) =pi;(A) -] mgx(pi,a(ﬂ) Pia(BOA)), AKX, FE[0,255]. (44
a¢{i.j}

The right-hand side of the equation comprises two components: the original probability
Pi,;(A), and the composite probability of two A values that include a third key byte. We
choose the maximum combined probability for all possible 3, diverging from the original
formulation, which proposed summation [GS12]. Ideally, when 8 = A, , and S A = A ,,
Pia(Aia) - Pja(Ajq) will yield the maximum value. The maximum combined probability
more accurately reflects the likelihood of each A guess, thereby enhancing the effectiveness
of the attack, as demonstrated in the following sections.

5 Attack Scheme

Our attack scheme consists of three steps: 1) profiling with different plaintext bytes; 2)
predicting the key difference A; and 3) error correction. An adversary will always execute
the first two steps. Error correction is only performed when incorrect predictions are
detected, as detailed in the later paragraphs.

10 Plaintext-based Side-channel Collision Attack

To speed up the learning process, instead of profiling each plaintext byte separately in
the first step, we employ multi-task learning (MTL) to profile all plaintexts simultaneously.
MTL is a well-studied machine learning technique that trains multiple learning tasks
in parallel [Car97, Rud17]. The main idea of MTL is to learn multiple tasks together
to improve the learning of each task by leveraging information shared among related
tasks [Car97, ZY21]. For its side-channel applications, previous works from Maghrebi and
Masure et al. use MTL to attack multiple secret shares, leading to an enhanced attack
performance compared with the single-task learning [Mag20, MS23]. For PSCCA, since
the correct A is guessed based on the correlation of two prediction vectors. We leverage
the MTL to acquire prediction vectors for all (16 for AES) intermediate data in one goal
and then make A guesses. Note that the proposed PSCCA is not limited to deep learning
and can be applied with other profiling methods, such as Gaussian templates. In such
cases, each plaintext byte needs to be profiled separately. We demonstrate the Gaussian
templates-based PSCCA in the later paragraph.

Figure 2 illustrates the proposed deep learning architecture. The shared layers are
responsible for processing the leakage and extracting general features. Then, several task-
specific layers are constructed, forming subbranches for each plaintext byte. The shared
structure encourages the profiling model to learn the general features of different tasks,
potentially leading to improved performance and resilience to overfitting. Compared with
DL-SCCA, which relies on a dedicated reference trace segment, we use raw side-channel
traces containing all intermediate data leakages and let the MTL framework locate the
features of interest, thus saving the efforts of trace segmentation. Compared with most
non-profiling SCAs, such as CPA and DDLA, the proposed attack is more computationally
efficient, as it only requires training a single model instead of 256.

Plaintext byte O
Side-channel Plaintext byte 1
traces
Plaintext byte 15

Shared layers Y

Task-specific layers

Figure 2: Deep learning architecture of plaintext-based SCCA.

Once the profiling step is completed, we calculate p(A) for each pair of key bytes
k; and k; using Eq. (14). Finally, error correction is applied if any of the predicted key
difference is incorrect. It is straightforward to detect the presence of incorrect predictions
in PSCCA. Assuming an PSCCA targeting 16 bytes ko, ko, - - -, k15, a successful secret
recovery would satisfy Eq. (17). If the equation does not hold, the error correction method
presented in Section 4.5 is applied.

argmax Po,15(A) = argmax po1(A)@argmax p12(A)P--- Pargmax pia15(A). (17)
A A A A

To provide a clear formulation of PSCCA, the pseudocode of the attack is shown in
Algorithm 1. Line 1 represents the building of the profiling model using plaintexts. The
A guess is obtained from Line 2 to Line 6. As shown in Section 4.4, the plaintext-based

L. Wu, A. S. Tiran, G. Perin, and S. Picek 11

collision requires d; and d; in the same order, e.g., d; = d;. Therefore, as shown in Line
4, it is important to sort the traces to ensure that each A guess satisfies this condition.
Lines 7 and 8 are dedicated to the error correction step.

Algorithm 1: Plaintext-based DL Collision Attack

Input :Traces T, Plaintext d, byte index ¢, byte length L, Profiling model PM
Output : Key difference A; ;, 4,5 € L

1 Train model PM <« Train(T, d);

2 whilei <L -1 do

3 while i < j and j < L do

4 Sort T to make d; = dj;

5 p(d|tdi)7p(d|tdj) — PM(T)a d € D;

6 Pij(A) < corr(p(d|ty,), P(d @ Altyen)), A € K;
7 if argmax, p;;(A) is incorrect then

8 | Ay« Error_Correction(p; ;(A))

To demonstrate the effectiveness of PSCCA, we present attack results using simulated
datasets as described by Eq. (18).

leakage = Sbox(d; ® k;) + Z, i € [0,15], (18)

where d; and k; denote a random plaintext byte and a fixed key byte, respectively. All
features are manipuated with noise Z ~ N(0,02). To ensure the noise has the same effect
on each test case, we normalize the leakage between 0 and 1. A total of 5000 traces were
simulated and used for profiling. As mentioned in Section 5, PSCCA can be applied to
various profiling methods. In this case study, we utilize the Gaussian template as the
benchmark due to its simplicity in terms of hyperparameter tuning. The profiling of each
plaintext byte is performed separately.

04 60 04 60
1- 1-
2- 50 2- 50
3- - 3-
4- 4-
5- 40 5- 40
wv wn
o 6- o 6-
e LN 2 I 30
> >
2 9- | g 9-
10- -20 10- -20
11- 11-
12- [| 12-
13- -10 13- -10
14- [] 13-
-0, W mE. -0 e -0
OdMNMSNOM~RODDOANM S N OCAMNMSTNOM~NODDOACNM N
Lo B B B B B | Lo B B B B B |
Key bytes Key bytes
(a) Before error correction. (b) After error correction.

Figure 3: Rank table of A before and after the error correction with the simulated dataset.

