
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 3, 49 pages.

https://doi.org/10.62056/a0fhsgvtw
Check for updates

Amortizing Circuit-PSI in the
Multiple Sender/Receiver Setting

Aron van Baarsen1,2 and Marc Stevens1

1 CWI, Cryptology Group, Amsterdam, The Netherlands
2 Leiden University, Mathematical Institute, Leiden, The Netherlands

Abstract. Private set intersection (PSI) is a cryptographic functionality for two
parties to learn the intersection of their input sets, without leaking any other infor-
mation. Circuit-PSI is a stronger PSI functionality where the parties learn only a
secret-shared form of the desired intersection, thus without revealing the intersection
directly. These secret shares can subsequently serve as input to a secure multiparty
computation of any function on this intersection.
In this paper we consider several settings in which parties take part in multiple
Circuit-PSI executions with the same input set, and aim to amortize communications
and computations. To that end, we build up a new framework for Circuit-PSI around
generalizations of oblivious (programmable) PRFs that are extended with offline
setup phases. We present several efficient instantiations of this framework with new
security proofs for this setting. As a side result, we obtain a slight improvement in
communication and computation complexity over the state-of-the-art semi-honest
Circuit-PSI protocol by Bienstock et al. (USENIX ’23). Additionally, we present a
novel Circuit-PSI protocol from a PRF with secret-shared outputs, which has linear
communication and computation complexity in the parties’ input set sizes, and is able
to realize a stronger security notion. Lastly, we derive the potential amortizations over
multiple protocol executions, and observe that each of the presented instantiations is
favorable in at least one of the multiple-execution settings.
Keywords: Circuit-PSI · Private Set Intersection · OPRF · MPC

1 Introduction
Private Set Intersection (PSI) is a specific type of multi-party computation where two
parties hold private sets X and Y and wish to learn the intersection X ∩ Y without
revealing any information about elements outside the intersection. The first PSI proto-
col [Mea86] makes use of an oblivious pseudorandom function (OPRF), and the state-of-the
art protocols [KKRT16, PRTY19, CM20, RS21, RR22, BPSY23] still follow this same
structure. An OPRF [FIPR05] is a two-party functionality that lets a receiver evaluate
a pseudorandom function on a set of inputs while the sender remains oblivious to the
inputs/outputs and the receiver remains oblivious to the function.

The focus of this work lies on Circuit-PSI protocols, realizing a more generic and
richer functionality which outputs f(X ∩ Y) for a function f , instead of outputting the
intersection directly. In particular, we consider general solutions for Circuit-PSI that
output secret shares of flags indicating whether an element xi in the receiver’s set X
matches an element yj in the sender’s set Y . Such a solution moreover outputs shares of
auxiliary data, which, if there is a match xi = yj with the sender’s set, reconstruct to the
input values x̃i and ỹj associated to xi and yj , respectively. These outputs can be used as

Research partially funded by NWO/TKI Grant 628.009.014.
E-mail: aronvanbaarsen@gmail.com (Aron van Baarsen), marc.stevens@cwi.nl (Marc Stevens)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-04-09 Accepted: 2024-09-02

https://doi.org/10.62056/a0fhsgvtw
https://crossmark.crossref.org/dialog/?doi=10.62056/a0fhsgvtw&domain=pdf&date_stamp=2024-09-27
mailto:aronvanbaarsen@gmail.com
mailto:marc.stevens@cwi.nl
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

Figure 1 Ideal Circuit-PSI functionality FCircuit-PSI

Parameters: Receiver with input set X = {(xi, x̃i) | i ∈ [n]} of size n, Sender with input
set Y = {(yj , ỹj) | j ∈ [m]} of size m. Variables xi and yj are identifiers chosen from the
same set, the variables x̃i and ỹj are auxiliary data chosen from another set.
Functionality: Send secret shares (ai)i∈[n] to receiver and (bi)i∈[n] to sender, where ai

and bi are sampled uniformly at random under the following constraint:
if ∃j ∈ [m] : yj = xi, then ai + bi = (0, x̃i, ỹj), otherwise ai + bi = (1, 0, 0).

input to an MPC protocol to securely evaluate some function f on the tuples (xi, x̃i) ∈ X
and (yj , ỹj) ∈ Y for which xi = yj , without revealing the tuples themselves. An ideal
Circuit-PSI functionality is given in Figure 1. The first Circuit-PSI protocol by Huang et
al. [HEK12] and later improvements thereof [PSZ14, PSSZ15, PSZ18, PSWW18, CO18,
FNO19, PSTY19, MRR20] use general-purpose MPC techniques, such as garbled circuits.
More recent protocols [PSTY19, RS21, CGS22, CDG+21, RR22, BPSY23] are based on a
functionality called an Oblivious Programmable PRF (OPPRF) and have become very
practical, taking approximately 16 seconds for sets of around a million items [RR22]. An
OPPRF [KMP+17] is a two-party functionality similar to an OPRF, but where the sender
can program some inputs of their choice to map to certain outputs of their choice, and
the function looks pseudorandom on unprogrammed points. Again the sender remains
oblivious to the receiver’s inputs/outputs and the receiver remains oblivious to the function.
One can construct an OPPRF from an OPRF and a recently introduced tool called an
Oblivious Key-Value Store (OKVS) [GPR+21], which is an encoding of key-value pairs that
is distributed independently of the encoded keys if the corresponding values are random.

Most of the recent contributions in Circuit-PSI focus on improving the efficiency of
individual protocol executions in the semi-honest setting. So far, potential amortizations
between multiple executions have not been studied in the Circuit-PSI setting. Moreover,
only the Circuit-PSI protocols based on general-purpose MPC techniques can be easily
made secure against malicious adversaries, but their performance remains unsatisfactory.
We consider several different settings where a sender and/or receiver take part in multiple
protocol executions, over which we aim to amortize the parties’ computation and commu-
nication costs. To this end, we build up a formal framework for semi-honest Circuit-PSI
protocols based on OPPRFs, with stand-alone setup phases which can be run in advance
and used in multiple executions through an authenticated bulletin board. This framework
fits generalizations of several state-of-the-art protocols, and we present instantiations
which excel in different settings. In particular, one of our instantiations provides a slight
improvement over the state-of-the art Circuit-PSI protocols in the single-execution setting.
We present new security proofs for these constructions in this new setting and analyze the
amortizations for specific constructions. Additionally, we present a novel Circuit-PSI pro-
tocol from a shared-output PRF (SOPRF), together with instantiations in the semi-honest
as well as in the malicious setting, which additionally allows re-usable input-independent
setup phases. This has promising applications in the unbalanced setting where the sender’s
input set is significantly larger than the receiver’s input set. Notably, the SOPRF-based
protocol results in a Circuit-PSI protocol with linear communication and computation
complexity in the size of the parties’ input sets, and realizes “almost malicious” security.
The only obstacle towards fully malicious security is that a malicious receiver is able to
change their output shares before the secure post-computation of the function f to be
evaluated on the intersection. Still, this is a major step on the way towards efficient fully
maliciously secure Circuit-PSI.

Aron van Baarsen, Marc Stevens 3

1.1 Our Contributions
In this work we present the first formal treatment of Circuit-PSI protocols that enable
the reuse of data and computation between multiple executions, thereby amortizing costs
over several executions. To this end, we present a systematic study of generalizations of
existing protocols to the amortized setting. We build up a formal framework to construct
Circuit-PSI protocols from an oblivious programmable PRF (OPPRF), where we introduce
setup phases which are run in advance by a single party on their private data and can be
re-used in multiple executions. An OPPRF can in turn be constructed from an oblivious
PRF (OPRF) and an oblivious key-value store (OKVS), for which we again present a
framework with re-usable setup phases. On the lowest level, we extend several existing
OPRF protocols with setup phases, and prove their security is preserved when the setup
phase is used in multiple executions. Formally, the setup phase outputs are shared through
an authenticated bulletin board and can be referred to and used within several executions
of the online protocol phase between sender and receiver.

Additional Contributions. Along the way, we obtain several useful contributions
orthogonal to our systematic study of the amortized setting.

• We obtain an improvement in communication as well as computation complexity
over the state-of-the-art Circuit-PSI protocols in the single-execution setting.

• We present a novel Circuit-PSI protocol from a shared-output OPRF (SOPRF).
– In the semi-honest setting from The Dodis-Yampolskiy PRF [DY05].
– In the malicious setting from a random oracle, making a significant step towards

efficient maliciously-secure Circuit-PSI.
• We introduce a Core-PSI functionality, as an intermediate towards Circuit-PSI, which

might result in a more efficient solution for some applications.
• We extend the VOLE-based OPRF of [BC23] to the malicious setting.
• We generalize the 2HashDH OPRF of [JKK14, JKKX16] to the group action setting

to pave the way for potential future post-quantum instantiations.
• We combine our protocols with PIR to obtain Circuit-PSI in the unbalanced setting

with communication sublinear in the larger input set.
• We present a formal proof for the OPPRF protocol from an OPRF and an OKVS,

generalizing the proof from [RS21].

1.2 Technical Overview
Vector OPRF. Our first observation is that whereas recent Circuit-PSI protocols [RS21,
RR22, BPSY23] rely on an OPRF that uses the same key to evaluate each of the receiver’s
items, the original protocol from [PRTY19] uses an OPRF which uses a different key
for each of the receiver’s items. We formalize this as a vector OPRF (VOPRF) in
Section 3.1 and add the option for re-usable sender and receiver setup phases. A direct
benefit of this formalization is that it is naturally satisfied by the Vector Oblivious
Linear Evaluation (VOLE) based OPRF of Bui and Couteau [BC23], which is more
efficient in terms of communication and computation compared to the VOLE-based
OPRF of Rindal and Schoppmann [RS21] that is used in the state-of-the art Circuit-PSI
protocols [RR22, BPSY23]. We additionally extend the protocol from [BC23] to satisfy
malicious security and exploit the programmability of the underlying VOLE functionality
to allow for a re-usable receiver setup phase in Section 3.2. In Section 3.3 we revisit the
maliciously secure 2Hash Diffie-Hellman-based OPRF of Jarecki et al. [JKK14, JKKX16].
We present the protocol in terms of group actions to pave the way for potential future
post-quantum instantiations, and extend the protocol with a re-usable setup phase for the
sender as well as for the receiver.

4 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

Vector OPPRF. Moving one level up, we generalize the ideal OPPRF functionality
from [RS21] to use a different key for each of the receiver’s items and extend it with
the option for re-usable sender and receiver setup phases. We formalize this as a vector
OPPRF (VOPPRF) in Section 4.1. To instantiate this VOPPRF functionality from a
VOPRF and an OKVS in Section 4.2, we use a natural generalization of the protocol
from [RS21]. To the best of our knowledge a formal proof of this construction has not been
covered before in the literature. The main idea behind this protocol is that to program
(y, z), the sender encodes an OKVS P ← Encode(y, z − F ′(y)), where F ′ is the underlying
OPRF, and sends P to the receiver. The receiver obtains F ′(x) from the OPRF protocol
and computes F ′(x) + Decode(P , x), which equals z if x is equal to some programmed
value y, and a random value otherwise.

We observe that when the underlying VOPRF protocol allows the sender to use the
same function during multiple executions, they can re-use their OKVS encoding during
multiple executions. In this case the sender’s cost during subsequent executions scales
only with the size of the receiver’s set. The resulting protocol is secure against malicious
receivers, but only against semi-honest senders. The main way a malicious sender can
deviate from the protocol is by sending a maliciously constructed encoding vector P , which
we discuss further in Section 4.3.

Core-PSI from Vector OPPRF. In Section 5.1 we introduce our novel Core-PSI
functionality with re-usable sender and receiver setup phases. This functionality mainly
differs from Circuit-PSI in the sense that the output of the protocol consists of secret
shares of 0 for items in the intersection and secret shares of a random value otherwise, as
opposed to secret shares of 1 for items outside of the intersection as Circuit-PSI outputs.
We opted for this formalization for two main reasons. Firstly, many Circuit-PSI protocols
internally first obtain this output and then perform a final secure equality check, thus can
be viewed as Core-PSI protocols without loss of generality: The omitted secure equality
check can instead be included in the post-processing function f to be MPC-evaluated over
the intersection. Secondly, Core-PSI can lead to more efficient solutions than Circuit-PSI
when the post-processing function does not require any direct equality checks. For instance,
checking whether at least one, or all, of the elements in a subset belong to at least one, or
all, of a subset of senders’ sets (see Section 8). Core-PSI therefore provides us with a more
general and modular way to study Circuit-PSI protocols.

Our Core-PSI protocol in Section 5.2 follows the same structure as the Circuit-PSI
protocol from [PSTY19, RS21], except that we extend it with options for sender and receiver
setup phases, and replace the final secure equality checking step by a rerandomization
step. The main idea behind the protocol is as follows. The receiver maps their items to
a Cuckoo hash table T . The sender constructs a simple hash table using the same hash
functions, and programs an OPPRF to map all items in each bucket k to the same random
value sk. The receiver obtains an OPPRF evaluation for each bucket Tk, which will equal
sk if there exists a matching item in the sender’s set, and equals an independent random
value otherwise. In the latter case, the rerandomization step makes sure the receiver’s
output share is distributed independent from the sender’s choice of OPPRF. Unfortunately,
even when the underlying VOPPRF protocol allows a sender setup phase, the sender
should not re-use this setup phase in multiple executions with corrupt receivers; since
they will be able to notice collisions in the OPPRF outputs if their Cuckoo hash tables
Tk, T ′

k contain different items that the sender mapped to the same bucket. Just as the
Circuit-PSI protocols from [PSTY19, RS21], our Core-PSI protocol is not secure against
malicious parties. Malicious receivers are able to supply a maliciously constructed Cuckoo
hash table, whereas malicious senders can supply a maliciously constructed simple hash
table or even arbitrarily deviate from the underlying OPPRF protocol as described before.
We describe this in more detail in Section 5.3.

Aron van Baarsen, Marc Stevens 5

Core-PSI from Shared-Output PRF. To tackle the above issues with respect to
re-usability of the sender’s setup phase and malicious adversaries, we present a novel
Core-PSI protocol in Section 6. The main tool we use for this protocol is a shared-output
PRF (SOPRF), which is a functionality that, on input a key K from the sender and an
input x from the receiver, outputs an additive secret sharing of F (K, x), where F is a PRF.
With this in hand, we can obtain a relatively simple Core-PSI protocol as follows. The
sender samples a key K, encodes their items y ∈ Y in an OKVS P ← Encode(y, F (K, y)),
and sends P to the receiver. The receiver inputs their items x ∈ X and the sender inputs
K to the SOPRF functionality, such that they obtain secret shares rx + sx = F (K, x). The
receiver can now compute rx − Decode(P , x), which together with sx will form a secret
sharing of 0 if x is equal to some y ∈ Y , and a secret sharing of a random value otherwise.

Surprisingly, the above protocol immediately solves multiple shortcomings of the
VOPPRF-based protocol. Since the receiver never learns any evaluations of the PRF
F under key K, only random secret shares, the target values encoded in the OKVS P
will look pseudorandom to the receiver, even when the encoding is re-used in multiple
executions. Semi-honest security of our protocol is proven in Section 6.1, where we also
present an efficient protocol to realize the SOPRF functionality based on evaluating the
Dodis-Yampolskiy PRF [DY05] inside MPC. Additionally, the parties no longer need to
perform the Cuckoo/simple hashing step, since the SOPRF functionality automatically
aligns the output shares with the indexing of the receiver’s set, which limits the avenues
for attack for malicious parties. The main remaining obstacle towards malicious security is
that the sender can supply any arbitrary vector P instead of a valid OKVS encoding, and
the simulator has no way of extracting the “effective” pairs (y, F (K, y)) encoded in the
OKVS. To overcome this, we leverage a trick introduced by Garimella et al. [GPR+21].
When the function F is modeled as a random oracle, the simulator can observe the queries
(K, y) made to F (·) and check for which of these the relation Decode(P , y) = F (K, y) is
satisfied. By imposing an upper bound on the length of the vector P , we can guarantee
that only a bounded number of “effective” input elements will be extracted in this way.
Ultimately, we obtain a maliciously secure Core-PSI protocol with re-usable sender setup
phase, whose security is proven in Section 6.2. We do have to note that the protocol does
not succeed to output authenticated secret-shares of the intersection. More precisely, a
malicious receiver is able to corrupt their output shares before moving on to a potential
post-computation phase, without the sender being able to notice this.

Unbalanced Core-PSI. In the setting where there is a sender/server with a large input
set Y and multiple receivers/clients with relatively small input sets Xi, we recognize that it
can be very useful for the server to be able to re-use their setup phase in order to amortize
communication and computation costs. However, the communication complexity of our
Core-PSI protocols scales linearly in the size of the server’s set, which might be prohibitive
for resource-constrained clients. Inspired by the recent protocol by Hetz et al. [HSW23]
for unbalanced plain PSI, we suggest to combine our Core-PSI protocols with private
information retrieval (PIR) to achieve communication complexity which scales sublinearly
in the server’s set size. More precisely, the idea is that, instead of the server sending their
OKVS encoding P , the client uses a PIR scheme to query the entries of P needed to
decode their values. Combined with the sparse structure of the recent OKVS construction
from Bienstock et al. [BPSY23], this means that the client only needs to issue a single PIR
query to decode an item from the OKVS. More details can be found in Section 7.

From Core-PSI to Circuit-PSI. To get from our Core-PSI protocols to the familiar
Circuit-PSI functionality in Figure 1, one can simply re-insert the final secure equality
checking step at the end of the protocol (see Section 8). In this way we obtain the
following incidental improvements over previous works. By instantiating our VOPPRF-

6 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

based Core-PSI protocol from Section 5 with the VOLE-based VOPRF from Section 3.2
and a state-of-the art OKVS construction, one obtains a slight improvement in terms of
communication as well as computation with respect to the state-of-the-art semi-honest
Circuit-PSI protocols [RR22, BPSY23]. By instantiating the random oracle by a crypto-
graphic PRF and instantiating the SOPRF functionality by a maliciously-secure MPC
protocol for evaluating this PRF in our SOPRF-based Core-PSI protocol from Section 6.2,
we obtain an “almost maliciously” secure Circuit-PSI protocol with linear communication
and computation complexity. The only shortcoming of this protocol is that a malicious
receiver is able to change their output shares without the sender being able to notice this
during a potential post-computation phase. Still this provides the first major step on
the way towards fully maliciously-secure Circuit-PSI since the protocol with O(n log n)
complexity from Huang et al. [HEK12].

Amortization Savings. Coming back to the main objective of this work, in Section 9,
we study the amortization savings that the protocols in our framework achieve in different
settings with multiple Core-PSI executions:

• 1-to-N : Single sender using the same input set with multiple receivers;
• N-to-1: Multiple senders with a single receiver who uses the same input set;
• N-to-N : Multiple senders and receivers, each re-using their input set;
• N-query: Multiple executions between the same sender using the same input set

with the same receiver who uses typically small and distinct query sets.

From this we can conclude that each of the presented instantiations of our protocols
is favorable in at least one of the above multiple-execution settings, depending on the
parameters and security model required by the application setting.

1.3 Applications
The main motivating application for this work is to improve customer risk assessment
procedures, which requires a lot of, often duplicate, effort from financial institutions. We
envision several usecases within this domain for the different settings covered in this work:

• 1-to-N & N-query: A large data-providing party such as a chamber of commerce,
from which several organizations wish to (repeatedly) query data regarding their
customers in a privacy-preserving way;

• N-to-1 & N-to-N : Organizations wish to improve their customer risk analysis with
private data from other organizations, especially to detect important discrepancies.

Additionally, the 1-to-N and N -query settings are very relevant to the setting where the
receivers’ sets are significantly smaller than the sender’s, e.g., for private contact discovery
[KRS+19, HSW23] and password breach checking [CMdG+21, LKLM21]. In Section 7, we
explore further steps that one can take next to our amortizations to obtain an efficient
Circuit-PSI protocol in this unbalanced setting.

The N -to-1 and N -to-N setting could furthermore see applications in, e.g., privacy-
preserving ridesharing [HOS17], private blacklist checking [MPC18] and money-laundering
detection [CDG+21]. Circuit-PSI enables to strengthen privacy in all these applications
by only revealing the items in the intersection that satisfy some additional predicates.

1.4 Related Work
We use the main structure of constructing a Circuit-PSI protocol using an OPPRF
from [PSTY19], which was subsequently also used in [RS21, RR22, BPSY23]. The main
construction of an OPPRF from an OPRF and an additional data structure is due to

Aron van Baarsen, Marc Stevens 7

[KMP+17] and was subsequently also used in [RS21, GPR+21, RR22, BC23, BPSY23].
The conditions that this data structure needs to satisfy were formalized by [GPR+21] under
the definition of an OKVS, and it was mentioned by [GPR+21, BC23, RR22, BPSY23]
that it is possible to construct an OPPRF from any OPRF and an OKVS, but to the
authors’ knowledge no general proof of this claim has appeared in the literature before. Our
VOLE-VOPRF is an adaptation of [BC23], our CGA-VOPRF an adaptation of [JKKX16],
and our SOPRF is based on the technique of evaluating a PRF using MPC, which has been
used before in, for example, [PSSW09, ARS+15, GRR+16, KLS+17, MRR20, FNO22].
To the authors’ knowledge, amortizing communication and computation over multiple
protocol executions has not been studied before in the context of Circuit-PSI.

In the context of plain PSI, amortizations have been studied before, mainly for PSI
between servers with a large input set and multiple clients with relatively small input
sets [KLS+17, KRS+19, HSW23]. Kiss et al.[KLS+17] introduce a framework for this
setting, where the complexity of the online phase only depends on the smaller set. They
adapt OPRF-based PSI protocols based on various existing OPRFs [CT10, Mea86, NR97,
HL08, PSSW09]. OPRF protocols that fit the framework of [KLS+17] coincide with OPRF
protocols allowing sender’s key reuse with multiple receivers (mr = yes), see Appendix E
how these fit in our framework. Kales et al.[KRS+19] and Hetz et al.[HSW23] introduce
further improvements to [KLS+17]. Notably, Hetz et al. [HSW23] use OPRF-based PSI
in combination with PIR, which we extend to the Circuit-PSI setting in Section 7. The
combination of PIR and PSI was earlier proposed by Demmler et al. [DRRT18]. All these
works only consider PSI, and results do not directly apply to the Circuit-PSI setting.

