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Abstract. To address security issues in cloud computing, fully homomorphic
encryption (FHE) enables a third party to evaluate functions using ciphertexts that
do not leak information to the cloud server. The remaining problems of FHE include
high computational costs and limited arithmetic operations, only evaluating additions
and multiplications. Arbitrary functions can be evaluated using a precomputed
lookup table (LUT), which is one of the solutions for those problems. Previous
studies proposed LUT-enabled computation methods 1) with bit-wise FHE and 2)
with word-wise FHE. The performance of LUT-enabled computation with bit-wise
FHE drops quickly when evaluating BigNum functions because of the complexity
being O(s · 2d·m), where m represents the number of inputs, d and s represent the
bit lengths of the inputs and outputs, respectively. Thus, LUT-enabled computation
with word-wise FHE, which handles a set of bits with one operation, has also been
proposed; however, previous studies are limited in evaluating multivariate functions
within two inputs and cannot speed up the evaluation when the domain size of
the integer exceeds 2N , where N is the number of elements packed into a single
ciphertext. In this study, we propose a non-interactive model, in which no decryption
is required, to evaluate arbitrary multivariate functions using homomorphic table
lookup with word-wise FHE. The proposed LUT-enabled computation method 1)
decreases the complexity to O(2d·m/l), where l is the element size of FHE packing; 2)
extends the input and output domain sizes to evaluate multivariate functions over two
inputs; and 3) adopts a multidimensional table for enabling multithreading to reduce
latency. The experimental results demonstrate that evaluating a 10-bit two-input
function and a 5-bit three-input function takes approximately 90.5 and 105.5 s with
16-thread, respectively. Our proposed method achieves 3.2x and 23.1x speedup to
evaluate two-bit and three-bit 3-input functions compared with naive LUT-enabled
computation with bit-wise FHE.
Keywords: Function evaluation · secure computing · lookup table · fully homo-
morphic encryption

1 Introduction
Privacy-preserving systems facilitate the safeguarding of personal privacy while utilizing
cloud computing applications. Common cloud privacy-preserving technologies include
secure multiparty computing (SMPC), differential privacy (DP), and homomorphic en-
cryption (HE). Since the pioneering work of Yao [Yao82], SMPC has been employed in
various systems to protect sensitive data without revealing them, as demonstrated in
previous studies [BPTG15, CDH+19, GCH+18, MRVW21, CMTB16, DCW13]. However,
a shortcoming of SMPC is the significant communication cost associated with a multiparty
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interactive model of massive data. Furthermore, SMPC is designed for specific types of pro-
tocols, and the implementation of general functions is challenging. DP conceals personally
identifiable information by introducing noise into a dataset. DP has widespread applications
in diverse systems, as indicated in references such as [ZC20, ZTG+19, CBK+20, LDL15].
Nonetheless, DP is difficult to balance between privacy and usability because a high level
of privacy requires more noise, which may lead to unknown effects.

HE allows a cloud server to evaluate functions over encrypted data and resists quantum
computing to provide a high security level. The challenges of HE include its high com-
putational costs and limited operations that apply only to additions and multiplications.
In 2009, Gentry [Gen09] introduced a fully holomorphic encryption (FHE) scheme based
on ideal lattices to apply both homomorphic addition and multiplication without time
limitations. Two encoding methods are adopted for different FHE schemes, bit-wise en-
coding adopted to such as GSW [GSW13], FHEW [DM15] and TFHE [CGGI20] schemes
which encrypt data bit-by-bit, and word-wise encoding adopted to such as BGV [Bra12],
BFV [BGV14, FV12], and CKKS [CKKS17] schemes which encrypt a vector of integers or
complex numbers. Word-wise encoding allows for handling more data in one operation to
improve efficiency compared with bit-wise encoding. However, word-wise FHE limits the
types of operations in that it can only adapt to additions and multiplications.

To improve the efficiency of evaluating complicated functions such as logarithms or
divisions with FHE, the existing studies adopt three main ideas: 1) polynomial approxima-
tion over FHE, 2) naive LUT method with bit-wise FHE, and 3) improved LUT method
with word-wise FHE.

Xie et al. [XBF+14], Gilad et al. [GDL+16], Chou et al. [CBL+18], and Hesamifard et
al. [HTG19] used the polynomial approximation (PA) to replace direct computation with
polynomial evaluation over FHE. Polynomial approximation enables the approximation of
arbitrary functions using a polynomial composed of only additions and multiplications.
A shortcoming of the PA is that it guarantees accuracy within a specific input range of
relatively smooth functions; otherwise, the accuracy drops rapidly. PA works well for
activation functions used in neural networks. The polynomials with a higher degree improve
the accuracy; however, a high degree requires an increased depth of multiplication level of
FHE, which leads to a long latency and is not acceptable for data-driven applications.

The other solution is to use precomputed lookup tables (LUT) of the objective function
with FHE. However, the latency of existing studies [DM15, CGGI20, CGH+18] using
bit-wise FHE increases rapidly with the bit length. The computational complexity of the
naive LUT method with bit-wise FHE is O(s · 2d·m), where m is the number of inputs, d
and s are the input and output bit lengths, respectively. Maeda et al. [MMN22] achieved
a uni/bivariate function evaluation with LUT using a word-wise FHE with a complexity
of O(N) for a 2-input function evaluation, where N is the input domain size and can be
further extended to 2N . However, [MMN22] provided a proposal specialized for bivariates;
the solution for multivariates with more than two is not apparent, and it cannot handle an
integer larger than 2N , where N falls within the number of elements of the FHE packing,
that is, the size of the vector. Otherwise, the advantage of complexity is lost. In addition,
[MMN22] did not extend the output domain size, which must be the same as the input
domain size.

Li et al. [LY21, LY24] introduced an interactive model that employed a trusted party
to communicate with the cloud to evaluate multi-input functions using word-wise FHE
with LUT. Even if the trusted party cannot infer the function and input/output from a
randomly selected LUT with redundant data points, the index distribution and output
index are leaked to the trusted party. In this study, we retained most of the strengths
of [LY21, LY24] and used a non-interactive model in which all computations are over
ciphertexts. The non-interactive model does not require a trusted party. To address these
problems, the contributions of this study are as follows:
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Contributions:
1) We propose a private multivariate function evaluation protocol that uses word-

wise FHE with LUTs. Our method allows for the evaluation of an arbitrary function
m︷ ︸︸ ︷

ZN × ...× ZN → Zn·N , where N is the input domain size even if that does not fall within
the element size of FHE packing, m is the number of inputs, and n is any constant. We
describe an original method of multidimensional table lookup construction and processing
to adapt arbitrary multivariate function evaluation with word-wise FHE and reduce the
execution time. Meanwhile, we show a series of experiment results to demonstrate the
practicality of the proposed method.

2) We reduce the computational complexity from O(s · 2
∑m

i=1
di) using the bit-wise

LUT method to O(2
∑m

i=1
di/l) by using the packing technique of word-wise FHE, where m

is the number of inputs, l is the element size of FHE packing, di and s are the bit lengths
of i-th input and output, respectively.

3) We propose a BigNum decomposition and table separation method to reduce the
latency and extend the output domain size. Our proposed method allows the evaluation of
large integers with a small plaintext space that can flexibly extend the output domain size.
Multidimensional LUT construction enables multithreading to decrease runtime through
parallelization.

Our proposed LUT method is adaptable to any function by employing accurate input
and output tables for a given function and provides highly accurate results even for
noncontiguous functions with a wider input range than polynomial approximation functions.
Thus, our protocol can expand the use of FHE, which makes it possible to implement
complex functions in real-world applications that have been difficult to adopt FHE; for
example, the privacy-preserving anomaly detection systems in smart grids [LBDY22].