We consider two test cases with different levels of noise represented by two o values:
0.05 and 0.3. In the low-noise test case, the key difference between all key bytes is
successfully recovered, highlighting the effectiveness of selective recovery with plaintext
learning and plaintext-based collision. When the o value is increased to 0.3, as shown
in Figure 3a, we observe some unsuccessful A recoveries for certain key bytes using the
plaintext-based collision method. Fortunately, leveraging the A dependencies between
different key bytes, all key differences are successfully recovered after applying the error

12 Plaintext-based Side-channel Collision Attack

correction, as illustrated in Figure 3b. This demonstrates the efficiency of the proposed
error correction method in challenging scenarios with higher levels of noise.

6 Experimental Results

In this section, we evaluate the effectiveness of our proposed attack strategy using public
side-channel datasets. We aim to perform a plaintext-based side-channel collision attack
and recover all 16 subkeys. To achieve this, we employ a deep learning model shown in
Section 5 that offers the advantage of attacking all subbytes simultaneously.

The overall architecture of the model is depicted in Figure 2. Specifically, we adopt a
Convolutional Neural Network (CNN) as detailed in [PWP22].2 The network architecture
is shown in Table 1. A convolution block consists of a convolution layer, a pooling layer,
and a batch normalization layer. The convolution block is used as shared layers; the
remaining dense layers are assigned to each subbranch.

Table 1: Deep learning architectures used in the experiments.

Layer Kernel number/size Pooling stride/size = Neurons
Convolution block 40/20 2/2 -
Dense - - 200
Dense - - 200

Regarding other hyperparameters, we use Scaled Exponential Linear Unit (Selu) as
the activation function for each layer [KUMH17], except for the final layer, which employs
Softmazx [Brig0] that convert a vector of n real numbers into a probability distribution of n
possible outcomes. The DL model is trained for 100 epochs, meaning that the DL training
will iterate 100 times to learn and adjust its parameters based on the input data. The batch
size is set to 768. A hyperparameter study on training epoch and batch size are provided in
Section 6.4. Data augmentation is implemented using a random translation layer following
the input layer, randomly shifting the leakage measurements within a predefined level of
5. A comprehensive analysis of data augmentation and desynchronization robustness are
presented in Section 6.3.

The deep learning model and its hyperparameters remain constant across all attack
methods. Although customizing the model and tuning hyperparameters for each dataset
and method may enhance attack performance, such variables can significantly complicate
our benchmarking conclusions by introducing model complexity and increasing training
effort. Moreover, even after customizing the model and conducting hyperparameter tuning,
it is impossible to guarantee the model’s generality for a specific scenario. Since the main
contribution of this paper lies in introducing a new attack method, the impact of selecting
optimal solutions can be disregarded by opting for a model with acceptable performance.

To ensure reliable and robust evaluation, each attack scenario considered in this section
is independently tested ten times to reduce the influence of random factors (e.g., random
weight initialization) on attack performance [WPP22b]. The results are then averaged to
represent the overall performance of each attack method.

We consider three publicly available datasets: ASCAD_F, ASCAD_R [BPS'20],
and CHES CTF32. The trace pattern for the first two datasets varies due to different

measurement configurations®. All contain side-channel measurements from first-order

2The deep learning models were implemented using Python 3.6 and TensorFlow library version 2.6.0.
Training algorithms were executed on a Nvidia GTX 1080TI GPU, managed by Slurm workload manager
version 19.05.4.

3https://chesctf.riscure.com/2018/news

4nttps://github. com/ANSSI-FR/ASCAD/issues/13

https://chesctf.riscure.com/2018/news
https://github.com/ANSSI-FR/ASCAD/issues/13

L. Wu, A. S. Tiran, G. Perin, and S. Picek 13

masked AES software implementations. The raw traces contain a huge number of sampling
points, and handling such large intervals of side-channel measurements can be time-
consuming. To address this, we adopt the resampling technique with a resampling window®
80, aligned with the approach outlined in [PWP22]. For the first two datasets, we employ
60,000 traces for the attack; for the last one, our experiments consider 40,000 traces for
the A recovery. As mentioned in Section 4.4, the same trace sets are used for profiling and
attacking.

6.1 Performance Analysis

This section provides a detailed analysis of the attack performance on the datasets under
consideration. We present the results separately with and without the error correction.

Figure 4 illustrates the A ranks for different combinations of key bytes. Note that the
ASCAD_F and ASCAD_ R datasets’ first two bytes are unmasked and, therefore, excluded
from the attack due to their relative simplicity. As a result, all key bytes depicted in
Figure 4 are mask-protected. The results show that the proposed plaintext-based collision
method successfully recovers all key differences for ASCAD_F and ASCAD_ R, thereby
reducing the remaining key space to 28. For the CHES_CTF dataset, 13 of the 16 tested
A values are successfully recovered.

— ky®ks3 —— K¢ ® k7 —— K10 ® k11 k13 ® k14
— k3®ksy —— ki®kg —— knn @Kk k14 ® K15
— ks ®Ks —— kg ® kg k12 ® k13 Kis @ k3
— ks® kg ko ® k10
00 710000 20000 30000 40000 50000 60000
Number of attack traces
(a) ASCAD_F.
200 — koks — ks®k; —— kio®kn ki @ k14
v — ks@ky —— k;®ks —— k11 @k k14 ® k15
E — ks ®ks —— kg ® ko — k1o ®Kki3 kis @ k2
< 100 § — ks ® ke —— ko ® k1o
L
AT &
0 10000 20000 30000 40000 50000 60000
Number of attack traces
(b) ASCAD_R
ZOOX — ko ®ky —— ks ®ks —— kg ® ko k1o ® k13
™ ~ \ — ki ®k; —— ks ® kg —— ko ® k1o ki3 ® k14
§ \ - — ky®ks3 — kg ®ky K10 ® k11 K14 ® k15
<100 _ AN — ks®ky —— ki®ks k11 @ k12 k15 ® ko
N S \
0 N ‘\‘\\ _
0 5000 10000 15000 20000 25000 30000 35000 40000

Number of attack traces

(c) CHES_ CTF.

Figure 4: A rank for each dataset (no error correction).

