
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 3, 28 pages.

https://doi.org/10.62056/andkmp-3y
Check for updates

Non-interactive Private Multivariate Function
Evaluation using Homomorphic Table Lookup

Ruixiao Li1 and Hayato Yamana2

1 Waseda University, Dept. of CSCE, Tokyo, Japan
2 Waseda University, Faculty of Science and Engineering, Tokyo, Japan

Abstract. To address security issues in cloud computing, fully homomorphic
encryption (FHE) enables a third party to evaluate functions using ciphertexts that
do not leak information to the cloud server. The remaining problems of FHE include
high computational costs and limited arithmetic operations, only evaluating additions
and multiplications. Arbitrary functions can be evaluated using a precomputed
lookup table (LUT), which is one of the solutions for those problems. Previous
studies proposed LUT-enabled computation methods 1) with bit-wise FHE and 2)
with word-wise FHE. The performance of LUT-enabled computation with bit-wise
FHE drops quickly when evaluating BigNum functions because of the complexity
being O(s · 2d·m), where m represents the number of inputs, d and s represent the
bit lengths of the inputs and outputs, respectively. Thus, LUT-enabled computation
with word-wise FHE, which handles a set of bits with one operation, has also been
proposed; however, previous studies are limited in evaluating multivariate functions
within two inputs and cannot speed up the evaluation when the domain size of
the integer exceeds 2N , where N is the number of elements packed into a single
ciphertext. In this study, we propose a non-interactive model, in which no decryption
is required, to evaluate arbitrary multivariate functions using homomorphic table
lookup with word-wise FHE. The proposed LUT-enabled computation method 1)
decreases the complexity to O(2d·m/l), where l is the element size of FHE packing; 2)
extends the input and output domain sizes to evaluate multivariate functions over two
inputs; and 3) adopts a multidimensional table for enabling multithreading to reduce
latency. The experimental results demonstrate that evaluating a 10-bit two-input
function and a 5-bit three-input function takes approximately 90.5 and 105.5 s with
16-thread, respectively. Our proposed method achieves 3.2x and 23.1x speedup to
evaluate two-bit and three-bit 3-input functions compared with naive LUT-enabled
computation with bit-wise FHE.
Keywords: Function evaluation · secure computing · lookup table · fully homo-
morphic encryption

1 Introduction
Privacy-preserving systems facilitate the safeguarding of personal privacy while utilizing
cloud computing applications. Common cloud privacy-preserving technologies include
secure multiparty computing (SMPC), differential privacy (DP), and homomorphic en-
cryption (HE). Since the pioneering work of Yao [Yao82], SMPC has been employed in
various systems to protect sensitive data without revealing them, as demonstrated in
previous studies [BPTG15, CDH+19, GCH+18, MRVW21, CMTB16, DCW13]. However,
a shortcoming of SMPC is the significant communication cost associated with a multiparty

E-mail: liruixiao@yama.info.waseda.ac.jp (Ruixiao Li), yamana@yama.info.waseda.ac.jp (Hayato
Yamana)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-07 Accepted: 2024-09-02

https://doi.org/10.62056/andkmp-3y
https://crossmark.crossref.org/dialog/?doi=10.62056/andkmp-3y&domain=pdf&date_stamp=2024-09-27
https://orcid.org/0009-0001-4804-4649
https://orcid.org/0000-0001-7542-4826
mailto:liruixiao@yama.info.waseda.ac.jp
mailto:yamana@yama.info.waseda.ac.jp
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Non-interactive Private Multivariate FE using Homomorphic Table Lookup

interactive model of massive data. Furthermore, SMPC is designed for specific types of pro-
tocols, and the implementation of general functions is challenging. DP conceals personally
identifiable information by introducing noise into a dataset. DP has widespread applications
in diverse systems, as indicated in references such as [ZC20, ZTG+19, CBK+20, LDL15].
Nonetheless, DP is difficult to balance between privacy and usability because a high level
of privacy requires more noise, which may lead to unknown effects.

HE allows a cloud server to evaluate functions over encrypted data and resists quantum
computing to provide a high security level. The challenges of HE include its high com-
putational costs and limited operations that apply only to additions and multiplications.
In 2009, Gentry [Gen09] introduced a fully holomorphic encryption (FHE) scheme based
on ideal lattices to apply both homomorphic addition and multiplication without time
limitations. Two encoding methods are adopted for different FHE schemes, bit-wise en-
coding adopted to such as GSW [GSW13], FHEW [DM15] and TFHE [CGGI20] schemes
which encrypt data bit-by-bit, and word-wise encoding adopted to such as BGV [Bra12],
BFV [BGV14, FV12], and CKKS [CKKS17] schemes which encrypt a vector of integers or
complex numbers. Word-wise encoding allows for handling more data in one operation to
improve efficiency compared with bit-wise encoding. However, word-wise FHE limits the
types of operations in that it can only adapt to additions and multiplications.

To improve the efficiency of evaluating complicated functions such as logarithms or
divisions with FHE, the existing studies adopt three main ideas: 1) polynomial approxima-
tion over FHE, 2) naive LUT method with bit-wise FHE, and 3) improved LUT method
with word-wise FHE.

Xie et al. [XBF+14], Gilad et al. [GDL+16], Chou et al. [CBL+18], and Hesamifard et
al. [HTG19] used the polynomial approximation (PA) to replace direct computation with
polynomial evaluation over FHE. Polynomial approximation enables the approximation of
arbitrary functions using a polynomial composed of only additions and multiplications.
A shortcoming of the PA is that it guarantees accuracy within a specific input range of
relatively smooth functions; otherwise, the accuracy drops rapidly. PA works well for
activation functions used in neural networks. The polynomials with a higher degree improve
the accuracy; however, a high degree requires an increased depth of multiplication level of
FHE, which leads to a long latency and is not acceptable for data-driven applications.

The other solution is to use precomputed lookup tables (LUT) of the objective function
with FHE. However, the latency of existing studies [DM15, CGGI20, CGH+18] using
bit-wise FHE increases rapidly with the bit length. The computational complexity of the
naive LUT method with bit-wise FHE is O(s · 2d·m), where m is the number of inputs, d
and s are the input and output bit lengths, respectively. Maeda et al. [MMN22] achieved
a uni/bivariate function evaluation with LUT using a word-wise FHE with a complexity
of O(N) for a 2-input function evaluation, where N is the input domain size and can be
further extended to 2N . However, [MMN22] provided a proposal specialized for bivariates;
the solution for multivariates with more than two is not apparent, and it cannot handle an
integer larger than 2N , where N falls within the number of elements of the FHE packing,
that is, the size of the vector. Otherwise, the advantage of complexity is lost. In addition,
[MMN22] did not extend the output domain size, which must be the same as the input
domain size.

Li et al. [LY21, LY24] introduced an interactive model that employed a trusted party
to communicate with the cloud to evaluate multi-input functions using word-wise FHE
with LUT. Even if the trusted party cannot infer the function and input/output from a
randomly selected LUT with redundant data points, the index distribution and output
index are leaked to the trusted party. In this study, we retained most of the strengths
of [LY21, LY24] and used a non-interactive model in which all computations are over
ciphertexts. The non-interactive model does not require a trusted party. To address these
problems, the contributions of this study are as follows:

Ruixiao Li, Hayato Yamana 3

Contributions:
1) We propose a private multivariate function evaluation protocol that uses word-

wise FHE with LUTs. Our method allows for the evaluation of an arbitrary function
m︷ ︸︸ ︷

ZN × ...× ZN → Zn·N , where N is the input domain size even if that does not fall within
the element size of FHE packing, m is the number of inputs, and n is any constant. We
describe an original method of multidimensional table lookup construction and processing
to adapt arbitrary multivariate function evaluation with word-wise FHE and reduce the
execution time. Meanwhile, we show a series of experiment results to demonstrate the
practicality of the proposed method.

2) We reduce the computational complexity from O(s · 2
∑m

i=1
di) using the bit-wise

LUT method to O(2
∑m

i=1
di/l) by using the packing technique of word-wise FHE, where m

is the number of inputs, l is the element size of FHE packing, di and s are the bit lengths
of i-th input and output, respectively.

3) We propose a BigNum decomposition and table separation method to reduce the
latency and extend the output domain size. Our proposed method allows the evaluation of
large integers with a small plaintext space that can flexibly extend the output domain size.
Multidimensional LUT construction enables multithreading to decrease runtime through
parallelization.

Our proposed LUT method is adaptable to any function by employing accurate input
and output tables for a given function and provides highly accurate results even for
noncontiguous functions with a wider input range than polynomial approximation functions.
Thus, our protocol can expand the use of FHE, which makes it possible to implement
complex functions in real-world applications that have been difficult to adopt FHE; for
example, the privacy-preserving anomaly detection systems in smart grids [LBDY22].

The rest of this paper is organized as follows. The existing related works are in Section 2.
Section 3 introduces the preliminaries of this study. The details of the proposed non-
interactive multivariable function evaluation method with FHE are presented in Section 4.
We present complexity analysis and performance evaluation in Sections 5 and 6. Section 7
compares the proposed method to related studies. Finally, we conclude this study in
Section 8.

2 Related Work
To address the challenge that FHE cannot evaluate complicated functions that are not
composed of additions and multiplications, such as logarithms and divisions, the existing
related study introduces three methods: 1) polynomial approximation over FHE, 2) a naive
method of LUT that uses bit-wise FHE homomorphic table lookup, and 3) an improved
homomorphic table lookup method that uses word-wise FHE to achieve lower latency.

In this section, we introduce the advantages and disadvantages of the previous studies.

2.1 Polynomial Approximation over FHE
Xie et al. [XBF+14] first used the polynomial approximation (PA) to replace the direct
computation of the activation function used in neural networks with a polynomial evaluation
over FHE. Commonly used activation functions, such as the Swish and Tanh functions,
cannot be evaluated with FHE directly. PA enables the execution of approximate arbitrary
functions by using a polynomial [CT12] composed only of additions and multiplications.