The rest of this paper is organized as follows. The existing related works are in Section 2.
Section 3 introduces the preliminaries of this study. The details of the proposed non-
interactive multivariable function evaluation method with FHE are presented in Section 4.
We present complexity analysis and performance evaluation in Sections 5 and 6. Section 7
compares the proposed method to related studies. Finally, we conclude this study in
Section 8.

2 Related Work
To address the challenge that FHE cannot evaluate complicated functions that are not
composed of additions and multiplications, such as logarithms and divisions, the existing
related study introduces three methods: 1) polynomial approximation over FHE, 2) a naive
method of LUT that uses bit-wise FHE homomorphic table lookup, and 3) an improved
homomorphic table lookup method that uses word-wise FHE to achieve lower latency.

In this section, we introduce the advantages and disadvantages of the previous studies.

2.1 Polynomial Approximation over FHE
Xie et al. [XBF+14] first used the polynomial approximation (PA) to replace the direct
computation of the activation function used in neural networks with a polynomial evaluation
over FHE. Commonly used activation functions, such as the Swish and Tanh functions,
cannot be evaluated with FHE directly. PA enables the execution of approximate arbitrary
functions by using a polynomial [CT12] composed only of additions and multiplications.

Chabanne et al. [CdWM+17] applied a polynomial approximation to the ReLU function
with CKKS [CKKS17] using polynomials of degrees 2 through 6 on a light convolutional
neural network (CNN). ReLU function is defined as f(x) = max(0, x), which cannot be
directly computed with FHE because of the comparison. Gilad-Bachrach et al. [GDL+16]
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and Chou et al. [CBL+18] introduced CryptoNets, which use PA to compute activation
functions in an inference over encrypted data using a neural network model. Lee et
al. [LLNK22] proposed the PA of the Sign function and determined the optimal set of
degrees for a minimax composite polynomial by considering the number of nonscalar
multiplications and the depth consumption. This approach effectively reduces the function
runtime by an average of 45 % with the PA-based FHE.

Hesamifard et al. [HTG19] designed approximate Sigmoid, ReLU, and Tanh functions
with low-degree polynomials and trained CNNs with PA to improve accuracy. [HTG19]
achieved 99.25 % accuracy when applied to the MNIST dataset, a commonly used hand-
written digits dataset. Cheon et al. [CKP22] introduced domain extension polynomials
(DEPs) to extend the range of inputs while maintaining the features of the original function
in its original input range. An experiment [CKP22] with bit-wise FHE exploited the
logistic function in the range [−7683, 7683].

The challenge of PA is that it only guarantees accuracy within a specific input range of
relatively smooth functions; otherwise, the accuracy decreases rapidly. The PA works well
for activation functions used in neural networks. Polynomials with a higher degree improve
accuracy; however, a high degree requires an increased depth of multiplication level of
FHE, which leads to a long latency and is not acceptable for data-driven applications.

2.2 Homomorphic Table Lookup with Bit-Wise FHE
Crawford et al. [CGH+18] replaced the direct computations of complicated functions with
homomorphic table lookups to improve the efficiency of bit-wise-encoding-based FHE.
They [CGH+18] built a precomputed table containing the input Tfin and output Tfout

data points of the objective function f , where Tfin = x and Tfout = f(x). Using the MUX
gates, the combined input ct(q⃗) returns ct(r⃗[i]), where 0 ≤ i < s and s is the bit length of
the output.

ct(r⃗[i])←
2m·d∑
j=1

(
m·d∏
k=1

(
ct(q⃗[k])⊕ Tfin[j, k]⊕ ct(1)

)
⊗ Tfout[j, i]

)
(1)

where m is the number of inputs and d is the bit length of the input.
Carpov et al. [CIM19] and Chillotti et al. [CGGI20] improved the bootstrapping

process in the bit-wise FHE scheme called TFHE, which is used to reduce the noise from
multiplications in the ciphertext to decrease the latency. The experimental result of LUT
shows [CIM19] requires approximately 1.57 s to assess an arbitrary 6-to-6-bit function.
[CGGI20] evaluates an 8-to-8-bit function in 1.096 s and a 16-to-8-bit function in 2.192 s.
Boura et al. [BGGJ20] and Lu et al. [jLHH+21] proposed a framework called PEGASUS,
which enables switching back and forth between bit-wise and word-wise schemes such
as FHEW [DM15] and CKKS [CKKS17]. PEGASUS allows the evaluation of arithmetic
functions on word-wise FHE to enhance efficiency and enables the evaluation of complicated
functions on bit-wise FHE with logic circuits.

However, all the aforementioned LUT studies are based on bit-wise encoding FHE.
Because bit-wise encoding encodes and encrypts data bit-by-bit, the complexity of the
naive LUT method is O(s · 2d·m). This complexity grows exponentially with the input bit
length, where d and s represent the bit lengths of the input and output, respectively, and
m is the number of inputs, which is not suitable for evaluating BigNum integer functions.

2.3 Homomorphic Table Lookup with Word-Wise FHE
Okada et al. [OCHK18] proposed a linear depth algorithm for univariate and bivariate
functions using word-wise FHE. They decomposed the two-input function into two single-
input functions. LUT contains coefficients prepared by approximating the functions using
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polynomial interpolation. In their experiments, they compared their results to those of Chen
et al. [CG15], Xu et al. [XCWF16], and Chen et al. [CFLW17]. The results show that they
achieved a 2.45x faster execution than the fastest bit-wise algorithm [CFLW17] mentioned in
their paper. Based on Okada et al.’s work [OCHK18], Maeda et al. [MMN22] improved the
algorithm by adopting the Paterson-Stockmeyer method to decrease the complexity. They
prepared all the coefficient LUT of polynomials f0(x), ..., fdi

(x), ..., fN−1(x) to compute
an arbitrary bivariate function, where 0 ≤ di < N and N is the input domain size. The
LUT contains the coefficients ci,d of the polynomial fd(x) = f(x, d)

fd(x) = c0,d + c1,dx + c2,dx2 + ... + cN−1,dxN−1 mod t (2)

where ci,d is precomputed using polynomial interpolation, and t is plaintext space. The
results demonstrate that the proposed method evaluates 12-to-12-bit functions in 57.5 s.

Prior studies with word-wise encoding FHE schemes evaluated large integers with half
of the required plaintext space as a bivariate function to reduce latency because a large
plaintext space leads to a long latency. In [MMN22], the input domain size can be further
extended from N to 2N to evaluate the functions ZN × ZN → ZN to Z2N × Z2N → Z2N .
However, [MMN22] specialized in uni/bivariate functions. The solution for multivariate
functions, in which more than two variates are not apparent in [MMN22], and it cannot
handle an integer larger than Z2N , where N falls within the number of packing elements.
Otherwise, the advantage of complexity is lost. Additionally, [MMN22] did not increase
the domain size of the output. Even if we evaluate a univariate function by decomposing
the large input integer size of Z2N into half and considering it a bivariate function, the
output domain size is still ZN .

3 Preliminaries

3.1 Notation

Table 1 summarizes the notation used in this study. We used uppercase letters to represent
matrices unless otherwise specified. The input and output data points are stored separately
in LUTs Tin and Tout. For example, assuming a two-input function f(x0, x1), where
0 ≤ xi < 2 and 0 ≤ i < 2, Tin = [0, 1] and Tout = [f(0, 0), f(0, 1), f(1, 0), f(1, 1)].
The construction of LUTs is described in Section 4.2. We denote the vectors in ·⃗ and
multidimensional vectors in uppercase letters, i.e., [[⃗a]] and [[A[i]]] represent an encrypted
vector a⃗ and the encrypted i-th row of matrix (two-dimensional vector) A, respectively. In
addition, we denote an encrypted vector whose elements are all x as [[⃗ael=x]].

