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Abstract. This note presents attacks on the lightweight hash function TS-Hash
proposed by Tsaban, including a polynomial-time preimage attack for short messages
(at most n/2 bits), high-probability differentials, a general subexponential-time
preimage attack, and linearization techniques.
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1 Introduction
Recently, Bookstein and Tsaban [BT23a, BT23b] studied the lightweight hash function
TS-Hash, proposed originally by Tsaban for a master’s thesis project [Tsa17]. Essentially,
the hash function is based on a linear feedback shift register (LFSR), with the feedback
polynomial being selected by the message bit among two public polynomials p0, p1. The
message bit is consumed only when the feedback polynomial is needed, that is, when
the LFSR generates the value 1, which creates the source of nonlinearity (see Figure 1).
TS-Hash can be compactly described by the following C-style pseudocode (for a formal
definition, see Section 2), where word type could correspond, for example, to a 256-bit
vector:

// parameters
const word poly [2] = {... , ...};
const word initial_state = ...;

word TSHash ( bitstring message ) {
word state = initial_state ;
for (i = 0; i < message .size (); i++) {

while (( state & 1) == 0)
state >>= 1;

state = (state >> 1) ^ poly[ message [i]];
}
return state;

}

This hash function is interesting for several reasons. First, these are simple variants
of the so-called Cayley hashes [PLQ07], and there has been a notable interest in such
functions [Zém94, PQ11, GIMS11, BSV15]. In particular, TS-hash is quite similar to the
well known Tillich-Zémor hash function [TZ94b], although TS-hash is even simpler. Second,
simplicity of the hash function can be attractive for advanced cryptographic protocols
(such as MPC, FHE, etc.). Finally, analysis of the TS-Hash contributes to the theory of
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2 Cryptanalysis of TS-Hash

Figure 1: TSHash function illustration (taken from [BT23b]). The left register depicts the
LFSR state, and the right stream depicts the stream of message bits.

stream ciphers, since TS-hash can be seen as an LFSR where the message bit chooses the
defining polynomial.

Although the simplicity of the function may suggest efficient attacks and complete
insecurity, we explored a range of attack vectors but could not find a general polynomial-
time preimage attack. Nonetheless, we propose attacks of varying severity: polynomial-
time preimage attack for short (up to half-digest size) messages, simple differentials,
subexponential generic preimage attack, linearization techniques and reduction to a system
of quadratic monomial equations.

Finally, we discuss possible countermeasures to prevent the aforementioned attacks
and challenge the cryptanalysts to study them further.

2 Formulations of the TS-hash
2.1 Algebraic formulation of TS-Hash
We describe an algebraic reformulation of the scheme, by treating the LFSR with one of the
polynomials as multiplication by the element g = X in the finite field1 F2n ≃ F2[X]/(p0(X)).
Note that the endianness is reversed: coefficients of the lowest-degree monomials correspond
to the most significant bits in a state word in the implementation above (will be denoted by
s from now on). In this reformulation, the change of the polynomial amounts to adding the
element h = p0(X) − p1(X) ∈ F2n to the state after the step (i.e., canceling the reduction
by p0 and doing the reduction by p1). The switching is controlled by the message bit m
and a bit in the representation of g · s, which can always be expressed as Tr(α · s) for some
α ∈ F2n , where

Tr : F2n → F2 : z 7→
n−1∑
i=0

z2i

is the finite field trace function. The corresponding constant α can be efficiently determined
in the following way.

Proposition 1. Let α ∈ F2n =
∑n−1

i=0 αig
i, αi ∈ F2 be such that Tr(αgi) = 0 for i ∈

{0, . . . , n − 2} and Tr(αgn−1) = 1. Then, (α0, . . . , αn−1) is the unique solution to the
matrix equation M × α = (0, . . . , 0, 1)T , where Mi,j = Tr(gi+j) (M is a Hankel matrix),
i.e.,

M =


Tr(g0) Tr(g1) · · · Tr(gn−1)
Tr(g1) Tr(g2) · · · Tr(gn)

...
...

. . .
...

Tr(gn−1) Tr(gn) · · · Tr(g2n−1)

 .