Chabanne et al. [CdWM+17] applied a polynomial approximation to the ReLU function
with CKKS [CKKS17] using polynomials of degrees 2 through 6 on a light convolutional
neural network (CNN). ReLU function is defined as f(x) = max(0, x), which cannot be
directly computed with FHE because of the comparison. Gilad-Bachrach et al. [GDL+16]

4 Non-interactive Private Multivariate FE using Homomorphic Table Lookup

and Chou et al. [CBL+18] introduced CryptoNets, which use PA to compute activation
functions in an inference over encrypted data using a neural network model. Lee et
al. [LLNK22] proposed the PA of the Sign function and determined the optimal set of
degrees for a minimax composite polynomial by considering the number of nonscalar
multiplications and the depth consumption. This approach effectively reduces the function
runtime by an average of 45 % with the PA-based FHE.

Hesamifard et al. [HTG19] designed approximate Sigmoid, ReLU, and Tanh functions
with low-degree polynomials and trained CNNs with PA to improve accuracy. [HTG19]
achieved 99.25 % accuracy when applied to the MNIST dataset, a commonly used hand-
written digits dataset. Cheon et al. [CKP22] introduced domain extension polynomials
(DEPs) to extend the range of inputs while maintaining the features of the original function
in its original input range. An experiment [CKP22] with bit-wise FHE exploited the
logistic function in the range [−7683, 7683].

The challenge of PA is that it only guarantees accuracy within a specific input range of
relatively smooth functions; otherwise, the accuracy decreases rapidly. The PA works well
for activation functions used in neural networks. Polynomials with a higher degree improve
accuracy; however, a high degree requires an increased depth of multiplication level of
FHE, which leads to a long latency and is not acceptable for data-driven applications.

2.2 Homomorphic Table Lookup with Bit-Wise FHE
Crawford et al. [CGH+18] replaced the direct computations of complicated functions with
homomorphic table lookups to improve the efficiency of bit-wise-encoding-based FHE.
They [CGH+18] built a precomputed table containing the input Tfin and output Tfout

data points of the objective function f , where Tfin = x and Tfout = f(x). Using the MUX
gates, the combined input ct(q⃗) returns ct(r⃗[i]), where 0 ≤ i < s and s is the bit length of
the output.

ct(r⃗[i])←
2m·d∑
j=1

(
m·d∏
k=1

(
ct(q⃗[k])⊕ Tfin[j, k]⊕ ct(1)

)
⊗ Tfout[j, i]

)
(1)

where m is the number of inputs and d is the bit length of the input.
Carpov et al. [CIM19] and Chillotti et al. [CGGI20] improved the bootstrapping

process in the bit-wise FHE scheme called TFHE, which is used to reduce the noise from
multiplications in the ciphertext to decrease the latency. The experimental result of LUT
shows [CIM19] requires approximately 1.57 s to assess an arbitrary 6-to-6-bit function.
[CGGI20] evaluates an 8-to-8-bit function in 1.096 s and a 16-to-8-bit function in 2.192 s.
Boura et al. [BGGJ20] and Lu et al. [jLHH+21] proposed a framework called PEGASUS,
which enables switching back and forth between bit-wise and word-wise schemes such
as FHEW [DM15] and CKKS [CKKS17]. PEGASUS allows the evaluation of arithmetic
functions on word-wise FHE to enhance efficiency and enables the evaluation of complicated
functions on bit-wise FHE with logic circuits.

However, all the aforementioned LUT studies are based on bit-wise encoding FHE.
Because bit-wise encoding encodes and encrypts data bit-by-bit, the complexity of the
naive LUT method is O(s · 2d·m). This complexity grows exponentially with the input bit
length, where d and s represent the bit lengths of the input and output, respectively, and
m is the number of inputs, which is not suitable for evaluating BigNum integer functions.

2.3 Homomorphic Table Lookup with Word-Wise FHE
Okada et al. [OCHK18] proposed a linear depth algorithm for univariate and bivariate
functions using word-wise FHE. They decomposed the two-input function into two single-
input functions. LUT contains coefficients prepared by approximating the functions using

Ruixiao Li, Hayato Yamana 5

polynomial interpolation. In their experiments, they compared their results to those of Chen
et al. [CG15], Xu et al. [XCWF16], and Chen et al. [CFLW17]. The results show that they
achieved a 2.45x faster execution than the fastest bit-wise algorithm [CFLW17] mentioned in
their paper. Based on Okada et al.’s work [OCHK18], Maeda et al. [MMN22] improved the
algorithm by adopting the Paterson-Stockmeyer method to decrease the complexity. They
prepared all the coefficient LUT of polynomials f0(x), ..., fdi

(x), ..., fN−1(x) to compute
an arbitrary bivariate function, where 0 ≤ di < N and N is the input domain size. The
LUT contains the coefficients ci,d of the polynomial fd(x) = f(x, d)

fd(x) = c0,d + c1,dx + c2,dx2 + ... + cN−1,dxN−1 mod t (2)

where ci,d is precomputed using polynomial interpolation, and t is plaintext space. The
results demonstrate that the proposed method evaluates 12-to-12-bit functions in 57.5 s.

Prior studies with word-wise encoding FHE schemes evaluated large integers with half
of the required plaintext space as a bivariate function to reduce latency because a large
plaintext space leads to a long latency. In [MMN22], the input domain size can be further
extended from N to 2N to evaluate the functions ZN × ZN → ZN to Z2N × Z2N → Z2N .
However, [MMN22] specialized in uni/bivariate functions. The solution for multivariate
functions, in which more than two variates are not apparent in [MMN22], and it cannot
handle an integer larger than Z2N , where N falls within the number of packing elements.
Otherwise, the advantage of complexity is lost. Additionally, [MMN22] did not increase
the domain size of the output. Even if we evaluate a univariate function by decomposing
the large input integer size of Z2N into half and considering it a bivariate function, the
output domain size is still ZN .

3 Preliminaries

3.1 Notation

Table 1 summarizes the notation used in this study. We used uppercase letters to represent
matrices unless otherwise specified. The input and output data points are stored separately
in LUTs Tin and Tout. For example, assuming a two-input function f(x0, x1), where
0 ≤ xi < 2 and 0 ≤ i < 2, Tin = [0, 1] and Tout = [f(0, 0), f(0, 1), f(1, 0), f(1, 1)].
The construction of LUTs is described in Section 4.2. We denote the vectors in ·⃗ and
multidimensional vectors in uppercase letters, i.e., [[⃗a]] and [[A[i]]] represent an encrypted
vector a⃗ and the encrypted i-th row of matrix (two-dimensional vector) A, respectively. In
addition, we denote an encrypted vector whose elements are all x as [[⃗ael=x]].

3.2 SIMD Operation over Word-Wise FHE

Smart and Vercauteren [SV14] introduced a fully homomorphic element-wise single in-
struction multiple data (SIMD) operation based on the packing method of the polynomial-
Chinese remainder theorem (polynomial-CRT). Using [SV14, BGH13], we pack l elements,
each of which is called a slot (hereinafter referred to as slot), as a single plaintext or
ciphertext. Slot-wise SIMD operations allow us to compute all the slots in parallel.

Let us pack and encrypt two vectors a⃗ = [(a0, ..., al−1)] and b⃗ = [(b0, ..., bl−1)] into
ciphertext [[⃗a]] and [[⃗b]]. The slot-wise SIMD addition and multiplication operations are as
follows:

[[⃗a]]⊕ [[⃗b]] = [[(a0 + b0, ..., al−1 + bl−1)]]

[[⃗a]]⊗ [[⃗b]] = [[(a0 × b0, ..., al−1 × bl−1)]]
(3)

6 Non-interactive Private Multivariate FE using Homomorphic Table Lookup

Table 1: Notations

Notation Description
m the number of inputs for an objective multi-input function

di, s the bit-length of i-th input and output, respectively, 0 ≤ i < m
ci an input value for a given function, 0 ≤ i < m
r an output value for a given function
R the intermediate results (shown in Section 4.3 and 4.4)
t plaintext space, which is a power of two plus one
l the number of elements set by FHE, which is a power of two
l′ the number of used elements in an encrypted vector if |Tin| ≤ l (shown in

Section 4.3 and 4.4, l′ = |Tin| = 2d)
Tin, Tout the LUT of input and output data points
|Tin|, |Tout| the number of input and output data points in LUT

kin, kout the number of rows of Tin, Tout, each row can be packed as a single plaintext
and |Tin| = kin × l, |Tout| = kout × l

[[·]] a ciphertext
[·] a plaintext
[[⃗a]] an encrypted vector a⃗

[[A[i]]] an encrypted i-th row of matrix A
[[⃗ael=x]] an encrypted vector whose all used elements are x
Enc(·) encryption operation
Dec(·) decryption operation
⊕,⊖,⊗ homomorphic addition, subtraction and multiplication

3.3 Homomorphic Equality Comparison of Integers with Fermat’s
Little Theorem

FHE cannot directly compare integers because FHE cannot reveal the values during the
processing. In this section, we introduce how to use the characteristics of FHE and Fermat’s
little theorem, a fundamental result in number theory, to compare integer equality.

The equality comparison Eq(a, b) check whether the two integers a, b are equal is
defined as follows:

Eq(a, b) =
{

1, a = b

0, otherwise
(4)

The FHE computations are modulus computations over ring R. We set the plaintext
modulus to t, which is prime, and all computations are mod by t. Using the modulus
computation characteristics, we adopt Fermat’s Little Theorem to implement the equality
method.

Theorem 1 (Fermat’s Little Theorem). Let t be a prime. For any integer a that is not
divisible by t, we have

at−1 ≡ 1(mod t) (5)

Based on Fermat’s Little Theorem, we have the following integer equality method:

Eq(a, b) = 1− (a− b)t−1 (6)

4 Proposed Non-interactive Private Multivariate Func-
tion Evaluation

The remaining problems in previous studies include the following:

Ruixiao Li, Hayato Yamana 7

p-1) The existing study [OCHK18, MMN22] provided a proposal specialized for uni/bivariate
functions.

p-2) The complexity advantage of the existing study [MMN22] requires input and output
domain sizes no more than 2N , where N falls within the number of slots of FHE
packing.

p-3) The naive LUT method using bit-wise FHE has a high computational complexity
that increases with the bit length. This complexity is given by O(s · 2

∑m

i=1
di), where

m is the number of inputs, di and s are the bit lengths of i-th input and output,
respectively.