3.2 SIMD Operation over Word-Wise FHE

Smart and Vercauteren [SV14] introduced a fully homomorphic element-wise single in-
struction multiple data (SIMD) operation based on the packing method of the polynomial-
Chinese remainder theorem (polynomial-CRT). Using [SV14, BGH13], we pack l elements,
each of which is called a slot (hereinafter referred to as slot), as a single plaintext or
ciphertext. Slot-wise SIMD operations allow us to compute all the slots in parallel.

Let us pack and encrypt two vectors a⃗ = [(a0, ..., al−1)] and b⃗ = [(b0, ..., bl−1)] into
ciphertext [[⃗a]] and [[⃗b]]. The slot-wise SIMD addition and multiplication operations are as
follows:

[[⃗a]]⊕ [[⃗b]] = [[(a0 + b0, ..., al−1 + bl−1)]]

[[⃗a]]⊗ [[⃗b]] = [[(a0 × b0, ..., al−1 × bl−1)]]
(3)
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Table 1: Notations

Notation Description
m the number of inputs for an objective multi-input function

di, s the bit-length of i-th input and output, respectively, 0 ≤ i < m
ci an input value for a given function, 0 ≤ i < m
r an output value for a given function
R the intermediate results (shown in Section 4.3 and 4.4)
t plaintext space, which is a power of two plus one
l the number of elements set by FHE, which is a power of two
l′ the number of used elements in an encrypted vector if |Tin| ≤ l (shown in

Section 4.3 and 4.4, l′ = |Tin| = 2d)
Tin, Tout the LUT of input and output data points
|Tin|, |Tout| the number of input and output data points in LUT

kin, kout the number of rows of Tin, Tout, each row can be packed as a single plaintext
and |Tin| = kin × l, |Tout| = kout × l

[[·]] a ciphertext
[·] a plaintext
[[⃗a]] an encrypted vector a⃗

[[A[i]]] an encrypted i-th row of matrix A
[[⃗ael=x]] an encrypted vector whose all used elements are x
Enc(·) encryption operation
Dec(·) decryption operation
⊕,⊖,⊗ homomorphic addition, subtraction and multiplication

3.3 Homomorphic Equality Comparison of Integers with Fermat’s
Little Theorem

FHE cannot directly compare integers because FHE cannot reveal the values during the
processing. In this section, we introduce how to use the characteristics of FHE and Fermat’s
little theorem, a fundamental result in number theory, to compare integer equality.

The equality comparison Eq(a, b) check whether the two integers a, b are equal is
defined as follows:

Eq(a, b) =
{

1, a = b

0, otherwise
(4)

The FHE computations are modulus computations over ring R. We set the plaintext
modulus to t, which is prime, and all computations are mod by t. Using the modulus
computation characteristics, we adopt Fermat’s Little Theorem to implement the equality
method.

Theorem 1 (Fermat’s Little Theorem). Let t be a prime. For any integer a that is not
divisible by t, we have

at−1 ≡ 1( mod t) (5)

Based on Fermat’s Little Theorem, we have the following integer equality method:

Eq(a, b) = 1− (a− b)t−1 (6)

4 Proposed Non-interactive Private Multivariate Func-
tion Evaluation

The remaining problems in previous studies include the following:
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p-1) The existing study [OCHK18, MMN22] provided a proposal specialized for uni/bivariate
functions.

p-2) The complexity advantage of the existing study [MMN22] requires input and output
domain sizes no more than 2N , where N falls within the number of slots of FHE
packing.

p-3) The naive LUT method using bit-wise FHE has a high computational complexity
that increases with the bit length. This complexity is given by O(s · 2

∑m

i=1
di), where

m is the number of inputs, di and s are the bit lengths of i-th input and output,
respectively.

To address these problems, we propose a new non-interactive model that adopts the
following solutions:

s-1) We propose a new LUT processing protocol with word-wise FHE to enable an

arbitrary function evaluation
m︷ ︸︸ ︷

ZN × ...× ZN → Zn·N , where N is the input domain
size that does not fall within the slot size of FHE packing, m is the number of input,
and n is any constant, which solves p-1) and p-2).

s-2) We reduce the computational complexity from O(s ·2
∑m

i=1
di) using the bit-wise LUT

method to O(2
∑m

i=1
di/l) by using the packing technique of word-wise FHE, where

m is the number of inputs, l is the slot size of FHE packing, di and s are bit-lengths
of i-th input and output, respectively, which solves p-3).

s-3) We propose a BigNum decomposing and table separation method to reduce latency
and extend the output domain size. Our proposal allows us to evaluate large integers
with small plaintext space, which can flexibly extend the output domain size. The
multidimensional LUT construction adapts the multithreading technique to decrease
runtime by parallelization.

We present our system overview and initial table construction in Sections 4.1 and 4.2,
respectively. Details of the proposed method for single- and multi-input functions are
provided in Sections 4.3 and 4.4. We present the integer-decomposing and table separation
method in Section 4.5.

4.1 System Overview
The proposed system is shown in Figure 1 and includes two parties: a user and a server.
The user is honest; the server is semi-honest and follows the protocol but is curious about
obtaining sensitive data. All computations on the server are performed over the ciphertext.
Thus, neither the input nor the output is visible to the server. In the initialization phase,

Figure 1: System overview

the user generates a set of keys and maintains a secret key (SK). The public key (PK) and
evaluation keys, that is, the relinearlization key (RelinKey) and rotation key (RotKey),
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are shared with the server. The server maintains the LUTs of the objective function. We
assume that the function owner is the server and that the LUTs are stored as plaintexts.
Note that if the function owner is not the server, the LUTs are maintained by ciphertexts.

The user sends encrypted input values {[[⃗cel=c0 ]], ..., [[⃗cel=cm−1 ]]} of the objective m-input
function to the server, and the server returns the output result [[r]] = [[f(c0, ..., cm−1)]].
The result may be used to perform further computations on the server if needed.

Our proposed system replaces the direct computation of a given function over ciphertexts
with LUT processing. Figure 2 shows a flow chart of the processing. Note that we prepare
the input data points of the pre-computed LUT in Tin and output data points in Tout. For
the m-input function, each input uses the same input LUT, which is seen as one dimension.
The output LUT is a m-dimensional hypercube that holds corresponding output data
points to the input data points.

Figure 2: Flow chart of the LUT processing

The input xi of the function f(x0, ..., xm−1) is encrypted as one ciphertext. Step 1)
searches the matched data point in the input LUT Tin with each input xi, resulting in
having a One-HotSlot vector [[Qi]] in which the matched slot is one and the other slots are
zero, which is used for selecting output in the output LUT Tout. The matching computation
adopts Fermat’s Little Theorem, as shown below.

One-HotSlot(input) := allOneV ector − (input− Tin)t−1, (7)

where the allOneV ector is a vector whose all slots are one.
When we handle a BigNum input, it is decomposed into multiple vectors, followed by

adopting Equation 7 for each decomposed input to match the data point with the Tin.
We skip Steps 2) and 3) for the one-input function because the number of dimensions

of input and output LUTs is the same (details in Section 4.3). Step 4) extracts the
output of the function f by extracting the matched data point in the output LUT Tout

by multiplying the one-hot slot vector and the output LUT Tout. The resultant vector
(one or more ciphertexts) has the result value of f(x) in the i-th slot with zeros in other
slots. Finally, Step 5) sums up all the slots (in all the ciphertexts if there exist plural
ciphertexts), resulting in a single ciphertext with the result value of f(x) in all the slots.