Furthermore, there are several unbalanced PSI protocols [CLR17, CHLR18, CMdG+21]
and unbalanced Circuit-PSI protocols [LPR+21, SJ23] based on fully homomorphic encryp-
tion (FHE), which achieve sublinear communication complexity in the large set size, but
suffer from high computation overhead for the sender. Concurrently, Hao et al. [HLP+24]
constructed an unbalanced Circuit-PSI protocol from a primitive they call oblivious key-
value retrieval. The idea is to let the receiver in the VOPPRF protocol (see Figure 9)
decode the OKVS encoding using PIR queries rather than the sender sending the OKVS
encoding to the receiver. This is comparable to the approach we propose in Section 7.
The main difference is that we suggest to use the OKVS construction of Bienstock et
al. [BPSY23], which can be decoded using a single PIR query, as opposed to using a
garbled Cuckoo table-like OKVS (such as [RR22]) as [HLP+24] suggests.

Independently from our work, Qiu et al.[QYYZ22] noted that the programmability
of the PCG for VOLE correlations from [BCG+19b] can be exploited to improve upon
the communication and computation complexity of the central party in the maliciously
secure plain multi-party PSI protocol from [GPR+21], using the OPRF from [RS21]. They
only consider the setting where the central party directly learns the intersection, and their
results do not apply to the Circuit-PSI setting.

Finally, all previous works on Circuit-PSI target semi-honest security. The protocol
by Huang et al. [HEK12] can achieve malicious security by using an actively-secure MPC
protocol to compute the circuit, but this results in a protocol with O(n log n) complexity
in the input set size n. Our protocol in Section 6.2 manages to achieve “almost malicious”
security while still having linear communication and computation complexity. It does
unfortunately not achieve fully malicious security since a corrupted receiver can change
their output shares before the post-computation phase without the sender being able to
notice this, but provides a major step towards a fully secure solution with linear complexity.

1.5 Acknowledgments
The authors would like to thank Brett Hemenway Falk and Daniel Noble for helpful
discussions about shared-output PRFs. In particular, we would like to thank Daniel Noble
for pointing us in the direction of the Dodis-Yampolskiy PRF being especially suited for

8 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

evaluation inside MPC.

2 Preliminaries
We denote κ ∈ N for the computational security parameter and λ ∈ N for the statistical
security parameter. We denote D ≈c D′ for the computational indistinguishability of
distribution ensembles D := {Dκ}κ∈N, D′ := {D′

κ}κ∈N and D ≈s D′ for their statistical
indistinguishability. For a ring R and the R-module Rn, n ∈ N, we denote ⟨x, y⟩ :=∑n

i=1 xiyi for the “inner product” of x, y ∈ Rn. We extend this componentwise to
products R× S for rings R and S.

2.1 Security Model
All of our protocols and functionalities are parameterized by multiple sending parties Sj ,
j ∈ [NS] and multiple receiving parties Ri, i ∈ [NR], of which each pair can decide to
run an execution of the protocol between themselves. We use sid to indicate the session
identifier, which is a unique string for each protocol execution that takes place between
a sender and a receiver. Each sender Sj holds a unique sender identifier idSj and each
receiver Ri holds a unique receiver identifier idRi . We moreover use σ to indicate the
sender setup phase identifier and ρ to indicate the receiver setup phase identifier.

For ease of exposition, we consider the corruption model of an adversary A which can
maliciously corrupt either several receiving parties Ri, or several sending parties Si, but
never simultaneously corrupts sending and receiving parties. By combining the simulator
for a subset of corrupt senders and the simulator for a subset of corrupt receivers, one can
obtain a simulator for the setting where both sending and receiving parties are corrupted.

Whether a protocol is secure against semi-honest or malicious adversaries is indicated
in the corresponding theorem statement. Security is proven via the standard simulation-
based paradigm (see e.g., [Lin17]). For our VOPRF (see Section 3) and VOPPRF (see
Section 4) protocols either all sending parties or all receiving parties can simultaneously be
corrupted. For our VOPPRF-based Core-PSI protocol (see Section 5), all sending parties
can simultaneously be corrupted, but at most one receiving party can be corrupted at
the same time. For our SOPRF-based Core-PSI protocol (see Section 6) again either all
sending parties or all receiving parties can simultaneously be corrupted.

2.2 Oblivious Key-Value Store (OKVS)
An oblivious key value store (OKVS) [GPR+21] can be used to “program” certain points
of the sender’s choosing into the OPRF, resulting in a functionality called an oblivious
programmable PRF (OPPRF), which is a frequent building block of modern Circuit-PSI
protocols. The concept of an oblivious key-value store (OKVS) was introduced by Garimella
et al.[GPR+21] as a generalization of the polynomial interpolation techniques that are used
in many PSI protocols [FNP04, FIPR05, KS05, DMRY09, HN10, MPP10, Haz15, HV17,
FHNP16, CDJ16, KMP+17, GN19, GS19, PRTY19, KRTW19, PSTY19, CDG+21].

Recent OKVS constructions [RR22, BPSY23] have become very efficient, taking O(nλ)
time to encode n key-value pairs, O(λ) time to decode a single key, and having constant
expansion factor η := q(n)/n. For our OPPRF construction, we require an OKVS with
some extra properties as defined below, and note that all of the most efficient OKVS
constructions [RR22, BPSY23] satisfy these properties.

Definition 1. A linear double oblivious key value store OKVS = (Encode, Decode) is
defined with respect to a key space K, value space V , statistical security parameter λ ∈ N,
randomness space {0, 1}κ and expansion function q : N→ N, as follows:

Aron van Baarsen, Marc Stevens 9

• Encode : takes as input a set of key-value pairs L ∈ (K × V)n and randomness
θ ∈ {0, 1}κ, and outputs a vector P ∈ Vq(n) or an error indicator ⊥.

• Decode : takes as input a vector P ∈ Vm, a key k ∈ K and randomness θ ∈ {0, 1}κ,
and outputs a value v ∈ V.

That satisfy:

• Correctness: For all L ∈ (K × V)n, θ ∈ {0, 1}κ with n distinct keys:
Encode(L, θ) = P ̸= ⊥ =⇒ ∀(k, v) ∈ L: Decode(P , k; θ) = v.

• Low error probability: For all L ∈ (K × V)n with n distinct keys:
Prθ

$←−{0,1}κ [Encode(L; θ) = ⊥] ≤ 2−λ.

• Double Obliviousness: For any {k1, . . . , kn} ⊂ K of n distinct keys and any
θ ∈ {0, 1}κ, then for v1, . . . , vn

$←− V, if Encode does not output ⊥:
{P ← Encode({(ki, vi)i∈[n]}; θ)} ≈s {P $←− Vq(n)}.

• Linearity: There exists a public function family {dq(n) | n ∈ N}, with dq(n) :
K × {0, 1}κ → Vq(n) such that for all n ∈ N, P ∈ Vq(n), k ∈ K and θ ∈ {0, 1}κ it
holds that: Decode(P , k; θ) := ⟨P , dq(n)(k; θ)⟩.

In a protocol where a malicious party supplies an OKVS encoding P , the simulator
often needs to be able to extract the items that are encoded in P . One way to do this is
to require the party to encode pairs (ki, H(ki)) for keys ki. When H(·) is modeled as a
random oracle, the simulator can observe the queries (k, H(k)) to H(·) and test which of
these satisfy Decode(P , k) = H(k). In such a scenario, we would like to be able to upper
bound the number of items a malicious party can fit in the OKVS encoding, which is
formalized through the following overfitting game [GPR+21].

Definition 2. Let (Encode, Decode) be an OKVS with parameters chosen to support n
items and let A be a PPT adversary. Let H : {0, 1}∗ → {0, 1}ℓ be a public function and
(P , θ)← AH(1κ) (i.e., under the condition that |P | = q(n)). Define the set

X := {k ∈ K | A queried H at k and Decode(P , k; θ) = H(k)}.

Then A wins the (n, n′)-OKVS overfitting game if |X| > n′. We say the (n, n′)-OKVS
overfitting problem is hard if no PPT A wins the game with non-negligible probability.

Pinkas et al.[PRTY20, App. A] showed that when H is modeled as a random oracle with
output length ℓ, then the probability of an adversary making Q queries to H and winning
the (n, n′)-OKVS overfitting game is unconditionally upper bounded by

(
Q
n′

)
· 2(q(n)−n′)ℓ.

2.3 Cuckoo Hashing
To construct a Circuit-PSI protocol, an OPPRF is often used in combination with a data
structure called a Cuckoo hash table. In a Cuckoo hash table, t hash functions h1, . . . , ht are
used to map n items into a table T consisting of m = ϵn bins (with ϵ > 1), such that each
bin contains at most one item and each item x is placed at precisely one of the locations
h1(x), . . . , ht(x) [PR01]. The insertion procedure works roughly as follows: each item x is
first attempted to be placed at location h1(x); if T [h1(x)] already contains an item y, then
y is evicted and attempted to be placed at a different location hi(y) ̸= h1(x); this procedure
is repeated until no more evictions are necessary or until a threshold number of relocations
has been performed, in which case the item is placed in a special stash. We refer to the
latter event as failure to place the given element. We follow recent Circuit-PSI protocols
[PSTY19, RS21] by using the extrapolated experimental analysis of Pinkas et al.[PSZ18]
to argue that when t > 2 hash functions together with an appropriate number of bins are
used, a failure probability of < 2−40 can be guaranteed, which makes it unnecessary to
use a stash. Their analysis showed that ϵ = 1.27, 1.09, 1.05 is sufficient for t = 3, 4, 5,
respectively [PSZ18].

10 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

2.4 Cryptographic Group Actions
In this section we briefly recap the concept of a hard homogeneous space (HHS) from
Couveignes [Cou06]. We make use of this framework for our generalization of the 2HashDH-
OPRF of Jarecki et al.[JKK14, JKKX16] to the group action setting in Section 3.3.

Definition 3. Let H be a finite abelian group and U a set. We say that H acts regularly
on U or that U is a principal homogeneous space for H if there is a map ⋆ : H× U → U
such that:

• Identity: Let 1H ∈ H be the identity. Then for any x ∈ U , we have 1H ⋆ x = x.
• Compatibility: For any g, h ∈ H and any x ∈ U , we have (gh) ⋆ x = g ⋆ (h ⋆ x).
• Regularity: For any x, y ∈ U there exists a unique g ∈ H such that g ⋆ x = y.

We denote the group action by the tuple (H, U, ⋆), note that in particular |H| = |U |.

We present a slightly adapted version of the definition of a hard homogeneous space
from Couveignes [Cou06], inspired by the framework of [AFMP20], in which we additionally
require the existence of an efficiently computable hash function H : {0, 1}∗ → U for which
it is hard to find a path between hashed points.

Definition 4. Let (H, U, ⋆) be a principal homogeneous space. We say that U is a hashable
hard homogeneous space for H if one can efficiently:

• Decide validity and equality of representations of elements of H.
• Compute gh and g−1 for any g, h ∈ H.
• Sample elements g $←− H statistically negligibly close to uniform.
• Decide validity and equality of representations of elements of U .
• Compute g ⋆ x for any g ∈ H and any x ∈ U .
• Compute H(s) ∈ U for any s ∈ {0, 1}∗.

Additionally, it should be intractable to solve the following problems:

• Vectorization: Given x, y ∈ U , find g ∈ H such that g ⋆ x = y.
• Parallelization: Given x, x′, y ∈ U such that x′ = g ⋆ x, find y′ = g ⋆ y.
• Hashing path: Given s, t ∈ {0, 1}∗, find g ∈ H such that g ⋆ H(s) = H(t).

It is clear that the parallelization problem reduces to the vectorization problem. It has
been shown by Montgomery and Zhandry [MZ22] that the problems are in fact quantumly
equivalent. Moreover, note that the vectorization problem and the hashing path problem
are classically equivalent when H is a random oracle.

Two of the main examples of principal homogeneous spaces in cryptography are prime
order cyclic groups and supersingular elliptic curves, whose suitability is further discussed
in Appendix C.

2.5 Bulletin Board
Our Core-PSI framework introduces setup phases whose outputs can be obtained by
other parties on demand. In practice one could imagine various solutions like CDNs or
broadcasts. In our protocols we use an idealized functionality in the form of publicly
readable bulletin boards, where messages are authenticated and cannot be erased after
being posted. As these can be realized in a similar way as for [CGJ+17], like Google’s
Certificate Transparency Project [Goo13], Cloudflare’s Nimbus [Clo18], or a blockchain-
based ledger [BGM16]. Alternatively, one could choose to use a public authenticated
broadcast channel indeed reducing communication complexity. There are several possible
acceptable formalizations, we reuse the one from [BDD20]. See Figure 2 for the ideal
functionality FBB.

Aron van Baarsen, Marc Stevens 11

Figure 2 Ideal Authenticated Bulletin Board functionality FBB
For a set of parties P, the bulletin board starts with an empty set of messages M.

• On receiving message (post, sid, idm, m) from party Pi ∈ P:
If ∄m′ : (idPi , sid, idm, m′) ∈M then append (idPi , sid, idm, m) to M
and send (posted, Pi, sid, idm, m) to the adversary.

• On receiving a message (read, sid) from a party Pi ∈ P return M.

Figure 3 Arithmetic Black Box Functionality FABB
Parameters: Inputs are elements of some input space X and outputs are elements of
a finite ring R. Parties P1, . . . ,Pn each holding an identifier idPi

. The value [[x]] is an
identifier for the value x that is stored by the functionality.
Functionalities:

• Input(x, idP , var) : Receive x from party idP and store it as [[var]].
• Add([[x]], [[y]], out) : Compute z := x + y and store z in [[out]].
• Multiply([[x]], [[y]], out) : Compute z := x · y and store z in [[out]].
• Random([[out]]) : Sample r $←− R and store r in [[out]].
• EvalF ([[x]], [[k]], out) : Compute z := F (k, x) and store z in [[out]].

% F is either a public oracle or a public function parameter to the functionality
• Rerand([[(x1, x2)]], (out1, out2)) : Sample r1, r2

$←− R, compute z1 := r1 · x1 and
z2 := x2 + r2 · x1, and store (z1, z2) in [[(out1, out2)]].

• Equality([[(x1, x2)]], (out1, out2)) : If x1 = 0, put z1 := 0, and z1 := 1 otherwise. Put
z2 := (1− z1) · x2 and store (z1, z2) in [[(out1, out2)]].

• OutputShares([[x]], out1, out2) : Sample uniform shares out1, out2
$←− R such that

out1 + out2 = x and output one of these to each of the parties supplying the input.
• Output([[x]], var) : Output the value x to all parties as var.

2.6 Arithmetic Black Box
The arithmetic black box (ABB) model was introduced by Damgård and Nielsen [DN03] as
a tool to prove the security of MPC protocols for general reactive functionalities, in which
the parties might receive some intermediate results of the computation and can use these
in the rest of the computation. The ABB basically serves as a general-purpose computer
for secure computation, to which the parties can supply inputs and ask to perform any
feasible computational task, as detailed in Figure 3.

We will often omit the arguments var and out if they are clear from the context. When
simultaneously working with values living in different fields, we will denote [[x]]q to indicate
the value x lives in Fq. Finally, we will use the shorthand [[x]]q,1 := out1, [[x]]q,2 := out2
for the output of OutputShares([[x]]q, out1, out2).

3 Vector Oblivious PRF (VOPRF)
In this section we present our ideal functionality for a vector oblivious pseudorandom
function (VOPRF). Subsequently we present two protocols and prove that they realize
this ideal functionality: a Vector Oblivious Linear Evaluation (VOLE) based construction,
which allows a receiver setup phase (Section 3.2), and a Cryptographic Group Action
(CGA) based construction, which allows a sender and a receiver setup phase (Section 3.3).
We discuss some other OPRF constructions and the setup phases we expect them to allow
in Appendix E.

12 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

Figure 4 Ideal VOPRF functionality Fvoprf

Parameters: Receiving parties Ri, i ∈ [NR], and sending parties Sj , j ∈ [NS], each
holding a unique identifier idRi

and idSj
, respectively, agreeing on an input space X and a

finite ring R as output space. PRF : {0, 1}∗ → F is an internal random oracle for random
functions F = {f : X → R} (that is, PRF can only be queried by the functionality, not by
the parties). LRi is a list of Ri’s setup phases, initialized empty.
Functionality:

• On query (setup, ρ, X) from Ri:
– If (ρ, X) ∈ LRi , do nothing.
– Else, add (ρ, X) to LRi and send (idRi , ρ, |X|) to A.

• If mr = yes then on query (setup, σ, m) from Sj , return (OPRF(idSj
,σ,m,k))m

k=1.

• On input (sid, idSj , evaluate, ρ, X) from Ri:
– If (ρ, X) ∈ LRi , send (sid, idRi

, ρ, |X|) to Sj .
– Else, send abort to Ri and Sj .

• On input (sid, idRi
, evaluate, σ) from Sj :

– If mr = no, sample F $←− F |X|.
– If mr = yes, set F := (PRF(idSj

, σ, |X|, k))|X|
k=1.

– Output (OFk)|X|
k=1 to Sj and (Fk(Xk))|X|

k=1 to Ri.

3.1 Ideal Functionality
Our ideal VOPRF functionality Fvoprf in Figure 4 can be seen as an extension of the
OPRF functionality of Rindal and Schoppmann [RS21]. The main difference with their
functionality is that our ideal functionality uses an independent random function to evaluate
each entry of the receiver’s input vector; hence the name vector OPRF. We additionally
expand upon the functionality from [RS21] by allowing the sender and receiver to run a
setup phase, which they can securely re-use during subsequent executions. If a sender
setup phase is allowed (mr = yes), the sender can enforce that a certain random function is
used, while in protocols that do not allow a sender setup phase (mr = no), the sender has
no control which function is being used. Note that our ideal functionality differs from the
notions of a batch OPRF from [PSTY19] and a batched, related-key OPRF from [KKRT16]
in the sense that our functionality does not explicitly depend on the underlying PRF, but
rather samples random functions internally, depending on the sender’s setup phase.

Our VOLE-based protocol in Section 3.2 realizes the Fvoprf functionality against ma-
licious parties with mr = no. The CGA-based protocol in Section 3.3 realizes a slightly
different functionality F∗

voprf , detailed in Appendix A, against malicious parties with
mr = yes. In F∗

voprf , a malicious receiver gets to change their input vector on-the-fly, but
can still only receive a single evaluation from each function. In particular, the CGA-based
protocol realizes the functionality Fvoprf against semi-honest parties with mr = yes.

3.2 Vector Oblivious Linear Evaluation VOPRF (VOLE-VOPRF)
Our first OPRF construction is a maliciously secure adaptation of the semi-honest subfield
VOLE-based OPRF of Bui and Couteau [BC23]. We essentially need only 3κ extra bits
in communication to achieve malicious security. Their construction can in turn be seen
as a generalization of the OT-based OPRF from [KKRT16] replacing OT by sVOLE. On
the other hand, our construction is similar to the malicious VOLE-based OPRF of Rindal
and Schoppmann [RS21] and its sVOLE-based generalization of Rindal and Raghuraman

Aron van Baarsen, Marc Stevens 13

Figure 5 Ideal psVOLE functionality Fpsvole ([RS21, Fig. 2], [BCG+19b, Def. 40])
Parameters: Receiving parties Ri, i ∈ [NR], and sending parties Sj , j ∈ [NS], each
holding unique a identifier idRi

and idSj
, respectively, agreeing on a finite extension field

F and a base field B. LRi is a list of Ri’s setup phases, initialize LRi := ∅.
Functionality:

• On query (setup, ρ, m) from Ri, if ∃Aρ : (ρ, Aρ) ∈ LRi do nothing;
Else, sample Aρ $←− Bm, add (ρ, Aρ) to LRi and return Aρ to Ri.

• On input (sid, idSj , evaluate, ρ) from Ri: If ∃Aρ : (ρ, Aρ) ∈ LRi with Aρ ∈ Bm

then send (sid, idRi
, ρ) to Sj ; else send abort to Ri and Sj .

• On input (sid, idRi
, evaluate) from Sj :

– The functionality samples ∆ $←− F, B $←− Fm

and sets A := Aρ, C := ∆ ·A + B.
– If Sj is corrupted, query ∆′, B′ ← A(sid, ∆, B)

and set ∆ := ∆′, B := B′, C := ∆′ ·A + B′.
– If Ri is corrupted, query A′, C ′ ← A(sid, A, C)

and set A := A′, C := C ′, B := C ′ −∆ ·A′.
– Output ∆, B to Sj and output A, C to Ri.

[RR22]. The main difference is that in our construction the receiver does not first encode
their input set into an OKVS, but rather directly sends a masked version of their input
set to the sender. This saves computation and roughly saves a multiplicative factor η in
communication, where η ≈ q(m)/m is the expansion factor of the OKVS construction.
Our protocol Πvole-voprf is detailed in Figure 6 and security is proven in Theorem 1.
Remark 1. In order to instantiate our construction, one needs a maliciously secure (pro-
grammable) sVOLE protocol Πpsvole, realizing the ideal functionality Fpsvole from Figure 5.
The semi-honest VOLE generator from Boyle et al.[BCGI18] has been shown to satisfy
the programmability condition [BCG+19b, Prop. 59]. Note that this is sufficient for our
semi-honestly secure Core-PSI protocol presented in Section 5. We expect that through
careful analysis it can be shown that the maliciously secure sVOLE protocol from Boyle et
al.[BCG+19a] also satisfies the programmability condition for honest receivers. Note that
we do not need to enforce consistency with respect to the receiver’s input for maliciously
corrupted receivers. We leave it to future work to prove this formally for the protocol of
Boyle et al.[BCG+19a] and its various optimizations [WYKW21, CRR21, RRT23]. Note
that a similar condition is also used in the malicious setting by Qiu et al.[QYYZ22].

Theorem 1. If |B| ≥ 2ℓ with ℓ := λ + log2 m and |F| ≥ 2κ, the protocol Πvole-voprf securely
realizes the functionality Fvoprf with mr = no against malicious adversaries in the random
oracle, FBB-, Fpsvole-hybrid model (where H, H ′ are modeled as random oracles).