A comprehensive overview of the attack performance for each dataset is depicted in
Figure 5, which presents the A rank for all possible subkey combinations. Our method

5The resampling aims to reduce the dimensionality of the traces; a resampling window indicates the
number of trace samples averaged into a single sample.

14 Plaintext-based Side-channel Collision Attack

Key bytes
ey bytes
w
8
Key bytes

POV

5§ & 8
=
Somvouswn
‘ I G

5 8
=
Somwaunswnro

1 11-
1 12] 2 EEEE CEEEE e

HEE_EEEEEST N

HHHHHH

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
Key bytes Key bytes Key bytes

(a) ASCAD_F: before error (b) ASCAD_ R: before error (c) CHES_CTF: before error
correction. correction. correction.

w
8

Key bytes
w
&

Key bytes

ANMTNO~N®R O oM 1 ChARMT MO D G aam
ﬁﬁﬁﬁﬁﬁ ER=gagul Ep=pejupil
Key bytes Key bytes Key bytes

(d) ASCAD_F: after error (e) ASCAD_ R: after error (f) CHES__CTF: after error
correction. correction. correction.

Figure 5: Rank table of A before and after error correction.

successfully breaks ASCAD_ F with all possible subkey combinations, even without error
correction. For ASCAD_R and CHES_ CTF, the proposed method recovers a significant
portion of A. As expected, the attack results improved further after applying the error
correction method. Interestingly, the 12th subkey of CHES CTF consistently exhibits
mediocre performance in the A calculation. Indeed, the physical leakage of intermediate
data related to key byte 12 differs significantly from the rest, leading to all key difference
delta related to this key byte being unrecoverable. Fortunately, when error correction is
applied, the A rank experiences a significant improvement.

An overview of the success rate (SR), representing the percentage of successfully
recovered A, ; over ten attacks, and overall success rate (OSR) for all key differences, is
provided in Figure 6. The error correction method contributes to a higher SR for the
ASCAD_R and CHES_ CTF datasets. Note that achieving an OSR of 100% is not always
necessary for PSCCA to recover A. One could perform majority voting by counting the
occurrences of each A candidate being the most likely A over multiple attacks, and the
one with the highest count number can be considered the correct key. Accordingly, the
OSR for CHES__ CTF can reach 100% as well. For instance, as shown in Figure 6f, the
SR of A7 12 is 60%, meaning that the correct candidate has been selected six times over
ten attacks. In this case, an adversary is confident that the correct Az 12 is retrieved by
choosing the A candidate that happens the most frequently.

6.2 Performance Benchmark

To showcase the superior attack capabilities of PSCCA, this section includes a benchmark
comparison with DL-SCCA, using ASCAD_F as the target dataset. All attack settings
are identical to the original paper [SM23]. Additionally, a state-of-the-art non-profiling
attack method, DDLAS, is incorporated into our benchmark, as detailed in Table 2. For
DL-SCCA, the choice of reference byte for model training significantly influences the
number of bytes recovered (refer to [SM23], Figure 8). Hence, both the worst and best-case
overall success rates (OSR) are reported and separated by ’/’. Conversely, the performance

6The LSB leakage model is used as it performs better than HW based on our preliminary tests.

L. Wu, A. S. Tiran, G. Perin, and S. Picek 15

Key bytes
Key bytes
Key bytes

.‘ -0.0
0
=

ﬁﬁﬁﬁﬁﬁ

Key bytes

SR=] 2
Key bytes Key bytes

(a) ASCAD_F: before error (b) ASCAD__ R: before error (¢) CHES__CTF: before error
correction (OSR=100%). correction (OSR=96%). correction (OSR=78%).

1.0 1.0
0.8
0.6

0.4 Z10 04

0.8

-0.6

pr—

Key bytes
Key bytes

-0.2 -0.2

-0.0

@ o
Key bytes

Key bytes Key bytes

(d) ASCAD_F: after error (e) ASCAD_ R: after error (f) CHES__CTF: after error
correction (OSR=100%). correction (OSR=100%). correction (OSR=88%).

Figure 6: Success rate table of A before and after error correction.

of PSCCA is presented as OSR before and after applying error correction.

Table 2: Performance comparison between DDLA, DL-SCCA, and our method.

Attack setting Samples OSR Computation time
DDLA Known leakage offset Refined leakage interval 100% 3h 14min
DDLA Black box Full Set 93% 5h 23min
DL-SCCA Known leakage offset Full Set 0%/100% 23min
DL-SCCA Black box Full Set 0%/76% 3h 47min
This work Black box Full Set 100%/100% 5min

Regarding attack efficiency, PSCCA surpasses DL-SCCA in both scenarios, even without
error correction. Specifically, DL-SCCA only matches PSCCA’s performance when an
optimal reference byte with a known leakage offset is used. Under black box conditions,
DL-SCCA’s highest OSR falls to 76%. In the worst-case scenario, it fails to recover any
key byte difference. In contrast, PSCCA, tailored for black box scenarios, achieves a 100%
OSR without error correction. DDLA also achieves a 100% OSR with a refined time
interval, as per the original study. However, its OSR decreases to 92% when applied to the
entire dataset. Notably, DDLA faces two drawbacks compared to PSCCA: it relies on an
accurate leakage model, with our tests showing that LSB outperforms the HW model, and
it necessitates training 256 models for each byte, which increases computational complexity.
In addition, we also examine the number of attack traces required to achieve a key difference
of zero 7. PSCCA demonstrates greater robustness compared to its DL-SCCA counterpart.
For ASCAD_F, PSCCA needs, on average, less than 500 traces to recover all key bytes,
which is significantly more efficient than DL-SCCA, which largely depends on selecting
the appropriate reference key byte for training. Indeed, less than 600 traces are required
for DL-SCCA in the best setting, i.e., attacks with the best reference byte. Unfortunately,
if the reference byte is poorly selected, no key byte can be recovered with DL-SCCA.
The same conclusion is applied to the other two datasets. Consequently, DL-SCCA only

"Both PSCCA and DL-SCCA utilize the same set of traces for both profiling and attacking.