The number of dimensions of input and output LUTs is different when computing a
m-input function f(x0, ..., xm−1) (details in Section 4.4). For each dimension, we apply
Equation 7 to match each input with corresponding input LUT Tin, then Step 2) replicates
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it along the given dimension to form a hypercube. This yields a m dimensional hypercube
where the i-th dimension has all 1 in the hyperplane xi. Step 3) multiplies all the dimensions
of the hypercube slot-wisely, resulting in a hypercube in which the position corresponding
to (x0, ..., xm−1) is one and the others are zeros. Step 4) multiplies all the hypercubes and
the Tout to have the result of f(x0, ..., xm−1) in one slot. Step 5) The result is a single
ciphertext whose all slots are the output by summing up all slots.

The above method can handle multi-dimensional table lookups where the inputs and
outputs are sized up to the plaintext modulus. Larger indexes can then be supported by
considering each large index as multiple inputs smaller than t. Larger outputs can also
be handled by preparing multiple output LUTs, where each Tout contains a part of the
output. In this case, we need one more step to combine a set of outputs.

We show the details in the following sections.

4.2 Construction of Lookup Table
For the objective function f , we store the inputs and outputs in LUTs Tin and Tout,
respectively, which we call input and output data points. The input table Tin contains all
the possible d-bit input values, logically we have Tin = [0, 1, ..., 2d−1]. The output table
similarly contains all the corresponding output values, Tout = [f(0), f(1), ..., f(2d−1)]. In
the simplest case with one input and where l = 2d and the output modulus is less than t,
we present each of these tables using a single native plaintext element and fill each data
point in one slot, with the i-th slot of Tin contains i and the i-th slot of Tout contains
f(i). If l > 2d, then we still use one native plaintext for each of the tables, and fill the
data points into equal-interval slots from the first slot, whereas unused slots are filled
with zero. If l < 2d, then we use multiple native plaintexts for each of the tables, and
think of them as a two-dimensional array with the columns being the slots of a single
native plaintext. Each output data point in Tout corresponds to an input data point (a
set of input data points for multi-input functions) in Tin. The LUTs are constructed as
multi-dimensional vectors when the number of data points exceeds the number of slots.
The multi-dimensional vectors of LUTs allow us to adapt the multithreading technique to
parallelize the computations among the rows.

4.2.1 Construction of Lookup Table for One-input Function

The input and output data points correspond individually for a d-bit one-input function
f(x). The number of data points is |Tin| = |Tout| = 2d. Tin, Tout are 2-dimensional vectors
with a column of length l; the row length is kin = kout = 2d/l, which is an integer when
|Tin|(= |Tout|) ≥ l. This is because l is the slot size, which is a power of two in the FHE
setting. The output data point corresponded to the input data point Tin[indIrow, indIcol]
is shown as Tout[indOrow, indOcol], where 0 ≤ indIrow(= indOrow) < kin(= kout) and
0 ≤ indIcol(= indOcol) < l.

Note that when the number of input data points is less than the number of slots,
|Tin|(= |Tout|) = 2d < l, the data points are filled into equal-interval slots from the first
slot. The interval is l/|Tin|, which is also an integer because l is a power of two in the
FHE setting. Because even if the number of data points is smaller than l, FHE still needs
to pack l data points into a single ciphertext. We fill the data points into equal-interval
slots to reduce the complexity of preparing the final results described in Algorithm 2
(Section 4.3).

Two examples of a 4-bit one-input function LUTs are shown in Figure 3. The number
of data points is |Tin|(= |Tout|) = 16. We show the situation when the number of slots is 4
or 32. When the number of slots l = 4 < |Tin|, all slots are filled with data points. When
the number of slots l = 32 > |Tin|, the data points are filled into every two slots from the
first slot, and the unused slots are filled with zeros.
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Figure 3: LUT construction for one-input function

4.2.2 Construction of Lookup Table for Multi-input Function

For a d-bit m-input function f(x0, ..., xm−1) where m(> 1) is the number of inputs. We
generate a pair of input and output LUTs Tin and Tout as multi-dimensional vectors.
We prepare a single Tin shared by m inputs. Thus, the number of input data points is
|Tin| = 2d. The size of Tin is (l × kin), where kin = 2d/l is an integer such that l is a
power of two in the FHE setting. The number of corresponding output data points is
|Tout| = 2m·d and the size of Tout is (l × kout) where kout = 2m·d/l is also an integer. We
consider the Tin to be a two-dimensional vector (matrix) if the number of data points
exceeds the slot size. The output LUT is an m-dimensional hypercube table; each input
corresponds to a hypercube dimension whose size is |Tin|. We show examples in Figure 4.

The output data point Tout[indOrow, indOcol] corresponds to the set of m input data
points {Tin[indI0

row, indI0
col],...,Tin[indIm−1

row , indIm−1
col ]}. Here, we denote indi = indIi

row×
l + indIi

col and switch the input indices to {ind0, ..., indm−1} for easier understanding,
where 0 ≤ i < m. The corresponding output index [indOrow, indOcol] is computed using
Equation 8.

We denote the indices corresponding to the output Tout[indOrow, indOcol] for the set
of input data points {Tin[indI0

row, indI0
col], ..., Tin[indIm−1

row , indIm−1
col ]}, where we specify

indout = indm−1 +
∑m−2

i=0 (indi × 2d(m−1−i)) and calculate the values of indOrow, indOcol

as follows.
indOrow = ⌊indout/l⌋
indOcol = indout mod l

(8)

Similar to the one-input function, when the number of input data points is less than or
equal to the number of slots satisfying |Tin| ≤ l, we fill the data points into equal-interval
slots from the first slot, whereas unused slots are filled with zero. The interval is l/|Tin|,
which is an integer because l is the power of two in the FHE setting and |Tin| = 2d.

Figure 4 shows two examples of a three-input function: the first example is a 3-bit
three-input function and the second one is a 2-bit three-input function. We set the number
of slots to 4 and 8. The number of data points is |Tin| = 23 = 8 for 3-bit integers and
|Tin| = 22 = 4 for 2-bit integers, respectively. All inputs use the same Tin because the
input domain sizes are the same. We assume the inputs are {x0, x1, x2} = {0, 1, 3}.

(Ex.1): When |Tin| > l, the set of index of input data points in Tin is {[0, 0], [0, 1], [0, 3]}
and we switch them to {0, 1, 3} as one-dimensional representation. The corresponding
output data point is Tout[2, 3] whose index is computed using Equation 8 as indout =
3 + 1× 23·1 + 0× 23·2 = 11. The index of the row is 2 = ⌊11/4⌋ and that of the column is
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3 = 11 mod 4.
(Ex.2): When |Tin| ≤ l, the set of index of input data points {0, 1, 3} in Tin is

switched to {0, 2, 6} as shown in Figure 4 (b). The corresponding output data point for
the input {0, 1, 3} is Tout[1, 6] whose index is computed using Equation 8 as indout =
6 + 2× 22·1 + 0× 22·2 = 14. The index of the row is 1 = ⌊14/8⌋, and that of the column is
6 = 14 mod 8.

Figure 4: LUT construction examples for three-input function

Auxiliary table Taux: Besides the Tin and Tout, we generate an |Tin|-dimensional
vector Taux. We use Taux to select the specific matched dimension of the hypercube table
Tout when extracting the output because Tin corresponds to just one input, whereas Tout

depends on all the inputs. For example, if we have 2-bit inputs for 2-input functions, the
Tin is of size 4, but Tout is of size 16. To match the unique output f(c0, ..., cm−1) in the
Tout, we need to generate a hypercube query whose size is the same as the output table
size, in which only the matched slot is one, and the others are zero.