Proof. Executions with the same sender S and different receivers Ri are independent, so it
suffices to construct a simulator that interacts with a single corrupted receiver R. Moreover,
we only have to simulate an interaction with a single honest sender S since interactions
with different honest senders are independent. If the receiver behaves semi-honestly, the
simulator can act as the ideal Fpsvole functionality to answer the receiver’s setup and
evaluate queries. Otherwise, the simulator receives ρ and A′ ∈ Bm, C ∈ Fm from the
receiver’s evaluate message to Fpsvole and retrieves Zρ from the simulated bulletin board
to compute the receiver’s effective input set X := Zρ −A′. The simulator then sends
(setup, ρ, X) and (sid, idS , evaluate, ρ, X) to Fvoprf , and can use the resulting Fi(xi) to
answer queries to H of the form (i, Ci, xi, w). The simulator can sample wS $←− {0, 1}κ

and send it to the receiver. If the receiver poses a query of the form (i, y, x, w) to H

14 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

Figure 6 psVOLE-based VOPRF protocol Πvole-voprf

Parameters: Receiving parties Ri, i ∈ [NR], and sending parties Sj , j ∈ [NS], each
holding a unique identifier idRi

and idSj
, respectively, agreeing on a finite extension

field F, input space the base field B and an output space Y. H : {0, 1}∗ → Y and
H ′ : {0, 1}∗ → {0, 1}κ are random oracles, κ ∈ N the computational security parameter.

Subprotocol SetupR with Ri-input (ρ, X):

• Ri sends (setup, ρ, m) to Fpsvole, with m := |X|, and receives Aρ ∈ Bm.
• Ri computes Zρ := X + Aρ and sends (post, sid, idρ, (ρ, Zρ)) to FABB.

Subprotocol Evaluate with Ri-input (idSj
, ρ) and Sj-input idRi

:

• Ri sends (idSj , sid, evaluate, ρ) to Fpsvole.
• Ri and Sj abort if they receive abort from Fpsvole.
• Otherwise, Sj receives (idRi

, sid, ρ) and sends (idRi
, sid, evaluate) to Fpsvole.

• Sj receives ∆ ∈ F, B ∈ Fm and Ri receives Aρ ∈ Bm, C ∈ Fm

satisfying the relation C = ∆ ·Aρ + B.
• Sj sends (read, sid) to FABB and searches M for the first message

(idRi , sid, idρ, (ρ, Zρ)) with Zρ ∈ Bm or aborts if it does not exist.
• Ri samples wR $←− {0, 1}κ and sends cR := H ′(wR) to Sj .
• Sj aborts if cR ̸∈ {0, 1}κ, samples wS $←− {0, 1}κ and sends wS to Ri.
• Ri aborts if wS ̸∈ {0, 1}κ, sends wR to Sj , and defines w := wR + wS .
• Ri outputs (F∆,Ki

(xi))m
i=1 with F∆,Ki

(xi) = H(i, Ci, xi, w).
• Sj aborts if wR ̸∈ {0, 1}κ or cR ̸= H ′(wR), and defines w := wR + wS .
• Sj defines the keys (∆, K := ∆ ·Zρ + B).
• Sj outputs (OF∆,Ki)m

i=1 with F∆,Ki
(x) := H(i, Ki −∆ · x, x, w).

before receiving wS , the simulator aborts, which happens with probability negligible in
κ. Consider a hybrid which behaves as a real protocol execution but aborts when the
receiver poses a query of the form (i, ∆ · (xi − x) + Ci, w) for x ∈ B, x ̸= xi. This hybrid
aborts with negligible probability in κ since ∆ $←− F from the receiver’s point of view, with
|F| ≥ 2κ. The simulated execution and this hybrid are computationally indistinguishable
by our above discussion.

Since a receiver R can re-use their setup phase (ρ, m) with multiple corrupted senders
Si, we construct our simulator out of subroutines each interacting with a corrupted sender
Si. Moreover, we only have to simulate an interaction with a single honest receiver R
since interactions with different honest receivers are independent. The simulator receives
the honest receiver’s setup phase identifiers (ρ, m) from the ideal functionality Fvoprf and
can sample Zρ $←− Bm and add these to the simulated bulletin board. If the sender
behaves semi-honestly, the simulator can act as the ideal Fpsvole functionality to answer
the sender’s evaluate query. Otherwise, the simulator receives ∆i ∈ F, Bi ∈ Fm from
the sender’s evaluate message to Fpsvole. The simulator can sample cR

i
$←− {0, 1}κ, and,

after receiving wS
i , sample wR

i
$←− {0, 1}κ and program H ′(wR

i) := cR
i . If the sender

queried wR
i to H ′ before, the simulator aborts, which happens with probability negligible

in κ. The simulator can answer queries to H of the form (j, ∆i · (Zρi

j − x) + Bi
j , x, wi) by

F i
j (x) using the OF i

j oracles obtained from Fvoprf . If the sender poses a query of the form
(j, ∆i · (Zρi

j − x) + Bi
j , x, wi) to H before receiving wR

i , the simulator aborts, which again
happens with probability negligible in κ. It follows that the simulated execution and the
real protocol execution are computationally indistinguishable.

Aron van Baarsen, Marc Stevens 15

Figure 7 Cryptographic Group Action-based VOPRF protocol Πcga-voprf

Parameters: Receiving parties Ri, i ∈ [NR], and sending parties Sj , j ∈ [NS], each
holding unique identifiers idRi

and idSj
, respectively, agreeing on an input space X , an

output space Y and a principal homogeneous space (H, U, ⋆)← Uκ for security parameter
κ ∈ N. H : X → U and H ′ : {0, 1}∗ → Y are random oracles. LSj is a list of Sj ’s setup
phases, and LRi is a list of Ri’s setup phases. Initialize LSj ,LRi := ∅.

Subprotocol SetupR with Ri-input (ρ, X):

• If ∃X ′, (rρ
k)|X′|

k=1: (ρ, X ′, (rρ
k)|X′|

k=1) ∈ LRi then do nothing.
• Else, Ri samples rρ

1 , . . . , rρ
|X|

$←− H, computes aρ
k := rρ

k ⋆ H(xk), updates
LRi ← LRi ∪ {(ρ, X, (rρ

k)|X|
k=1)} and sends (post, sid, idρ, (ρ, (aρ

k)|X|
k=1)) to FABB.

Subprotocol SetupS with Sj-input (σ, m):

• If ∃(K̃σ
k)m

k=1: (σ, m, (K̃σ
k)m

k=1) ∈ LSj put Kσ
k := K̃σ

k for each k ∈ [m].
• Else, Sj samples Kσ

1 , . . . , Kσ
m

$←− H and updates LSj ← LSj ∪ {(σ, m, (Kσ
k)m

k=1)}.
• Return (OFKσ

k)m
k=1 to Sj with FKσ

k
(x) := H ′(idSj

, σ, m, k, Kσ
k ⋆ H(x), x).

Subprotocol Evaluate with Ri-input (idSj
, ρ) and Sj-input (idRi

, σ):

• Ri sends ρ to Sj .
• Ri retrieves (X, (rρ

k)|X|
k=1) for which (ρ, X, (rρ

k)|X|
k=1) ∈ LRi or aborts if this fails.

• Sj sends (read, sid) to FABB and searches M for the first message
(idRi

, sid, idρ, (ρ, (aρ
k)|X|

k=1)) with aρ
k ∈ U , or aborts if it does not exist.

• Sj sends σ to Ri.
• Sj calls SetupS with input (σ, |X|) and obtains (Kσ

k)|X|
k=1.

• Sj computes bσ,ρ
k := Kσ

k ⋆ aρ
k for each k ∈ [|X|], and sends (bσ,ρ

k)|X|
k=1 to Ri.

• Ri aborts if bσ,ρ
k ̸∈ U for any k ∈ [m].

• Ri outputs (FKσ
k

(xk))|X|
k=1 with FKσ

k
(xk) := H ′(idSj

, σ, |X|, k, (rρ
k)−1 ⋆ bσ,ρ

k , xk).
• Sj outputs (OFKσ

k)|X|
k=1 with FKσ

k
(x) := H ′(idSj , σ, |X|, k, Kσ

k ⋆ H(x), x).

3.3 Cryptographic Group Action VOPRF (CGA-VOPRF)
Jarecki et al.provide a construction of an OPRF protocol for the 2HashDH PRF Fk(x) :=
H ′(H(x)k, x) in a cyclic group G of prime order p, where H : X → G and H ′ : G×X → Y
are random oracles, and prove that this construction is secure in the universal composability
(UC) framework under a variant of the one-more gap computational Diffie-Hellman (OM-
CDH) assumption [JKK14, JKKX16]. We generalize this protocol to the group action
setting formalized in Section 2.4, add setup phases for the sender and receiver, and prove
that our protocol achieves malicious security in the standard simulation-based security
framework under the natural generalization of the OM-CDH assumption. In particular, we
prove that the sender (resp. receiver) setup phase can securely be re-used with multiple
receiving (resp. sending) parties1. Our protocol Πcga-voprf is detailed in Figure 7 and
security is proven in Theorem 2 under the assumption in Definition 5.

Definition 5 (OM-CDH-GA Assumption). Let (Uκ)κ∈N be a family of principal ho-
mogeneous spaces and let m, n ∈ N. We say that the (m, n)-one more computational
Diffie-Hellman group action ((m, n)-OM-CDH-GA) assumption holds with respect to
(Uκ)κ∈N, if for any κ ∈ N, any (H, U, ⋆) ← Uκ, and any PPT adversary A, the following

1Note that this re-usability is not implied by UC security

16 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

probability is negligible in κ:

Pr
[
{(aji , K ⋆ aji) : i ∈ [m+1]} ← AK⋆(·),DDH(·)(1κ, E, K ⋆ E, a1, . . . , an)

]
,

where the probability is taken over K $←− H and a1, . . . , an
$←− U , E ∈ U is an arbitrary

point and the ji ∈ [n] are distinct for i = 1, . . . , m + 1. Moreover, m is the number of
queries A can make to the K ⋆ (·) oracle, i.e., the oracle that returns K ⋆ b on input b ∈ U ,
and DDH(·) is a decisional Diffie-Hellman oracle, i.e., which on input (u, K ⋆ u, b, c) returns
1 if c = K ⋆ b and 0 otherwise.

The protocol Πcga-voprf actually realizes the functionality F∗
voprf , detailed in Figure 15,

against malicious adversaries. In this functionality, a corrupted receiver has the possibility
to adaptively query inputs to Fk for k ∈ [|X|], but can only pose a single query for each k.
In the semi-honest setting, we only need to be able to answer queries of the form Fk(Xk),
where Xk is the k-th element of the receivers input set X; so this implies that Πcga-voprf
realizes the functionality Fvoprf , detailed in Figure 4, against semi-honest adversaries.

Theorem 2 (Adapted from [JKKX16, Thm. 1]). The protocol Πcga-voprf securely realizes
the functionality F∗

voprf with mr = yes against malicious adversaries in the random oracle,
FBB-hybrid model under the (NR, Q)-OM-CDH-GA assumption, where NR is the number
of receiving parties, Q is a (polynomial) upper bound on the total number of queries to H
and H ′ the receiving parties (Ri)i∈[NR] make, and H, H ′ are modeled as random oracles.

Proof. Since a sender S can re-use their setup phase (σ, m) with multiple corrupted receivers
Ri, we construct a simulator out of subroutines each interacting with a corrupted receiver
Ri. Moreover, since executions with different honest senders are independent, it is sufficient
to simulate an interaction with a single honest sender S. The simulator receives the honest
sender’s relevant setup phase identifiers σi as the sender sends their evaluate message to
the ideal functionality F∗

voprf and can subsequently sample corresponding keys Kσi
j

$←− H.
Using these keys, the simulator can compute the elements bσi,ρi

k := Kσi
j ⋆ aρi

j to send to
Ri, where the simulator retrieves the elements aρi

j from the simulated bulletin board. The
simulator can moreover answer queries to H ′ of the form (idS , σi, mi, j, Kσi

j ⋆ H(x), x) by
querying F σi

j (x) from F∗
voprf . The latter fails if the simulator queries a particular function

F σi
j once more than the number of executions the setup phase σi was used by the honest

sender S. We denote this failure event by fail and show in Theorem 7 that it occurs
with at most negligible probability if the (NR, Q)-OM-CDH-GA assumption holds, where
NR is the total number of receiving parties and Q is an upper bound on the number of
queries to H and H ′ the receiving parties together make in total. If fail does not occur,
the simulated execution is perfectly indistinguishable from the real protocol execution.

Again the receiver R can re-use their setup phase (ρ, m) with multiple corrupted senders
Si so we construct a simulator out of subroutines each interacting with a corrupted sender
Si. Moreover, since interactions with different honest receivers are independent, it is
sufficient to simulate an interaction with a single honest receiver R. The simulator obtains
the receiver’s setup phase identifiers (ρ, m) from the ideal functionality F∗

voprf , samples
αρ

j
$←− H and adds the elements aρ

j := αρ
j ⋆ E to the simulated bulletin board, where E ∈ U

is an arbitrary base point picked by the simulator. Upon receiving the elements bρi,σ̄i

j from
Si, the simulator can compute identifiers for the sender’s keys as σ̄i

j := (αρi

j)−1 ⋆ bρi,σ̄i

j and
send these to F∗

voprf to obtain the functions F σ̄i
j . The simulator answers queries x to H

by sampling hx
$←− H and returning hx ⋆ E. It can then use hx to compute an identifier

(σ, (hx)−1 ⋆ u) for the key corresponding to a query (idSi
, σ, m, j, u, x) to H ′, and answer

these queries by posing setup queries to F∗
voprf . The resulting distributions are perfectly

indistinguishable.

Aron van Baarsen, Marc Stevens 17

Figure 8 Ideal VOPPRF functionality Fvopprf

Parameters: Receiving parties Ri, i ∈ [NR], and sending parties Sj , j ∈ [NS], each
holding unique identifiers idRi

and idSj
, respectively, agreeing on an input space X and

a finite ring R as output space. PPRFL : {0, 1}∗ → FL is an internal random oracle for
programmed random functions FL := {f : X → R | ∀(x, y) ∈ L : f(x) = y} (that is,
PPRFL can only be queried by the functionality, not by the parties). LRi is a list of Ri’s
setup phases and LSj is a list of Sj ’s setup phases. Initialize LSj ,LRi := ∅. M : N→ N is
an upper bound.

Functionality:

• On query (setup, ρ, X) from Ri, if (ρ, X) ∈ LRi do nothing.
Else, add (ρ, X) to LRi , and send (idRi

, ρ, |X|) to A.
• If mr = yes then on query (setup, σ, (Lk)m

k=1) from Sj :
– If ∃m′, (L′

k)m′

k=1 : (σ, (L′
k)m′

k=1) ∈ LSj then do nothing.
– Else:

∗ Add (σ, (Lk)m
k=1) to LSj .

∗ Send (idS , σ, m,
∑

k |Lk|) to A.
∗ Return (OPPRFLk

(idSj
,σ,k))m

k=1 to Sj .

• On input (sid, idSj , evaluate, ρ, X) from Ri, if (ρ, X) ∈ LRi send (sid, idRi , ρ, |X|)
to Sj . Else, send abort to Ri and Sj .

• On input (sid, idRi
, evaluate, σ, (Lk)|X|

k=1) from Sj :
– Set N :=

∑m
k=1 |Lk| and abort if N > M(m).

– If mr = no, sample F $←−
∏m

k=1 FLk
.

– If mr = yes, then set F := (PPRFLk
(idSj , σ, k))|X|

k=1;
if (σ, (Lk)|X|

k=1) /∈ LS then send abort to Ri and Sj .
– Output (OFk)|X|

k=1 to Sj and σ, N, (Fk(Xk))|X|
k=1 to Ri.

4 Vector Oblivious Programmable PRF (VOPPRF)
In this section we present our ideal functionality for a vector oblivious programmable
pseudorandom function (VOPPRF) that allows options for sender and receiver setup
phases, and present a protocol realizing this functionality using a VOPRF and an OKVS.

4.1 Ideal Functionality
Our ideal VOPPRF functionality Fvopprf in Figure 8 naturally extends the functionality
Fvoprf from Section 3 with the possibility for the sender to “program” points of their
choosing in the random function. Compared to the ideal OPPRF functionality from Rindal
and Schoppmann [RS21], our functionality uses a different programmed random function
for each entry of the receiver’s input vector, and we again add possibilities for sender and
receiver setup phases which they can re-use during subsequent executions. Note that our
ideal functionality differs from the notion of a batch OPPRF from [PSTY19] in the sense
that our functionality does not explicitly depend on the underlying OKVS construction.

4.2 VOPPRF from VOPRF + OKVS
We present a VOPPRF protocol from a VOPRF and an OKVS. Our protocol is a natural
generalization of the protocol from Rindal and Schoppmann [RS21], who construct an

18 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

Figure 9 VOPRF-based VOPPRF protocol Πvopprf

Parameters: Receiving parties Ri, i ∈ [NR], and sending parties Sj , j ∈ [NS], each
holding unique identifiers idRi

and idSj
, respectively, agreeing on an input space X and a

finite ring R as output space. (Encode, Decode) is a linear OKVS with key space X , value
space R and associated decoding function family {dq(n) | n ∈ N}. LS is a list of S’s setup
phases. Initialize LS := ∅. M : N→ N and q : N→ N are functions.

Subprotocol SetupR with R-input (ρ, X):

• Rj sends (setup, ρ, X) to Fvoprf .

If mr = yes: Subprotocol SetupS with Sj-input (σ, (Lk)m
k=1):

• If ∃m′, P ′, (L′
k)m′

k=1, θ′: (σ, (L′
k)m′

k=1, P ′, θ′) ∈ LSj then Sj does nothing.
• Else:

– Sj sends (setup, σ, m) to Fvoprf and receives (OF ′
σ,k)m

k=1.
– Sj samples θ $←− {0, 1}κ and computes

P ← Encode
(
{(y, z − F ′

σ,k(y)) | (y, z) ∈ Lk, k ∈ [m]}; θ
)

.
– Sj updates LSj ← LSj ∪ {(σ, (Lk)m

k=1, P , θ)}.
– Sj sends (post, sid, idσ, (σ, m, P , θ)) to FBB.
– Return (OFσ,k)m

k=1 to Sj with Fσ,k(x) := F ′
σ,k(x) + ⟨P , d|P |(x; θ)⟩.

Subprotocol Evaluate with Ri-input (idSj
, ρ, X) and Sj-input (idRi

, σ, (Lk)m
k=1):

• Ri sends (sid, idSj , evaluate, ρ, X) to Fvoprf .
• Ri and Sj abort if they receive abort from Fvoprf .
• Otherwise, Sj gets (sid, idRi

, ρ, |X|), aborts if |X| ≠ m,
and sends (sid, idRi

, evaluate, σ) to Fvoprf .
• Sj receives (OF ′

k)|X|
k=1 and R receives (F ′

k(Xk))|X|
k=1 from Fvoprf .

• If mr = yes:
– Sj sends σ to Ri.
– Sj retrieves (P , θ) for which (σ, |X|, (Lk)m

k=1, P , θ) ∈ LSj , or aborts.
– Ri sends (read, sid) to FBB and searches M for the first message

(idSj
, sid, idσ, (σ, |X|, P , θ)) with P ∈ R∗ and θ ∈ {0, 1}κ, or aborts.

• If mr = no:
– Sj samples θ $←− {0, 1}κ.
– Sj computes P ← Encode ({(y, z − F ′

k(y)) | (y, z) ∈ Lk, k ∈ [m]}; θ).
– Sj sends (P , θ) to Ri.

• Ri aborts if θ ̸∈ {0, 1}κ, |P | ̸∈ im(q) or |P | > q(M(m)).
• Ri outputs |P |, (Fk(Xk))|X|

k=1 and Sj outputs (OFk)|X|
k=1,

where Fk(x) := F ′
k(x) + ⟨P , d|P |(x; θ)⟩.

OPPRF from an OPRF and their XoPaXoS solver, by replacing XoPaXoS with a linear and
doubly oblivious OKVS. This generalization has also been mentioned by [GPR+21, RR22],
but to the best of our knowledge a formal proof has not been written down anywhere. Note
that the currently most efficient OKVS constructions [RR22, BPSY23] are both linear
as well as doubly oblivious. In case the underlying VOPRF protocol supports multiple
receivers (mr = yes), we add the option for the sender to post their OKVS encoding on a
public bulletin board and effectively re-use the same programmed function with multiple
receivers. Our protocol Πvopprf is detailed in Figure 9 and security is proven in Theorem 3.

Aron van Baarsen, Marc Stevens 19

Theorem 3. Let OKVS = (Encode, Decode) be a linear doubly oblivious OKVS. Then the
protocol Πvopprf securely realizes the functionality Fvopprf against semi-honest senders and
malicious receivers in the FBB-, Fvoprf-hybrid model, when the flag mr ∈ {yes, no} has the
same value for Fvopprf , Πvopprf and Fvoprf .

Proof. First consider the setting of semi-honest corrupted senders Si. The simulator
receives as input σi, (Li

k)mi

k=1, ρi, |Xi|, (OF i
k)|Xi|

k=1 and can handle the sender’s setup and
evaluate queries as the ideal functionality Fvoprf does to obtain (OF i′

k)mi

k=1, and compute
θi, P i as the sender does. On programmed points (y, z) ∈ Li

k, the ideal functionality
output satisfies F i

k(y) = z = F i′

k (y) + ⟨P i, d|P i|(y; θ)⟩. On unprogrammed points we
can simulate the OPRF oracles (OF i′

k)mi

k=1 as F i′

k (x) := F i
k(x) − ⟨P i, d|P i|(x; θ)⟩, which

is perfectly indistinguishable from the ideal Fvoprf output since F i
k(x) is an independent

uniformly random value on unprogrammed points.
Now consider the setting of maliciously corrupted receivers Ri. The simulator can

extract the receiver Ri’s inputs ρi, Xi from their setup and evaluate queries to Fvoprf
and can forward these to Fvopprf . Moreover, the simulator receives the sender’s setup phase
identifiers σ, N, m as the honest sender sends their setup queries to Fvoprf and can simulate
the sender’s setup phases by sampling θ $←− {0, 1}κ, P $←− RN and posting it on the bulletin
board held by FBB. Note that this is statistically indistinguishable from the real-protocol
OKVS encoding since we require OKVS to be doubly oblivious and the sender encodes
distinct keys with independent uniformly random values in the OKVS. The simulator
receives σi, Ni, (F i

k(Xi
k))|Xi|

i=1 as the honest sender sends their evaluate query to Fvopprf ,
and can retrieve the corresponding θi, P i. Hence we can answer Ri’s evaluate query to
Fvoprf by putting F i′

k (Xi
k) := F i

k(Xi
k) − ⟨P i, d|P i|(Xi

k; θ)⟩. These values have statistical
distance ≤ 2−λ with the real protocol values coming from the ideal Fvoprf functionality,
which can be seen from the following two cases:

(a) If Xi
k = yi

k,j for some programmed point (yi
k,j , zi

k,j) ∈ Li
k, this implies that

F i′

k (Xi
k) := zi

k,j − ⟨P i, d|P i|(yi
k,j ; θ)⟩.The values ⟨P i, d|P i|(yi

k,j ; θ)⟩ are independent uni-
formly random for k ∈ [mi] and j ∈ [|Li

k|] since P i is uniformly random and independent
from Li

k and d|P i|(yi
k,j ; θ) are linearly independent vectors with probability ≥ 1− 2−λ over

the choice of θ $←− {0, 1}κ by the correctness of the OKVS.
(b) On unprogrammed points the values F i

k(Xi
k) are uniformly random and independent

from P i, resulting in independent uniform values F i′

k (Xi
k).