To address these problems, we propose a new non-interactive model that adopts the
following solutions:

s-1) We propose a new LUT processing protocol with word-wise FHE to enable an

arbitrary function evaluation
m︷ ︸︸ ︷

ZN × ...× ZN → Zn·N , where N is the input domain
size that does not fall within the slot size of FHE packing, m is the number of input,
and n is any constant, which solves p-1) and p-2).

s-2) We reduce the computational complexity from O(s ·2
∑m

i=1
di) using the bit-wise LUT

method to O(2
∑m

i=1
di/l) by using the packing technique of word-wise FHE, where

m is the number of inputs, l is the slot size of FHE packing, di and s are bit-lengths
of i-th input and output, respectively, which solves p-3).

s-3) We propose a BigNum decomposing and table separation method to reduce latency
and extend the output domain size. Our proposal allows us to evaluate large integers
with small plaintext space, which can flexibly extend the output domain size. The
multidimensional LUT construction adapts the multithreading technique to decrease
runtime by parallelization.

We present our system overview and initial table construction in Sections 4.1 and 4.2,
respectively. Details of the proposed method for single- and multi-input functions are
provided in Sections 4.3 and 4.4. We present the integer-decomposing and table separation
method in Section 4.5.

4.1 System Overview
The proposed system is shown in Figure 1 and includes two parties: a user and a server.
The user is honest; the server is semi-honest and follows the protocol but is curious about
obtaining sensitive data. All computations on the server are performed over the ciphertext.
Thus, neither the input nor the output is visible to the server. In the initialization phase,

Figure 1: System overview

the user generates a set of keys and maintains a secret key (SK). The public key (PK) and
evaluation keys, that is, the relinearlization key (RelinKey) and rotation key (RotKey),

8 Non-interactive Private Multivariate FE using Homomorphic Table Lookup

are shared with the server. The server maintains the LUTs of the objective function. We
assume that the function owner is the server and that the LUTs are stored as plaintexts.
Note that if the function owner is not the server, the LUTs are maintained by ciphertexts.

The user sends encrypted input values {[[⃗cel=c0]], ..., [[⃗cel=cm−1]]} of the objective m-input
function to the server, and the server returns the output result [[r]] = [[f(c0, ..., cm−1)]].
The result may be used to perform further computations on the server if needed.

Our proposed system replaces the direct computation of a given function over ciphertexts
with LUT processing. Figure 2 shows a flow chart of the processing. Note that we prepare
the input data points of the pre-computed LUT in Tin and output data points in Tout. For
the m-input function, each input uses the same input LUT, which is seen as one dimension.
The output LUT is a m-dimensional hypercube that holds corresponding output data
points to the input data points.

Figure 2: Flow chart of the LUT processing

The input xi of the function f(x0, ..., xm−1) is encrypted as one ciphertext. Step 1)
searches the matched data point in the input LUT Tin with each input xi, resulting in
having a One-HotSlot vector [[Qi]] in which the matched slot is one and the other slots are
zero, which is used for selecting output in the output LUT Tout. The matching computation
adopts Fermat’s Little Theorem, as shown below.

One-HotSlot(input) := allOneV ector − (input− Tin)t−1, (7)

where the allOneV ector is a vector whose all slots are one.
When we handle a BigNum input, it is decomposed into multiple vectors, followed by

adopting Equation 7 for each decomposed input to match the data point with the Tin.
We skip Steps 2) and 3) for the one-input function because the number of dimensions

of input and output LUTs is the same (details in Section 4.3). Step 4) extracts the
output of the function f by extracting the matched data point in the output LUT Tout

by multiplying the one-hot slot vector and the output LUT Tout. The resultant vector
(one or more ciphertexts) has the result value of f(x) in the i-th slot with zeros in other
slots. Finally, Step 5) sums up all the slots (in all the ciphertexts if there exist plural
ciphertexts), resulting in a single ciphertext with the result value of f(x) in all the slots.

The number of dimensions of input and output LUTs is different when computing a
m-input function f(x0, ..., xm−1) (details in Section 4.4). For each dimension, we apply
Equation 7 to match each input with corresponding input LUT Tin, then Step 2) replicates

Ruixiao Li, Hayato Yamana 9

it along the given dimension to form a hypercube. This yields a m dimensional hypercube
where the i-th dimension has all 1 in the hyperplane xi. Step 3) multiplies all the dimensions
of the hypercube slot-wisely, resulting in a hypercube in which the position corresponding
to (x0, ..., xm−1) is one and the others are zeros. Step 4) multiplies all the hypercubes and
the Tout to have the result of f(x0, ..., xm−1) in one slot. Step 5) The result is a single
ciphertext whose all slots are the output by summing up all slots.

The above method can handle multi-dimensional table lookups where the inputs and
outputs are sized up to the plaintext modulus. Larger indexes can then be supported by
considering each large index as multiple inputs smaller than t. Larger outputs can also
be handled by preparing multiple output LUTs, where each Tout contains a part of the
output. In this case, we need one more step to combine a set of outputs.

We show the details in the following sections.

4.2 Construction of Lookup Table
For the objective function f , we store the inputs and outputs in LUTs Tin and Tout,
respectively, which we call input and output data points. The input table Tin contains all
the possible d-bit input values, logically we have Tin = [0, 1, ..., 2d−1]. The output table
similarly contains all the corresponding output values, Tout = [f(0), f(1), ..., f(2d−1)]. In
the simplest case with one input and where l = 2d and the output modulus is less than t,
we present each of these tables using a single native plaintext element and fill each data
point in one slot, with the i-th slot of Tin contains i and the i-th slot of Tout contains
f(i). If l > 2d, then we still use one native plaintext for each of the tables, and fill the
data points into equal-interval slots from the first slot, whereas unused slots are filled
with zero. If l < 2d, then we use multiple native plaintexts for each of the tables, and
think of them as a two-dimensional array with the columns being the slots of a single
native plaintext. Each output data point in Tout corresponds to an input data point (a
set of input data points for multi-input functions) in Tin. The LUTs are constructed as
multi-dimensional vectors when the number of data points exceeds the number of slots.
The multi-dimensional vectors of LUTs allow us to adapt the multithreading technique to
parallelize the computations among the rows.

4.2.1 Construction of Lookup Table for One-input Function

The input and output data points correspond individually for a d-bit one-input function
f(x). The number of data points is |Tin| = |Tout| = 2d. Tin, Tout are 2-dimensional vectors
with a column of length l; the row length is kin = kout = 2d/l, which is an integer when
|Tin|(= |Tout|) ≥ l. This is because l is the slot size, which is a power of two in the FHE
setting. The output data point corresponded to the input data point Tin[indIrow, indIcol]
is shown as Tout[indOrow, indOcol], where 0 ≤ indIrow(= indOrow) < kin(= kout) and
0 ≤ indIcol(= indOcol) < l.

Note that when the number of input data points is less than the number of slots,
|Tin|(= |Tout|) = 2d < l, the data points are filled into equal-interval slots from the first
slot. The interval is l/|Tin|, which is also an integer because l is a power of two in the
FHE setting. Because even if the number of data points is smaller than l, FHE still needs
to pack l data points into a single ciphertext. We fill the data points into equal-interval
slots to reduce the complexity of preparing the final results described in Algorithm 2
(Section 4.3).

Two examples of a 4-bit one-input function LUTs are shown in Figure 3. The number
of data points is |Tin|(= |Tout|) = 16. We show the situation when the number of slots is 4
or 32. When the number of slots l = 4 < |Tin|, all slots are filled with data points. When
the number of slots l = 32 > |Tin|, the data points are filled into every two slots from the
first slot, and the unused slots are filled with zeros.

10 Non-interactive Private Multivariate FE using Homomorphic Table Lookup

Figure 3: LUT construction for one-input function

4.2.2 Construction of Lookup Table for Multi-input Function

For a d-bit m-input function f(x0, ..., xm−1) where m(> 1) is the number of inputs. We
generate a pair of input and output LUTs Tin and Tout as multi-dimensional vectors.
We prepare a single Tin shared by m inputs. Thus, the number of input data points is
|Tin| = 2d. The size of Tin is (l × kin), where kin = 2d/l is an integer such that l is a
power of two in the FHE setting. The number of corresponding output data points is
|Tout| = 2m·d and the size of Tout is (l × kout) where kout = 2m·d/l is also an integer. We
consider the Tin to be a two-dimensional vector (matrix) if the number of data points
exceeds the slot size. The output LUT is an m-dimensional hypercube table; each input
corresponds to a hypercube dimension whose size is |Tin|. We show examples in Figure 4.

The output data point Tout[indOrow, indOcol] corresponds to the set of m input data
points {Tin[indI0

row, indI0
col],...,Tin[indIm−1

row , indIm−1
col]}. Here, we denote indi = indIi

row×
l + indIi

col and switch the input indices to {ind0, ..., indm−1} for easier understanding,
where 0 ≤ i < m. The corresponding output index [indOrow, indOcol] is computed using
Equation 8.

We denote the indices corresponding to the output Tout[indOrow, indOcol] for the set
of input data points {Tin[indI0

row, indI0
col], ..., Tin[indIm−1

row , indIm−1
col]}, where we specify

indout = indm−1 +
∑m−2

i=0 (indi × 2d(m−1−i)) and calculate the values of indOrow, indOcol

as follows.
indOrow = ⌊indout/l⌋
indOcol = indout mod l

(8)

Similar to the one-input function, when the number of input data points is less than or
equal to the number of slots satisfying |Tin| ≤ l, we fill the data points into equal-interval
slots from the first slot, whereas unused slots are filled with zero. The interval is l/|Tin|,
which is an integer because l is the power of two in the FHE setting and |Tin| = 2d.

Figure 4 shows two examples of a three-input function: the first example is a 3-bit
three-input function and the second one is a 2-bit three-input function. We set the number
of slots to 4 and 8. The number of data points is |Tin| = 23 = 8 for 3-bit integers and
|Tin| = 22 = 4 for 2-bit integers, respectively. All inputs use the same Tin because the
input domain sizes are the same. We assume the inputs are {x0, x1, x2} = {0, 1, 3}.