The reason why we construct Taux is that the number of dimensions between Tin and
Tout are different. We match each input with Tin, resulting in m intermediate results
that are One-HotSlot vectors. Then, we replicate each intermediate result to expand
the number of dimensions to generate a hypercube whose dimension is the same as Tout,
followed by multiplying all hypercubes to extract the output. During the above steps, the
matched slot of ci in every dimension becomes 1. Thus, we prepare the auxiliary table
Taux so that only one matched slot in the i-th dimension is set to 1. We explain how to
use the auxiliary table in Section 4.4 and show an example in Figures 9 and 10.

Taux is a |Tin|-dimensional vector, where the i-th slot in the i-th dimension is 1, and
other slots are all zero that can be considered as a combination of |Tin| One-HotSlot
vectors. Each One-HotSlot vector is one dimension of Taux and has the same size as Tin.

When |Tin| > l, the slots of the index Taux[⌊(i + i · |Tin|)/l⌋, (i + i · |Tin|) mod l] are
one, and the others are zero, where 0 ≤ i < |Tin|. When |Tin| ≤ l, the slots of the index
Taux[i, i · l/|Tin|] are one, and the others are zero, where 0 ≤ i < |Tin|.

Figure 5 presents two examples of Taux for |Tin| > l and |Tin| ≤ l, respectively.
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Figure 5: LUT construction examples for auxiliary tables

4.3 One-input functions evaluation
In this section, we first introduce the two algorithms used in our study, 1) One-HotSlot
and 2) PartialSum, followed by a description of the homomorphic table lookup method
for one-input functions.

Algorithm One-HotSlot [MMN22]: To find the data point in the input LUT Tin that
matches input a, we use the homomorphic equality comparison of integers with Fermat’s
Little Theorem described in Section 3.3 to construct the algorithm One-HotSlot [MMN22].
One-HotSlot computes the matched slot between a ciphertext [[⃗ael=a]] = [[(a, ..., a)]] and
a given plaintext [⃗b] of the vector b⃗ whose slots are distinct integers. The output is an
encrypted vector, where only the i-th slot is one if bi = a and the other slots are all zero.
Based on our proposed table construction technique, if |Tin| ≤ l, then the input value a fills
every l/|Tin| slots. For example, the number of input data points for a 1-bit single-input
function is |Tin| = 2. We assume that the number of slots is l = 8. The encrypted input is
[[⃗a]] = [[(a, 0, 0, 0, a, 0, 0, 0)]], Tin = [0, 0, 0, 0, 1, 0, 0, 0], and Tout = [f(0), 0, 0, 0, f(1), 0, 0, 0].

We present One-HotSlot [MMN22] in Algorithm 1.
Algorithm PartialSum [KSW+18]: TotalSum [HS14] algorithm is used to fill all

slots by the sum of slots. Based on our proposed table construction, when |Tin| ≤ l we
only use |Tin| = l′ slots in each row. The PartialSum [KSW+18] algorithm fills the slots
used by the sum of all slots, which can decrease the complexity from O(log l) to O(log l′)
compared with TotalSum [HS14]. Examples are presented in Figure 6.

PartialSum [KSW+18] is shown in Algorithm 2.
Homomorphic table lookup method for the one-input functions

Because the input LUT Tin is a 2-dimensional vector. We pack each row as plaintext
and adopt One-HotSlot for all rows to match the input [[⃗cel=c]] in parallel. The result is
denoted by [[R]], which is a one-hot slot vector. We multiply [[R]] by the output LUT Tout

and sum all ciphertexts. The result [[r]] is a single ciphertext in which only the matched
output remains; others are all zero. Finally, we use PartialSum to fill all slots used with
the output.

We show an example of a 4-bit one-input function evaluation in Figure 7. We set the
encrypted input [[⃗cel=5]] = [[(5, 5, 5, 5)]], and the number of slots is four. The one-input
function evaluation algorithm is presented as Algorithm 3.
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Algorithm 1: One-HotSlot([[⃗ael=a]], [⃗b], ptOne, t) [MMN22]
Input: [[⃗ael=a]]: a ciphertext of a vector whose all used elements are the input a;

[⃗b]: a plaintext packed a vector; ptOne: a plaintext of a vector whose all
used elements are one; t: plaintext modulus

Output: c: a ciphertext of a vector in which only the slot a = bi is 1 others are 0,
where bi is one of the element in b⃗

1 temp← [[⃗ael=a]]⊖ [⃗b];
2 temp← tempt−1; ▷based on Fermat’s Little Theorem
3 return c← ptOne⊖ temp;

Algorithm 2: PartialSum(ct, l, l′) [KSW+18]
Input: ct: a ciphertext; l: the number of slots; l′: the number of used slots in one

vector
Output: ct: a ciphertext of vector that all used elements are the sum of elements

in original ct
1 rotN ← l/l′; ▷rotN is an integer because both l and l′ are a power of

two.
2 count← log2 l′;
3 for i = 0 to count− 1 do
4 temp← Rot(ct, 2i · rotN); ▷right rotate ct by 2i · rotN elements
5 ct← ct⊕ temp;
6 end
7 return ct;

Figure 6: Examples of Algorithm PartialSum

Algorithm 3: One-input functions evaluation([[⃗cel=c]], Tin, Tout, kin(= kout), l, l′,
ptOne, t)

Input: [[⃗cel=c]]: the ciphertext of input; Tin, Tout: the LUTs whose each row
packed as a plaintext; kin(= kout): the number of rows of LUTs; l: the
number of slots; l′: the number of used slots in one vector; ptOne: a
plaintext of a vector whose all used elements are one; t: plaintext modulus

Output: r: the ciphertext of the output result
1 [[r]]← [] ; ▷a ciphertext
2 [[r]]←

⊕kout−1
i=0 (Tout[i]⊗ OneHotSlot([[⃗cel=c]], Tin[i], ptOne, t));

3 return [[r]]←PartialSum([[r]], l, l′);
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Figure 7: An example of 4-bit one-input function evaluation

4.4 Multi-input functions evaluation
In this section, we first introduce the two algorithms: 1) VectorSum and 2) VectorExpand
used in our study, followed by a description of the homomorphic table lookup method for
multi-input functions.

Algorithm VectorSum: We introduce VectorSum to fill all the used slots l′ in a vector
using the sum of the slots, as shown in Algorithm 4. An encrypted 2-dimensional vector is
a set of ciphertexts because each row is encrypted as a ciphertext. This algorithm fills
a specific dimension of the output LUT hypercube with 1s to extract the final output.
Examples are shown in Figure 8 (a). White shaded slots are used.

Algorithm VectorExpand: VectorExpand is shown in Algorithm 5. VectorExpand
replicates every k′ rows (ciphertexts), which we define as one dimension of the vector, n
times to combine as shown in Figure 8 (b). We use this algorithm to expand the dimensions
of the intermediate result to be the same as Tout hypercube to extract the output.

Algorithm 4: VectorSum([[M ]], l, l′)
Input: [[M ]]: an encrypted vector; l: the number of slots; l′: the number of used

slots in one vector
Output: [[M ]]: an encrypted vector that all used elements are the sum of elements

in M
1 k ← the number of ciphertexts in [[M ]];
2 sum←

⊕k−1
i=0 PartialSum([[M [i]]], l′);

3 for i = 0 to k − 1 do
4 [[M [i]]]← sum;
5 end
6 return [[M ]];

Homomorphic table lookup method for the multi-input functions
Similar to the one-input function, we determine the data points in the input LUT Tin that
match each input [[⃗cel=ci ]], using One-HotSlot to generate queries [[Qi]], where 0 ≤ i < m.
Next, we use {[[Q0]], ..., [[Qm−1]]} and the pre-prepared Taux to generate the same size
hypercube as Tout to extract the output.