4.3 Malicious Adversaries
Recall that the protocol Πvopprf presented in Section 4.2 is only secure against malicious
receivers, but not against malicious senders. The main obstacle is that a malicious sender,
after receiving a random function F ′, is allowed to provide a vector P of bounded length
and associated encoding randomness θ ∈ {0, 1}κ such that the programmed function is
defined as F (x) := F ′(x) + ⟨P , d|P |(x; θ)⟩. Here {dN} is a function family parameter to
the functionality, corresponding to a chosen linear OKVS scheme, i.e., it maps x to a
vector of length N = |P | with parameter θ (see Section 2.2). This adversarial behavior
does not pose any issues with respect to the privacy of the receiver’s input set X, but
hurts the correctness of the protocol. The main issue here is that the simulator has no way
to extract the points (y, z), on which F is meant to be programmed, from the vector P .
What a malicious sender can achieve in this way is highly dependent on the larger context
within which the VOPPRF protocol is used as a subprototocol. We discuss this in the
context of our Core-PSI protocol in Section 5.3.

Note that if we want to instantiate the protocol Πvopprf using the group action OPRF
from Section 3.3 as the underlying VOPRF, we need to replace the calls to the ideal Fvoprf
functionality by calls to the ideal F∗

voprf functionality. If the receiver is malicious, this

20 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

means they have the ability to adaptively change their input vector, but can still only
receive a single evaluation from each programmed function. We will refer to this slightly
different ideal functionality as F∗

vopprf .

5 Core-PSI from VOPPRF
In this section we introduce the first variant of our new Core-PSI functionality and provide
a protocol that realizes the functionality from a VOPPRF in the semi-honest setting. Core-
PSI can be seen as a generalization of Circuit-PSI, where the final equality checking step
is omitted and the possibility for sender and receiver setup phases is added. In section 6
we present another variant of Core-PSI and a protocol realizing it from a shared-output
PRF (SOPRF). In Section 8 we briefly discuss how one can obtain Circuit-PSI and other
functionalities from Core-PSI through post-processing.

5.1 Ideal Functionality
Our ideal Core-PSI functionality FCore-PSI is given in Figure 10. In essence, the functionality
is similar to the ideal Circuit-PSI functionality from [RS21], with the main difference
being that the Core-PSI functionality returns arithmetic shares of matching values in case
there is a match and of random values in case there is no match, whereas the Circuit-PSI
functionality returns shares of zero in case there is no match. The intuition behind this
difference is that we replaced the secure equality checking step that is usually done at
the end of Circuit-PSI protocols by a (cheaper) rerandomization step, and formalized the
ideal functionality that the adapted protocol realizes. We chose this solution as the secure
equality checking step is a general post-processing solution for Circuit-PSI applications,
but not the only solution, nor the best in some applications. This allowed us to study
the core of PSI and potential amortizations, while allowing freedom in post-processing for
different kinds of applications. We discuss different post-processing options in Section 8.
To enable amortizations, the Core-PSI functionality additionally allows sender and receiver
setup phases similar to the VOPPRF functionality.

5.2 Protocol
Our Core-PSI protocol follows the same blueprint as the Circuit-PSI protocol from Pinkas
et al.[PSTY19] and several follow-up works [RS21, CGS22, CDG+21, RR22, BPSY23].
The main difference is that we replace the final secure equality checking step by a (cheaper)
rerandomization step and add options for receiver and sender setup phases. This rerandom-
ization step makes sure the receiver’s output shares for non-matching items are distributed
independent from the sender’s transcript, but may be omitted in certain scenarios (see
Section 8). The protocol ΠCore-PSI is detailed in Figure 11 and proven secure in Theorem 4.
Remark 2. One important caveat in terms of reusability is that, when mr = yes, a sender
should neither use the same setup phase (σ, Y) with multiple corrupted receivers, nor
use it multiple times with the same receiver. Namely, if the sender maps two different
items y1, y2 ∈ Y to the same bucket k, then the OPPRF outputs Fk(y1) = (0, ỹ1)− s′

k and
Fk(y2) = (0, ỹ2)− s′

k share the same first component. Hence if a receiver with y1, y2 ∈ X
maps y1 in one execution and y2 in another execution to bucket k of their Cuckoo hash
table, they learn from the collision in the first part of the OPPRF outputs that both y1
and y2 are in the sender’s set Y with overwhelming probability.

Theorem 4. The protocol ΠCore-PSI securely realizes the functionality FCore-PSI against
semi-honest adversaries in the FABB-, Fvopprf-hybrid model with VOPPRF output length
ℓ ≥ λ + log2 m + log2 Nc, where m is the receiver’s maximum input set size and Nc is

Aron van Baarsen, Marc Stevens 21

Figure 10 Ideal Core-PSI functionality FCore-PSI

Parameters: Receiving parties Ri, i ∈ [NR], and sending parties Sj , j ∈ [NS], each
holding unique identifiers idRi

and idSj
, respectively, agreeing on a key alphabet X , a finite

ring S as value alphabet and a finite ring R. A function Reorder : Xn → (π : [n]→ [m])
which maps a set X ⊂ X to an injective function. LRi is a list of receiver setup phases,
LSj is a list of sender setup phases, and LSj

R is a list of (sender setup phase, receiver id)
tuples. Initialize LSj

R ,LSj ,LRi := ∅.

Functionality:

• On query (setup, ρ, m, X) from Ri:
– If ∃π : (ρ, m, X, π) ∈ LRi then do nothing; else:
– Set π ← Reorder(X).
– Add (ρ, m, X, π) to LRi and send (idRi , ρ, m) to A.

• If mr = yes, then on query (setup, σ, m, Y) from Sj :
– If ∃m′, Y ′ : (σ, m′, Y ′) ∈ LSj then do nothing; Else:
– Add (σ, m, Y) to LSj and send (idSj

, σ, m, |Y |) to A.

• On input (sid, idSj
, evaluate, ρ, m, X) from Ri:

– If ∃π′ : (ρ, m, X, π′) ∈ LRi then let π := π′. Else, send abort to Ri and Sj .
– Send (sid, idRi

, ρ, m) to Sj .
• On input (sid, idRi , evaluate, σ, m, Y) from Sj :

– If mr = yes, abort if (σ, m, Y) /∈ LSj or (idRi
, σ) ∈ LSj

R .
Else, add (idRi

, σ) to LSj

R .
– Sample rk, sk ∈ R× S uniformly such that:

∗ rk + sk = (0, ỹ) if there exists xν ∈ X, y ∈ Y with xν = y, π(ν) = k,
∗ rk, sk

$←− R× S otherwise
– Output σ, |Y |, (rk)m

k=1 to Ri and (sk)m
k=1 to Sj .

the number of corrupted parties. More precisely, all sending parties Sj are allowed to be
corrupted and, if mr = yes at most one receiving party Ri is allowed to be corrupted and
multiple executions with the same receiving party Ri are not allowed if the same sender
setup phase (σ, Y) is used.

Remark 3. The result of Theorem 4 holds up analogously if we replace the ideal functionality
Fvopprf by F∗

vopprf (see Section 4.3). Adaptively querying entries to the OPPRF functionality
does not give a corrupted receiver any extra power since the functions as well as the
programmed values are independent for different entries, and the receiver only gets to
query each function a single time. Here we again assume that the sender does not reuse
their setup phase multiple times with corrupt parties.

Proof. First consider the setting of corrupted senders Si. The simulator, on input σi,
Y i, ρi, mi, (si

k)mi

k=1, can handle the sender’s setup and evaluate queries as the Fvopprf
functionality does. The simulator furthermore samples random identifiers to answer queries
to FABB, and returns (si

k)mi

k=1 upon the OutputShares query to FABB
Now consider the setting of corrupted receivers Ri. The simulator, on input ρi, mi Xi,

σi, |Yi|, (ri
k)mi

k=1, can sample random answers to R′
is evaluate queries to Fvopprf . The queries

to FABB can be answered with random identifiers, and the simulator returns (ri
k)mi

k=1 upon
the OutputShares query to FABB. Note that if mr = yes, only one receiver is allowed to

22 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

Figure 11 VOPPRF-based Core-PSI protocol ΠCore-PSI

Parameters: Receiving parties Ri, i ∈ [NR], and sending parties Sj , j ∈ [NS], each
holding unique identifiers idRi

and idSj
, respectively, agreeing on a key alphabet X , a

finite ring S as value alphabet and a finite ring R. (hm
v)m∈N is a family of public hash

functions hm
v : X → [m] for each v ∈ [t]. LRi is a list of receiver setup phases, LSj is a

list of sender setup phases, and LSj

R is a list of (sender setup phase, receiver id) tuples.
Initialize LSj

R ,LSj ,LRi := ∅.

Subprotocol SetupR with Ri-input (ρ, m, X):

• If ∃T ′
x : (ρ, X, T ′

x) ∈ LRi , then put Tx := T ′
x.

• Else, Ri constructs a Cuckoo hash table Tx of X of size m using h1, . . . , ht. That
is, for each x ∈ X there exists a unique v ∈ [t] such that (x, hv(x)) = Tx[hv(x)] and
each bin contains at most one tuple, and pads the empty bins k ∈ [m] with dummy
values (x′

k, k), where x′
k

$←− X .
Ri updates LRi ← LRi ∪ {(ρ, X, Tx)}.

• Ri queries (setup, ρ, Tx) to Fvopprf .

If mr = yes: Subprotocol SetupS with Sj-input (σ, m, Y)

• If ∃m′, Y ′, (s̃k)m′

k=1, (L′
k)m′

k=1: (σ, m′, Y ′, (s̃k)m′

k=1, (L′
k)m′

k=1) ∈ LSj , Sj does nothing.
• Else:

– Sj samples (s′
k)m

k=1
$←− (R× S)m.

– Sj defines Lk := {((y, k), (0, ỹ)− s′
k) : y ∈ Y, v ∈ [t], hv(y) = k}.

– Sj updates LSj ← LSj ∪ {(σ, m, Y, (s′
k)m

k=1, (Lk)m
k=1)}.

– Sj queries (setup, σ, (Lk)m
k=1) to Fvopprf and receives (OF σ

k)m
k=1.

Subprotocol Evaluate with Ri-input (idSj
, ρ, X) and Sj-input (idRi

, σ, Y):

• Ri retrieves Tx for which (ρ, X, Tx) ∈ LRi , or aborts if it does not exist.
• Ri sends (sid, idSj

, evaluate, ρ, Tx) to Fvopprf .
• Ri and Sj abort if they receive abort from Fvopprf .
• Otherwise, Sj gets (sid, idRi , ρ, m).
• If mr = yes:

– Sj retrieves (s′
k)m

k=1, (Lk)m
k=1 s.t. (σ, m, Y, (s′

k)m
k=1, (Lk)m

k=1) ∈ LSj or aborts;
– Sj aborts if (idRi , σ) ∈ LSj

R .
• If mr = no:

– Sj samples (s′
k)m

k=1
$←− (R× S)m.

– Sj defines Lk := {((y, k), (0, ỹ)− s′
k) : y ∈ Y, v ∈ [t], hv(y) = k}.

– Sj sends (sid, idRi , evaluate, σ, (Lk)m
k=1) to Fvopprf .

• Sj receives (OFk)m
k=1 and Ri receives σ, N, (Fk(Tx[k]))m

k=1 from Fvopprf .
• Ri sends Input(Fk(Tx[k]), idRi , x′

k) and Sj sends Input(s′
k, idSi , s′

k) to FABB for
k = 1, . . . , m.

• Ri and Sj send Add([[x′
k]], [[s′

k]], bk) to FABB for k = 1, . . . , m.
• Ri and Sj send Rerand([[bk]], ck) to FABB for k = 1, . . . , m.
• Ri and Sj send OutputShares([[ck]], rk, sk) to FABB for k = 1, . . . , m.
• Ri outputs (rk)m

k=1 and Sj outputs (sk)m
k=1.

be corrupted if the same sender setup phase is used; so the real-protocol OPPRF outputs
are indeed independent and uniformly random for different i ∈ [Nc].

Furthermore, if there exists a y ∈ Y i such that y = T i
x[k] and a v ∈ [t] such that

Aron van Baarsen, Marc Stevens 23

hv(y) = k, then the real protocol output shares (ri
k)mi

k=1, (si
k)mi

k=1 satisfy ri
k + si

k = (0, ỹ),
with si

k sampled uniformly at random. Now T i
x[k] either holds x ∈ Xi with hvx

(x) = k
for some vx ∈ [t], or holds a dummy item x′ $←− X . The first case implies that all matches
x ∈ Xi, y ∈ Y i with x = y result in ri

k + si
k = (0, ỹ) since the Cuckoo hash procedure gives

an injective mapping x 7→ hvx(x) =: k. In the second case this results in a false positive
only if Fk(x′) = (0, ỹ)− si′

k , for which the probability is upper bounded by mi/2ℓ over all
buckets k ∈ [mi], where ℓ := log2 R is the output length of the OPPRF. In all other cases,
ri

k and si
k are sampled independently and uniformly random. Hence for ℓ ≥ λ + log2 mi,

the real and simulated transcripts have statistical distance upper bounded by 2−λ. To
guarantee indistinguishability for the joint distribution over all Nc corrupted parties we
put m := maxi{mi} and ℓ ≥ λ + log2 m + log2 Nc.

5.3 Malicious Adversaries
In the malicious setting, the protocol ΠCore-PSI exhibits several vulnerabilities, which we will
detail below. In Section 6.2 we will explain how our Core-PSI protocol from a shared-output
PRF is able to overcome almost all of these vulnerabilities.

If the receiver is malicious, they are able to slightly enlarge their input set by providing
a malformed Cuckoo hash table T . However, this only influences the outcome of the
protocol if an item x at T [k] satisfies hv(x) for some v ∈ [t]. So the most they can do is to
fill the empty bins with additional real values instead of dummy values, resulting in an
input of size m, which in practice is only a constant value ϵ larger than a honest party’s
input set (see Section 2.3). Since each entry T [k] is evaluated using an independently
random programmed function Fk, the resulting values rk := Fk(Tk) are all independently
random and the receiver can not learn any additional information about the sender’s
inputs2. Finally, a malicious receiver can choose to input different values r′

k to FABB
instead of Fk(Tx[k]). Note that this only has an effect if the values satisfy r′

k + s′
k = (0, z)

for some z ∈ S, since otherwise the Rerand call will return a uniformly random value.
However, s′

k is uniformly random from the receiver’s point of view unless Tx[k] = (y, k)
for some programmed (y, k). So the most they can achieve in this way is to change
the associated value encoded in shares corresponding to matching values, i.e., such that
rk + sk = (0, ỹ + ∆k) for some ∆k ∈ S of the receiver’s choice.

If the sender is malicious, the main area where they can deviate from the protocol
is in the programming of the OPPRF. For example, they can choose to only program
(y, hv∗(y)) for some v∗ ∈ [t] and not program (y, hv(y)) for v ̸= v∗. Now this has the effect
that if y ∈ X, it will only show up in the outputs as rk + sk = (0, ỹ) if the receiver placed
y at Tx[k] in their Cuckoo hash table for k = hv∗(y). So if the sender later learns that
rk + sk = (0, ỹ), this leaks information about the receiver’s Cuckoo hashing choices, which
might also depend on items outside of the intersection. Note that the sender does not
directly learn any additional information from the Core-PSI protocol outputs sk.

On the more extreme end, the sender can act maliciously in the underlying OPPRF
protocol, as discussed in Section 4.3. That is, after receiving random functions F ′

k,
they can supply an arbitrary vector P such that the programmed function is defined
as Fk(x) := F ′

k(x) + ⟨P , d|P |(x; θ). It is interesting to consider how the adversary may
leverage this choice of P against the receiver. It is clear that the adversary can enforce at
most |P | linear relations, which means it can program pre-chosen outputs of at most |P |
points. However, instead it can also program at most |P | difference relations of the form

(F ′
k(y1) + ⟨P , d|P |(y1; θ)⟩)− (F ′

k(y2) + ⟨P , d|P |(y2; θ)⟩) = z1 − z2. (1)

In the context of Core-PSI, the adversary can effectively program the receiver’s output
2Unless the sender reuses their setup phase, as discussed before

24 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

secret shares for |P |+ m points by choosing its own output shares (s′
k)m

i=1 appropriately as

s′
k = z1 − (F ′

k(y1) + ⟨P , d|P |(y1; θ)⟩) = z2 − (F ′
k(y2) + ⟨P , d|P |(y2; θ)⟩). (2)

This would let a malicious sender program at most |P |+ m ≤ q(M(m)) + m points in the
VOPPRF instead of the t · |Y | ≤M(m) points a honest sender will program, but again
does not let them learn any additional information about the receiver’s input set.

The same trick might also be used by honest senders to program one extra item in
the OPPRF for each bucket for additional savings in the communication cost of the
protocol. For the first two items in each bucket k ∈ [m], they can encode P as in (1) with
z1 := (0, ỹ1) and z2 := (0, ỹ2). Then they can set their share s′

k for bucket k as in (2) and
encode the remaining items y in this bucket as usual as F ′

k(y)+ ⟨P , d|P |(y; θ)⟩ = (0, ỹ)−s′
k.

Since the encoding P is computed as a solution to a system of equations M · P = v,
where the entries of v are all independent uniformly random, and the rows of M are
now either of the form d|P |(y; θ) or of the form d|P |(y1; θ)− d|P |(y2; θ), the vector P will
be uniformly random as long as it is selected randomly from all the solutions (provided
that a solution exists). Since the receiver only learns a single OPRF evaluation for each
index k ∈ [m], this approach does not leak any additional information about the sender’s
set. However, since state-of-the art OKVS constructions [RR22, BPSY23] are optimized
towards encoding relations of the form ⟨P , d|P |(y; θ)⟩ = z as opposed to of the form
⟨P , (d|P |(y1; θ)− d|P |(y2; θ))⟩ = z, it is unclear how this will influence the computational
complexity of the resulting Core-PSI protocol. In terms of communication, this could
reduce the size of the OKVS encoding from approximately tn to (t− ϵ)n in the best case,
an ≈ 1.73 factor improvement for practical parameters t = 3 and ϵ = 1.27. We leave it to
future work to explore this approach further.

6 Core-PSI from Shared-Output PRF
In this section we present a novel Core-PSI protocol from a primitive we call a shared-
output PRF (SOPRF). This primitive, on input a key K from the sender and an input
x from the receiver, outputs secret shares of a (pseudo)random function F evaluated on
(K, x). The main structure of the resulting Core-PSI protocol is similar to the protocol
from Section 5.2: The sender and receiver evaluate the SOPRF on the receiver’s input set
X and a random key K sampled by the sender, obtaining a secret sharing of F (K, xi) for
i = 1, . . . , |X|. The sender can locally evaluate F (K, y) for y ∈ Y and encode an OKVS
sending y to (0, ỹ) − F (K, y). The receiver can now decode this OKVS on xi and add
the result to the SOPRF output. The parties now hold a sharing of (0, ỹ) if there exists
(y, ỹ) ∈ Y such that xi = y, and a sharing of a random value otherwise. To make sure
the random value corresponding to non-matching entries is independent from the sender’s
transcript, the parties rerandomize the shared values before receiving the shares. A formal
description of the protocol Π∗

Core-PSI is given in Figure 13.
Because the sender’s output shares essentially correspond to their SOPRF shares, they

are already indexed by the receiver’s set indices, and thus the parties do not need to
perform the Cuckoo/simple hashing step that is done at the start of the Core-PSI protocol
from Section 5.2. Because of this, the protocol realizes a simpler and stronger Core-PSI
functionality, which we denote by F∗

Core-PSI, and which is detailed in Figure 12. Additionally,
this limits some of the ways described in Section 5.3 in which a malicious party can deviate
from the protocol. The main remaining obstacle towards malicious security is now to
guarantee that the sender programs the OKVS correctly. If the underlying function F (·)
is modeled as a random oracle, the hardness of the OKVS overfitting game (Definition 2)
limits the number of items the sender can encode in the OKVS as y 7→ (0, ỹ)− F (K, y).
Moreover, by observing the queries to F (·), the simulator is able to extract these items
from the OKVS encoding. In this way, we are able to realize the functionality F∗

Core-PSI with

Aron van Baarsen, Marc Stevens 25

Figure 12 Ideal Core-PSI functionality F∗
CorePSI.

Parameters: Receiving parties Ri, i ∈ [NR], and sending parties Sj , j ∈ [NS], each
holding unique identifiers idRi and idSj , respectively, agreeing on an input space X , a key
alphabet K, a finite ring S as value alphabet and a finite ring R. M ′ ∈ N is an upper
bound. LSj is a list of sender setup phases. Initialize LSj := ∅.

Functionality:

• On query (setup, σ, Y) from Sj :
– If ∃Y ′ : (σ, Y ′) ∈ LS

j then do nothing.
– Else, add (σ, Y) to LSj and send (idSj

, σ, |Y |) to A.

• On input (sid, evaluate, X) from Ri and input (sid, evaluate, σ, Y) from Sj :
– Abort if |Y | > M ′ or if (σ, Y) /∈ LS

j . Send (sid, σ) to A.
– For k = 1, . . . , |X|, sample rk, sk

$←− R× S under the constraint that

rk + sk = (0, ỹ) if ∃(y, ỹ) ∈ Y such that xk = y.

– Output |Y |, (rk)|X|
k=1 to Ri and (sk)|X|

k=1 to Sj .

malicious security. It is important to note that we do not obtain fully maliciously secure
Circuit-PSI in this way, since a malicious party can still corrupt their output shares without
the other party noticing. See Section 6.2 for more details. In Section 6.1, we prove that
the protocol Π∗

Core-PSI is secure against semi-honest adversaries when the function F (·) is a
public PRF. As an example, we show that (an extended version of) the Dodis-Yampolskiy
PRF allows for efficient evaluation inside MPC to realize the SOPRF functionality.