16 Plaintext-based Side-channel Collision Attack

achieves parity with PSCCA when the optimal reference key byte is used in a known offset
setting. DLLA, in contrast, requires fewer traces (around 350 and 490 for the refined and
full sets, respectively). However, it is less directly comparable to our approach as SCCA,
which evaluates leakage fragments, substantially differs from non-profiling attacks that
focus on a single intermediate data.

Our method is more computationally efficient than DL-SCCA and DDLA. It requires
only five minutes to recover all key differences A. In contrast, DDLA, attacking all bytes
in parallel, requires more than three hours to complete an attack on a single byte over
a refined leakage interval, and this duration almost doubles for the full dataset. Both
DL-SCCA and PSCCA attack full traces. However, a black box attack using DL-SCCA
takes more than five hours, making our method significantly more efficient.®. Moreover,
PSCCA conducts simultaneous attacks of 16 bytes, completing each byte’s attack in under
a minute. This performance is on par with state-of-the-art methods that require meticulous
hyperparameter adjustments for size reduction [PWP22].

6.3 Data Augmentation and Desynchronization Robustness

Preprocessing of leakage measurements is essential for an efficient attack. For PSCCA, in
addition to normalizing the data, data augmentation plays a pivotal role in the success of the
proposed attack. The data augmentation is realized by randomly shifting the input traces
within a threshold.. This section studies the impact of different data augmentation levels
(i.e., the maximum range of the traces desynchronization) on attack performance. Since
our data argumentation method is equivalent to adding desynchronization to the traces,
this section also showcases the robustness of PSCCA against leakage desynchronization.

Table 3: The influence of data augmentation/desynchronization on OSR.
0 5 10 20 50
ASCAD_F 100% 100% 100% 28% 8%
ASCAD_R 7% 96% 99% 91% 65%
CHES_CTF 16% 78% 48% 15% 6%

As shown in Table 3, when the desynchronization level is zero, PSCCA achieves a 100%
OSR only for the ASCAD__F dataset. However, a significant performance improvement
is observed when augmenting the datasets (introducing random shifts). For instance, as
shown in Figure 7, PSCCA has a mediocre performance when the desynchronization level is
zero; when increased to 5, most of the key differences can be recovered. These observations
underscore the role of data augmentation in enhancing the effectiveness of the proposed
method. As a regularization technique, data augmentation helps prevent the profiling
model from fixating on specific features, enabling it to focus on global features instead. In
the context of side-channel attacks, where data leakages exist in only a few features, such
techniques prevent the model from overfitting irrelevant features. Looking at it differently,
rather than diminishing the attack performance, a not-too-large desynchronization in
leakages could potentially enhance the attack effectiveness of PSSCA.

Employing a high level of desynchronization can have adverse effects, leading to a
decline in attack performance. As the desynchronization level reaches 20, there is a
noticeable deterioration in attack performance across various configurations. This high
desynchronization level increases the complexity of fitting the model to the leakage as
the timing of the leakages becomes more random. Consequently, longer training periods
or larger models may be required, increasing computational effort. When increasing to

8[SM23] reports a computation time of 1h 57min with a Nvidia 2080TT GPU; our attack is significantly
more computationally efficient even with a lower-end Nvidia GTX 1080TI GPU.

L. Wu, A. S. Tiran, G. Perin, and S. Picek 17

2. el HE W 250 5. 250
3- T T [B 3-
x| W [[][] N P 4- 200
sENE NN L 5-
2 [[[I 6-

¢ 7THEEIE TEENETE 150 87 150

% 8 Ll . > 8-

> 91l | [] [| > 9-

Sl W 1 I 0 100 210- 100
1 H BN 11-
12 ||]]| 12 -
ERN | [[[T [50 13- 50
14 - HE B 14-
L ANEENEENRTE . 15

.
N M INDWOMS~O0OANMS N
Lo e B B B B |

Key bytes

(a) Desynchronization: 0.

R -0
N M INOS~O0OOoOANMS N
L B B B I B |
Key bytes

(b) Desynchronization: 5.

Figure 7: Rank table of A for the ASCAD_ R with different desynchronization levels.

desynchronization 50, OSR. drops considerably. Although one could fine-tune the model
to improve the model resistance to desynchronization, a high desynchronization level
influences the attack performance of PSCCA, similar to other SCA methods.

On the other hand, error correction would be a suitable solution to overcome the
desynchronization effect. Table 4 presents the effect of desynchronization variation with
error correction enabled. A noticeable increase in OSR is observed in the settings with high
desynchronization, except when the desynchronization level is zero. This limitation arises
because the error correction method relies on key differences involving a third byte. The
error correction method becomes non-functional if these key differences are also incorrect.
In such scenarios, as outlined at the end of Section 6.1, a potential workaround could
be applying an ensemble method with the majority voting. A similar conclusion can be
drawn with an overly high desynchronization level (e.g., desynchronization of 50). Even
though the error correction method cannot improve OSR (except for ASCAD_R, where
the performance is still acceptable, a consequence of higher OSR before error correction),
majority voting could be a promising alternative.

Table 4: The influence of error correction on OSR with different desynchronization levels.

0 5 10 20 50
ASCAD_F 100% 100% 100% 49% 8%
ASCAD_R 7% 100% 100% 100% 92%
CHES_CTF 16% 88% 67% 31% 6%

6.4 Hyperparameters Study
6.4.1 Batch Size

Batch size in a deep learning model refers to the number of examples (input-output pairs)
used in a single training iteration. This parameter plays a crucial role in shaping the
behavior and overall performance of the deep learning model. Table 5 illustrates that
larger batch sizes generally improve attack performance in the proposed method. This
can be attributed to larger batch sizes providing a more accurate gradient estimation.
Indeed, in deep learning, the gradients guide the model’s learning process by indicating
the direction in which the model parameters should be updated. With a larger batch size,
the gradient estimation becomes more reliable as it incorporates information from more
data points, potentially leading to better learning and performance.