The algorithm of multi-input function evaluation is shown as Algorithm 6. The detailed
steps are described below. Figures 9 – 10 show the evaluation processes for 2-bit three-input
function f(c0, c1, c2), assuming c0 = 1, c1 = 0, and c2 = 2. The result is presented in the
[[r]]. The lines below denote those in Algorithm 6:
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Algorithm 5: VectorExpand([[M ]], k′, n)
Input: [[M ]]: a vector of ciphertexts; k′: the number of a set of ciphertexts for

expanding; n: the expand times
Output: [[M ]]: a vector of ciphertexts

1 k ← the number of ciphertexts in [[M ]];
2 [[temp]]← []; ▷a vector of ciphertexts
3 for i = 0 to k × n− 1 do
4 [[temp[i]]]← [[M [⌊i/n⌋ · k′ + i mod k′]]];
5 end
6 return [[M ]]← [[temp]];

Figure 8: Examples of VectorSum and VectorExpand

step 1) Generation of One-HotSlot vector [[Qi]] (lines 2 to 6)
Step 1 generates an encrypted One-HotSlot vector [[Qi]] for each input, where
0 ≤ i < m. By applying One-HotSlot algorithm between each row of Tin and input
[[⃗cel=ci ]] to generate an encrypted One-HotSlot vector in which the matched data
point in ci with Tin is one and the other data points are zero.

step 2) Generation of [[Ri]] (VectorSum part in line 7 to 9)
Step 2 first expands [[Qi]] to have the same size of Taux. Then, multiply the expanded
[[Qi]] to the auxiliary table Taux, where 0 ≤ i < m− 2. Then, we use VectorSum for
each dimension to fill out all slots with the sum of slots, resulting in [[Ri]] whose
matched dimension for i-th input are all 1s.

step 3) Further expansion of the expanded [[Ri]] generated in step 2 (VectorExpand part in
line 7 to 9)
If the number of inputs is over two, we again expand each [[Ri]] to have the same size
as the hypercube table Tout. We apply VectorExpand to every kin · 2d·i rows of the
generated expanded [[Ri]] in step 2, 2d(m−1) times. This step is shown as step 3 in
Figure 9 and 10.

step 4) Generation of [[R]] (line 10)
We slot-wise multiply all {[[R0]], ..., [[Rm−2]]} generated from steps 2 and 3 to obtain
one hypercube [[R]] in which the matched data point with the input {c0, ..., cm−2} is
one, and the others are zero, where the size of [[R]] is the same as Tout.

step 5) Extraction of output (line 11)
We multiply the expanded [[Qm−1]] and [[R]] to obtain a one-hot slot vector where
only the matched data point is one and the other data points are zero, followed by
multiplying with Tout. After that, we sum up each column for all rows to have the
resultant ciphertext [[r]]. Examples are shown in Figure 10.
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step 6) Obtaining final result (line 12)
Finally, we use PartialSum [KSW+18] to fill all of the used slots with the resultant
output.

Algorithm 6: m-input functions evaluation({[[⃗cel=c0 ]], ..., [[⃗cel=cm−1 ]]}, Tin, Tout, Taux, kin

, kout, l, ptOne, t)
Input: {[[⃗cel=c0 ]], ..., [[⃗cel=cm−1 ]]}: the ciphertexts of inputs, where m > 1; Tin, Tout:

the LUTs whose each row is packed as a plaintext; Taux: a pre-prepared
multidimensional vector whose each row is packed as a plaintext; kout: the
number of rows of Tout; kin: the number of rows of Tin; l: the number of
slots; ptOne: a plaintext of a vector whose all used elements are one; t:
plaintext modulus

Output: r: the ciphertext of the output result
1 [[r]]← [] ; ▷a ciphertext
2 for i = 0 to m− 1 do
3 for j = 0 to kin − 1 do
4 [[Qi[j]]]← One-HotSlot([[⃗cel=ci ]], Tin[j], ptOne, t);
5 end
6 end
7 for i = 0 to m− 2 do
8 [[Ri]]← VectorSum(VectorExpand([[Qi]]⊗ Taux, kin · 2d·i, 2d(m−1)), l, l′);
9 end

10 [[R]]←
⊗

[[Ri]];
11 [[r]]←

⊕kout−1
i=0 [[R[i]]]⊗ [[Qm−1[i mod kin]]]⊗ Tout[i];

12 return [[r]]←PartialSum([[r]], l, l′);

4.5 Extension of Output Domain Size
We decompose the BigNum integers into small-bit integers as introduced in [LY21] to
extend the domain sizes for both input and output. This method expands the output
domain by adding a small latency.

Let the plaintext modulus be 2w + 1 = t and w < d. We decompose the d-bit large
integer a to w-bit small integers {a0, ..., an−1} as

a = a0 + a1 × 2w + ... + an−1 × 2(n−1)w (9)

, where n = ⌈d/w⌉. We reconstruct the input LUT using d-bit integers and w-bit small
integers. The output LUT with d-bit large integers are separated into subtables, each with
w-bit small integers.

Consider a simple example that extends the 4-bit one-input function f(x) = y to a
2-bit two-input function f(x0, x1) = y to extend the output domain size. Note that the
data points of the 4-bit one-input function are small to prepare lookup tables; however,
we explain how to extend the domain size of the output lookup tables by decomposing
the original output table into multiple output tables. For example, when the plaintext
modulus t = 5, we can only store 2-bit integers that are smaller than 5. We evaluate
a 4-bit one-input function f(x) = y as a 2-bit two-input function using a single Tin

holding 22 data points and two Touts, each of which holds 24 data points, as shown in
Figure 11. Each of the 4-bit output data points is decomposed into two 2-bit data points
and stored in two LUTs with the same index. In the example in Figure 11, the input
is x = x0 + 22 × x1 = 2 + 2 × 22 = 10 which is decomposed into x0 = 2 and x1 = 2.
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Figure 9: An example of LUT processing for 2-bit three-input function evaluation with
f(1, 0, 3) (from step 1 to step 3)

Figure 10: An example of LUT processing for 2-bit three-input function evaluation with
f(1, 0, 3) (from step 3 to step 6)
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The output f(10) = y0 + y1 × 22 = 2 + 1× 22 = 6 is decomposed to y0 = 2 and y1 = 1.
Therefore, we can evaluate BigNum integers as a multi-input function with each input
having a small plaintext space. As the indices of the corresponding decomposed outputs
in each subtable are the same, we extract each decomposed output and recompose the
output after decryption.

Figure 11: An example of LUTs for BigNum function evaluation

5 Complexity Analysis
This section presents the computational complexities of the algorithms mentioned above
and the total complexity of the entire processing. In the following calculation, we ignore
the number of plaintext calculations because ciphertext computations require a runtime
that is more than 100 times longer than that of plaintext calculations. Thus, the following
complexities represent the order of ciphertext calculations:

The One-HotSlot algorithm requires two subtractions (additions) between ciphertext
and plaintext (ct + pt) and log2(t − 1) times multiplications between ciphertext and
ciphertext (ct× ct), where t is the plaintext modulus. Ignoring plaintext calculation, the
complexity is O(log2(t− 1)). The PartialSum algorithm requires log2 l′ times rotations
and additions between ciphertext and ciphertext, where l′ is the number of slots used.
The number of slots used is l′ = 2d for d-bit input if 2d ≤ l, and l′ = l if 2d > l. Its
complexity is O(log2 l′). The VectorSum algorithm requires k times PartialSum and a
one-time addition of ciphertexts (ct + ct), where k is the number of ciphertexts in the
encrypted matrix. Its complexity is O(k · log2 l′). The VectorExpand algorithm requires no
addition or multiplication over ciphertext. The complexity is O(k · n) where k denotes the
number of ciphertexts in the encrypted matrix and n denotes the required expansion time.
During the processing of d-bit m-input function evaluation, the complexity is O(2d·m/l)
(see Algorithm 6 in Section 4.4), and the multiplication depth is log2(t− 1) + m, where m
is the number of inputs. Table 2 summarizes the complexity of each algorithm, ignoring
the computations over plaintexts in Table 2. Note that if the output LUT has one row,
the complexity is O(log2(t− 1)) but not O(2d·m/l).