(Ex.1): When |Tin| > l, the set of index of input data points in Tin is {[0, 0], [0, 1], [0, 3]}
and we switch them to {0, 1, 3} as one-dimensional representation. The corresponding
output data point is Tout[2, 3] whose index is computed using Equation 8 as indout =
3 + 1× 23·1 + 0× 23·2 = 11. The index of the row is 2 = ⌊11/4⌋ and that of the column is

Ruixiao Li, Hayato Yamana 11

3 = 11 mod 4.
(Ex.2): When |Tin| ≤ l, the set of index of input data points {0, 1, 3} in Tin is

switched to {0, 2, 6} as shown in Figure 4 (b). The corresponding output data point for
the input {0, 1, 3} is Tout[1, 6] whose index is computed using Equation 8 as indout =
6 + 2× 22·1 + 0× 22·2 = 14. The index of the row is 1 = ⌊14/8⌋, and that of the column is
6 = 14 mod 8.

Figure 4: LUT construction examples for three-input function

Auxiliary table Taux: Besides the Tin and Tout, we generate an |Tin|-dimensional
vector Taux. We use Taux to select the specific matched dimension of the hypercube table
Tout when extracting the output because Tin corresponds to just one input, whereas Tout

depends on all the inputs. For example, if we have 2-bit inputs for 2-input functions, the
Tin is of size 4, but Tout is of size 16. To match the unique output f(c0, ..., cm−1) in the
Tout, we need to generate a hypercube query whose size is the same as the output table
size, in which only the matched slot is one, and the others are zero.

The reason why we construct Taux is that the number of dimensions between Tin and
Tout are different. We match each input with Tin, resulting in m intermediate results
that are One-HotSlot vectors. Then, we replicate each intermediate result to expand
the number of dimensions to generate a hypercube whose dimension is the same as Tout,
followed by multiplying all hypercubes to extract the output. During the above steps, the
matched slot of ci in every dimension becomes 1. Thus, we prepare the auxiliary table
Taux so that only one matched slot in the i-th dimension is set to 1. We explain how to
use the auxiliary table in Section 4.4 and show an example in Figures 9 and 10.

Taux is a |Tin|-dimensional vector, where the i-th slot in the i-th dimension is 1, and
other slots are all zero that can be considered as a combination of |Tin| One-HotSlot
vectors. Each One-HotSlot vector is one dimension of Taux and has the same size as Tin.

When |Tin| > l, the slots of the index Taux[⌊(i + i · |Tin|)/l⌋, (i + i · |Tin|) mod l] are
one, and the others are zero, where 0 ≤ i < |Tin|. When |Tin| ≤ l, the slots of the index
Taux[i, i · l/|Tin|] are one, and the others are zero, where 0 ≤ i < |Tin|.

Figure 5 presents two examples of Taux for |Tin| > l and |Tin| ≤ l, respectively.

12 Non-interactive Private Multivariate FE using Homomorphic Table Lookup

Figure 5: LUT construction examples for auxiliary tables

4.3 One-input functions evaluation
In this section, we first introduce the two algorithms used in our study, 1) One-HotSlot
and 2) PartialSum, followed by a description of the homomorphic table lookup method
for one-input functions.

Algorithm One-HotSlot [MMN22]: To find the data point in the input LUT Tin that
matches input a, we use the homomorphic equality comparison of integers with Fermat’s
Little Theorem described in Section 3.3 to construct the algorithm One-HotSlot [MMN22].
One-HotSlot computes the matched slot between a ciphertext [[⃗ael=a]] = [[(a, ..., a)]] and
a given plaintext [⃗b] of the vector b⃗ whose slots are distinct integers. The output is an
encrypted vector, where only the i-th slot is one if bi = a and the other slots are all zero.
Based on our proposed table construction technique, if |Tin| ≤ l, then the input value a fills
every l/|Tin| slots. For example, the number of input data points for a 1-bit single-input
function is |Tin| = 2. We assume that the number of slots is l = 8. The encrypted input is
[[⃗a]] = [[(a, 0, 0, 0, a, 0, 0, 0)]], Tin = [0, 0, 0, 0, 1, 0, 0, 0], and Tout = [f(0), 0, 0, 0, f(1), 0, 0, 0].

We present One-HotSlot [MMN22] in Algorithm 1.
Algorithm PartialSum [KSW+18]: TotalSum [HS14] algorithm is used to fill all

slots by the sum of slots. Based on our proposed table construction, when |Tin| ≤ l we
only use |Tin| = l′ slots in each row. The PartialSum [KSW+18] algorithm fills the slots
used by the sum of all slots, which can decrease the complexity from O(log l) to O(log l′)
compared with TotalSum [HS14]. Examples are presented in Figure 6.

PartialSum [KSW+18] is shown in Algorithm 2.
Homomorphic table lookup method for the one-input functions

Because the input LUT Tin is a 2-dimensional vector. We pack each row as plaintext
and adopt One-HotSlot for all rows to match the input [[⃗cel=c]] in parallel. The result is
denoted by [[R]], which is a one-hot slot vector. We multiply [[R]] by the output LUT Tout

and sum all ciphertexts. The result [[r]] is a single ciphertext in which only the matched
output remains; others are all zero. Finally, we use PartialSum to fill all slots used with
the output.

We show an example of a 4-bit one-input function evaluation in Figure 7. We set the
encrypted input [[⃗cel=5]] = [[(5, 5, 5, 5)]], and the number of slots is four. The one-input
function evaluation algorithm is presented as Algorithm 3.

Ruixiao Li, Hayato Yamana 13

Algorithm 1: One-HotSlot([[⃗ael=a]], [⃗b], ptOne, t) [MMN22]
Input: [[⃗ael=a]]: a ciphertext of a vector whose all used elements are the input a;

[⃗b]: a plaintext packed a vector; ptOne: a plaintext of a vector whose all
used elements are one; t: plaintext modulus

Output: c: a ciphertext of a vector in which only the slot a = bi is 1 others are 0,
where bi is one of the element in b⃗

1 temp← [[⃗ael=a]]⊖ [⃗b];
2 temp← tempt−1; ▷based on Fermat’s Little Theorem
3 return c← ptOne⊖ temp;

Algorithm 2: PartialSum(ct, l, l′) [KSW+18]
Input: ct: a ciphertext; l: the number of slots; l′: the number of used slots in one

vector
Output: ct: a ciphertext of vector that all used elements are the sum of elements

in original ct
1 rotN ← l/l′; ▷rotN is an integer because both l and l′ are a power of

two.
2 count← log2 l′;
3 for i = 0 to count− 1 do
4 temp← Rot(ct, 2i · rotN); ▷right rotate ct by 2i · rotN elements
5 ct← ct⊕ temp;
6 end
7 return ct;

Figure 6: Examples of Algorithm PartialSum

Algorithm 3: One-input functions evaluation([[⃗cel=c]], Tin, Tout, kin(= kout), l, l′,
ptOne, t)

Input: [[⃗cel=c]]: the ciphertext of input; Tin, Tout: the LUTs whose each row
packed as a plaintext; kin(= kout): the number of rows of LUTs; l: the
number of slots; l′: the number of used slots in one vector; ptOne: a
plaintext of a vector whose all used elements are one; t: plaintext modulus

Output: r: the ciphertext of the output result
1 [[r]]← [] ; ▷a ciphertext
2 [[r]]←

⊕kout−1
i=0 (Tout[i]⊗ OneHotSlot([[⃗cel=c]], Tin[i], ptOne, t));

3 return [[r]]←PartialSum([[r]], l, l′);

14 Non-interactive Private Multivariate FE using Homomorphic Table Lookup

Figure 7: An example of 4-bit one-input function evaluation

4.4 Multi-input functions evaluation
In this section, we first introduce the two algorithms: 1) VectorSum and 2) VectorExpand
used in our study, followed by a description of the homomorphic table lookup method for
multi-input functions.

Algorithm VectorSum: We introduce VectorSum to fill all the used slots l′ in a vector
using the sum of the slots, as shown in Algorithm 4. An encrypted 2-dimensional vector is
a set of ciphertexts because each row is encrypted as a ciphertext. This algorithm fills
a specific dimension of the output LUT hypercube with 1s to extract the final output.
Examples are shown in Figure 8 (a). White shaded slots are used.

Algorithm VectorExpand: VectorExpand is shown in Algorithm 5. VectorExpand
replicates every k′ rows (ciphertexts), which we define as one dimension of the vector, n
times to combine as shown in Figure 8 (b). We use this algorithm to expand the dimensions
of the intermediate result to be the same as Tout hypercube to extract the output.

Algorithm 4: VectorSum([[M]], l, l′)
Input: [[M]]: an encrypted vector; l: the number of slots; l′: the number of used

slots in one vector
Output: [[M]]: an encrypted vector that all used elements are the sum of elements

in M
1 k ← the number of ciphertexts in [[M]];
2 sum←

⊕k−1
i=0 PartialSum([[M [i]]], l′);

3 for i = 0 to k − 1 do
4 [[M [i]]]← sum;
5 end
6 return [[M]];

Homomorphic table lookup method for the multi-input functions
Similar to the one-input function, we determine the data points in the input LUT Tin that
match each input [[⃗cel=ci]], using One-HotSlot to generate queries [[Qi]], where 0 ≤ i < m.
Next, we use {[[Q0]], ..., [[Qm−1]]} and the pre-prepared Taux to generate the same size
hypercube as Tout to extract the output.