Finally, we extend the Π∗
Core-PSI protocol with a re-usable sender setup phase similar to

the sender setup phase of the underlying Πvopprf protocol in the ΠCore-PSI protocol from
Section 5.2. Notably, we are able to overcome the vulnerability from Remark 2 with our
Π∗

Core-PSI protocol, and allow the sender to re-use their setup phase with multiple corrupted
receivers, even in the malicious setting. This is because the receiver only obtains a random
secret share of the PRF output, and can therefore not fully unmask the programmed values
from the sender’s OKVS. Additionally, since we took away the simple hashing step, the
sender no longer needs to program multiple items to map to the same unmasked value.

6.1 Semi-Honest Setting
We show that when the function F (·) underlying the protocol Π∗

CorePSI is instantiated
by a PRF, then it realizes the functionality F∗

CorePSI against semi-honest adversaries.
Furthermore, the senders setup phase (σ, θ, P) can be securely re-used with multiple
corrupted receivers, as well as during multiple executions with the same corrupted receiver.
We will refer to a PRF with shared outputs, that is, the output of EvalF ([[x]], [[K]]) where
the underlying function F is a PRF, as a shared-output PRF (SOPRF).

Theorem 5. The protocol Π∗
CorePSI realizes the functionality F∗

CorePSI against semi-honest
adversaries in the FABB-, FBB-hybrid model if the function F (·) is a PRF with output
length ℓ ≥ λ + log2 m + log2 Nc, where m := maxi |Xi| and Nc is the total number of
corrupted parties.

Proof. First consider the setting of corrupted senders Si. The simulator, on input σi, Y i,
(si

k)|Xi|
k=1 , can send random identifiers to answer queries to FABB, and returns (si

k)|Xi|
k=1 upon

the OutputShares query to FABB.

26 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

Figure 13 Core-PSI protocol Π∗
CorePSI.

Parameters: Receiving parties Ri, i ∈ [NR], and sending parties Sj , j ∈ [NS], each
holding unique identifiers idRi and idSj , respectively, agreeing on a key alphabet X ,
a finite ring S as value alphabet and a finite ring R. LSj is a list of sender setup
phases. OKVS := (Encode, Decode) is a linear OKVS with expansion function q : N→ N.
F (·) : {0, 1}∗ → R× S is a public function. Initialize LSj := ∅. M ∈ N is an upper bound.

Subprotocol SetupS with Sj-input (σ, Y)

• If ∃Y ′, K, θ, P : (σ, Y ′, K, θ, P) ∈ LSj , then Sj does nothing.
• Else:

– Sj samples K $←− K, θ $←− {0, 1}κ and computes
P ← Encode({(y, (0, ỹ)− F (K, σ, y)) : (y, ỹ) ∈ Y }; θ).

– Sj updates LSj ← LSj ∪ {(σ, Y, θ, P)}.
– Sj sends (post, sid, idσ, (σ, θ, P)) to FBB.

Subprotocol Evaluate with Ri-input X and Sj-input σ:

• Sj sends σ to Ri.
• Ri sends (read, sid) to FBB, searchesM for the first message (idSj , sid, idσ, (σ, θ, P))

with P ∈ R∗ and θ ∈ {0, 1}κ, and aborts if it does not exist or if |P | > q(M).
• Ri sends Input(X, idRi

, X) and Sj sends Input((K, σ), idSj
, τ) to FABB.

• Ri and Sj send EvalF ([[X]], [[τ]], X ′) to FABB to receive [[x′
k]] = [[F (τ, xk)]] for k =

1, . . . |X|.
• Ri sends Input(Decode(P , xk; θ), idRi , ak) to FABB for k = 1, . . . , |X|.
• Ri and Sj send Add([[x′

k]], [[ak]], bk) to FABB for k = 1, . . . , |X|.
• Ri and Sj send Rerand([[bk]], ck) to FABB for k = 1, . . . , |X|.
• Ri and Sj send OutputShares([[ck]], rk, sk) to FABB for k = 1, . . . , |X|.
• Ri outputs (rk)|X|

k=1 and Sj outputs (sk)|X|
k=1.

Now consider the setting of corrupted receivers Ri. The simulator, on input Xi, σi, |Y i|,
(ri

k)|Xi|
k=1), can simulate honest sender’s setup phases by receiving (σi, |Y i|) from F∗

CorePSI and
sampling θi $←− {0, 1}κ and P i $←− Rq(|Y i|). These are computationally indistinguishable
from the real-protocol OKVS encodings since the OKVS is doubly oblivious and the
function F (·) is a PRF. The simulator furthermore returns random identifiers upon the
queries to FABB, and returns (ri

k)|Xi|
k=1 upon the OutputShares call.

It remains to show that the (ri
k)|Xi|

k=1 , (si
k)|Xi|

k=1 are indistinguishable between the real and
simulated transcript. Consider a hybrid which behaves exactly like a real protocol execution,
but where F is a truly random function. Note that if there exists (yi, ỹi) ∈ Y i such that xi

k =
yi, then ri

k + si
k = (0, ỹi), and the shares are sampled uniformly under this constraint. If

there does not exist a matching element in Y i, then xi′

k +ai
k = F (τ i, xi

k)+Decode(P i, xi
k; θi),

where F (τ i, xi
k) is distributed uniformly random and independent from Decode(P i, xi

k; θi);
hence bi

k := xi′

k + ai
k = (0, z) for some z ∈ S with probability 2−ℓ. So except with this

probability ci
k is going to be an independent uniformly random value, and the same holds

for the outputs ri
k, si

k. The statistical distance between this hybrid and the simulated
transcript is therefore upper bounded by Nc ·m · 2−ℓ ≤ 2−λ. Hence we can conclude that
the real and simulated protocol execution are computationally indistinguishable.

Example 1 (Extended Dodis-Yampolskiy PRF). One candidate function that can be
evaluated efficiently inside MPC is the Dodis-Yampolskiy PRF [DY05], which is defined

Aron van Baarsen, Marc Stevens 27

Figure 14 Semi-Honest protocol ΠEDY-SOPRF in the FABB-hybrid model
Parameters: Let F∗

q = ⟨g̃⟩ be the multiplicative group of a finite field of strong prime
order q = 2p + 1. Extended Dodis-Yampolskiy PRF on input x ∈ ZQ and key K ∈ Zp

defined as F (K, x) := g̃[1/(K+x) mod p] mod q. Sender S holding a key K ∈ Zp and receiver
R with input x ∈ ZQ.

Protocol:

• Compute [[x + K]]p ← Add([[x]]p, [[K]]p).
• Get [[r]]p ← Random and compute [[r(x + K)]]p ←Multiply([[r]]p, [[x + K]]p).
• Output [z mod p]← Output([[r(x + K)]]p) to R and S.
• R and S locally compute [z−1 mod p] and input [[z−1]]← Input([z−1 mod p], z−1).
• Compute [[y]]p ←Multiply([[z−1]]p, [[r]]p).
• R and S call (y1, y2)← OutputShares([[y]]p).
• R and S locally compute F1 := [g̃y1 mod q] and F2 := [g̃y2 mod q], respectively.
• R inputs [[F1]]q ← Input(F1) and S inputs [[F2]]q ← Input(F2).
• Compute [[F (K, x)]]q ←Multiply([[F1]]q, [[F2]]q).

as F (K, x) := g1/(K+x), where G = ⟨g⟩ is a cyclic group of prime order p, K $←− Zp and
x ∈ ZQ for some Q ∈ N. It is a PRF under the Q-DDHI assumption (See Appendix D) if
Q is polynomial in the security parameter κ.3

However, for our Core-PSI protocol in Figure 13, it is more convenient if the output of
the function F is pseudorandom in a finite field F, since the sender needs to additively
mask their associated data ỹ by the output of F . Hence, we let q = 2p + 1 be a strong
prime, g̃ a generator of the multiplicative group F∗

q , and consider the function

F̃ (K, x) := g̃[1/(K+x) mod p] mod q

with K $←− Zp and x ∈ ZQ. We conjecture that this function will be a PRF in F∗
q (and

therefore also in Fq), which we support by the following reasons. First, we note that the
distribution of {g̃y | y $←− Zq−1} is computationally indistinguishable from {g̃y | y $←− Zp}
under the discrete logarithm assumption in F∗

q , since the most significant bit of y ∈ Zq−1
is a hard-core predicate for the discrete logarithm problem [BM82]. Secondly, the modular
inverse 1/(K + x) mod p always exists4. Finally, note that F̃ (K, x) reveals the parity
of 1/(K + x) mod p, but that this does not reveal any information about the parity of
(K + x) mod p. We can formulate a comparable assumption to the original Q-DDHI
assumption, underlying the pseudorandomness of F̃ , as the Q-EDDHI assumption in
Appendix D. We refer to F̃ as the extended Dodis-Yampolskiy PRF.

In Figure 14, we present a protocol for evaluating the extended Dodis-Yampolskiy
shared-output PRF (EDY-SOPRF). Correctness of the protocol is easily checked, and
privacy follows immediately since the only value [r(x + K) mod p] that is opened to the
parties is uniformly random. Using preprocessed random shared values and multiplication
triples to compute multiplications, the online communication complexity of this protocol
consists of 6Zp and 4F∗

q elements (≈ 10 · log2 q bits) per evaluation.

6.2 Malicious Setting
When the underlying function F (·) is modeled as a random oracle, the protocol Π∗

CorePSI is
secure against malicious adversaries. The main idea behind this is that we can extract a

3It is actually proven in [DY05] to be a verifiable random function (VRF) in a bilinear group, which
can straightforwardly be adapted to a proof that it is a PRF in a cyclic group

4unless x ≡ −K mod p, which happens with negligible probability

28 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

malicious sender’s effective input set corresponding to a setup phase (σ, θ, P) by observing
their queries (τ, y) to F (·) and checking which of these satisfy Decode(P , y; θ) + F (τ, y) =
(0, ỹ) for some ỹ ∈ S. By imposing a suitable upper bound q(M) on the size of the
encoding P , we can guarantee that no more than M ′ elements will be extracted in this
way. In other words, we require the (M, M ′)-OKVS overfitting game from Definition 2 to
be hard. We want to note that even though the protocol realizes the functionality F∗

CorePSI
against malicious adversaries, a corrupted party can still change their output shares before
proceeding to the post-computation phase, without the other party being able to notice
this. This is of course not satisfactory when one is aiming at a fully maliciously secure
Circuit-PSI solution. We will refer to the protocol as being “almost maliciously” secure,
and discuss this subtlety in more detail in Remark 4.

We evaluated the upper bound ε :=
(

Q
M ′

)
· 2(q(M)−M ′)ℓ from [PRTY20, App. A] on

the success probability of any adversary against the (M, M ′)-overfitting game, both with
ℓ = κ = 128 or ℓ = λ + log2 q(M) with λ = 40. Here we put Q = 2ℓ, consider some input
set sizes ≈ q(M) and an appropriate choice of upper bound M ′ to make ε negligible.

Table 1: Upper bounds ε for an adversary winning the (M, M ′)-OKVS overfitting problem.
q(M) 216 220 224

M ′ 8q(M) 4q(M) 7q(M) 3q(M) 6q(M) 3q(M)
ℓ 128 56 128 60 128 64
ε < 10−105

< 10−105
< 10−106

< 10−105
< 10−108

< 10−107

Theorem 6. The protocol Π∗
CorePSI realizes the functionality F∗

CorePSI against malicious
adversaries in the random oracle, FABB-, FBB-hybrid model if the function F (·) is modeled
as a random oracle. The parameters ℓ, M ≈ q(M) and M ′ can be chosen, for example, as
in Table 1.

Proof. First consider corrupted senders Si. When F (·) is modeled as a random oracle, the
simulator can extract the effective input set Y

i of Si corresponding to a setup phase σi as
follows:

• The simulator keeps track of Si’s queries (z, F (z)) to F (·) in a list Qi, and answers
them randomly as usual.

• As Si sends σ, fetch (σ, θ, P) from the bulletin board, or aborts if it does not exist
or |P | ≥ q(M).

• Wait for Si to send Input(τ, idSi
, τ) to FABB.

• For queries ((τ, y), F (τ, y)) ∈ Qi, if Decode(P , y; θ) + F (τ, y) = (0, ỹ) for some ỹ ∈ S,
then add (y, ỹ) to Y

i.
• Send (setup, τ, Y

i) and (sidi, evaluate, τ, Y
i) to F∗

CorePSI, receive (si
j)|Xi|

j=1 .
• Return (si

j)|Xi|
j=1 to Si as the output from FABB to the OutputShares call.

Note that the si
j are distributed uniformly random in R×S in the simulated as well as in the

real protocol outputs. More importantly, we want the joint distribution with the ri
j to be

indistinguishable. In the real protocol execution, if the parties sent EvalF ([[Xi]], [[τ]], Xi′)
to FABB, then the outputs ri

j , si
j are random shares of (0, ỹ) if there exists some value (y, ỹ)

such that Si encoded the OKVS such that Decode(P , y; θ) + F (τ, y) = (0, ỹ) and xi
j = y.

This agrees with the ideal functionality outputs in the simulated execution. Moreover,
the number of items the simulator extracts in Y

i is upper bounded by M ′ with all but
negligible probability. If the PRF key τ ′ which Si used to program the OKVS on some
matching point xi

j = y does not agree with the key τ sent to the FABB functionality, then
the outputs ri

j , si
j are random shares of an independent uniformly random value unless

Aron van Baarsen, Marc Stevens 29

the first part of F (τ, xi
j) and F (τ ′, y) agree, which happens with probability 2−ℓ. This

agrees with the simulated execution since the simulator will not have added (y, ỹ) to
Y

i in this case. On unprogrammed points xi
j ∈ Xi, the outputs ri

j , si
j will be random

shares of an independent uniformly random value unless the first half of F (τ, xi
j) and

−Decode(P i, xi
j ; θ) agree, which again happens with probability 2−ℓ. Overall this results

in statistical distance at most |Xi| · 2−ℓ ≤ 2−λ between the real and simulated executions
(ignoring negligible terms in κ).

Now consider corrupt receivers Ri. The simulator obtains the honest sender’s setup
phase identifiers (σi, mi) from F∗

CorePSI, and can sample θi $←− {0, 1}κ, P i $←− Rq(mi) to
simulate the sender’s setup phases, which are indistinguishable from the real-protocol
OKVS encodings since OKVS is doubly oblivious. The simulator can determine the
receiver’s effective inputs as follows:

• Wait for Ri to send Input(Xi, idRi , Xi) to FABB.
• Send (sidi, evaluate, Xi) to F∗

CorePSI and receive (ri
j)|Xi|

j=1 .
• Wait for Ri sends Input(ai

j , idRi
, ai

j) to FABB.
• If ai

j = Decode(P i, xi
j ; θ) + (0, ∆i

j) for some ∆i
j ∈ S, put ri

j ← ri
j + (0, ∆i

j).
Otherwise replace ri

j
$←− R× S.

• Return (ri
j)|Xi|

j=1 to Ri as the output from FABB to the OutputShares call.

The ri
j are again all distributed uniformly random, just as in the real protocol. If Ri follows

the protocol honestly, indistinguishability of the joint distribution with the si
j follows since

the honest sender S programmed P i to map elements (y, ỹ) ∈ Y i to (0, ỹ)− F (Ki, σi, y);
hence after rerandomization the values bi

j := F (Ki, σi, xi
j) + Decode(P i, xi

j ; θi) satisfy

ci
j =

{
(0, ỹ) if ∃(y, ỹ) ∈ Y i such that xi

j = y,
$←− R× S otherwise,

up to the event that F (Ki, σi, xi
j) + Decode(P i, xi

j ; θi) = (0, z) for some z ∈ S on an
unprogrammed point, which happens with probability 2−ℓ. Now since ri

j , si
j are uniformly

chosen shares of ci
j , we see that they are distributed statistically close to the ideal

functionality outputs on input Xi (and honest sender’s input σi, Y i) with distance at
most |Xi| · 2−ℓ ≤ 2−λ. The only place where a malicious receiver can deviate is by sending
wrongly constructed values ai

j ̸= Decode(P i, xi
j ; θ) to FABB. These result in valid matches

showing up in the output only if and only if F (Ki, σi, xi
j) = (0, z) − ai

j for some z ∈ S.
Assuming that Ri did not query F (·) on any input of the form (Ki, σi, xi

j), equality on
the first component happens with probability 2−ℓ. However, Ri is free to change the
second component of the output by sending ai

j := Decode(P i, xi
j ; θ) + (0, ∆i

j) for some ∆i
j ,

which has the effect that for matching values xi
j = y, the outputs ri

j , si
j are random shares

of (0, ỹ + ∆i
j), just as in the simulated execution. Otherwise, it results in ri

j , si
j being

independent uniformly random, just as in the simulated execution. Consider a hybrid
which behaves exactly as the real execution but aborts if the receiver poses any query
of the form (Ki, σi, x). This hybrid aborts with at most negligible probability in κ since
Ki

$←− K from the receiver’s point of view, with |K| ≥ 2κ. The statistical distance between
this hybrid and the simulated execution is upper bounded by |Xi| ·2−ℓ ≤ 2−λ by our above
discussion.

Example 2. To instantiate F any cryptographic pseudorandom function would suffice,
but a better choice are functions designed especially for MPC protocols, such as LowMC
[ARS+15] and MiMC [AGR+16]. LowMC [ARS+15] is not well-suited for our applications
since it operates over F2, which would require expensive conversion operations when mainly

30 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

arithmetic shares over a field Fp of large prime characteristic p are used. MiMC is better
suited than LowMC, since it works over Fp instead of F2. MiMC requires repeatedly
computing a round function Fi(x) := (x + k + ci)3, where k is the key and the ci are
random constants chosen by the sender. The number of rounds required for κ = 128 bits
of security is r = 73. As in [GRR+16], we estimate the communication complexity of
the online phase by the number of sent openings needed to perform these multiplications,
which gives 3r · log2 |Fp| = 219 · log2 |Fp| bits of communication per evaluation. Grassi et
al.[GRR+16] implemented several MPC-friendly PRFs in SPDZ [DPSZ12] and concluded
that MiMC provides a good compromise between latency and throughput compared to
other PRFs which operate over prime fields.

Remark 4. Importantly, we want to note that although the protocol Π∗
Core-PSI realizes

the ideal functionality F∗
Core-PSI against malicious adversaries, this is not sufficient to

obtain a fully maliciously secure Circuit-PSI solution. Namely, even when the parties
forward the outputs of the ideal functionality F∗

Core-PSI to an ideal functionality for the
post-computation, they are free to change their shares in between. To combat this, we
would need to adapt the ideal functionality F∗

Core-PSI to output authenticated shares of the
intersection. That is, using the arithmetic black-box formalization, output [[ck]], where

ck =
{

(0, ỹ) if ∃(y, ỹ) ∈ Y such that xk = y,
$←− R× S otherwise.

It seems like our protocol Π∗
Core-PSI actually realizes this if we remove the last two lines

from Figure 13, but since the receiver can input arbitrary ak to FABB, they can shift
bk by an arbitrary value ∆k ∈ R × S before rerandomization. As we saw in the proof
of Theorem 6, the only consequences are that the receiver can make matching values
show up as non-matching values or change the associated value ỹ 7→ ỹ + ∆ for matching
values. Importantly, they are only able to make non-matching values show up as matching
values with negligible probability. For these reasons, we refer to our protocol as being
“almost maliciously” secure. Finally, since the sender’s output shares come directly from
the maliciously secure random function evaluation, our protocol does realize the stronger
functionality described above against malicious senders and semi-honest receivers. We
leave it to future work to extend our protocol to realize this stronger functionality against
malicious receivers as well.

7 Unbalanced Core-PSI
In case the sender’s set Y is much larger than the receiver’s set size X, that is, |Y | ≫ |X|,
one would like the communication of the Core-PSI protocol to depend sublinearly on |Y |.
Inspired by the solution from Hetz et al. [HSW23] for asymmetric plain PSI, we propose
to combine our Core-PSI protocols with private information retrieval (PIR) to achieve this.
The main idea is that, instead of sending the sender’s OKVS encoding to the receiver, the
receiver uses PIR to decode their items from the OKVS. More precisely, to decode x the
receiver queries the entries of P at the indices where d(x; θ) is non-zero, such that they
can locally compute Decode(P , x; θ) = ⟨P , d(x; θ)⟩. This approach has concurrently been
suggested by Hao et al. [HLP+24], which they named oblivious key-value retrieval. The rest
of the asymmetric Core-PSI protocol proceeds just as in Figure 11. Hao et al. [HLP+24]
make the observation that the receiver only needs to issue PIR queries for the non-dummy
entries of their Cuckoo hash table, since the receiver already knows to expect random
decoded values on dummy items and therefore might as well sample them locally.

The efficiency of this approach crucially relies on the fact that the OKVS decoding
vector d(x; θ) is sparse, such that only a small number of entries needs to be retrieved using
PIR. Hao et al. [HLP+24] opt to use garbled Cuckoo table-like OKVS constructions, such

Aron van Baarsen, Marc Stevens 31

as [PRTY20, GPR+21, RS21, RR22], where the decoding vector consists of a relatively
long sparse part and a relatively short dense part. In their solution, the short part of the
OKVS encoding vector is transmitted directly to the receiver, whereas the relevant entries
from the long part are retrieved using PIR. We instead suggest to use the random band
matrix-based OKVS construction from Bienstock et al. [BPSY23], where the decoding
vector consists of a short dense vector of length w at a random location, and zeroes
everywhere else. Because of this, the receiver only needs to query a single location of the
OKVS encoding vector, upon which the sender returns all subsequent w entries. Note
that this requires a PIR scheme which performs well on relatively large entries, that is, of
length µ = w · (ℓ + σ), where ℓ is the OPRF output length required for correctness/security,
σ is the length of the associated data and w = O(λ), for example, µ ≈ λ · κ = 640 bytes
for λ = 40 and κ = 128.

One limitation of the unbalanced Circuit-PSI protocol of Hao et al. [HLP+24] is that
the sender can neither re-use their OKVS encoding with multiple clients nor multiple
times with the same client, because clients would be able to notice collisions similarly to
Remark 2. Combining our shared-output PRF based Core-PSI protocol from Figure 13
with PIR decoding, the sender is able to re-use their OKVS encoding. This also lowers
the number of PIR queries the receiver needs to make as well as the size of the PIR
datastructure since we do not need the Cuckoo hashing and simple hashing steps anymore.