Table 2: Algorithm complexity

Algorithm Complexity
One-HotSlot O(log2(t− 1))
PartialSum O(log2 l′)
VectorSum O(k · log2 l′)
VectorExpand O(k · n)
Entire processing O(2d·m/l)
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6 Experiment Evaluation
In this section, we present the experimental evaluation. We implemented our proposed
method for one-input and multi-input functions to confirm the runtime with different input
and output bit lengths.

We implemented the proposed method using the OpenFHE library 1 v1.1.4 [BBB+22].
The source code is available from https://github.com/ruixiaoLee/FunctionEval-FHE
-LUT. The machine with Ubuntu 20.04.6 LTS (Focal Fossa) OS has an Intel(R) Xeon(R)
Gold 5220R 2.20GHz CPU (24 cores, 48 threads) and 60 GB memory. The compiler
used is GUN 9.4.0 with CMake 3.16.3. The multithreading technique is adopted by using
OpenMP 4.5.

Both BFV and BGV schemes can be adapted to the proposed method. In the experiment,
we used the BFV scheme and set the plaintext modulus to t = 216 +1 = 65537, the security
level to HESd_128_classic, and the others to the default parameters in the library. For
the one-, two-, and three-input function evaluation, the multiplicative depth is 17, 18, and
19, respectively. The following results, i.e., the runtimes of the function evaluations, are
the averages of five times runs.

6.1 Runtime and memory usage of d-bit one-input functions

Table 3 presents the evaluation runtimes and memory usage from receiving the input
to extracting the output of one input function using one thread. Because the plaintext
modulus is t = 216 + 1, the maximum input domain is 16-bit. With the aforementioned
parameters, the number of slots is 32, 768, which implies that if the input domain size
is less than 16-bit, the LUTs have only one row, resulting in execution with one thread.
The results show that the runtimes of different numbers of bits increase by less than one
second until the domain size reaches 15 bits because all data points are handled by one
ciphertext, that is, one row. However, when the domain size exceeds 15-bit, the number of
rows increases to two, and the execution time increases by approximately 1.85 times for
16-bit input when using one thread. The memory usage increases linearly with the number
of bits from 1 to 15; however, the increase is slight. Meanwhile, the runtime is almost the
same because the number of rows in LUT stays the same, i.e., one when using 1 to 15
bits. The difference when varying the number of bits is the last step to fill all used slots
with the sum of all slots, where the PartialSum algorithm is used. The smaller number of
bits leads to fewer used slots, which needs a smaller number of rotations and additional
operations in PartialSum. The maximum memory usage of 15-bit and 16-bit one-input
functions increased but not as much as runtime because we used one thread, and both
used all slots but differed by only one row in size.

Table 3: Evaluation results of runtime and memory usage for one-input functions

# Bit
1 2 3 4 5 6 7 8

Time [s] 4.011 3.981 4.036 4.080 4.124 4.169 4.219 4.277
Mem. Usage [MB] 199 259 320 381 441 501 562 622

# Bit
9 10 11 12 13 14 15 16

Time [s] 4.317 4.362 4.408 4.445 4.487 4.535 4.583 8.459
Mem. Usage [MB] 683 744 804 865 925 986 1,046 1,057

1https://github.com/openfheorg/openfhe-development

https://github.com/ruixiaoLee/FunctionEval-FHE-LUT
https://github.com/ruixiaoLee/FunctionEval-FHE-LUT
https://github.com/openfheorg/openfhe-development
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6.2 Runtime and memory usage of d-bit multi-input functions
Table 4 presents the runtime results for d-bit two-input function evaluation. Table 6
presents the runtime results of d-bit three-input function evaluation. The runtime is
significantly affected by the size of the output LUT. Because we set the number of slots to
be the same in all experiments, the runtime is highly affected by the number of rows kout.
The result using one thread shows we evaluate 10-bit two-input functions by our protocol
within 748.9 s, and 12-bit two-input functions cost 3,446.1 s. Using 16 threads reduces the
runtime to 90.5 and 404.7 s, respectively. Evaluating 5-bit (6-bit) three-input functions
requires 895.9 s (3,963.8 s) with one thread. We reduced the runtime to 105.5 and 449.5 s,
respectively, using 16 threads.

With the same number of threads, the runtime and memory usage exponentially
increase with the number of bits, because the size of the data point in LUTs increases
exponentially. In our experiments, the maximum memory usage is approximately 54,848
MB (53.6 GB) for 12-bit two-input functions using 16 threads.

Table 4: Evaluation results of runtime for two-input functions [s]

# Thread # Bit
2 3 4 5 6

1 10.367 11.939 15.579 23.770 41.877
4 6.251 6.994 7.888 10.308 15.822
8 4.749 4.958 5.934 7.874 10.905
16 4.659 4.859 5.191 6.555 9.738

# Thread # Bit
7 8 9 10 12

1 81.021 167.491 352.068 748.940 3446.110
4 26.639 50.502 102.534 215.154 970.995
8 18.441 37.706 69.817 153.349 683.537
16 16.108 24.871 51.034 90.503 404.749

Table 5: Evaluation results of memory usage for two-input functions [MB]

# Thread # Bit
2 3 4 5 6

1 353 477 653 933 1,422
4 446 585 829 1,010 1,518
8 448 614 812 1,170 1,768
16 513 755 1,368 1,704 1,929

# Thread # Bit
7 8 9 10 12

1 2,327 4,064 7,466 14,198 54,304
4 2,490 4,198 7,569 14,264 54,448
8 2,753 4,367 7,740 14,483 54,531
16 2,870 4,753 8,264 14,906 54,848

In addition, we list the LUT size for each experiment in Table 8 and the runtime of
the primitive operations provided in OpenFHE v1.1.4 in Table 9.

The LUT size increases exponentially with the number of bits because the number of
data points in input and output LUT is |Tin|+ |Tout| = 2d + 2m·d. However, the LUTs are
all plaintexts, which benefits the LUT size by not being too large; thus, the maximum
table size in our experiment is 557.1 MB for 12-bit two-input functions.
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For the runtime of the primitive operations, we vary the multiplicative depth while
keeping the other parameters the same as those in the other experiments. Each result
shows the average runtime for 1,000-time evaluations in Table 9.

Table 6: Evaluation results of runtime for three-input functions [s]

# Thread # Bit
2 3 4 5 6

1 22.235 55.007 206.645 895.922 3,963.782
4 11.841 20.108 62.758 252.663 1,114.618
8 8.271 15.328 45.273 160.304 701.309
16 7.407 11.898 28.931 105.469 449.488

Table 7: Evaluation results of memory usage for three-input functions [MB]

# Thread # Bit
2 3 4 5 6

1 482 1,024 2,949 10,378 39,764
4 650 1,162 3,131 10,579 39,878
8 663 1,319 3,240 10,621 40,099
16 1,312 1,720 3,668 11,232 40,420

Table 8: LUT size of our work [MB]

One-input
# Bit 10 11 12 13 14 15 16
Size 0.129 0.135 0.146 0.170 0.230 0.355 0.771

Two-input
# Bit 2 4 6 8 9 10 12
Size 0.564 2.264 8.264 34.064 66.064 131.064 557.073

Three-input
# Bit 2 3 4 5 6
Size 1.413 4.663 18.164 67.164 261.164

7 Comparison and Discussion
To confirm the performance of our proposed method, we compared the runtime with 1)
the word-wise LUT method [OCHK18] [MMN22] and 2) the naive bit-wise LUT method
[CGH+18].