18 Plaintext-based Side-channel Collision Attack

Table 5: Hyperparameter evaluation for batch size.
128 256 512 768 1024

ASCAD_F 31% ™% 100% 100% 100%
ASCAD_R % 95% 9% 96% 97%
CHES_CTF 6% 72% 73% 78% 81%

Moreover, larger batch sizes enable more efficient utilization of computational resources,
particularly GPUs, which tend to exhibit optimal performance when processing computa-
tions in larger blocks. In our experiments, for example, a batch size of 1024 completed
tests on all datasets four times faster than a batch size of 128, highlighting the advantage
of utilizing larger batch sizes in terms of computational efficiency.

Consistent with the preceding section, error correction generally leads to an increase in
the Overall Success Rate (OSR) across various test cases, except when the OSR is already
low. Notably, the CHES__CTF dataset consistently attains an 88% OSR when the batch
size exceeds 256. As explained in Section 6.1, the performance is subpar when calculating
the key difference involving byte 12 of the CHES__ CTF key compared to other scenarios.
For instance, correcting Ay 12, for instance, involves adjusting both A; , and Ay 12, where
x denotes a random byte distinct from 1 or 12. Since A, 12 is also incorrect, the resulting
corrections would be flawed. In such cases, the ensemble method proposed towards the
end of Section 6 emerges as a potential solution for recovering the correct key.

Table 6: The influence of error correction on the batch size variation.
Batch size 128 256 512 768 1024

ASCAD_F 42% 7% 100% 100% 100%
ASCAD_R 7% 100% 100% 100% 100%
CHES _CTF 6% 88% 88% 88% 88%

6.4.2 Training Epochs

Simply increasing the number of training epochs does not always improve a deep learning
model’s ability to map inputs to outputs. It can lead to overfitting, where the model
struggles to generalize to new data. Table 7 illustrates the performance changes in our
method with different epoch counts. Training with just 50 epochs is often enough for most
setups. More epochs generally yield stable results, except for the CHES__CTF dataset,
where increased training leads to a decline in attack performance. This suggests that the
model trained on this dataset is more prone to overfitting. PSCCA remains robust to
changes in training epochs across tested datasets.

Table 7: Study on the influence of the training epoch.
Training epoch 50 100 200 400 600

ASCAD_F 100% 100% 100% 100% 100%
ASCAD_R 91% 96% 95% 96% 95%
CHES_CTF 1% 78% 73% 70% 67%

To summarize, our analysis highlights the impact of hyperparameter tuning. We
emphasize that we employ a single model to attack all considered datasets, achieving
consistent performance. This underscores the simplicity of our model’s hyperparameter
tuning and underlines the robustness to PSCCA, making it a reliable SCCA solution across
different attack scenarios.

L. Wu, A. S. Tiran, G. Perin, and S. Picek 19

7 Discussion

The Side-channel Collision Attack (SCCA) distinguishes itself from profiling and non-
profiling side-channel attacks by directly comparing leakage features to identify side-channel
collisions. SCCA enables the direct cancellation of high-order masks, whereas non-collision
attacks often require additional knowledge (e.g., details about the masking scheme) or
additional efforts (e.g., leakage recombination). While classical profiling and non-profiling
attacks can break certain masking implementations [ZBHV19, WPP24], some, such as affine
masking, remain resistant to classical attacks in a black-box setting [BS20]. The unique
approach of collision attacks makes the attack particularly efficient and straightforward, as
demonstrated in recent studies [WPP23]. However, SCCA has its own set of disadvantages.
SCCA commonly requires a thorough understanding of the underlying code for identifying
the targeted operation and achieving accurate trace segmentation [WPP23]. As discussed in
Section 4.2, this requirement presents challenges for both SCCA and DL-SCCA, including
issues of portability, where trace segments must be perfectly aligned, and the targeted
operations should exhibit similar leakage patterns. Our approach deviates from conventional
collision attacks, including its DL variant (DL-SCCA), by using probability vectors covering
all possible label hypotheses. This approach, detailed in Eq. (9), demonstrates that both
correct and incorrect labels can reveal essential key dependencies, thereby boosting the
effectiveness of our attack strategy. Indeed, as highlighted in [BK02, WWK 23], integrating
incorrect labels into the analysis has been shown to enhance the performance of both
non-profiling and profiling attacks.

Our method extends beyond the aforementioned benefits, completing the PSCCA with
an error correction scheme that renders it suitable for real-world application. First, it is
possible that the two intermediate data have very different physical leakages, challenging
the learning process. The proposed error correction method leverages different deltas’
dependencies to correct prediction errors, leading to more robust performance. Second,
our method introduces an error correction scheme by leveraging properties inherent to
SCCA and the capability to attack all 16 bytes simultaneously. This allows an attacker to
determine the correctness of a key byte and correct errors based on other key bytes, thus
potentially guessing more key bytes correctly.

Despite the benefits, it’s crucial to preprocess the leakage traces for the attack to
be effective. Our approach relies on the bijective relationship between plaintext and
intermediate data to understand the physical leakage of the latter. If there are leakages
from the plaintext, the profiling model could be misled, hindering its ability to learn
about the intermediate data leakage accurately. Simple Power/EM Analysis (SPA/SEMA)
techniques can be employed to eliminate leakages related to plaintext loading. In cases of
more basic implementations, such as devices with low security that directly load plaintext,
a simple yet effective solution might be to conduct a preliminary correlation analysis on
the plaintext and then eliminate or mask the relevant leaking features.

PSCCA capitalizes on the bijective relationship between plaintext and the targeted
intermediate data to derive leakage features from raw traces automatically. This inherent
property opens up the possibility for various countermeasures to undermine the proposed
attack’s effectiveness. For instance, implementing frequent re-keying strategies, such as
changing session keys, could disrupt the bijective link, thereby challenging PSCCA’s
efficiency. Yet, the efficacy of this countermeasure largely hinges on the frequency of
re-keying, indicating that it might not be entirely resistant to such attacks.