Additionally, one could combine this aproach with the idea from Hetz et al. [HSW23]
to split the OKVS encoding P up in β partitions of size NPIR = |P |/β and run PIR
instances of size NPIR. In order to not reveal which partitions are being queried, the
receiver needs to pose dummy queries to each of the partitions. For the solution using the
OKVS from [BPSY23] as described above, the receiver only needs to pose a single query
to a single (random) partition to decode an item. Hence, just as in [HSW23], one can use
a balls-into-bins type of analysis to determine the total number of queries the receiver
needs to make to each partition.

For the underlying PIR scheme one can either opt for a single-server (batch) PIR scheme,
such as [HLP+24] does, or for a two-server PIR scheme, such as [HSW23] does. A two-
server solution requires us to work in a slightly stronger model where we need the existence
of an additional helper server which we assume not to collude with the sender. Note that
PIR schemes without a preprocessing phase can achieve polylogarithmic communication
cost per query, but require linear computation cost per query for the server [BIM00].
Many recent works construct practical single-server PIR protocols in the client-dependent
preprocessing model [HHC+23, ZPZS24, MIR23, GZS24]. Practical constructions of two-
server PIR schemes also work in this client-dependent preprocessing model [KC21, LP23].
To further amortize sender communication and computation, one would ideally like to
combine our re-usable sender setup phase described above with a PIR scheme with a
re-usable, client-independent preprocessing phase. A recent breakthrough [LMW23] and
follow-up work [OPPW23] increase hope towards such a “doubly-efficient” PIR solution,
but unfortunately no truly practical construction for large databases exists so far. We leave
it to future work to explore the best choice of PIR scheme to instantiate our construction.

8 Post-processing for Core-PSI
Core-PSI models the core functionality inside Circuit-PSI, making the final equality
checking step to obtain boolean flags optional, for potentially more efficient Circuit-
PSI solutions. Our Core-PSI protocols do include a final rerandomization step to make
sure that the receiver’s protocol output shares for non-matching items are distributed
independent from the sender’s transcript. That is, such that even when (derivatives of)
the receiver’s output shares are later shared with the sender, they are not able to learn
any information about the receiver’s input items outside of the intersection. We realize

32 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

that this rerandomization step is not always necessary or that sometimes a secure equality
checking step is needed. We will discuss two alternate options for post-processing in this
section, but acknowledge that a more detailed study of which type of post-processing is
best suited for which application is out of scope for this paper.

Example 3 (Core-PSI with Polynomial Postcomputation). As mentioned in Section
1.1, there are scenarios when Core-PSI leads to a more efficient solution compared to
Circuit-PSI. For example, consider the setting where a single receiver R runs an execution
of Core-PSI with N different senders Si and the parties obtain output shares (ri

k)k∈[m],
(si

k)k∈[m], respectively, for i ∈ [N]. Then any post-computation which can be expressed as
a multi-variate polynomial in the m ·N variables ri

k + si
k can be computed without first

computing secure equality checks as in Circuit-PSI. For example, the parties can compute
whether an item k ∈ [m] of the receiver lies in all (resp. at least one) of the sender’s sets
by securely computing the sum

∑
i(ri

k + si
k) (resp. the product

∏
i(ri

k + si
k)). Note that

for this type of postcomputation, the parties can skip the Rerand call that is done at the
end of the individual Core-PSI protocols and instead only rerandomize the outputs after
evaluating the multivariate polynomial.

Instead of rerandomizing, the parties can securely compare the output of this com-
putation with zero to realize multiparty Circuit-PSI or quorum Circuit-PSI [CDG+21].
This significantly reduces the amount of secure equality checks needed compared to first
computing secure equality checks for each i ∈ [N] and each k ∈ [m]. The above can be
generalized to verify whether these statements hold for at least one (resp.all) of the items
in a subset of the receiver’s set by additionally taking a product (resp.sum) over various k.

Example 4 (Circuit-PSI). To realize the Circuit-PSI functionality from [RS21] (see
Fig. 1), the parties can replace the Rerand call at the end of our Core-PSI protocols
with an Equality call to FABB. This either results in a semi-honestly secure Circuit-PSI
protocol using ΠCore-PSI (or Π∗

Core-PSI when the underlying function is a PRF) or an “almost
maliciously” secure Circuit-PSI protocol using Π∗

Core-PSI when the underlying function is a
random oracle.

Plugging in our semi-honest protocol ΠCore-PSI with our VOLE-VOPRF protocol
Πvole-voprf and a state-of-the art OKVS construction [RR22, BPSY23] leads to a slightly
more communication and computation efficient Circuit-PSI protocol than the state of
the art [RR22, BPSY23]. See Section 9 for more details on these instantiations and their
comparison to related work.

Plugging in our maliciously secure protocol Π∗
Core-PSI, instantiating the random oracle

by a cryptographic PRF, and the arithmetic black box functionality by an actively secure
MPC protocol such as [DPSZ12], we obtain the first major step towards a maliciously
secure Circuit-PSI protocol since the protocol from Huang et al. [HEK12]. Notably, our
resulting protocol has linear communication and computation complexity as opposed to
the O(n log n) complexity of [HEK12], but is not able to provide a maliciously secure
Circuit-PSI solution all the way through to the post-computation phase, as discussed in
Remark 4. For short, our Circuit-PSI protocol is not able to guarantee authenticated
output shares for the functionality in Figure 1 since a malicious receiver can add arbitrary
shifts bi 7→ bi + ∆i to their output shares. We would however in this way obtain a protocol
that is secure against malicious senders and outputs authenticated secret shares. That is,
a Circuit-PSI protocol secure against malicious senders and semi-honest receivers.

9 Theoretical Performance
In this section we estimate the communication costs and the amortization savings of our
protocols in the following multi-party Core-PSI settings:

Aron van Baarsen, Marc Stevens 33

• 1-to-N: A single sender runs N executions of a Core-PSI protocol using the same
input set with each of the receivers;

• N-to-1: N senders run an execution of a Core-PSI protocol with a single receiver
who uses the same input set in each execution;

• N-to-N: Each of the N + 1 parties runs 2N executions using the same input: N
times as a receiver with each of the other parties, and again as a sender 5;

• N-query: A single sender runs N executions of a Core-PSI protocol using the same
input set with the same receiver, who uses a different, relatively small, input set in
each execution.

The amortizations that can be used in each setting depend mostly on the sender
and receiver setup phase of the underlying VOPRF/SOPRF protocol. If the VOPRF
supports a receiver setup phase, then the receiver can re-use this setup phase across
multiple executions of the VOPPRF-based Core-PSI protocol from Section 5.2 in the
N-to-N and N-to-1 setting. This is the case for the VOLE-VOPRF from Section 3.2
and the CGA-VOPRF from Section 3.3. If the VOPRF supports a sender setup phase,
then this means that the sender can re-use the same OKVS encoding in the VOPPRF
protocol from Section 4.2, and therefore use the same encoding in the VOPPRF-based
Core-PSI protocol from Section 5.2 in the 1-to-N and N-to-N setting. This is the case
for the CGA-VOPRF from Section 3.3, but one important caveat is that only one of the
parties may be corrupted and multiple executions with the same receiver are not allowed
in this setting, as mentioned in Remark 2. In the SOPRF-based Core-PSI protocol from
Section 6, the sender can re-use their OKVS encoding securely with multiple corrupted
receivers, or multiple times with the same receiver, which applies to the 1-to-N, N-to-N
and N-query settings. The factors saved by these amortizations are indicated in Table 2.
Note that we do not take into account the potential savings in the asymmetric setting by
combining our Core-PSI protocols with PIR, as sketched in Section 7, which could lower
the communication complexity in the 1-to-N and N-query setting even further. We leave it
to future work to explore this.

Since we newly introduce the Core-PSI functionality, we compare our protocols to
the state-of-the-art semi-honest Circuit-PSI protocols [RR22, BPSY23]. Note that these
protocols only differ in the OKVS construction they use; the protocol from [RR22] is in
general more efficient, but the protocol from [BPSY23] achieves lower communication,
making it more efficient in low-bandwidth settings. We replace the final equality checking
step in these protocols by a rerandomization step such that they realize our Core-PSI
functionality in the semi-honest setting. Our VOLE-based protocol is also computationally
more efficient than [RR22, BPSY23], since our VOLE-VOPRF does not require the parties
to encode/decode an OKVS to evaluate the OPRF, whereas the VOLE-OPRF used by
[RR22, BPSY23] does. Note that all known Circuit-PSI protocols except for [HEK12]
target semi-honest security.

The theoretical communication cost of our Core-PSI protocols is detailed in Table 2. In
the two-party setting we denote the receiver’s set size by nx and the sender’s set size by ny.
In the multi-party setting where there are multiple senders and/or receivers, all input sets
are assumed (roughly) equally large of size denoted by n. Except in the N-query setting
where the sender has a large input set of size ny = n and the receiver multiple small query
sets of size nx. Recall that we denote λ for the statistical security parameter, κ for the
computational security parameter. Let ϵ denote the expansion factor of the Cuckoo hashing
scheme and let t denote the number of hash functions used in the Cuckoo hashing scheme.
Furthermore, η denotes the expansion factor of the OKVS. We let ℓ = λ + log2(ϵnx)

5Each pair of parties execute Core-PSI twice: in both directions. This is useful since for each receiver,
all N executions are with respect to the same cuckoo hash table encoding of that receiver’s input, this
makes it easy to MPC-compute functions f over that receiver’s input with all senders’ inputs ‘left-joined’
to it.

34 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

Table 2: Theoretical communication cost of CorePSI protocols. The symbols indicate:
∗ based on our own estimate, replacing the final equality checking step by a rerandomization
step to realize CorePSI ([RR22] has identical complexity); † satisfying “almost malicious”
security. The factor saved in the N -to-1 setting is indicated in red; The factor saved in
the 1-to-N amortization is indicated in blue; ♢ At most one party may be corrupted and
multiple executions with the same receiver are not allowed in 1-to-N setting.

Protocol Communication (bits)
[BPSY23]∗ ϵηℓnx+tη(ℓ+σ)ny+214.5κ+2ϵ(ℓ+σ)nx+Csh(ϵ⌈(ℓ+σ)/ℓ⌉nx)

VOLE-VOPRF ϵℓnx/N+tη(ℓ+σ)ny+214.5κ+2ϵ(ℓ+σ)nx+Csh(ϵ⌈(ℓ+σ)/ℓ⌉nx)
CGA-VOPRF♢ (2+2/N)ϵκnx+tη(ℓ+σ)ny/N+2ϵ(ℓ+σ)nx+Csh(ϵ⌈(ℓ+σ)/ℓ⌉nx)
EDY-SOPRF (10+2)ω⌈(ℓ+σ)/ω⌉nx+ηω⌈(ℓ+σ)/ω⌉ny/N+Csh(4⌈(ℓ+σ)/ω⌉nx)

MiMC-SOPRF† (3r+2+2)κ⌈(ℓ+σ)/κ⌉nx+ηκ⌈(ℓ+σ)/κ⌉ny/N+Cmal((2r+2)⌈(ℓ+σ)/κ⌉nx)

denote the output length of the VOPRF/SOPRF needed for correctness and denote the
associated data length by σ. For the VOLE- and CGA-based VOPRF, we can vary the
output length by choosing the hash function H to have output length ℓ + σ. For the
EDY-SOPRF, the output length needed for security is ω = log2 q, and so the function
needs to be evaluated ⌈(ℓ + σ)/ω⌉ times to have output length at least ℓ + σ. Similarly
for the MiMC-SOPRF the output length needed for security is κ so the function needs to
be evaluated ⌈(ℓ + σ)/κ⌉ times, and r denotes the number of rounds for MiMC. Finally,
Csh(M) denotes the communication cost for generating M multiplication triples in the
semi-honest setting and Cmal(M) for generating M triples in the malicious setting.

Concrete Estimates. Additionally, in Table 3, we give some concrete estimates for the
communication cost of our Core-PSI protocols and the amortization savings in various
multiple-execution settings. In the multi-execution settings we estimate the communication
cost per execution of the party who is involved in multiple executions. That is, in the
1-to-N and N -query settings we consider the sender’s communication cost, in the N -to-1
setting the receiver’s cost and in the other settings the cost of any party. Both posting and
reading a message m to/from the bulletin board is estimated as |m| bits of communication,
these are never counted twice as we only count the communication cost from one side.

We use λ = 40, κ = 128, ϵ = 1.27 and t = 3, as is common in other comparisons
[RS21, RR22, BPSY23]. We use the communication-efficient OKVS construction from
Bienstock et al.with expansion facton η = 1.05. We put ℓ = λ + log2(ϵnx) ≈ 60 and handle
associated data of various lengths σ ∈ {0, 60, 1980}. In the applicable settings, we consider
amortization over N ∈ {2, 10} executions. In the VOLE setting we use log2 |B| = λ +
log2 (ϵnx), log2 |F| = κ and use the estimate 214.5κ from [RR22] for the communication cost
of obtaining the VOLE correlation, to facilitate a fair comparison. For the cryptographic
group action (CGA) based construction we assume an elliptic curve based instantiation
U := E(Fq) over a field of size log2 |Fq| = 2κ. For the extended Dodis-Yampolskiy (EDY)
based construction we use a field of size ω = 2048 bits, which is common for κ = 128
bits of security. For the MiMC-based construction we use the estimate from [GRR+16]
for evaluating MiMC using a secret-sharing based protocol, sending 3r field elements per
evaluation during the online phase, where r = 73 and log2 |Fp| = 128 for a security level
κ = 128. An additional 2 field elements of communication per evaluation are needed to
share the parties’ inputs as (authenticated) secret shares. We estimate the preprocessing
costs using the pseudorandom correlation generator from Boyle et al.[BCG+20]. This
gives an estimate of Csh(M) := 2w2 log2 2M + 7w2 log2 |F| + w2(2κ + 3) log2 4M bits
of communication for generating M triples in the semi-honest setting [BCG+20, Thm.
6.5] (using that one can obtain a multiplication triple from two OLE correlations), and
Cmal(M) := (2w +34w2) log2 M +(26w +14w2) log2 |F|+(2w +w2)(2κ+3) log2 2M bits of
communication for generating M authenticated triples in the malicious setting [BCG+20,

Aron van Baarsen, Marc Stevens 35

Table 3: Theoretical concrete communication cost estimates for our VOPRF/SOPRF-based
CorePSI protocols between the unamortized and the applicable amortized multi-party
settings. Based on parameter choices: ϵ = 1.27, η = 1.05, t = 3, r = 73, κ = 128. The
lowest values in each setting are indicated in bold. ∗ Based on our own estimate, replacing
the final equality checking step by a rerandomization step to realize CorePSI. † Satisfying
“almost malicious” security. ♢ At most one party may be corrupted and multiple executions
with the same receiver are not allowed. ♡ No amortization is used.

Protocol Setting
Comm. per execution in bits (n = ny = 220, nx = 210)

N = 2 N = 10
σ = 0 σ = 60 σ = 1 980 σ = 0 σ = 60 σ = 1 980

[RR22]∗ Unamortized 497n 874n 12 909n 497n 874n 12 909n
[BPSY23]∗ Unamortized 451n 795n 11 787n 451n 795n 11 787n

VOLE-
VOPRF

Unamortized 447n 792n 11 783n 447n 792n 11 783n
N -to-1 409n 753n 11 745n 378n 723n 11 714n
N -to-N 428n 772n 11 764n 413n 757n 11 749n

N -query♡ 207ny 399ny 6 489ny 207ny 399ny 6 489ny

CGA-
VOPRF

Unamortized 1 018n 1 362n 12 354n 1 018n 1 362n 12 354n
1-to-N♢ 923n 1 172n 9 123n 847n 1 020n 6 538n
N -to-1 855n 1 200n 12 192n 725n 1 070n 12 062n

N -to-N♢ 889n 1 186n 10 657n 786n 1 045n 9 300n
N -query♡ 205ny 396ny 6 487ny 205ny 396ny 6 487ny

EDY-
SOPRF

Unamortized 26 807n 26 807n 26 807n 26 807n 26 807n 26 807n
1-to-N 25 732n 25 732n 25 732n 24 872n 24 872n 24 872n
N -to-N 26 269n 26 269n 26 269n 25 839n 25 839n 25 839n
N -query 1 169ny 1 169ny 1 169ny 309ny 309ny 309ny

MiMC-
SOPRF†

Unamortized 28 719n 28 719n 458 899n 28 719n 28 719n 458 899n
1-to-N 28 651n 28 651n 457 824n 28 598n 28 598n 456 964n
N -to-N 25 685n 25 685n 458 362n 28 658n 28 658n 457 932n
N -query 124ny 124ny 1 546ny 70ny 70ny 694ny

Thm. 6.6]. Here w is the number of noise coordinates for the underlying (reducible)
ring-LPN assumption, and we choose w = 64 for κ = 128 bits of security and field size
log2 |F| = 128 since this seems to offer the most favorable tradeoff between communication
and computation complexity [BCG+20, Tables 1, 3 & 4]. We (over)estimate the number
of (authenticated) multiplication triples needed to compute the multiplications as 2r per
evaluation, and an additional 2 authenticated multiplication triples to share the parties’
inputs as authenticated shares in the malicious setting. We leave it to future work to
optimize the PCG constructions of Boyle et al.[BCG+20] for generating authenticated
shares [s] and square multiplication tuples [s], [s2] for random values s.

Computational Savings. Finally, we would like to point out the computational work
saved by using the amortizations for the 1-to-N , N -to-1, N -to-N and N -query settings.

• In the VOLE setting (Section 3.2), the only amortization is that the receiver can
re-use their first VOPRF message with multiple receivers in the N -to-1 and N -to-N
setting if the underlying VOLE protocol is programmable. This means for a VOLE
protocol in the style of Boyle et al.[BCG+19b], the receiver only has to compute an
LPN encoding (of length m = ϵnx over a field of size |B| = λ + log2 m) once for all
executions, which saves a significant part of the receiver’s computation.

• In the CGA setting (Section 3.3), there are two main avenues for amortization.
Let us again assume an elliptic curve based instantiation E(Fq) over a field of size
log2 |Fq| = 2κ. In the N -to-1 setting, the receiver has to compute ϵnx of the 2ϵnx

exponentiations per VOPRF execution only once for all of the N executions, which
saves the receiver a factor 2/(1 + 1/N) elliptic curve exponentiations. In the 1-to-N
setting, the sender only has to compute the OKVS encoding once for all N executions,
if at most one receiver is corrupted and the setup phase is not re-used multiple times

36 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

with the same receiver. This additionally means the sender only has to evaluate
the OPRF once on their tny inputs for all executions, which saves them a factor
≈ (ϵ + t)/(ϵ + t/N) elliptic curve exponentiations. In the N -to-N setting each party
enjoys each of these amortization in half of the executions.

• In the EDY and MiMC setting (Section 6.1 and 6.2), the only amortization is that
the sender can re-use their OKVS encoding with multiple receivers in the 1-to-N ,
N -to-N and N -query setting, even when all of the receivers are corrupted. This
saves the sender a significant amount of work since they only have to evaluate the
PRF once on their inputs and only have to compute the OKVS encoding once.

References
[AES03] Rakesh Agrawal, Alexandre Evfimievski, and Ramakrishnan Srikant. Infor-

mation sharing across private databases. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of data, pages 86–97, 2003.
doi:10.1145/872757.872771.

[AFMP20] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis.
Cryptographic group actions and applications. In ASIACRYPT (2), volume
12492 of Lecture Notes in Computer Science, pages 411–439. Springer, 2020.
doi:10.1007/978-3-030-64834-3_14.

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and
Tyge Tiessen. MiMC: Efficient encryption and cryptographic hashing with
minimal multiplicative complexity. In ASIACRYPT (1), volume 10031 of
Lecture Notes in Computer Science, pages 191–219, 2016. doi:10.1007/97
8-3-662-53887-6_7.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for MPC and FHE. In EUROCRYPT (1),
volume 9056 of Lecture Notes in Computer Science, pages 430–454. Springer,
2015. doi:10.1007/978-3-662-46800-5_17.

[BBD+24] Jeremy Booher, Ross Bowden, Javad Doliskani, Tako Boris Fouotsa, Steven D.
Galbraith, Sabrina Kunzweiler, Simon-Philipp Merz, Christophe Petit, Ben-
jamin Smith, Katherine E. Stange, Yan Bo Ti, Christelle Vincent, José Fe-
lipe Voloch, Charlotte Weitkämper, and Lukas Zobernig. Failing to hash
into supersingular isogeny graphs. Comput. J., 67(8):2702–2719, 2024.
doi:10.1093/COMJNL/BXAE038.

[BC23] Dung Bui and Geoffroy Couteau. Improved private set intersection for
sets with small entries. In Public Key Cryptography (2), volume 13941 of
Lecture Notes in Computer Science, pages 190–220. Springer, 2023. doi:
10.1007/978-3-031-31371-4_7.

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round OT extension and silent non-
interactive secure computation. In CCS, pages 291–308. ACM, 2019. doi:
10.1145/3319535.3354255.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter
Scholl. Efficient pseudorandom correlation generators: Silent OT extension
and more. In CRYPTO (3), volume 11694 of Lecture Notes in Computer
Science, pages 489–518. Springer, 2019. doi:10.1007/978-3-030-26954-8
_16.

https://doi.org/10.1145/872757.872771
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1093/COMJNL/BXAE038
https://doi.org/10.1007/978-3-031-31371-4_7
https://doi.org/10.1007/978-3-031-31371-4_7
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16

Aron van Baarsen, Marc Stevens 37

[BCG+20] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient Pseudorandom Correlation Generators from Ring-LPN.
In CRYPTO (2), volume 12171 of Lecture Notes in Computer Science, pages
387–416. Springer, 2020. doi:10.1007/978-3-030-56880-1_14.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing
vector OLE. In CCS, pages 896–912. ACM, 2018. doi:10.1145/3243734.
3243868.

[BDD20] Carsten Baum, Bernardo David, and Rafael Dowsley. Insured MPC: efficient
secure computation with financial penalties. In Financial Cryptography,
volume 12059 of Lecture Notes in Computer Science, pages 404–420. Springer,
2020. doi:10.1007/978-3-030-51280-4_22.