7.1 Comparsion with word-wise LUT work
We implemented Okada et al.’s method [OCHK18] and Maeda et al.’s method [MMN22]
using the BFV scheme in the OpenFHE [BBB+22] library. The parameters are set to be
the same as those in our study, but the multiplication depth is set to 17, which is lower
than ours. This is because the minimum number of multiplications required in [OCHK18]
and [MMN22] are smaller than that required by the proposed method.

The one-input function evaluation method [MMN22] is nearly the same as ours but
requires a one-dimensional LUT. In [OCHK18] and [MMN22], the input domain size is
set to N , where N ≤ (t− 1)/2 and t is plaintext space. We set the same plaintext space
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Table 9: Runtime of primitive operation [ms]

Depth ct× ct ct + ct ct× pt ct + pt
1 7.938 0.102 0.374 0.561
17 169.483 2.355 5.714 4.961
18 166.078 2.198 6.367 5.373
19 169.597 2.529 6.317 5.337

as that used in the experiment in [MMN22], which is 216 + 1, implying that the input
domain size must be less than 15-bit, while our proposed method can reach 16-bit with a
two-dimensional LUT. The runtime results for a single thread are presented in Table 3.

The runtimes of different input domain sizes of two-input function evaluation by using
[OCHK18] and [MMN22] with a single thread are shown in Table 10. Note that we used a
single thread for a fair comparison.

Okada et al.’s scheme [OCHK18] consumed 4.1 s for evaluating a 2-bit two-input
function, while a 10-bit two-input function needs 24,653.8 s. The complexity of [OCHK18]
is O(N2), where N is the domain size of both the input and the output. Even when the
multiplication depth increases linearly, the latency increases rapidly as the number of bits
increases. Our study achieved faster runtime results when the bit length d > 4. Maeda et
al.’s scheme [MMN22] consumed 43.8 s to evaluate a 10-bit two-input function, whereas a
12-bit two-input function needs 103.0 s. The complexity of [MMN22] is O(N), where N
is the domain size of both the input and the output. The result of our study shows that
evaluating a 10-bit or 12-bit two-input function needs 748.9 and 3,446.1 s, respectively.

The results in Table 10 show that the runtime of our method for a two-input function
is worse than [MMN22] but better than [OCHK18] (when the bit length d > 4). However,

our method allows us to evaluate an arbitrary function
m︷ ︸︸ ︷

ZN × ...× ZN → Zn·N whose input
is more than two and expands the output domain size with integer-decomposing and table
separation method, where N is the input domain size, m is the number of inputs, and n is
any constant.

Table 10: Runtime comparison with [OCHK18, MMN22] for two-input functions [s]

Method # Bit
2 4 6 8 10 12

[OCHK18] 4.085 21.954 154.189 1,711.983 24,653.800 -
Ours 10.367 15.579 41.877 167.491 748.940 3,446.110

[MMN22] 6.250 8.509 12.876 21.381 43.757 102.971

7.2 Compare with naive bit-wise LUT implementation
Okada et al. [OCHK18] compared the function evaluation latency of their work with those
of Chen et al. [CG15], Xu et al. [XCWF16], and Chen et al. [CFLW17], who used bit-wise
FHE. The experimental results in [OCHK18] demonstrate that their work is faster than
[CFLW17], which is the fastest bit-wise implementation mentioned in their study.

As a complement, we implement the naive LUT method [CGH+18] for m-input function
with a bit-wise FHE scheme, FHEW/TFHE [MP21, CGGI20], using the OpenFHE library.
We used the default parameters and STD128 security level. As explained in Section 2.2,
the number of multiplications in the naive bit-wise LUT is (m · d + 1) for a d-bit m-input
function. Because we can combine m d-bit inputs into a single (m · d)-bit input to evaluate
using the bit-wise method. The required multiplication depth is (log2(t− 1) + m) in this
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work, where m is the number of inputs and t is the plaintext space satisfied t > 2d. Thus,
when the plaintext space satisfies t > 2m(d−1) + 1, our required depth is larger than the
naive bit-wise LUT.

Besides using the word-wise HE to encrypt each integer in this work, we plan to use
word-wise HE to encrypt each bit of an integer in the future. The equality function in
this work is shown as Equation 6, which requires depth to be log2(t− 1). We set a large
plaintext space even for SmallNum in our experiments, which leads to a depth larger than
d. However, if x⃗ = (x1, ..., xd) is the bit vector with binary expansion of x and similarly
a⃗ = (a1, ..., ad) is the binary expansion of y, then the equality function can be computed
as
∏d

i=0(ai + xi + 1). In this case, we can reduce the required depth to d.
Table 11 shows the runtime results of one-, two-, and three-input functions using the

naive LUT method with bit-wise FHE for different bit-lengths of input and output. In
this experiment, we set the same number of bits for both input and output. The results
show that evaluating a 3-bit three-input function requires approximately 1,799.9 s. By
using 16 threads, the runtime decreases to 275.3 s. While our proposed method requires
11.9 s, which is approximately 23 times faster.

Table 11: Runtime of naive LUT method with bit-wise FHE [s]

# of One-input
Thread 1-bit 2-bit 3-bit 4-bit 5-bit 6-bit 7-bit

1 1.936 5.214 13.743 35.073 86.256 205.347 478.276
4 1.121 2.635 6.015 14.406 34.599 81.697 189.501
8 1.122 2.591 4.663 10.829 25.605 60.088 138.932
16 1.121 2.595 4.664 9.171 21.448 50.109 116.223

# of Two-input Three-input
Thread 1-bit 2-bit 3-bit 4-bit 1-bit 2-bit 3-bit

1 4.388 28.270 164.600 872.765 10.399 150.602 1,799.947
4 2.025 10.392 57.844 304.036 4.048 49.687 586.421
8 2.022 7.285 38.795 203.460 2.889 31.690 370.709
16 2.022 5.734 30.307 158.640 2.904 23.665 275.339

8 Conclusion
We propose a non-interactive privacy-preserving function evaluation model to evaluate
functions with a pre-prepared auxiliary table and input and output data-point tables
using the word-wise LUT method. The input and output domain sizes are extended to

m︷ ︸︸ ︷
ZN × ...× ZN → Zn·N , where N is the input domain size within the plaintext space, m is
the number of inputs, and n ∈ Z+. To the best of our knowledge, our method is the first
protocol that allows the evaluation of arbitrary multivariate functions using word-wise
FHE. Our proposed LUT method is adaptable to any function with accurate input and
output tables, delivering highly accurate results even for noncontiguous functions with a
wider input range than polynomial approximation methods. Consequently, our protocol
can enhance the application of FHE, enabling complicated functions in real-world scenarios
where FHE has previously been challenging, such as privacy-preserving anomaly detection
systems in smart grids [LBDY22]. The experimental results show that we evaluated a
15-bit one-input function within 4.6 s and a 16-bit one-input function within 8.5 s. The
10-bit two-input function requires 90.5 s, and the 5-bit three-input function requires 105.5 s
with 16-thread. Compared to a naive implementation with bit-wise LUT, we decreased the
latency by approximately 3.2 and 23.1 times for evaluating two-bit and three-bit 3-input
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functions using 16-thread, respectively.
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