Proof. Write

Tr(αgi) = Tr

n−1∑
j=0

αjgj

 gi

 =
n−1∑
j=0

αjTr(gi+j)

1For simplicity, we assume that p0(X) is irreducible and thus defines a finite field.
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by F2-linearity of the trace function. Replacing the constraints on Tr(αgi) by linear
equations using the righthand side of the above expression leads to the desired system
M × α = (0, . . . , 0, 1)T .

We can now define the TS-Hash step function. It takes as input a state and a message
bit, although the message bit is not always used.

Definition 1. Define the TS-Hash step function as

F : F2n × F2 → F2n : (s, m) 7→ g · s + h · m · Tr(α · s),

where g, h, α ∈ F∗
2n are fixed such that Tr(α ·g−1 ·h) = 0. We say that a state s is controlled

if Tr(α · g−1 · s) = 1.

Remark 1. Tr(α · s) corresponds to the coefficient of Xn−1 in s = s(X), while Tr(α · g−1 · s)
corresponds to the constant coefficient in s = s(X). We know that this term in h is equal
to zero, since it is equal to 1 in both p0, p1 by assumption that they are irreducible.

The notion “controlled” refers to the output state for convenience reasons: s′ = F (s, m)
is controlled when it depends on m:

Tr(αg−1s′) = Tr(α(s + g−1hm · Tr(αs))) = Tr(αs) + Tr(αg−1h · Tr(. . .)) = Tr(αs),

where we used the condition Tr(αg−1h) = 0. In particular, this property depends only on
the state itself (and not the message bit used).

Although in TS-Hash the message bits are consumed only at controlled states, we can
assume that they are consumed at each step: this corresponds to injection of arbitrary
message bits at uncontrolled positions and, vice versa, removing unconsumed bits from
the message.

Definition 2. The extended TS-Hash H(m) : FN
2 → Fn

2 , m = (m1, . . . , mN ) is defined as
the final state sN , where the initial state s0 ∈ Fn

2 is a public constant and intermediate
states are given by

si = F (si−1, mi), 1 ≤ i ≤ N.

Definition 3. The compressed (original) TS-Hash Ĥ(m̂) : FM
2 → Fn

2 , m = (m̂1, . . . , m̂M ),
is defined as sN , where the initial state s0 ∈ Fn

2 is a public constant, j0 = 1, intermediate
values for 1 ≤ i ≤ N are given by

si = F (si−1, m̂ji−1),

ji =
{

ji−1, if si is not controlled,

ji−1 + 1, if si is controlled.

and N is smallest integer such that jN = M + 1.

Remark 2. It is easy to verify that this definition matches the C-style pseudocode given in
the beginning of the section.

2.2 Explicit algebraic expression of TS-Hash
Using the algebraic formulation of a TS-hash step, we can now derive an algebraic
expression of the output state in terms of the extended input message bits m1, . . . , mN .
This expression is essentially a vectorial algebraic normal form (vectorial ANF), with
coefficients in F2n ≃ Fn

2 allowing to read-off the ANF of each output bit of the extended
hash function H : FN

2 → Fn
2 separately.
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Theorem 1. Let N be a positive integer and let sN = H(m) for m = (m1, . . . , mN ) ∈ FN
2 .

Then,

sN = s0gN

+
∑

I⊆{1,...,N}
I ̸=∅

(∏
i∈I

mi

)
︸ ︷︷ ︸
multilinear

monomial in m

· hgN−max(I)︸ ︷︷ ︸
field

constant

· Tr(αs0gmin(I)−1) ·
|I|∏

j=2
Tr(αhgij−ij−1−1)︸ ︷︷ ︸

control bits

(1)

where i1 < i2 < . . . < i|I| are all the indices from I in sorted order.
Proof. The proof can be done by induction on N using the step expression (sN−1, mN ) 7→
sN = g · sN−1 + h · mN · Tr(αsN−1). The theorem holds for N = 1 by direct verification.
Now, assume that the theorem holds for some N − 1. Observe that g · sN−1 corresponds
exactly to the terms not containing mN in the expression of sN given by the theorem (i.e.,
the term outside the sum and terms given by I not containing N). It is left to prove that
h · mN · Tr(αsN ) precisely equals to the other terms (i.e., those given by I containing N).
Using the linearity of the trace function, we consider the linear terms of sN−1 separately.