[BGM16] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without
proof of work. In Financial Cryptography Workshops, volume 9604 of Lecture
Notes in Computer Science, pages 142–157. Springer, 2016. doi:10.1007/97
8-3-662-53357-4_10.

[Bia10] Jean-François Biasse. Improvements in the computation of ideal class groups
of imaginary quadratic number fields. Adv. Math. Commun., 4(2):141–154,
2010. doi:10.3934/AMC.2010.4.141.

[BIM00] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers computation
in private information retrieval: PIR with preprocessing. In CRYPTO,
volume 1880 of Lecture Notes in Computer Science, pages 55–73. Springer,
2000. doi:10.1007/3-540-44598-6_4.

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh:
Efficient isogeny based signatures through class group computations. In
ASIACRYPT (1), volume 11921 of Lecture Notes in Computer Science, pages
227–247. Springer, 2019. doi:10.1007/978-3-030-34578-5_9.

[BM82] Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo random bits. In FOCS, pages 112–117. IEEE Computer
Society, 1982. doi:10.1109/SFCS.1982.72.

[BPSY23] Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. Near-
optimal oblivious key-value stores for efficient psi, PSU and volume-hiding
multi-maps. In USENIX Security Symposium. USENIX Association, 2023.
URL: https://www.usenix.org/conference/usenixsecurity23/present
ation/bienstock.

[CDG+21] Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai Lakshmi Bhavana
Obbattu, Sruthi Sekar, and Akash Shah. Efficient linear multiparty PSI and
extensions to circuit/quorum PSI. In CCS, pages 1182–1204. ACM, 2021.
doi:10.1145/3460120.3484591.

[CDJ16] Chongwon Cho, Dana Dachman-Soled, and Stanislaw Jarecki. Efficient
concurrent covert computation of string equality and set intersection. In
CT-RSA, volume 9610 of Lecture Notes in Computer Science, pages 164–179.
Springer, 2016. doi:10.1007/978-3-319-29485-8_10.

[CGJ+17] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk,
and Ian Miers. Fairness in an unfair world: Fair multiparty computation
from public bulletin boards. In CCS, pages 719–728. ACM, 2017. doi:
10.1145/3133956.3134092.

https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1007/978-3-030-51280-4_22
https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.3934/AMC.2010.4.141
https://doi.org/10.1007/3-540-44598-6_4
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1109/SFCS.1982.72
https://www.usenix.org/conference/usenixsecurity23/presentation/bienstock
https://www.usenix.org/conference/usenixsecurity23/presentation/bienstock
https://doi.org/10.1145/3460120.3484591
https://doi.org/10.1007/978-3-319-29485-8_10
https://doi.org/10.1145/3133956.3134092
https://doi.org/10.1145/3133956.3134092

38 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

[CGS22] Nishanth Chandran, Divya Gupta, and Akash Shah. Circuit-PSI with linear
complexity via relaxed batch OPPRF. Proc. Priv. Enhancing Technol.,
2022(1):353–372, 2022. doi:10.2478/POPETS-2022-0018.

[CHL05] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash.
In EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages
302–321. Springer, 2005. doi:10.1007/11426639_18.

[CHLR18] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI
from fully homomorphic encryption with malicious security. In CCS, pages
1223–1237. ACM, 2018. doi:10.1145/3243734.3243836.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. CSIDH: an efficient post-quantum commutative group action. In
ASIACRYPT (3), volume 11274 of Lecture Notes in Computer Science, pages
395–427. Springer, 2018. doi:10.1007/978-3-030-03332-3_15.

[Clo18] Cloudflare. Nimbus. https://blog.cloudflare.com/introducing-certi
ficate-transparency-and-nimbus/, 2018. Accessed: 10-10-2023.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from
homomorphic encryption. In CCS, pages 1243–1255. ACM, 2017. doi:
10.1145/3133956.3134061.

[CM20] Melissa Chase and Peihan Miao. Private set intersection in the internet
setting from lightweight oblivious PRF. In CRYPTO (3), volume 12172
of Lecture Notes in Computer Science, pages 34–63. Springer, 2020. doi:
10.1007/978-3-030-56877-1_2.

[CMdG+21] Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai,
Ilia Iliashenko, Kim Laine, and Michael Rosenberg. Labeled PSI from homo-
morphic encryption with reduced computation and communication. In CCS,
pages 1135–1150. ACM, 2021. doi:10.1145/3460120.3484760.

[CO18] Michele Ciampi and Claudio Orlandi. Combining private set-intersection
with secure two-party computation. In SCN, volume 11035 of Lecture Notes
in Computer Science, pages 464–482. Springer, 2018. doi:10.1007/978-3-3
19-98113-0_25.

[Cou06] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive,
Paper 2006/291, 2006. URL: https://eprint.iacr.org/2006/291.

[CRR21] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent
VOLE and oblivious transfer from hardness of decoding structured LDPC
codes. In CRYPTO (3), volume 12827 of Lecture Notes in Computer Science,
pages 502–534. Springer, 2021. doi:10.1007/978-3-030-84252-9_17.

[CT10] Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection
protocols with linear complexity. In Financial Cryptography, volume 6052
of Lecture Notes in Computer Science, pages 143–159. Springer, 2010. doi:
10.1007/978-3-642-14577-3_13.

[CT12] Emiliano De Cristofaro and Gene Tsudik. Experimenting with fast private set
intersection. In TRUST, volume 7344 of Lecture Notes in Computer Science,
pages 55–73. Springer, 2012. doi:10.1007/978-3-642-30921-2_4.

https://doi.org/10.2478/POPETS-2022-0018
https://doi.org/10.1007/11426639_18
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1007/978-3-030-03332-3_15
https://blog.cloudflare.com/introducing-certificate-transparency-and-nimbus/
https://blog.cloudflare.com/introducing-certificate-transparency-and-nimbus/
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-319-98113-0_25
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-84252-9_17
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-642-30921-2_4

Aron van Baarsen, Marc Stevens 39

[DMRY09] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Efficient
robust private set intersection. In ACNS, volume 5536 of Lecture Notes in
Computer Science, pages 125–142, 2009. doi:10.1007/978-3-642-01957-9
_8.

[DN03] Ivan Damgård and Jesper Buus Nielsen. Universally composable efficient mul-
tiparty computation from threshold homomorphic encryption. In CRYPTO,
volume 2729 of Lecture Notes in Computer Science, pages 247–264. Springer,
2003. doi:10.1007/978-3-540-45146-4_15.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In CRYPTO, volume
7417 of Lecture Notes in Computer Science, pages 643–662. Springer, 2012.
doi:10.1007/978-3-642-32009-5_38.

[DRRT18] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. PIR-PSI: scaling
private contact discovery. Proc. Priv. Enhancing Technol., 2018(4):159–178,
2018. doi:10.1515/POPETS-2018-0037.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function
with short proofs and keys. In Public Key Cryptography, volume 3386 of
Lecture Notes in Computer Science, pages 416–431. Springer, 2005. doi:
10.1007/978-3-540-30580-4_28.

[FFK+23] Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-
Philipp Merz, Lorenz Panny, and Benjamin Wesolowski. SCALLOP: scaling
the csi-fish. In Public Key Cryptography (1), volume 13940 of Lecture Notes
in Computer Science, pages 345–375. Springer, 2023. doi:10.1007/978-3-0
31-31368-4_13.

[FHNP16] Michael J. Freedman, Carmit Hazay, Kobbi Nissim, and Benny Pinkas.
Efficient set intersection with simulation-based security. J. Cryptol., 29(1):115–
155, 2016. doi:10.1007/S00145-014-9190-0.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold.
Keyword search and oblivious pseudorandom functions. In TCC, volume
3378 of Lecture Notes in Computer Science, pages 303–324. Springer, 2005.
doi:10.1007/978-3-540-30576-7_17.

[FNO19] Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky. Private set inter-
section with linear communication from general assumptions. In WPES@CCS,
pages 14–25. ACM, 2019. doi:10.1145/3338498.3358645.

[FNO22] Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky. 3-party distributed
ORAM from oblivious set membership. In SCN, volume 13409 of Lecture
Notes in Computer Science, pages 437–461. Springer, 2022. doi:10.1007/97
8-3-031-14791-3_19.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In EUROCRYPT, volume 3027 of Lecture
Notes in Computer Science, pages 1–19. Springer, 2004. doi:10.1007/978-3
-540-24676-3_1.

[GN19] Satrajit Ghosh and Tobias Nilges. An algebraic approach to maliciously
secure private set intersection. In EUROCRYPT (3), volume 11478 of Lecture
Notes in Computer Science, pages 154–185. Springer, 2019. doi:10.1007/97
8-3-030-17659-4_6.

https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-540-45146-4_15
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1515/POPETS-2018-0037
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/S00145-014-9190-0
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1145/3338498.3358645
https://doi.org/10.1007/978-3-031-14791-3_19
https://doi.org/10.1007/978-3-031-14791-3_19
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/978-3-030-17659-4_6

40 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

[Goo13] Google. Certificate transparancy. https://certificate.transparency.d
ev/, 2013. Accessed: 10-10-2023.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. Oblivious key-value stores and amplification for private set intersection.
In CRYPTO (2), volume 12826 of Lecture Notes in Computer Science, pages
395–425. Springer, 2021. doi:10.1007/978-3-030-84245-1_14.

[GRR+16] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and
Nigel P. Smart. MPC-friendly symmetric key primitives. In CCS, pages
430–443. ACM, 2016. doi:10.1145/2976749.2978332.

[GS19] Satrajit Ghosh and Mark Simkin. The communication complexity of threshold
private set intersection. In CRYPTO (2), volume 11693 of Lecture Notes in
Computer Science, pages 3–29. Springer, 2019. doi:10.1007/978-3-030-2
6951-7_1.

[GZS24] Ashrujit Ghoshal, Mingxun Zhou, and Elaine Shi. Efficient pre-processing
PIR without public-key cryptography. In EUROCRYPT (6), volume 14656
of Lecture Notes in Computer Science, pages 210–240. Springer, 2024. doi:
10.1007/978-3-031-58751-1_8.

[Haz15] Carmit Hazay. Oblivious polynomial evaluation and secure set-intersection
from algebraic prfs. In TCC (2), volume 9015 of Lecture Notes in Computer
Science, pages 90–120. Springer, 2015. doi:10.1007/978-3-662-46497-7_
4.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are
garbled circuits better than custom protocols? In NDSS. The Internet Society,
2012. URL: https://www.ndss-symposium.org/ndss2012/private-set
-intersection-are-garbled-circuits-better-custom-protocols.

[HFH99] Bernardo A. Huberman, Matthew K. Franklin, and Tad Hogg. Enhancing
privacy and trust in electronic communities. In EC, pages 78–86. ACM, 1999.
doi:10.1145/336992.337012.

[HHC+23] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah
Meiklejohn, and Vinod Vaikuntanathan. One server for the price of two:
Simple and fast single-server private information retrieval. In USENIX
Security Symposium, pages 3889–3905. USENIX Association, 2023. URL:
https://www.usenix.org/conference/usenixsecurity23/presentatio
n/henzinger.

[HL08] Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection
and pattern matching with security against malicious and covert adversaries.
In TCC, volume 4948 of Lecture Notes in Computer Science, pages 155–175.
Springer, 2008. doi:10.1007/978-3-540-78524-8_10.

[HLP+24] Meng Hao, Weiran Liu, Liqiang Peng, Hongwei Li, Cong Zhang, Hanxiao
Chen, and Tianwei Zhang. Unbalanced circuit-psi from oblivious key-value
retrieval. In USENIX Security Symposium. USENIX Association, 2024. URL:
https://www.usenix.org/conference/usenixsecurity24/presentatio
n/hao-meng-unbalanced.

[HN10] Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of
malicious adversaries. In Public Key Cryptography, volume 6056 of Lecture
Notes in Computer Science, pages 312–331. Springer, 2010. doi:10.1007/97
8-3-642-13013-7_19.

https://certificate.transparency.dev/
https://certificate.transparency.dev/
https://doi.org/10.1007/978-3-030-84245-1_14
https://doi.org/10.1145/2976749.2978332
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/978-3-031-58751-1_8
https://doi.org/10.1007/978-3-031-58751-1_8
https://doi.org/10.1007/978-3-662-46497-7_4
https://doi.org/10.1007/978-3-662-46497-7_4
https://www.ndss-symposium.org/ndss2012/private-set-intersection-are-garbled-circuits-better-custom-protocols
https://www.ndss-symposium.org/ndss2012/private-set-intersection-are-garbled-circuits-better-custom-protocols
https://doi.org/10.1145/336992.337012
https://www.usenix.org/conference/usenixsecurity23/presentation/henzinger
https://www.usenix.org/conference/usenixsecurity23/presentation/henzinger
https://doi.org/10.1007/978-3-540-78524-8_10
https://www.usenix.org/conference/usenixsecurity24/presentation/hao-meng-unbalanced
https://www.usenix.org/conference/usenixsecurity24/presentation/hao-meng-unbalanced
https://doi.org/10.1007/978-3-642-13013-7_19
https://doi.org/10.1007/978-3-642-13013-7_19

Aron van Baarsen, Marc Stevens 41

[HOS17] Per A. Hallgren, Claudio Orlandi, and Andrei Sabelfeld. Privatepool: Privacy-
preserving ridesharing. In CSF, pages 276–291. IEEE Computer Society, 2017.
doi:10.1109/CSF.2017.24.

[HSW23] Laura Hetz, Thomas Schneider, and Christian Weinert. Scaling mobile
private contact discovery to billions of users. In ESORICS (1), volume
14344 of Lecture Notes in Computer Science, pages 455–476. Springer, 2023.
doi:10.1007/978-3-031-50594-2_23.

[HV17] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Scalable multi-
party private set-intersection. In Public Key Cryptography (1), volume 10174
of Lecture Notes in Computer Science, pages 175–203. Springer, 2017. doi:
10.1007/978-3-662-54365-8_8.

[Jac99] Michael J. Jacobson. Subexponential class group computation in quadratic
orders. PhD thesis, Darmstadt University of Technology, Germany, 1999.

[JKK14] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal
password-protected secret sharing and T-PAKE in the password-only model.
In ASIACRYPT (2), volume 8874 of Lecture Notes in Computer Science,
pages 233–253. Springer, 2014. doi:10.1007/978-3-662-45608-8_13.

[JKKX16] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. Highly-
efficient and composable password-protected secret sharing (or: How to
protect your bitcoin wallet online). In EuroS&P, pages 276–291. IEEE, 2016.
doi:10.1109/EUROSP.2016.30.

[JL09] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function
with applications to adaptive OT and secure computation of set intersection.
In TCC, volume 5444 of Lecture Notes in Computer Science, pages 577–594.
Springer, 2009. doi:10.1007/978-3-642-00457-5_34.

[KC21] Dmitry Kogan and Henry Corrigan-Gibbs. Private blocklist lookups with
checklist. In USENIX Security Symposium, pages 875–892. USENIX Associa-
tion, 2021. URL: https://www.usenix.org/conference/usenixsecurity
21/presentation/kogan.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious PRF with applications to private set intersection. In CCS,
pages 818–829. ACM, 2016. doi:10.1145/2976749.2978381.

[KLS+17] Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas.
Private set intersection for unequal set sizes with mobile applications. Proc.
Priv. Enhancing Technol., 2017(4):177–197, 2017. doi:10.1515/POPETS-2
017-0044.

[KMP+17] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and
Ni Trieu. Practical multi-party private set intersection from symmetric-
key techniques. In CCS, pages 1257–1272. ACM, 2017. doi:10.1145/3133
956.3134065.

[KRS+19] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and
Christian Weinert. Mobile private contact discovery at scale. In USENIX
Security Symposium, pages 1447–1464. USENIX Association, 2019. URL:
https://www.usenix.org/conference/usenixsecurity19/presentatio
n/kales.

https://doi.org/10.1109/CSF.2017.24
https://doi.org/10.1007/978-3-031-50594-2_23
https://doi.org/10.1007/978-3-662-54365-8_8
https://doi.org/10.1007/978-3-662-54365-8_8
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1109/EUROSP.2016.30
https://doi.org/10.1007/978-3-642-00457-5_34
https://www.usenix.org/conference/usenixsecurity21/presentation/kogan
https://www.usenix.org/conference/usenixsecurity21/presentation/kogan
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1515/POPETS-2017-0044
https://doi.org/10.1515/POPETS-2017-0044
https://doi.org/10.1145/3133956.3134065
https://doi.org/10.1145/3133956.3134065
https://www.usenix.org/conference/usenixsecurity19/presentation/kales
https://www.usenix.org/conference/usenixsecurity19/presentation/kales

42 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

[KRTW19] Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. Scalable
private set union from symmetric-key techniques. In ASIACRYPT (2),
volume 11922 of Lecture Notes in Computer Science, pages 636–666. Springer,
2019. doi:10.1007/978-3-030-34621-8_23.

[KS05] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In
CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 241–257.
Springer, 2005. doi:10.1007/11535218_15.

[Lin17] Yehuda Lindell. How to simulate it - A tutorial on the simulation proof
technique. In Tutorials on the Foundations of Cryptography, pages 277–346.
Springer International Publishing, 2017. doi:10.1007/978-3-319-57048-8
_6.

[LKLM21] Kristin Lauter, Sreekanth Kannepalli, Kim Laine, and Radames Cruz Moreno.
Password monitor: Safeguarding passwords in microsoft edge, 2021. Accessed:
11-10-2023. URL: https://www.microsoft.com/en-us/research/blog/pa
ssword-monitor-safeguarding-passwords-in-microsoft-edge/.

[LMW23] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient private
information retrieval and fully homomorphic RAM computation from ring
LWE. In STOC, pages 595–608. ACM, 2023. doi:10.1145/3564246.3585
175.

[LP23] Arthur Lazzaretti and Charalampos Papamanthou. Treepir: Sublinear-time
and polylog-bandwidth private information retrieval from DDH. In CRYPTO
(2), volume 14082 of Lecture Notes in Computer Science, pages 284–314.
Springer, 2023. doi:10.1007/978-3-031-38545-2_10.

[LPR+21] Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Karn Seth, and Ni Trieu.
Private join and compute from PIR with default. In ASIACRYPT (2), volume
13091 of Lecture Notes in Computer Science, pages 605–634. Springer, 2021.
doi:10.1007/978-3-030-92075-3_21.

[Mea86] Catherine A. Meadows. A more efficient cryptographic matchmaking protocol
for use in the absence of a continuously available third party. In IEEE
Symposium on Security and Privacy, pages 134–137. IEEE Computer Society,
1986. doi:10.1109/SP.1986.10022.

[MIR23] Muhammad Haris Mughees, Sun I, and Ling Ren. Simple and practical
amortized sublinear private information retrieval. Cryptology ePrint Archive,
Paper 2023/1072, 2023. URL: https://eprint.iacr.org/2023/1072.

[MPC18] Luca Melis, Apostolos Pyrgelis, and Emiliano De Cristofaro. On collaborative
predictive blacklisting. Comput. Commun. Rev., 48(5):9–20, 2018. doi:
10.1145/3310165.3310168.

[MPP10] Mark Manulis, Benny Pinkas, and Bertram Poettering. Privacy-preserving
group discovery with linear complexity. In ACNS, volume 6123 of Lecture
Notes in Computer Science, pages 420–437, 2010. doi:10.1007/978-3-642
-13708-2_25.

[MRR20] Payman Mohassel, Peter Rindal, and Mike Rosulek. Fast database joins
and PSI for secret shared data. In CCS, pages 1271–1287. ACM, 2020.
doi:10.1145/3372297.3423358.

https://doi.org/10.1007/978-3-030-34621-8_23
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://doi.org/10.1145/3564246.3585175
https://doi.org/10.1145/3564246.3585175
https://doi.org/10.1007/978-3-031-38545-2_10
https://doi.org/10.1007/978-3-030-92075-3_21
https://doi.org/10.1109/SP.1986.10022
https://eprint.iacr.org/2023/1072
https://doi.org/10.1145/3310165.3310168
https://doi.org/10.1145/3310165.3310168
https://doi.org/10.1007/978-3-642-13708-2_25
https://doi.org/10.1007/978-3-642-13708-2_25
https://doi.org/10.1145/3372297.3423358

Aron van Baarsen, Marc Stevens 43

[MZ22] Hart Montgomery and Mark Zhandry. Full quantum equivalence of group
action dlog and cdh, and more. In ASIACRYPT (1), volume 13791 of Lecture
Notes in Computer Science, pages 3–32. Springer, 2022. doi:10.1007/978-3
-031-22963-3_1.

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient
pseudo-random functions. In FOCS, pages 458–467. IEEE Computer Society,
1997. doi:10.1109/SFCS.1997.646134.

[OPPW23] Hiroki Okada, Rachel Player, Simon Pohmann, and Christian Weinert. To-
wards practical doubly-efficient private information retrieval. Cryptology
ePrint Archive, Paper 2023/1510, 2023. URL: https://eprint.iacr.org/
2023/1510.

[PR01] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In ESA, volume
2161 of Lecture Notes in Computer Science, pages 121–133. Springer, 2001.
doi:10.1007/3-540-44676-1_10.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-Light:
Lightweight private set intersection from sparse OT extension. In CRYPTO
(3), volume 11694 of Lecture Notes in Computer Science, pages 401–431.
Springer, 2019. doi:10.1007/978-3-030-26954-8_13.

[PRTY20] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS:
Fast, malicious private set intersection. In EUROCRYPT (2), volume 12106
of Lecture Notes in Computer Science, pages 739–767. Springer, 2020. doi:
10.1007/978-3-030-45724-2_25.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams.
Secure two-party computation is practical. In ASIACRYPT, volume 5912
of Lecture Notes in Computer Science, pages 250–267. Springer, 2009. doi:
10.1007/978-3-642-10366-7_15.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing:
Private set intersection using permutation-based hashing. In USENIX Security
Symposium, pages 515–530. USENIX Association, 2015. URL: https://www.
usenix.org/conference/usenixsecurity15/technical-sessions/pres
entation/pinkas.

[PSTY19] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai.
Efficient circuit-based PSI with linear communication. In EUROCRYPT (3),
volume 11478 of Lecture Notes in Computer Science, pages 122–153. Springer,
2019. doi:10.1007/978-3-030-17659-4_5.

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Effi-
cient circuit-based PSI via cuckoo hashing. In EUROCRYPT (3), volume
10822 of Lecture Notes in Computer Science, pages 125–157. Springer, 2018.
doi:10.1007/978-3-319-78372-7_5.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set
intersection based on OT extension. In USENIX Security Symposium, pages
797–812. USENIX Association, 2014. URL: https://www.usenix.org/confe
rence/usenixsecurity14/technical-sessions/presentation/pinkas.