Hiding countermeasures could be employed to defend PSCCA. While these may not
completely disable the attack, they could substantially increase the number of attack traces
required for feature extraction. A similar effect is observed with shuffling, a prevalent
countermeasure known to compromise both SCCA [WPP23] and potentially DL-SCCA.
High-order masking might raise the difficulty level of the attack. However, given the
demonstrated ability of DL to circumvent masking countermeasures and SCCA’s capacity

20 Plaintext-based Side-channel Collision Attack

to neutralize masking shares [WPP23], the actual effectiveness of this countermeasure
varies depending on actual implementations.

We do not test the dataset with parallel computation, so no definitive conclusion
can be drawn here. Still, we emphasize that the PSCCA’s attack performance relies
on the profiling model’s feature extraction capability. Generally, suppose the parallel
implementation is breakable in a profiling attack setting targeting the intermediate data
directly. Then, we expect our attack also to work, as it targets the plaintext bijective to
the intermediate data.

From a security evaluator’s perspective, our proposed PSCCA framework offers several
key benefits for simplifying and enhancing the side-channel analysis process. First, it
reduces the expertise and detailed knowledge required about the target by breaking down
the SCCA process into three straightforward steps: training, predicting, and comparing.
Plaintext labeling allows evaluators to automatically pinpoint targeted leakages through a
classifier, effectively extracting relevant information from raw data. By utilizing Multi-Task
Learning (MTL), evaluators can train a single model to attack all bytes simultaneously,
significantly reducing the time needed for a comprehensive evaluation. Additionally, the
collision comparison is performed solely on distilled plaintext vectors, which removes the
need for trace segmentation and avoids the related portability challenges. Finally, including
an error correction step enables evaluators to more easily assess and validate the attack’s
effectiveness, making the overall evaluation process more streamlined and reliable.

8 Conclusions and Future Work

This paper presents a novel plaintext-based side-channel collision attack, eliminating
the need for trace segmentation and leakage comparison. We also propose an error
correction scheme to enhance the accuracy of the correction key difference prediction,
thereby improving the overall attack performance. Next, we employ multi-task learning to
attack all subkey bytes simultaneously, resulting in efficient key difference recovery. By
applying our framework to three masked AES datasets, we achieve profiling attack results
significantly surpassing the state-of-the-art DL-SCCA and DDLA in attack performance
and computation efficiency. Importantly, our approach demonstrates its generality across
various attack scenarios, as minimal effort is required for hyperparameter tuning.

For future work, it would be interesting to explore methods for retrieving the correct
key difference, such as refining the Spearman correlation technique. This could lead to a
reduction in the number of attack traces required. Secondly, we plan to continue enhancing
the error correction method, potentially incorporating ensembles or other techniques.
Developing a more robust deep learning model could also strengthen the relationship
between the input and each task. For instance, direct connections between the input
layer and the model’s subbranch may reduce reliance on the main branch and improve
feature extraction capabilities. Lastly, given that our method relies on the bijectivity of
the plaintext and intermediate data, it is relevant to explore its usages on other ciphers
where bijectivity does not hold (e.g., DES Sbox).

Acknowledgments

This work received funding in the framework of the NWA Cybersecurity Call with project
name PROACT with project number NWA.1215.18.014, which is (partly) financed by
the Netherlands Organisation for Scientific Research (NWO). Additionally, this work was
supported in part by the Netherlands Organization for Scientific Research NWO project
DISTANT (CS.019).

L. Wu, A. S. Tiran, G. Perin, and S. Picek 21

References

[BCH*20]

[BCOO4]

[BK02]

[Bog07]

[BPS+20]

[Bri9o]

[BS20]

[Car97]

[CRR02]

[DLH*22]

Shivam Bhasin, Anupam Chattopadhyay, Annelie Heuser, Dirmanto Jap,
Stjepan Picek, and Ritu Ranjan Shrivastwa. Mind the portability: A war-
riors guide through realistic profiled side-channel analysis. In 27th An-
nual Network and Distributed System Security Symposium, NDSS 2020, San
Diego, California, USA, February 23-26, 2020. The Internet Society, 2020.
doi:10.14722/ndss.2020.24390.

Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 16-29. Springer, 2004. doi:10.1007/978-3-5
40-28632-5_2.

Régis Bevan and Erik Knudsen. Ways to enhance differential power analysis.
In International Conference on Information Security and Cryptology, pages
327-342. Springer, 2002. doi:10.1007/3-540-36552-4_23.

Andrey Bogdanov. Improved side-channel collision attacks on aes. In Se-
lected Areas in Cryptography: 14th International Workshop, SAC 2007, Ot-
tawa, Canada, August 16-17, 2007, Revised Selected Papers 1/, pages 84-95.
Springer, 2007. doi:10.1007/978-3-540-77360-3_6.

Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ASCAD
database. J. Cryptographic Engineering, 10(2):163-188, 2020. doi:10.1007/
513389-019-00220-8.

John S Bridle. Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition. In Neurocom-
puting: Algorithms, architectures and applications, pages 227-236. Springer,
1990. doi:10.1007/978-3-642-76153-9_28.

Olivier Bronchain and Francois-Xavier Standaert. Side-channel countermea-
sures’ dissection and the limits of closed source security evaluations. TACR
Transactions on Cryptographic Hardware and Embedded Systems, pages 1-25,
2020. doi:10.46586/tches.v2020.i2.1-25.

Rich Caruana. Multitask learning. Machine learning, 28:41-75, 1997. doi:
10.1007/978-1-4615-5529-2_5

Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Burton S. Kaliski Jr., Cetin Kaya Kog, and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Pa-
pers, volume 2523 of Lecture Notes in Computer Science, pages 13-28.
Springer, 2002. URL: https://doi.org/10.1007/3-540-36400-5_3,
doi:10.1007/3-540-36400-5_3.