The algorithm of multi-input function evaluation is shown as Algorithm 6. The detailed
steps are described below. Figures 9 – 10 show the evaluation processes for 2-bit three-input
function f(c0, c1, c2), assuming c0 = 1, c1 = 0, and c2 = 2. The result is presented in the
[[r]]. The lines below denote those in Algorithm 6:

Ruixiao Li, Hayato Yamana 15

Algorithm 5: VectorExpand([[M]], k′, n)
Input: [[M]]: a vector of ciphertexts; k′: the number of a set of ciphertexts for

expanding; n: the expand times
Output: [[M]]: a vector of ciphertexts

1 k ← the number of ciphertexts in [[M]];
2 [[temp]]← []; ▷a vector of ciphertexts
3 for i = 0 to k × n− 1 do
4 [[temp[i]]]← [[M [⌊i/n⌋ · k′ + i mod k′]]];
5 end
6 return [[M]]← [[temp]];

Figure 8: Examples of VectorSum and VectorExpand

step 1) Generation of One-HotSlot vector [[Qi]] (lines 2 to 6)
Step 1 generates an encrypted One-HotSlot vector [[Qi]] for each input, where
0 ≤ i < m. By applying One-HotSlot algorithm between each row of Tin and input
[[⃗cel=ci]] to generate an encrypted One-HotSlot vector in which the matched data
point in ci with Tin is one and the other data points are zero.

step 2) Generation of [[Ri]] (VectorSum part in line 7 to 9)
Step 2 first expands [[Qi]] to have the same size of Taux. Then, multiply the expanded
[[Qi]] to the auxiliary table Taux, where 0 ≤ i < m− 2. Then, we use VectorSum for
each dimension to fill out all slots with the sum of slots, resulting in [[Ri]] whose
matched dimension for i-th input are all 1s.

step 3) Further expansion of the expanded [[Ri]] generated in step 2 (VectorExpand part in
line 7 to 9)
If the number of inputs is over two, we again expand each [[Ri]] to have the same size
as the hypercube table Tout. We apply VectorExpand to every kin · 2d·i rows of the
generated expanded [[Ri]] in step 2, 2d(m−1) times. This step is shown as step 3 in
Figure 9 and 10.

step 4) Generation of [[R]] (line 10)
We slot-wise multiply all {[[R0]], ..., [[Rm−2]]} generated from steps 2 and 3 to obtain
one hypercube [[R]] in which the matched data point with the input {c0, ..., cm−2} is
one, and the others are zero, where the size of [[R]] is the same as Tout.

step 5) Extraction of output (line 11)
We multiply the expanded [[Qm−1]] and [[R]] to obtain a one-hot slot vector where
only the matched data point is one and the other data points are zero, followed by
multiplying with Tout. After that, we sum up each column for all rows to have the
resultant ciphertext [[r]]. Examples are shown in Figure 10.

16 Non-interactive Private Multivariate FE using Homomorphic Table Lookup

step 6) Obtaining final result (line 12)
Finally, we use PartialSum [KSW+18] to fill all of the used slots with the resultant
output.

Algorithm 6: m-input functions evaluation({[[⃗cel=c0]], ..., [[⃗cel=cm−1]]}, Tin, Tout, Taux, kin

, kout, l, ptOne, t)
Input: {[[⃗cel=c0]], ..., [[⃗cel=cm−1]]}: the ciphertexts of inputs, where m > 1; Tin, Tout:

the LUTs whose each row is packed as a plaintext; Taux: a pre-prepared
multidimensional vector whose each row is packed as a plaintext; kout: the
number of rows of Tout; kin: the number of rows of Tin; l: the number of
slots; ptOne: a plaintext of a vector whose all used elements are one; t:
plaintext modulus

Output: r: the ciphertext of the output result
1 [[r]]← [] ; ▷a ciphertext
2 for i = 0 to m− 1 do
3 for j = 0 to kin − 1 do
4 [[Qi[j]]]← One-HotSlot([[⃗cel=ci]], Tin[j], ptOne, t);
5 end
6 end
7 for i = 0 to m− 2 do
8 [[Ri]]← VectorSum(VectorExpand([[Qi]]⊗ Taux, kin · 2d·i, 2d(m−1)), l, l′);
9 end

10 [[R]]←
⊗

[[Ri]];
11 [[r]]←

⊕kout−1
i=0 [[R[i]]]⊗ [[Qm−1[i mod kin]]]⊗ Tout[i];

12 return [[r]]←PartialSum([[r]], l, l′);

4.5 Extension of Output Domain Size
We decompose the BigNum integers into small-bit integers as introduced in [LY21] to
extend the domain sizes for both input and output. This method expands the output
domain by adding a small latency.

Let the plaintext modulus be 2w + 1 = t and w < d. We decompose the d-bit large
integer a to w-bit small integers {a0, ..., an−1} as

a = a0 + a1 × 2w + ... + an−1 × 2(n−1)w (9)

, where n = ⌈d/w⌉. We reconstruct the input LUT using d-bit integers and w-bit small
integers. The output LUT with d-bit large integers are separated into subtables, each with
w-bit small integers.

Consider a simple example that extends the 4-bit one-input function f(x) = y to a
2-bit two-input function f(x0, x1) = y to extend the output domain size. Note that the
data points of the 4-bit one-input function are small to prepare lookup tables; however,
we explain how to extend the domain size of the output lookup tables by decomposing
the original output table into multiple output tables. For example, when the plaintext
modulus t = 5, we can only store 2-bit integers that are smaller than 5. We evaluate
a 4-bit one-input function f(x) = y as a 2-bit two-input function using a single Tin

holding 22 data points and two Touts, each of which holds 24 data points, as shown in
Figure 11. Each of the 4-bit output data points is decomposed into two 2-bit data points
and stored in two LUTs with the same index. In the example in Figure 11, the input
is x = x0 + 22 × x1 = 2 + 2 × 22 = 10 which is decomposed into x0 = 2 and x1 = 2.

Ruixiao Li, Hayato Yamana 17

Figure 9: An example of LUT processing for 2-bit three-input function evaluation with
f(1, 0, 3) (from step 1 to step 3)

Figure 10: An example of LUT processing for 2-bit three-input function evaluation with
f(1, 0, 3) (from step 3 to step 6)

18 Non-interactive Private Multivariate FE using Homomorphic Table Lookup

The output f(10) = y0 + y1 × 22 = 2 + 1× 22 = 6 is decomposed to y0 = 2 and y1 = 1.
Therefore, we can evaluate BigNum integers as a multi-input function with each input
having a small plaintext space. As the indices of the corresponding decomposed outputs
in each subtable are the same, we extract each decomposed output and recompose the
output after decryption.

Figure 11: An example of LUTs for BigNum function evaluation

5 Complexity Analysis
This section presents the computational complexities of the algorithms mentioned above
and the total complexity of the entire processing. In the following calculation, we ignore
the number of plaintext calculations because ciphertext computations require a runtime
that is more than 100 times longer than that of plaintext calculations. Thus, the following
complexities represent the order of ciphertext calculations:

The One-HotSlot algorithm requires two subtractions (additions) between ciphertext
and plaintext (ct + pt) and log2(t − 1) times multiplications between ciphertext and
ciphertext (ct× ct), where t is the plaintext modulus. Ignoring plaintext calculation, the
complexity is O(log2(t− 1)). The PartialSum algorithm requires log2 l′ times rotations
and additions between ciphertext and ciphertext, where l′ is the number of slots used.
The number of slots used is l′ = 2d for d-bit input if 2d ≤ l, and l′ = l if 2d > l. Its
complexity is O(log2 l′). The VectorSum algorithm requires k times PartialSum and a
one-time addition of ciphertexts (ct + ct), where k is the number of ciphertexts in the
encrypted matrix. Its complexity is O(k · log2 l′). The VectorExpand algorithm requires no
addition or multiplication over ciphertext. The complexity is O(k · n) where k denotes the
number of ciphertexts in the encrypted matrix and n denotes the required expansion time.
During the processing of d-bit m-input function evaluation, the complexity is O(2d·m/l)
(see Algorithm 6 in Section 4.4), and the multiplication depth is log2(t− 1) + m, where m
is the number of inputs. Table 2 summarizes the complexity of each algorithm, ignoring
the computations over plaintexts in Table 2. Note that if the output LUT has one row,
the complexity is O(log2(t− 1)) but not O(2d·m/l).

Table 2: Algorithm complexity

Algorithm Complexity
One-HotSlot O(log2(t− 1))
PartialSum O(log2 l′)
VectorSum O(k · log2 l′)
VectorExpand O(k · n)
Entire processing O(2d·m/l)

Ruixiao Li, Hayato Yamana 19

6 Experiment Evaluation
In this section, we present the experimental evaluation. We implemented our proposed
method for one-input and multi-input functions to confirm the runtime with different input
and output bit lengths.

We implemented the proposed method using the OpenFHE library 1 v1.1.4 [BBB+22].
The source code is available from https://github.com/ruixiaoLee/FunctionEval-FHE
-LUT. The machine with Ubuntu 20.04.6 LTS (Focal Fossa) OS has an Intel(R) Xeon(R)
Gold 5220R 2.20GHz CPU (24 cores, 48 threads) and 60 GB memory. The compiler
used is GUN 9.4.0 with CMake 3.16.3. The multithreading technique is adopted by using
OpenMP 4.5.

Both BFV and BGV schemes can be adapted to the proposed method. In the experiment,
we used the BFV scheme and set the plaintext modulus to t = 216 +1 = 65537, the security
level to HESd_128_classic, and the others to the default parameters in the library. For
the one-, two-, and three-input function evaluation, the multiplicative depth is 17, 18, and
19, respectively. The following results, i.e., the runtimes of the function evaluations, are
the averages of five times runs.

6.1 Runtime and memory usage of d-bit one-input functions

Table 3 presents the evaluation runtimes and memory usage from receiving the input
to extracting the output of one input function using one thread. Because the plaintext
modulus is t = 216 + 1, the maximum input domain is 16-bit. With the aforementioned
parameters, the number of slots is 32, 768, which implies that if the input domain size
is less than 16-bit, the LUTs have only one row, resulting in execution with one thread.
The results show that the runtimes of different numbers of bits increase by less than one
second until the domain size reaches 15 bits because all data points are handled by one
ciphertext, that is, one row. However, when the domain size exceeds 15-bit, the number of
rows increases to two, and the execution time increases by approximately 1.85 times for
16-bit input when using one thread. The memory usage increases linearly with the number
of bits from 1 to 15; however, the increase is slight. Meanwhile, the runtime is almost the
same because the number of rows in LUT stays the same, i.e., one when using 1 to 15
bits. The difference when varying the number of bits is the last step to fill all used slots
with the sum of all slots, where the PartialSum algorithm is used. The smaller number of
bits leads to fewer used slots, which needs a smaller number of rotations and additional
operations in PartialSum. The maximum memory usage of 15-bit and 16-bit one-input
functions increased but not as much as runtime because we used one thread, and both
used all slots but differed by only one row in size.