[PSZ18] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set
intersection based on OT extension. ACM Trans. Priv. Secur., 21(2):7:1–7:35,
2018. doi:10.1145/3154794.

https://doi.org/10.1007/978-3-031-22963-3_1
https://doi.org/10.1007/978-3-031-22963-3_1
https://doi.org/10.1109/SFCS.1997.646134
https://eprint.iacr.org/2023/1510
https://eprint.iacr.org/2023/1510
https://doi.org/10.1007/3-540-44676-1_10
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/pinkas
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/pinkas
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/pinkas
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas
https://doi.org/10.1145/3154794

44 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

[QYYZ22] Zhi Qiu, Kang Yang, Yu Yu, and Lijing Zhou. Maliciously secure multi-
party PSI with lower bandwidth and faster computation. In ICICS, volume
13407 of Lecture Notes in Computer Science, pages 69–88. Springer, 2022.
doi:10.1007/978-3-031-15777-6_5.

[RR22] Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved
OKVS and subfield VOLE. In CCS, pages 2505–2517. ACM, 2022. doi:
10.1145/3548606.3560658.

[RRT23] Srinivasan Raghuraman, Peter Rindal, and Titouan Tanguy. Expand-
convolute codes for pseudorandom correlation generators from LPN. In
CRYPTO (4), volume 14084 of Lecture Notes in Computer Science, pages
602–632. Springer, 2023. doi:10.1007/978-3-031-38551-3_19.

[RS21] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: fast OPRF and Circuit-
PSI from Vector-OLE. In EUROCRYPT (2), volume 12697 of Lecture Notes
in Computer Science, pages 901–930. Springer, 2021. doi:10.1007/978-3-0
30-77886-6_31.

[Sha80] Adi Shamir. On the power of commutativity in cryptography. In ICALP,
volume 85 of Lecture Notes in Computer Science, pages 582–595. Springer,
1980. doi:10.1007/3-540-10003-2_100.

[SJ23] Yongha Son and Jinhyuck Jeong. PSI with computation or circuit-psi for
unbalanced sets from homomorphic encryption. In AsiaCCS, pages 342–356.
ACM, 2023. doi:10.1145/3579856.3582817.

[Vél71] Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries
A, 273:305–347, 1971.

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine:
Fast, scalable, and communication-efficient zero-knowledge proofs for boolean
and arithmetic circuits. In IEEE Symposium on Security and Privacy, pages
1074–1091. IEEE, 2021. doi:10.1109/SP40001.2021.00056.

[ZPZS24] Mingxun Zhou, Andrew Park, Wenting Zheng, and Elaine Shi. Piano: Ex-
tremely simple, single-server PIR with sublinear server computation. In SP,
pages 4296–4314. IEEE, 2024. doi:10.1109/SP54263.2024.00055.

https://doi.org/10.1007/978-3-031-15777-6_5
https://doi.org/10.1145/3548606.3560658
https://doi.org/10.1145/3548606.3560658
https://doi.org/10.1007/978-3-031-38551-3_19
https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1007/3-540-10003-2_100
https://doi.org/10.1145/3579856.3582817
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP54263.2024.00055

Aron van Baarsen, Marc Stevens 45

A Ideal Functionality for CGA-VOPRF

Figure 15 Ideal VOPRF functionality F∗
voprf

Parameters: Receiving parties Ri, i ∈ [NR], and sending parties Sj , j ∈ [NS], each
holding a unique identifier idRi

and idSj
, respectively, agreeing on an input space X and a

finite ring R as output space. PRF : {0, 1}∗ → F is an internal random oracle for random
functions F = {f : X → R} (that is, PRF can only be queried by the ideal functionality,
not by the parties). LRi is a list of Ri’s setup phases, initialized empty.
Functionality:

• On query (setup, ρ, X) from Ri:
– If (ρ, X) ∈ LRi , do nothing.
– Else, add (ρ, X) to LRi and send (idRi

, ρ, |X|) to A.
• If mr = yes then on query (setup, σ, m) from Sj , return (OPRF(idSj

,σ,m,k))m
k=1.

• On input (sid, idSj
, evaluate, ρ, X) from Ri:

– If (ρ, X) ∈ LRi , send (sid, idRi , ρ, |X|) to Sj .
– Else, send abort to Ri and Sj .

• On input (sid, idRi
, evaluate, σ) from Sj :

– If mr = no, sample F $←− F |X|.
– If mr = yes, set F := (PRF(idSj

, σ, |X|, k))|X|
k=1.

– If Ri is corrupted then send (idSj , sid, σ) to A and wait until A has made exactly
|X| queries of the form (sid, vk, X ′

k) with vk ∈ [|X|]:
∗ If vk = vℓ for 1 ≤ ℓ < k, i.e., an index is repeated, then abort.
∗ Else set Xvk

:= X ′
k and return Fvk

(X ′
k).

– Output (OFk)|X|
k=1 to Sj and σ, (Fk(Xk))|X|

k=1 to Ri.

B Additional Full Proofs
Theorem 7. The event fail from the proof of Theorem 2 occurs with at most negligible
probability if the (NR, Q)-OM-CDH-GA assumption (Definition 5) holds with respect to
(Uκ)κ∈N. Here NR is the total number of receiving parties and Q is a (polynomial) upper
bound on the total number of queries to H and H ′ the receiving parties (Ri)i∈[NR] make.

Proof. We construct a (NR, Q)-OM-CDH-GA adversary BK⋆(·),DDH(·),(Ri)i , on input (E, K⋆

E, a1, . . . , aQ), consisting of subroutines BK⋆(·),DDH(·),Ri

i , i ∈ CR, which each interact with
the ideal functionality F∗

voprf on behalf of Ri and A. The adversary BK⋆(·),DDH(·),(Ri)i

keeps track of query counters c, c′, a list of setup phases LB, a list LDH of CDH pairs
(a, K ⋆a), a bit b∗, lists of random oracle queries Q1, Q2 and a simulated bulletin boardM
throughout the subroutines. Initialize b∗, c := 0, c′ := NR and LB,LDH,Q1,Q2,M := ∅.

BK⋆(·),DDH(·),Ri

i :
• When Ri queries the random oracle H on input x ∈ X .

– If ∃a : (x, a) ∈ Q1, return H(x) := a.
– Else, return H(x) := ac and update Q1 ← Q1 ∪ {(x, ac)}, c← c + 1.

• Whenever Ri queries the random oracle H ′ on (idS , σ, m, j, u, x):

46 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

1. If ∃z : ((idS , σ, m, j, u, x), z) ∈ Q2, return H ′(idS , σ, m, j, u, x) := z.
2. If ∃a′ : (x, a′) ∈ Q1, set a := a′. Otherwise, set a := ac and update Q1 ←
Q1 ∪ {(x, ac)}, c← c + 1.

3. If ∃i′ ∈ CR, (i′, σi′ , mi′ , (Kσi′
j)j) ∈ LB and j ∈ [mi′] such that σ = σi′ , m = mi′

and u = K
σi′
j ⋆ a, then:

– For each l ∈ CR for which there exists (l, σl, ml, (Kσl
j)j) ∈ LB with

(σl, ml) = (σi′ , mi′):
∗ Send (sidl, j, x) to F∗

voprf on behalf of A.
∗ If F∗

voprf returns F σl
j (x), updateQ2 ← Q2∪{((idS , σ, m, j, u, x), F σl

j (x))}
and return H ′(idS , σ, m, j, u, x) := F σl

j (x) to Ri.
∗ If F∗

voprf returns ⊥, continue.
– If the loop does not return anything, output fail.

4. Otherwise, sample z $←− Y, return H ′(idS , σ, m, j, u, x) := z and update Q2 ←
Q2 ∪ {((idS , σ, m, j, u, x), z)}.

• When Ri sends (post, sid, idρ, (ρ, (aρ
i)mρ

i=1)) to FABB,
update M←M∪ {(idRi

, sid, idρ, (ρ, (aρ
i)mρ

i=1))}.
• When Ri sends (read, sid) to FABB, return M to Ri.
• Wait forRi to send ρi and searchM for the first message (idRi

, sid, idρi
, (ρi, (aρi

j)mi
j=1))

with aρi

j ∈ U for all j ∈ [mi], or abort if it does not exist.
• Send (setup, ρi, Xi) and (sidi, idS , evaluate, ρi, Xi) to F∗

voprf on behalf of Ri, where
Xi is a dummy input set of cardinality mi.

• As the honest party S sends (sidi, idRi
, evaluate, σi) to F∗

voprf , receive (sidi, σi) from
F∗

voprf on behalf of A. Send σi to Ri.
– If ∃(i′, σi′ , mi′ , (Kσi′

j)j) ∈ LB with (σi′ , mi′) = (σi, mi), put Kσi
j := K

σi′
j for

each j and update LB ← LB ∪ {(i, σi, mi, (Kσi
j)j)}.

– Else, if b∗ = 0, then with probability 1/|CR| do:
∗ Set (σ∗, m∗) := (σi, mi).
∗ Sample j∗ $←− [m∗] and sample Kσ∗

j
$←− H for each j ∈ [m∗] \ {j∗}.

∗ Update LB ← LB ∪ {(i, σ∗, m∗, (Kσ∗

j)j∈[m∗]\{j∗})} and b∗ ← 1.
– Else, sample Kσi

j
$←− H for each j ∈ [mi] and update LB ← LB∪{(i, σi, mi, (Kσi

j)j∈[mi])}.
• If (σi, mi) = (σ∗, m∗):

– Query bσi,ρi

j∗ ← K ⋆ aρi

j∗ , compute bσi,ρi

j := Kσ∗

j ⋆ aρi

j for each j ∈ [m∗] \ {j∗}
and send (bσi,ρi

j)mi
j=1 to Ri. Update c′ ← c′ − 1.

– Whenever Ri queries the random oracle H ′ on (idS , σ, m, j, u, x), simulate H ′

as before, but before step 3, if nothing has been returned yet, query b ←
DDH(E, K ⋆ E, a, u), where a := H(x), and if b = 1 and (σ, m, j) = (σ∗, m∗, j∗):

∗ Update LDH ← LDH ∪ {(a, u)} and for each l ∈ CR for which there exists
(l, ml, σl, (Kσl

j)j) ∈ LB with (σl, ml) = (σ∗, m∗):
· Send (sidl, j∗, x) to F∗

voprf on behalf of A.
· If F∗

voprf returns F σ∗

j∗ (x), return H ′(idS , σ, m, j, u, x) := F σ∗

j∗ (x) to Ri

and update Q2 ← Q2 ∪ {((idS , σ, m, j, u, x), F σ∗

j∗ (x))}.
· If F∗

voprf returns ⊥, continue.
∗ If the loop does not return anything, this means that (Ri)i∈CR computed

one more CDH tuple than the number of executions up to this point. For
the c′ remaining K ⋆ (·) queries:
· Pick a ∈ (a1, . . . , aQ) for which ̸ ∃u : (a, u) ∈ LDH.
· Query u← K ⋆ a and update LDH ← LDH ∪ {(a, u)}, c′ ← c′ − 1.
· If c′ = 0, terminate and output LDH.

Aron van Baarsen, Marc Stevens 47

• If (σi, mi) ̸= (σ∗, m∗):
– Compute bσi,ρi

j := Kσi
j ⋆ aρi

j for each j ∈ [mi] and send (bσi,ρi

j)mi
j=1 to Ri.

• Put transcripti := (OH′
, (aρi

j)mi
j=1, σi, (bσi,ρi

j)mi
j=1,

{F σi
j (x) | ((idS , σi, mi, j, Kσi

j ⋆ H(x), x), F σi
j (x)) ∈ Q2})

If none of the subroutines Bi terminates or outputs fail, it is clear that the transcript⋃
i∈CR

transcripti is distributed identically to the transcript output by SimR. We further-
more claim that if the event fail occurs for SimR, then B terminates and outputs a set
LDH consisting of NR + 1 valid CDH tuples with probability 1/(m∗ · |CR|) ≥ 1/(M ·NR),
where M is a (polynomial) upper bound on the receiver’s input set size. Indeed, the event
fail occurs for Simi

R if for any setup phase σi′ and any index j ∈ [mi′], the malicious
receivers pose more queries of the form (idS , σi′ , mi′ , j, K

σi′
j ⋆ H(x), x) than the number of

executions with setup phase (σi′ , mi′) up to that point. If this occurs, the adversary B
guesses the correct setup phase σi′ and index j with probability 1/(mi′ · |CR|). Inserting
the OM-CDH-GA challenge elements a1, . . . , aQ as the answers to H oracle queries and
“inserting” the group element K ∈ H as the key K

σi′
j , we see that if the event fail occurs

for this setup phase and index, the malicious receivers’ queries give us one more CDH tuple
(K ⋆ E, a, K ⋆ a), where a = H(x), than the number of executions with setup phase σi′ up
to this point. We conclude that the event fail occurs with at most negligible probability
if the (NR, Q)-OM-CDH-GA assumption holds.

C Cryptographic Group Actions
Example 5 (Cyclic Groups). Let U := G be a cyclic group of prime order p and let
H := Zp. Then clearly the action ⋆ : Zp×G→ G, a ⋆ g := ga is regular, and it is efficiently
computable using the square-and-multiply algorithm.

Frequently used groups where the vectorization (DLog) and parallelization (CDH)
problems are assumed to be hard, and have known efficient hash functions H : {0, 1}∗ → G
whose hashing path problem is assumed to be hard are:

• The subgroup G := QRq ⊂ Z∗
q of quadratic residues in the multiplicative group

modulo q, where q = 2p + 1 is a safe prime;

• The subgroup G := ⟨G⟩ ⊂ E(Fq) of order p in an elliptic curve group, where q is a
prime power. In this case, the action ⋆ : Zp×G→ G is often written multiplicatively
as a ⋆ G := a ·G.

Example 6 (Supersingular Elliptic Curves). Let O be an order in an imaginary
quadratic number field Q(√−p) with p prime and let Cl(O) be its ideal class group.
Let E/Fp be an elliptic curve, let Endp(E) be the ring of Fp-rational isogenies and let
Frobp ∈ Endp(E) denote the Frobenius endomorphism. Then Eℓℓp(O, π) := {E/Fp :
Endp(E) ∼= O, π = Frobp}/ ∼=Fp

is a principal homogeneous space for Cl(O) under the
action [a] ⋆ E := E/a.

There are however several obstacles that prevent (O, Cl(O), ⋆) from being a hashable
hard homogeneous space: (1) It is in general not known how to efficiently sample elements
uniformly at random from Cl(O); (2) The group action [a] ⋆ E can in general not be
evaluated efficiently; (3) It is not known how to hash efficiently into Eℓℓp(O, π) such that
the hashing path problem is hard. A common workaround for (1) and (2) are to use a class
group Cl(O) with known structure [BKV19, FFK+23] to factor elements a = le1

1 · · · len
n in

terms of prime ideals with small norm, since the group action can be efficiently evaluated
for these classes using Vélu’s formulas [Vél71]. However, in general it is infeasible to
compute the structure of Cl(O) since the fastest algorithms to do so take time L|∆|[1/2, 1]
[Jac99, Bia10]. If one only needs to be able to act efficiently with random elements

48 Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting

(and their inverses) – as is the case for our OPRF construction – it can be sufficient to
heuristically argue that the class group is generated by some prime ideals l1, . . . , ln of small
norm, as is done for CSIDH [CLM+18]. This latter setting fits within the framework of a
restricted effective group action (REGA) [AFMP20]. Unfortunately, solving (3) is still an
open problem [BBD+24]. Hence at the moment supersingular elliptic curves do not form
a suitable candidate for the OPRF construction in Section 3.3.

D Additional Assumptions
Definition 6 (Q-DDHI Assumption [CHL05]). Let (Gκ)κ∈N be a family of cyclic groups of
prime order and Q ∈ N. We say that the Q-Decisional Diffie Hellman Inversion (Q-DDHI)
assumption holds with respect to (Gκ)κ∈N if for any κ ∈ N, any (G, g, p) ← Gκ (where
G = ⟨g⟩ and |G| = p):

{(g, gx, . . . , gxQ

, g1/x) | x $←− Zp} ≈c {(g, gx, . . . , gxQ

, h) | x $←− Zp, h $←− G}.

Definition 7 (Extended Q-DDHI Assumption). Let (Gκ)κ∈N be a family of finite fields
Fq of strong prime order, and let Q ∈ N. We say that the Extended Q-Decisional Diffie-
Hellman Inversion (Q-EDDHI) assumption holds with respect to (Gκ)κ∈N if for any κ ∈ N,
any (Fq, g̃, q, p)← Gκ (where F∗

q = ⟨g̃⟩ and q = 2p + 1):

{(g̃, g̃x, . . . , g̃xQ

, g̃1/x) | x $←− Zp} ≈c {(g̃, g̃x, . . . , g̃xQ

, h) | x $←− Zp, h $←− F∗
q}.

E Other OPRFs
There are other OPRF protocols which may be plugged into our framework from Section 5 to
obtain a Core-PSI protocol. We briefly discuss some of these choices and the amortizations
we expect them to allow. Formally proving these statements is left to future work. Note
that some of these constructions realize a slightly different OPRF definition where the
ideal functionality returns the outputs of the specific PRF in consideration rather than the
outputs of a random function as our ideal functionality in Figure 4 does. In these cases,
pseudorandomness of the function needs to be proven separately from the simulation-based
proof that the protocol realizes the ideal functionality. This definition does however seem
more suited for proving security of an OPRF in the standard model. Note that for some
of these constructions, the OPRF protocol allowing a sender setup phase coincides with
the OPRF being suited for the offline/online PSI protocol structure of [KLS+17].

• The Diffie-Hellman-based OPRF Fk(x) := H(x)k with a blinded exponentiation
protocol for evaluation, was implicitly used in early (semi-honest) PSI protocols
[Sha80, Mea86, HFH99, AES03] with security based on the DDH assumption. To
the authors’ knowledge, no formal simulation-based proof of this protocol realizing
an OPRF functionality has been written down. We expect that semi-honest security
of the OPRF protocol can be proven under the DDH assumption, but leave this to
future work. We do not expect the protocol to satisfy malicious security due to issues
with respect to extracting the malicious receiver’s inputs. The protocol allows similar
sender and receiver setup phases as the protocol from Figure 7, which we expect can
be re-used with multiple receivers and senders, respectively. The construction can
be generalized to the group action setting similar to the cryptographic group action
OPRF from subsection 3.3 as Fk(x) := k ⋆ H(x).

• The Naor-Reingold OPRF Fk(x) := gk0·
∏n

i=1
k

xi
i [NR97] with oblivious evaluation

using n OTs has been proven passively secure under the DDH assumption by Freedman

Aron van Baarsen, Marc Stevens 49

et al.[FIPR05]. Hazay and Lindell proved that the protocol is actively secure if the
underlying OT protocol is actively secure [HL08, Prop. 2.4 in full version]. We
expect that the sender’s keys can be re-used with multiple receivers. The protocol
can again be generalized to the group action setting as Fk(x) := (k0 ·

∏n
i=1 kxi

i) ⋆ E
for k := (k0, . . . , kn) ∈ Hn+1 and E ∈ U an arbitrary base element.

• The RSA-based OPRF Fd(x) := H2(H1(x)d mod N) with a blinded multiplication
protocol for evaluation, where N = pq is an RSA modulus and (e, d) is an RSA key
pair, was implicitly used in the (semi-honest) PSI protocol of Cristofaro and Tsudik
[CT10, CT12] with security based on the one-more-RSA assumption. Again no proof
of security as a stand-alone OPRF protocol has been written down, but we expect
the proof to be similar to Theorem 2. We expect that the sender can re-use the key
pair with multiple receivers.

• The Dodis-Yampolskiy OPRF Fk(x) := g1/(k+x) [DY05] with oblivious evaluation
using additively homomorphic encryption has been proven actively secure by Jarecki
and Liu [JL09] assuming the hardness of factoring and the decisional q-Diffie-Hellman
inversion assumption. We expect the sender can re-use their PRF key and their key
pair for the homomorphic encryption scheme with multiple receivers.

• The VOLE-based OPRF from Rindal and Schoppmann [RS21] and the sVOLE-based
generalization of Rindall and Raghuraman [RR22] allow the same amortization as
the protocol from Section 3.2 by letting the receiver program part of the VOLE
correlation and re-use the OKVS encoding of their set with multiple senders.

• Various OT-based OPRF constructions [KKRT16, PRTY19, CM20], which we do
not expect to satisfy any meaningful amortizations since the sender does not have
any influence over the choice of keys used in the OPRF protocol and the receiver can
not program part of the OT correlation [BCG+19b]. As we have seen, the OPRFs
from [RS21, RR22] and [BC23] can be seen as VOLE-based variants of the OT-based
OPRFs from [PRTY19] and [KKRT16], respectively, and do allow amortization in the
multiple sender setting since the receiver can program part of the VOLE correlation.
We leave it to future work to explore a VOLE-based variant of the OT-based OPRF
protocol of Chase and Miao [CM20].

Finally, we leave it to future work to explore other options for PRFs which can be efficiently
evaluated inside MPC, and can therefore be used within our shared-output PRF based
Core-PSI protocol in Section 6.

	Introduction
	Our Contributions
	Technical Overview
	Applications
	Related Work
	Acknowledgments

	Preliminaries
	Security Model
	Oblivious Key-Value Store (OKVS)
	Cuckoo Hashing
	Cryptographic Group Actions
	Bulletin Board
	Arithmetic Black Box

	Vector Oblivious PRF (VOPRF)
	Ideal Functionality
	Vector Oblivious Linear Evaluation VOPRF (VOLE-VOPRF)
	Cryptographic Group Action VOPRF (CGA-VOPRF)

	Vector Oblivious Programmable PRF (VOPPRF)
	Ideal Functionality
	VOPPRF from VOPRF + OKVS
	Malicious Adversaries

	Core-PSI from VOPPRF
	Ideal Functionality
	Protocol
	Malicious Adversaries

	Core-PSI from Shared-Output PRF
	Semi-Honest Setting
	Malicious Setting

	Unbalanced Core-PSI
	Post-processing for Core-PSI
	Theoretical Performance
	References
	Ideal Functionality for CGA-VOPRF
	Additional Full Proofs
	Cryptographic Group Actions
	Additional Assumptions
	Other OPRFs