Ngoc-Tuan Do, Phu-Cuong Le, Van-Phuc Hoang, Van-Sang Doan, Hoai Giang
Nguyen, and Cong-Kha Pham. Mo-dlsca: Deep learning based non-profiled
side channel analysis using multi-output neural networks. In 2022 International
Conference on Advanced Technologies for Communications (ATC), pages 245—
250, 2022. doi:10.1109/ATC55345.2022.9943024.

https://doi.org/10.14722/ndss.2020.24390
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-36552-4_23
https://doi.org/10.1007/978-3-540-77360-3_6
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-642-76153-9_28
https://doi.org/10.46586/tches.v2020.i2.1-25
https://doi.org/10.1007/978-1-4615-5529-2_5
https://doi.org/10.1007/978-1-4615-5529-2_5
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1109/ATC55345.2022.9943024

22

Plaintext-based Side-channel Collision Attack

[GS12]

[HDD22]

[HGG18]

[HGM T 11]

[HHO20]

[HK11]

[KJJ99a)

[KJJ99b]

[KUMH17]

[LMBM13]

[LZC*21]

Benoit Gérard and Frangois-Xavier Standaert. Unified and optimized linear
collision attacks and their application in a non-profiled setting. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages 175-192.
Springer, 2012. doi:10.1007/978-3-642-33027-8_11.

Van-Phuc Hoang, Ngoc-Tuan Do, and Van Sang Doan. Efficient non-profiled
side channel attack using multi-output classification neural network. IFEE
Embedded Systems Letters, pages 1-1, 2022. doi:10.1109/LES.2022.32134
43.

Benjamin Hettwer, Stefan Gehrer, and Tim Giineysu. Profiled power analysis
attacks using convolutional neural networks with domain knowledge. In
International Conference on Selected Areas in Cryptography, pages 479—498.
Springer, 2018. doi:10.1007/978-3-030-10970-7_22.

Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede,
and Joos Vandewalle. Machine learning in side-channel analysis: a first study.
J. Cryptogr. Eng., 1(4):293-302, 2011. doi:10.1007/s13389-011-0023-x.

Anh-Tuan Hoang, Neil Hanley, and Maire O’Neill. Plaintext: A missing
feature for enhancing the power of deep learning in side-channel analysis?
breaking multiple layers of side-channel countermeasures. TACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 49-85, 2020. doi:
10.46586/tches.v2020.i4.49-85.

Jan Hauke and Tomasz Kossowski. Comparison of values of pearson’s and
spearman’s correlation coefficients on the same sets of data. Quaestiones
geographicae, 30(2):87, 2011. doi:10.21203/rs.3.rs-4380975/v1.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Proceedings of the 19th Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO 99, pages 388-397, London, UK, UK, 1999.
Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=646764.70
3989.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388-397. Springer, 1999. URL: https://doi.org/10.1007/
3-540-48405-1_25, doi:10.1007/3-540-48405-1_25.

Ginter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
Self-normalizing neural networks. In Advances in neural information processing
systems, pages 971-980, 2017. doi:10.5555/3294771.3294864.

Liran Lerman, Stephane Fernandes Medeiros, Gianluca Bontempi, and Olivier
Markowitch. A Machine Learning Approach Against a Masked AES. In
CARDIS, Lecture Notes in Computer Science. Springer, November 2013.
Berlin, Germany. doi:10.1007/978-3-319-14123-7_5.

Xiangjun Lu, Chi Zhang, Pei Cao, Dawu Gu, and Haining Lu. Pay attention
to raw traces: A deep learning architecture for end-to-end profiling attacks.
ITACR Transactions on Cryptographic Hardware and Embedded Systems, pages
235274, 2021. doi:10.46586/tches.v2021.13.235-274.

https://doi.org/10.1007/978-3-642-33027-8_11
https://doi.org/10.1109/LES.2022.3213443
https://doi.org/10.1109/LES.2022.3213443
https://doi.org/10.1007/978-3-030-10970-7_22
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.46586/tches.v2020.i4.49-85
https://doi.org/10.46586/tches.v2020.i4.49-85
https://doi.org/10.21203/rs.3.rs-4380975/v1
http://dl.acm.org/citation.cfm?id=646764.703989
http://dl.acm.org/citation.cfm?id=646764.703989
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.5555/3294771.3294864
https://doi.org/10.1007/978-3-319-14123-7_5
https://doi.org/10.46586/tches.v2021.i3.235-274

L. Wu, A. S. Tiran, G. Perin, and S. Picek 23

[Mag20]

[MME10]

[MOPO0S]

[MPP16]

[MS16]

[MS23]

[PHJ*+17]

[PPM*23]

[PWP22]

[Rud17]

[SLP05]

[SM23]

Houssem Maghrebi. Deep learning based side-channel attack: a new profiling
methodology based on multi-label classification. Cryptology ePrint Archive,
2020.

Amir Moradi, Oliver Mischke, and Thomas Eisenbarth. Correlation-enhanced
power analysis collision attack. In Cryptographic Hardware and Embedded
Systems, CHES 2010: 12th International Workshop, Santa Barbara, USA,
August 17-20, 2010. Proceedings 12, pages 125—139. Springer, 2010. doi:
10.1007/978-3-642-15031-9_9.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks:
Rewvealing the secrets of smart cards, volume 31. Springer Science & Business
Media, 2008. doi:10.1007/978-0-387-38162-6.

Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In Interna-
tional Conference on Security, Privacy, and Applied Cryptography Engineering,
pages 3-26. Springer, 2016. doi:10.1007/978-3-319-49445-6_1.

Amir Moradi and Frangois-Xavier Standaert. Moments-correlating dpa. In
Proceedings of the 2016 ACM Workshop on Theory of Implementation Security,
pages 5-15, 2016. doi:10.1145/2996366.2996369.

Loic Masure and Rémi Strullu. Side-channel analysis against anssi’s protected
aes implementation on arm: end-to-end attacks with multi-task learning.
Journal of Cryptographic Engineering, pages 1-19, 2023. doi:10.1007/s133
89-023-00311-7.

Stjepan Picek, Annelie Heuser, Alan Jovic, Simone A. Ludwig, Sylvain Guilley,
Domagoj Jakobovic, and Nele Mentens. Side-channel analysis and machine
learning: A practical perspective. In 2017 International Joint Conference
on Neural Networks, IJCNN 2017, Anchorage, AK, USA, May 14-19, 2017,
pages 40954102, 2017. doi:10.1109/ijcnn.2017.7966373.

Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina.
Sok: Deep learning-based physical side-channel analysis. ACM Computing
Surveys, 55(11):1-35, 2023. doi:10.1145/3569577.

Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring feature selection
scenarios for deep learning-based side-channel analysis. JACR Transactions on
Cryptographic Hardware and Embedded Systems, 2022(4):828-861, Aug. 2022.
URL: https://tches.iacr.org/index.php/TCHES/article/view/9842,
doi:10.46586/tches.v2022.i4.828-861.

Sebastian Ruder. An overview of multi-task learning in deep neural networks.
arXiv preprint arXiv:1706.05098, 2017.

Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model
for differential side channel cryptanalysis. In Cryptographic Hardware and
Embedded Systems — CHES 2005, pages 30-46. Springer Berlin Heidelberg,
2005. URL: https://doi.org/10.1007/11545262_3, doi:10.1007/115452
62_3.

Marvin Staib and Amir Moradi. Deep learning side-channel collision at-
tack. TACR Transactions on Cryptographic Hardware and Embedded Systems,
2023(3):422—444, Jun. 2023. URL: https://tches.iacr.org/index.php/T
CHES/article/view/10969, doi:10.46586/tches.v2023.13.422-444,

https://doi.org/10.1007/978-3-642-15031-9_9
https://doi.org/10.1007/978-3-642-15031-9_9
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1145/2996366.2996369
https://doi.org/10.1007/s13389-023-00311-7
https://doi.org/10.1007/s13389-023-00311-7
https://doi.org/10.1109/ijcnn.2017.7966373
https://doi.org/10.1145/3569577
https://tches.iacr.org/index.php/TCHES/article/view/9842
https://doi.org/10.46586/tches.v2022.i4.828-861
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/11545262_3
https://tches.iacr.org/index.php/TCHES/article/view/10969
https://tches.iacr.org/index.php/TCHES/article/view/10969
https://doi.org/10.46586/tches.v2023.i3.422-444

24

Plaintext-based Side-channel Collision Attack

[SWP03)]

[Tim19]

[vWWB11]

[WPP22a]

[WPP22b)

[WPP23]

[WPP24]

[WWK*23]

[ZBHV19]

[ZY21]

Kai Schramm, Thomas Wollinger, and Christof Paar. A new class of
collision attacks and its application to des. In Fast Software Encryp-
tion: 10th International Workshop, FSE 2003, Lund, Sweden, February
24-26, 2003. Revised Papers 10, pages 206—222. Springer, 2003. doi:
10.1007/978-3-540-39887-5_16.

Benjamin Timon. Non-profiled deep learning-based side-channel attacks with
sensitivity analysis. TACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 107-131, 2019. doi:10.46586/tches.v2019.1i2.
107-131.

Jasper GJ van Woudenberg, Marc F Witteman, and Bram Bakker. Improving
differential power analysis by elastic alignment. In Topics in Cryptology—
CT-RSA 2011: The Cryptographers’ Track at the RSA Conference 2011,
San Francisco, CA, USA, February 14-18, 2011. Proceedings, pages 104-119.
Springer, 2011. doi:10.1007/978-3-642-19074-2_8.

Lichao Wu, Guilherme Perin, and Stjepan Picek. The best of two worlds:
Deep learning-assisted template attack. TACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 413—437, 2022. doi:10.46586/tch
es.v2022.13.413-437.

Lichao Wu, Guilherme Perin, and Stjepan Picek. On the evaluation of
deep learning-based side-channel analysis. In International Workshop on
Constructive Side-Channel Analysis and Secure Design, pages 49-71. Springer,
2022. doi:10.1007/978-3-030-99766-3_3.

Lichao Wu, Guilherme Perin, and Stjepan Picek. Not so difficult in the end:
Breaking the lookup table-based affine masking scheme. In International
Conference on Selected Areas in Cryptography, pages 82—-96. Springer, 2023.
doi:10.1007/978-3-031-53368-6_5.

Lichao Wu, Guilherme Perin, and Stjepan Picek. Weakly profiling side-channel
analysis. TACR Transactions on Cryptographic Hardware and Embedded
Systems, 2024. URL: https://ches.iacr.org/2024/papers-issue-4/4_7
3.pdf.

Lichao Wu, Léo Weissbart, Marina Kréek, Huimin Li, Guilherme Perin, Lejla
Batina, and Stjepan Picek. Label correlation in deep learning-based side-
channel analysis. IEEE Transactions on Information Forensics and Security,
2023. doi:10.1109/tifs.2023.3287728.

Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient cnn architectures in profiling attacks. JACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2020(1):1-36, Nov.
2019. URL: https://tches.iacr.org/index.php/TCHES/article/view/
8391, doi:10.13154/tches.v2020.i1.1-36.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IFEFE
Transactions on Knowledge and Data Engineering, 34(12):5586-5609, 2021.
doi:10.1109/TKDE.2021.3070203.

https://doi.org/10.1007/978-3-540-39887-5_16
https://doi.org/10.1007/978-3-540-39887-5_16
https://doi.org/10.46586/tches.v2019.i2.107-131
https://doi.org/10.46586/tches.v2019.i2.107-131
https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.46586/tches.v2022.i3.413-437
https://doi.org/10.46586/tches.v2022.i3.413-437
https://doi.org/10.1007/978-3-030-99766-3_3
https://doi.org/10.1007/978-3-031-53368-6_5
https://ches.iacr.org/2024/papers-issue-4/4_73.pdf
https://ches.iacr.org/2024/papers-issue-4/4_73.pdf
https://doi.org/10.1109/tifs.2023.3287728
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.1109/TKDE.2021.3070203

	Introduction
	Background
	Notation
	Side-channel Analysis
	Side-channel Collision Attack
	Evaluation Metrics

	Related Works
	Plaintext-based Side-channel Collision Attack
	Threat Model
	The Curse of Trace Segmentation
	Learning from Plaintext
	Plaintext-based Collision
	Error Correction

	Attack Scheme
	Experimental Results
	Performance Analysis
	Performance Benchmark
	Data Augmentation and Desynchronization Robustness
	Hyperparameters Study

	Discussion
	Conclusions and Future Work
	References