Table 3: Evaluation results of runtime and memory usage for one-input functions

Bit
1 2 3 4 5 6 7 8

Time [s] 4.011 3.981 4.036 4.080 4.124 4.169 4.219 4.277
Mem. Usage [MB] 199 259 320 381 441 501 562 622

Bit
9 10 11 12 13 14 15 16

Time [s] 4.317 4.362 4.408 4.445 4.487 4.535 4.583 8.459
Mem. Usage [MB] 683 744 804 865 925 986 1,046 1,057

1https://github.com/openfheorg/openfhe-development

https://github.com/ruixiaoLee/FunctionEval-FHE-LUT
https://github.com/ruixiaoLee/FunctionEval-FHE-LUT
https://github.com/openfheorg/openfhe-development

20 Non-interactive Private Multivariate FE using Homomorphic Table Lookup

6.2 Runtime and memory usage of d-bit multi-input functions
Table 4 presents the runtime results for d-bit two-input function evaluation. Table 6
presents the runtime results of d-bit three-input function evaluation. The runtime is
significantly affected by the size of the output LUT. Because we set the number of slots to
be the same in all experiments, the runtime is highly affected by the number of rows kout.
The result using one thread shows we evaluate 10-bit two-input functions by our protocol
within 748.9 s, and 12-bit two-input functions cost 3,446.1 s. Using 16 threads reduces the
runtime to 90.5 and 404.7 s, respectively. Evaluating 5-bit (6-bit) three-input functions
requires 895.9 s (3,963.8 s) with one thread. We reduced the runtime to 105.5 and 449.5 s,
respectively, using 16 threads.

With the same number of threads, the runtime and memory usage exponentially
increase with the number of bits, because the size of the data point in LUTs increases
exponentially. In our experiments, the maximum memory usage is approximately 54,848
MB (53.6 GB) for 12-bit two-input functions using 16 threads.

Table 4: Evaluation results of runtime for two-input functions [s]

Thread # Bit
2 3 4 5 6

1 10.367 11.939 15.579 23.770 41.877
4 6.251 6.994 7.888 10.308 15.822
8 4.749 4.958 5.934 7.874 10.905
16 4.659 4.859 5.191 6.555 9.738

Thread # Bit
7 8 9 10 12

1 81.021 167.491 352.068 748.940 3446.110
4 26.639 50.502 102.534 215.154 970.995
8 18.441 37.706 69.817 153.349 683.537
16 16.108 24.871 51.034 90.503 404.749

Table 5: Evaluation results of memory usage for two-input functions [MB]

Thread # Bit
2 3 4 5 6

1 353 477 653 933 1,422
4 446 585 829 1,010 1,518
8 448 614 812 1,170 1,768
16 513 755 1,368 1,704 1,929

Thread # Bit
7 8 9 10 12

1 2,327 4,064 7,466 14,198 54,304
4 2,490 4,198 7,569 14,264 54,448
8 2,753 4,367 7,740 14,483 54,531
16 2,870 4,753 8,264 14,906 54,848

In addition, we list the LUT size for each experiment in Table 8 and the runtime of
the primitive operations provided in OpenFHE v1.1.4 in Table 9.

The LUT size increases exponentially with the number of bits because the number of
data points in input and output LUT is |Tin|+ |Tout| = 2d + 2m·d. However, the LUTs are
all plaintexts, which benefits the LUT size by not being too large; thus, the maximum
table size in our experiment is 557.1 MB for 12-bit two-input functions.

Ruixiao Li, Hayato Yamana 21

For the runtime of the primitive operations, we vary the multiplicative depth while
keeping the other parameters the same as those in the other experiments. Each result
shows the average runtime for 1,000-time evaluations in Table 9.

Table 6: Evaluation results of runtime for three-input functions [s]

Thread # Bit
2 3 4 5 6

1 22.235 55.007 206.645 895.922 3,963.782
4 11.841 20.108 62.758 252.663 1,114.618
8 8.271 15.328 45.273 160.304 701.309
16 7.407 11.898 28.931 105.469 449.488

Table 7: Evaluation results of memory usage for three-input functions [MB]

Thread # Bit
2 3 4 5 6

1 482 1,024 2,949 10,378 39,764
4 650 1,162 3,131 10,579 39,878
8 663 1,319 3,240 10,621 40,099
16 1,312 1,720 3,668 11,232 40,420

Table 8: LUT size of our work [MB]

One-input
Bit 10 11 12 13 14 15 16
Size 0.129 0.135 0.146 0.170 0.230 0.355 0.771

Two-input
Bit 2 4 6 8 9 10 12
Size 0.564 2.264 8.264 34.064 66.064 131.064 557.073

Three-input
Bit 2 3 4 5 6
Size 1.413 4.663 18.164 67.164 261.164

7 Comparison and Discussion
To confirm the performance of our proposed method, we compared the runtime with 1)
the word-wise LUT method [OCHK18] [MMN22] and 2) the naive bit-wise LUT method
[CGH+18].

7.1 Comparsion with word-wise LUT work
We implemented Okada et al.’s method [OCHK18] and Maeda et al.’s method [MMN22]
using the BFV scheme in the OpenFHE [BBB+22] library. The parameters are set to be
the same as those in our study, but the multiplication depth is set to 17, which is lower
than ours. This is because the minimum number of multiplications required in [OCHK18]
and [MMN22] are smaller than that required by the proposed method.

The one-input function evaluation method [MMN22] is nearly the same as ours but
requires a one-dimensional LUT. In [OCHK18] and [MMN22], the input domain size is
set to N , where N ≤ (t− 1)/2 and t is plaintext space. We set the same plaintext space

22 Non-interactive Private Multivariate FE using Homomorphic Table Lookup

Table 9: Runtime of primitive operation [ms]

Depth ct× ct ct + ct ct× pt ct + pt
1 7.938 0.102 0.374 0.561
17 169.483 2.355 5.714 4.961
18 166.078 2.198 6.367 5.373
19 169.597 2.529 6.317 5.337

as that used in the experiment in [MMN22], which is 216 + 1, implying that the input
domain size must be less than 15-bit, while our proposed method can reach 16-bit with a
two-dimensional LUT. The runtime results for a single thread are presented in Table 3.

The runtimes of different input domain sizes of two-input function evaluation by using
[OCHK18] and [MMN22] with a single thread are shown in Table 10. Note that we used a
single thread for a fair comparison.

Okada et al.’s scheme [OCHK18] consumed 4.1 s for evaluating a 2-bit two-input
function, while a 10-bit two-input function needs 24,653.8 s. The complexity of [OCHK18]
is O(N2), where N is the domain size of both the input and the output. Even when the
multiplication depth increases linearly, the latency increases rapidly as the number of bits
increases. Our study achieved faster runtime results when the bit length d > 4. Maeda et
al.’s scheme [MMN22] consumed 43.8 s to evaluate a 10-bit two-input function, whereas a
12-bit two-input function needs 103.0 s. The complexity of [MMN22] is O(N), where N
is the domain size of both the input and the output. The result of our study shows that
evaluating a 10-bit or 12-bit two-input function needs 748.9 and 3,446.1 s, respectively.

The results in Table 10 show that the runtime of our method for a two-input function
is worse than [MMN22] but better than [OCHK18] (when the bit length d > 4). However,

our method allows us to evaluate an arbitrary function
m︷ ︸︸ ︷

ZN × ...× ZN → Zn·N whose input
is more than two and expands the output domain size with integer-decomposing and table
separation method, where N is the input domain size, m is the number of inputs, and n is
any constant.

Table 10: Runtime comparison with [OCHK18, MMN22] for two-input functions [s]

Method # Bit
2 4 6 8 10 12

[OCHK18] 4.085 21.954 154.189 1,711.983 24,653.800 -
Ours 10.367 15.579 41.877 167.491 748.940 3,446.110

[MMN22] 6.250 8.509 12.876 21.381 43.757 102.971

7.2 Compare with naive bit-wise LUT implementation
Okada et al. [OCHK18] compared the function evaluation latency of their work with those
of Chen et al. [CG15], Xu et al. [XCWF16], and Chen et al. [CFLW17], who used bit-wise
FHE. The experimental results in [OCHK18] demonstrate that their work is faster than
[CFLW17], which is the fastest bit-wise implementation mentioned in their study.

As a complement, we implement the naive LUT method [CGH+18] for m-input function
with a bit-wise FHE scheme, FHEW/TFHE [MP21, CGGI20], using the OpenFHE library.
We used the default parameters and STD128 security level. As explained in Section 2.2,
the number of multiplications in the naive bit-wise LUT is (m · d + 1) for a d-bit m-input
function. Because we can combine m d-bit inputs into a single (m · d)-bit input to evaluate
using the bit-wise method. The required multiplication depth is (log2(t− 1) + m) in this

Ruixiao Li, Hayato Yamana 23

work, where m is the number of inputs and t is the plaintext space satisfied t > 2d. Thus,
when the plaintext space satisfies t > 2m(d−1) + 1, our required depth is larger than the
naive bit-wise LUT.

Besides using the word-wise HE to encrypt each integer in this work, we plan to use
word-wise HE to encrypt each bit of an integer in the future. The equality function in
this work is shown as Equation 6, which requires depth to be log2(t− 1). We set a large
plaintext space even for SmallNum in our experiments, which leads to a depth larger than
d. However, if x⃗ = (x1, ..., xd) is the bit vector with binary expansion of x and similarly
a⃗ = (a1, ..., ad) is the binary expansion of y, then the equality function can be computed
as
∏d

i=0(ai + xi + 1). In this case, we can reduce the required depth to d.
Table 11 shows the runtime results of one-, two-, and three-input functions using the

naive LUT method with bit-wise FHE for different bit-lengths of input and output. In
this experiment, we set the same number of bits for both input and output. The results
show that evaluating a 3-bit three-input function requires approximately 1,799.9 s. By
using 16 threads, the runtime decreases to 275.3 s. While our proposed method requires
11.9 s, which is approximately 23 times faster.

Table 11: Runtime of naive LUT method with bit-wise FHE [s]

of One-input
Thread 1-bit 2-bit 3-bit 4-bit 5-bit 6-bit 7-bit

1 1.936 5.214 13.743 35.073 86.256 205.347 478.276
4 1.121 2.635 6.015 14.406 34.599 81.697 189.501
8 1.122 2.591 4.663 10.829 25.605 60.088 138.932
16 1.121 2.595 4.664 9.171 21.448 50.109 116.223

of Two-input Three-input
Thread 1-bit 2-bit 3-bit 4-bit 1-bit 2-bit 3-bit

1 4.388 28.270 164.600 872.765 10.399 150.602 1,799.947
4 2.025 10.392 57.844 304.036 4.048 49.687 586.421
8 2.022 7.285 38.795 203.460 2.889 31.690 370.709
16 2.022 5.734 30.307 158.640 2.904 23.665 275.339

8 Conclusion
We propose a non-interactive privacy-preserving function evaluation model to evaluate
functions with a pre-prepared auxiliary table and input and output data-point tables
using the word-wise LUT method. The input and output domain sizes are extended to

m︷ ︸︸ ︷
ZN × ...× ZN → Zn·N , where N is the input domain size within the plaintext space, m is
the number of inputs, and n ∈ Z+. To the best of our knowledge, our method is the first
protocol that allows the evaluation of arbitrary multivariate functions using word-wise
FHE. Our proposed LUT method is adaptable to any function with accurate input and
output tables, delivering highly accurate results even for noncontiguous functions with a
wider input range than polynomial approximation methods. Consequently, our protocol
can enhance the application of FHE, enabling complicated functions in real-world scenarios
where FHE has previously been challenging, such as privacy-preserving anomaly detection
systems in smart grids [LBDY22]. The experimental results show that we evaluated a
15-bit one-input function within 4.6 s and a 16-bit one-input function within 8.5 s. The
10-bit two-input function requires 90.5 s, and the 5-bit three-input function requires 105.5 s
with 16-thread. Compared to a naive implementation with bit-wise LUT, we decreased the
latency by approximately 3.2 and 23.1 times for evaluating two-bit and three-bit 3-input

24 Non-interactive Private Multivariate FE using Homomorphic Table Lookup

functions using 16-thread, respectively.

References
[BBB+22] Ahmad Al Badawi, Jack Bates, Flávio Bergamaschi, David Bruce Cousins,

Saroja Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim,
Yongwoo Lee, Zeyu Liu, Daniele Micciancio, Ian Quah, Yuriy Polyakov,
R. V. Saraswathy, Kurt Rohloff, Jonathan Saylor, Dmitriy Suponitsky,
Matthew Triplett, Vinod Vaikuntanathan, and Vincent Zucca. Openfhe:
Open-source fully homomorphic encryption library. In Michael Brenner,
Anamaria Costache, and Kurt Rohloff, editors, Proceedings of the 10th
Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
Los Angeles, CA, USA, 7 November 2022, pages 53–63. ACM, 2022. doi:
10.1145/3560827.3563379.

[BGGJ20] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev.
CHIMERA: combining ring-lwe-based fully homomorphic encryption schemes.
J. Math. Cryptol., 14(1):316–338, 2020. URL: https://doi.org/10.1515/
jmc-2019-0026, doi:10.1515/JMC-2019-0026.

[BGH13] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in LWE-
based homomorphic encryption. In Kaoru Kurosawa and Goichiro Hanaoka,
editors, PKC 2013: 16th International Conference on Theory and Practice of
Public Key Cryptography, volume 7778 of Lecture Notes in Computer Science,
pages 1–13, Nara, Japan, February 26 – March 1, 2013. Springer, Berlin,
Heidelberg, Germany. doi:10.1007/978-3-642-36362-7_1.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. ACM Trans. Comput.
Theory, 6(3):13:1–13:36, 2014. doi:10.1145/2633600.

[BPTG15] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine
learning classification over encrypted data. In ISOC Network and Distributed
System Security Symposium – NDSS 2015, San Diego, CA, USA, February 8–
11, 2015. The Internet Society. doi:10.14722/ndss.2015.23241.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in
Computer Science, pages 868–886, Santa Barbara, CA, USA, August 19–23,
2012. Springer, Berlin, Heidelberg, Germany. doi:10.1007/978-3-642-320
09-5_50.

[CBK+20] Mahawaga Arachchige Pathum Chamikara, Peter Bertók, Ibrahim Khalil,
Dongxi Liu, and Seyit Camtepe. Privacy preserving face recognition utilizing
differential privacy. Comput. Secur., 97:101951, 2020. URL: https://doi.
org/10.1016/j.cose.2020.101951, doi:10.1016/J.COSE.2020.101951.

[CBL+18] Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and
Li Fei-Fei. Faster cryptonets: Leveraging sparsity for real-world encrypted
inference. CoRR, abs/1811.09953, 2018. URL: http://arxiv.org/abs/18
11.09953, arXiv:1811.09953.

[CDH+19] Martine De Cock, Rafael Dowsley, Caleb Horst, Raj S. Katti, Anderson
C. A. Nascimento, Wing-Sea Poon, and Stacey Truex. Efficient and private

https://doi.org/10.1145/3560827.3563379
https://doi.org/10.1145/3560827.3563379
https://doi.org/10.1515/jmc-2019-0026
https://doi.org/10.1515/jmc-2019-0026
https://doi.org/10.1515/JMC-2019-0026
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1145/2633600
https://doi.org/10.14722/ndss.2015.23241
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1016/j.cose.2020.101951
https://doi.org/10.1016/j.cose.2020.101951
https://doi.org/10.1016/J.COSE.2020.101951
http://arxiv.org/abs/1811.09953
http://arxiv.org/abs/1811.09953
https://arxiv.org/abs/1811.09953

Ruixiao Li, Hayato Yamana 25

scoring of decision trees, support vector machines and logistic regression
models based on pre-computation. IEEE Trans. Dependable Secur. Comput.,
16(2):217–230, 2019. doi:10.1109/TDSC.2017.2679189.

[CdWM+17] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel,
and Emmanuel Prouff. Privacy-preserving classification on deep neural
network. Cryptology ePrint Archive, Report 2017/035, 2017. URL: https:
//eprint.iacr.org/2017/035.

[CFLW17] Jingwei Chen, Yong Feng, Yang Liu, and Wenyuan Wu. Faster binary arith-
metic operations on encrypted integers. In The 7th International Workshop on
Computer Science and Engineering, Beijing, 25-27 June, 2017, Proceedings,
pages 956–960, 2017. doi:10.18178/wcse.2017.06.166.

[CG15] Yao Chen and Guang Gong. Integer arithmetic over ciphertext and homo-
morphic data aggregation. In 2015 IEEE Conference on Communications
and Network Security, CNS 2015, Florence, Italy, September 28-30, 2015,
pages 628–632. IEEE, 2015. doi:10.1109/CNS.2015.7346877.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: Fast fully homomorphic encryption over the torus. Journal of Cryp-
tology, 33(1):34–91, January 2020. doi:10.1007/s00145-019-09319-x.

[CGH+18] Jack L. H. Crawford, Craig Gentry, Shai Halevi, Daniel Platt, and Victor
Shoup. Doing real work with FHE: the case of logistic regression. In Michael
Brenner and Kurt Rohloff, editors, Proceedings of the 6th Workshop on
Encrypted Computing & Applied Homomorphic Cryptography, WAHC@CCS
2018, Toronto, ON, Canada, October 19, 2018, pages 1–12. ACM, 2018.
doi:10.1145/3267973.3267974.

[CIM19] Sergiu Carpov, Malika Izabachène, and Victor Mollimard. New techniques
for multi-value input homomorphic evaluation and applications. In Mitsuru
Matsui, editor, Topics in Cryptology – CT-RSA 2019, volume 11405 of
Lecture Notes in Computer Science, pages 106–126, San Francisco, CA, USA,
March 4–8, 2019. Springer, Cham, Switzerland. doi:10.1007/978-3-030-1
2612-4_6.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomor-
phic encryption for arithmetic of approximate numbers. In Tsuyoshi Takagi
and Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017,
Part I, volume 10624 of Lecture Notes in Computer Science, pages 409–
437, Hong Kong, China, December 3–7, 2017. Springer, Cham, Switzerland.
doi:10.1007/978-3-319-70694-8_15.

[CKP22] Jung Hee Cheon, Wootae Kim, and Jai Hyun Park. Efficient homomorphic
evaluation on large intervals. IEEE Trans. Inf. Forensics Secur., 17:2553–
2568, 2022. doi:10.1109/TIFS.2022.3188145.

[CMTB16] Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin R. B. Butler.
Secure outsourced garbled circuit evaluation for mobile devices. J. Comput.
Secur., 24(2):137–180, 2016. doi:10.3233/JCS-150540.

[CT12] Michael A. Cohen and Can Ozan Tan. A polynomial approximation for
arbitrary functions. Appl. Math. Lett., 25(11):1947–1952, 2012. URL: https:
//doi.org/10.1016/j.aml.2012.03.007, doi:10.1016/J.AML.2012.03.
007.

https://doi.org/10.1109/TDSC.2017.2679189
https://eprint.iacr.org/2017/035
https://eprint.iacr.org/2017/035
https://doi.org/10.18178/wcse.2017.06.166
https://doi.org/10.1109/CNS.2015.7346877
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1145/3267973.3267974
https://doi.org/10.1007/978-3-030-12612-4_6
https://doi.org/10.1007/978-3-030-12612-4_6
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1109/TIFS.2022.3188145
https://doi.org/10.3233/JCS-150540
https://doi.org/10.1016/j.aml.2012.03.007
https://doi.org/10.1016/j.aml.2012.03.007
https://doi.org/10.1016/J.AML.2012.03.007
https://doi.org/10.1016/J.AML.2012.03.007

26 Non-interactive Private Multivariate FE using Homomorphic Table Lookup

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection
meets big data: an efficient and scalable protocol. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013: 20th Conference
on Computer and Communications Security, pages 789–800, Berlin, Germany,
November 4–8, 2013. ACM Press. doi:10.1145/2508859.2516701.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic
encryption in less than a second. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology – EUROCRYPT 2015, Part I, volume 9056 of
Lecture Notes in Computer Science, pages 617–640, Sofia, Bulgaria, April 26–
30, 2015. Springer, Berlin, Heidelberg, Germany. doi:10.1007/978-3-662
-46800-5_24.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomor-
phic encryption. Cryptology ePrint Archive, Report 2012/144, 2012. URL:
https://eprint.iacr.org/2012/144.

[GCH+18] Chong-zhi Gao, Qiong Cheng, Pei He, Willy Susilo, and Jin Li. Privacy-
preserving naive bayes classifiers secure against the substitution-then-
comparison attack. Inf. Sci., 444:72–88, 2018. URL: https://doi.or
g/10.1016/j.ins.2018.02.058, doi:10.1016/J.INS.2018.02.058.

[GDL+16] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael
Naehrig, and John Wernsing. Cryptonets: Applying neural networks to
encrypted data with high throughput and accuracy. In Maria-Florina Balcan
and Kilian Q. Weinberger, editors, Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings,
pages 201–210. JMLR.org, 2016. URL: http://proceedings.mlr.press/
v48/gilad-bachrach16.html.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st Annual ACM Symposium on Theory of Computing,
pages 169–178, Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press.
doi:10.1145/1536414.1536440.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science,
pages 75–92, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Berlin,
Heidelberg, Germany. doi:10.1007/978-3-642-40041-4_5.

[HS14] Shai Halevi and Victor Shoup. Algorithms in HElib. In Juan A. Garay
and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014,
Part I, volume 8616 of Lecture Notes in Computer Science, pages 554–571,
Santa Barbara, CA, USA, August 17–21, 2014. Springer, Berlin, Heidelberg,
Germany. doi:10.1007/978-3-662-44371-2_31.

[HTG19] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Deep neural net-
works classification over encrypted data. In Gail-Joon Ahn, Bhavani Thu-
raisingham, Murat Kantarcioglu, and Ram Krishnan, editors, Proceedings of
the Ninth ACM Conference on Data and Application Security and Privacy,
CODASPY 2019, Richardson, TX, USA, March 25-27, 2019, pages 97–108.
ACM, 2019. doi:10.1145/3292006.3300044.

https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://eprint.iacr.org/2012/144
https://doi.org/10.1016/j.ins.2018.02.058
https://doi.org/10.1016/j.ins.2018.02.058
https://doi.org/10.1016/J.INS.2018.02.058
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1145/3292006.3300044

Ruixiao Li, Hayato Yamana 27

[jLHH+21] Wen jie Lu, Zhicong Huang, Cheng Hong, Yiping Ma, and Hunter Qu. PEGA-
SUS: Bridging polynomial and non-polynomial evaluations in homomorphic
encryption. In 2021 IEEE Symposium on Security and Privacy, pages 1057–
1073, San Francisco, CA, USA, May 24–27, 2021. IEEE Computer Society
Press. doi:10.1109/SP40001.2021.00043.

[KSW+18] Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, and Xiaoqian Jiang.
Secure logistic regression based on homomorphic encryption: Design and
evaluation. JMIR Med Inform, 6(2):e19, Apr 2018. URL: http://medinfor
m.jmir.org/2018/2/e19/, doi:10.2196/medinform.8805.

[LBDY22] Ruixiao Li, Shameek Bhattacharjee, Sajal K. Das, and Hayato Yamana.
Look-up table based FHE system for privacy preserving anomaly detection
in smart grids. In 2022 IEEE International Conference on Smart Computing,
SMARTCOMP 2022, Helsinki, Finland, June 20-24, 2022, pages 108–115.
IEEE, 2022. doi:10.1109/SMARTCOMP55677.2022.00030.

[LDL15] Hongwei Li, Yuanshun Dai, and Xiaodong Lin. Efficient e-health data release
with consistency guarantee under differential privacy. In 17th International
Conference on E-health Networking, Application & Services, HealthCom 2015,
Boston, MA, USA, October 14-17, 2015, pages 602–608. IEEE, 2015. URL:
https://doi.org/10.1109/HealthCom.2015.7454576, doi:10.1109/HE
ALTHCOM.2015.7454576.

[LLNK22] Eunsang Lee, Joon-Woo Lee, Jong-Seon No, and Young-Sik Kim. Minimax
approximation of sign function by composite polynomial for homomorphic
comparison. IEEE Trans. Dependable Secur. Comput., 19(6):3711–3727, 2022.
doi:10.1109/TDSC.2021.3105111.

[LY21] Ruixiao Li and Hayato Yamana. Fast and accurate function evaluation
with LUT over integer-based fully homomorphic encryption. In Leonard
Barolli, Isaac Woungang, and Tomoya Enokido, editors, Advanced Informa-
tion Networking and Applications - Proceedings of the 35th International
Conference on Advanced Information Networking and Applications (AINA-
2021), Toronto, ON, Canada, 12-14 May, 2021, Volume 2, volume 226
of Lecture Notes in Networks and Systems, pages 620–633. Springer, 2021.
doi:10.1007/978-3-030-75075-6_51.

[LY24] Ruixiao Li and Hayato Yamana. Privacy preserving function evaluation using
lookup tables with word-wise fhe. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, E107-A(8):1–15, 2024.
doi:10.1587/transfun.2023EAP1114.

[MMN22] Daisuke Maeda, Koki Morimura, and Takashi Nishide. Efficient homomorphic
evaluation of arbitrary bivariate integer functions. In Michael Brenner,
Anamaria Costache, and Kurt Rohloff, editors, Proceedings of the 10th
Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
Los Angeles, CA, USA, 7 November 2022, pages 13–22. ACM, 2022. doi:
10.1145/3560827.3563378.

[MP21] Daniele Micciancio and Yuriy Polyakov. Bootstrapping in fhew-like cryp-
tosystems. In WAHC ’21: Proceedings of the 9th on Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, Virtual Event, Korea, 15
November 2021, pages 17–28. WAHC@ACM, 2021. doi:10.1145/3474366.
3486924.

https://doi.org/10.1109/SP40001.2021.00043
http://medinform.jmir.org/2018/2/e19/
http://medinform.jmir.org/2018/2/e19/
https://doi.org/10.2196/medinform.8805
https://doi.org/10.1109/SMARTCOMP55677.2022.00030
https://doi.org/10.1109/HealthCom.2015.7454576
https://doi.org/10.1109/HEALTHCOM.2015.7454576
https://doi.org/10.1109/HEALTHCOM.2015.7454576
https://doi.org/10.1109/TDSC.2021.3105111
https://doi.org/10.1007/978-3-030-75075-6_51
https://doi.org/10.1587/transfun.2023EAP1114
https://doi.org/10.1145/3560827.3563378
https://doi.org/10.1145/3560827.3563378
https://doi.org/10.1145/3474366.3486924
https://doi.org/10.1145/3474366.3486924

28 Non-interactive Private Multivariate FE using Homomorphic Table Lookup

[MRVW21] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer Wagh.
Rabbit: Efficient comparison for secure multi-party computation. In Nikita
Borisov and Claudia Díaz, editors, FC 2021: 25th International Conference
on Financial Cryptography and Data Security, Part I, volume 12674 of Lecture
Notes in Computer Science, pages 249–270, Virtual Event, March 1–5, 2021.
Springer, Berlin, Heidelberg, Germany. doi:10.1007/978-3-662-64322-8
_12.

[OCHK18] Hiroki Okada, Carlos Cid, Seira Hidano, and Shinsaku Kiyomoto. Linear
depth integer-wise homomorphic division. In Olivier Blazy and Chan Yeob
Yeun, editors, Information Security Theory and Practice - 12th IFIP WG
11.2 International Conference, WISTP 2018, Brussels, Belgium, December
10-11, 2018, Revised Selected Papers, volume 11469 of Lecture Notes in
Computer Science, pages 91–106. Springer, 2018. doi:10.1007/978-3-030
-20074-9_8.

[SV14] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD op-
erations. Designs, Codes and Cryptography, 71(1):57–81, 2014. doi:
10.1007/s10623-012-9720-4.

[XBF+14] Pengtao Xie, Misha Bilenko, Tom Finley, Ran Gilad-Bachrach, Kristin E.
Lauter, and Michael Naehrig. Crypto-nets: Neural networks over encrypted
data. CoRR, abs/1412.6181, 2014. URL: http://arxiv.org/abs/1412.6
181, arXiv:1412.6181.

[XCWF16] Chen Xu, Jingwei Chen, Wenyuan Wu, and Yong Feng. Homomorphi-
cally encrypted arithmetic operations over the integer ring. In Feng
Bao, Liqun Chen, Robert H. Deng, and Guojun Wang, editors, Infor-
mation Security Practice and Experience - 12th International Conference,
ISPEC 2016, Zhangjiajie, China, November 16-18, 2016, Proceedings, vol-
ume 10060 of Lecture Notes in Computer Science, pages 167–181, 2016.
doi:10.1007/978-3-319-49151-6_12.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract).
In 23rd Annual Symposium on Foundations of Computer Science, pages 160–
164, Chicago, Illinois, November 3–5, 1982. IEEE Computer Society Press.
doi:10.1109/SFCS.1982.38.

[ZC20] Xu Zheng and Zhipeng Cai. Privacy-preserved data sharing towards multiple
parties in industrial iots. IEEE J. Sel. Areas Commun., 38(5):968–979, 2020.
doi:10.1109/JSAC.2020.2980802.

[ZTG+19] Maede Zolanvari, Marcio Andrey Teixeira, Lav Gupta, Khaled M. Khan,
and Raj Jain. Machine learning-based network vulnerability analysis of
industrial internet of things. IEEE Internet Things J., 6(4):6822–6834, 2019.
doi:10.1109/JIOT.2019.2912022.

https://doi.org/10.1007/978-3-662-64322-8_12
https://doi.org/10.1007/978-3-662-64322-8_12
https://doi.org/10.1007/978-3-030-20074-9_8
https://doi.org/10.1007/978-3-030-20074-9_8
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4
http://arxiv.org/abs/1412.6181
http://arxiv.org/abs/1412.6181
https://arxiv.org/abs/1412.6181
https://doi.org/10.1007/978-3-319-49151-6_12
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/JSAC.2020.2980802
https://doi.org/10.1109/JIOT.2019.2912022

	Introduction
	Related Work
	Polynomial Approximation over FHE
	Homomorphic Table Lookup with Bit-Wise FHE
	Homomorphic Table Lookup with Word-Wise FHE

	Preliminaries
	Notation
	SIMD Operation over Word-Wise FHE
	Homomorphic Equality Comparison of Integers with Fermat's Little Theorem

	Proposed Non-interactive Private Multivariate Function Evaluation
	System Overview
	Construction of Lookup Table
	One-input functions evaluation
	Multi-input functions evaluation
	Extension of Output Domain Size

	Complexity Analysis
	Experiment Evaluation
	Runtime and memory usage of d-bit one-input functions
	Runtime and memory usage of d-bit multi-input functions

	Comparison and Discussion
	Comparsion with word-wise LUT work
	Compare with naive bit-wise LUT implementation

	Conclusion
	References