First, observe that h · mN · Tr(αs0gN−1) matches the term in sN given by I = {N}.
Now, consider any nonempty J ⊆ {1, . . . , N − 1}. We consider the term

tJ =
(∏

i∈J

mi

)
· hgN−1−max(J) · Tr(αs0gmin(J)−1) ·

|J|∏
j=2

Tr(αhgij−ij−1−1)

in the expression for sN−1. Now, we consider it’s “image” t′ = h · mN · Tr(αtJ) in the
expression for sN . Using the fact that Tr(cx) = cTr(x) for all c ∈ F2, x ∈ F2n , deduce

t′ = h · mN

(∏
i∈J

mi

)
· Tr(αs0gmin(J)−1) ·

|J|∏
j=2

Tr(αhgi′
j−i′

j−1−1) · Tr(αhgN−1−max(J))

where i′
1 < i′

2 < . . . < i′
|J| are all the indices from J in sorted order. Finally, rearranging

terms and defining I = J ∪ {N}, we get

t′ =
(∏

i∈I

mi

)
· h · Tr(αs0gmin(J)−1) ·

|I|∏
j=2

Tr(αhgij−ij−1−1)

where i1 < i2 < . . . < i|I| are all the indices from I in sorted order. Here we used the
fact that min I ≤ min(J) since J ⊆ I, and that the extra term Tr(αhgN−1−max(J)) can
be interpreted as Tr(αhgij−ij−1−1) with ij = max(I) = N and ij−1 = max(J). This
shows a one-to-one correspondence between terms of sN−1 and terms of sN containing mN .
Together with a similar correspondence for terms of sN not containing mn, this concludes
that the expression for sN in the theorem is correct.

This concludes that the theorem also holds for N and, by induction, for all positive
integers.

This result indicates on the extreme sparseness of the algebraic normal form of the
output state in terms of the extended message bits. Indeed, a degree-d monomial

∏
i∈I mi

is controlled by a product of d bits (trace functions), and thus, by a rough estimation, it
can be expected to have about

∑N
i=0
(

N
i

)
2−i = 1.5N monomials (instead of 2N−1 for a

random Boolean function). This set of possible monomials is very structured: only certain
distances between consecutive variable indexes can occur. For example, if Tr(αhg2) = 0,
then, for all i, any present monomial not having variables mi+1, mi+2 can never contain
(be divisible by) mimi+3. Furthermore, each of the n output bits only contains a subset of
this set of monomials, depending on a coordinate of the constant hgN−max(I).
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3 Attacks on TS-Hash
The authors of TS-Hash observed that an all-zero message m = 0N can be used as a
preimage for (some) values of the hash function by choosing an appropriate value of
N , which amounts to computing a discrete logarithm in F2n . Indeed, the hash value
of m = 0N is simply s0gN . This attack is not deemed meaningful as it would typically
produce unrealistically long messages.

However, this attack idea can be generalized to deviate from the all-zero message. If
we set mi = 1 at a controlled state si, we have the new value

s′
i = si + h = s0gi + h,

so that the new final state is

s′
N = (s0gi + h)gN−i = s0gN + hgN−i.

This naturally generalizes to multiple message bits set to 1.

Proposition 2. Let m ∈ FN
2 be such that mi = 1 if and only if i ∈ {e1, . . . , ek}, where

1 ≤ e1 < . . . < ek ≤ N and all states se1 , . . . , sek
are controlled. Then,

H(m) = s0gN + h(gN−e1 + gN−e2 + gN−e3 + . . . + gN−ek ). (2)

This representation suggests to choose the exponents ei arbitrarily to match the desired
hash value T . However, some of the respective states would likely happen to be uncontrolled,
which invalidates the representation. There are several directions of handling this problem.

1. Since a compressed message bit only affects the controllability of states after absorbing
this bit, flipping bits close to the end of the message often do not affect the set of
controlled states, keeping the expression (2) valid. This leads to high-probability
differentials.

2. Consider the preimage problem when it is guaranteed that a short message solution
exists. In this case, the shortness guarantees a unique solution to the problem
implying that the necessary states are controlled. The solution can be found using
simple linear algebra (e.g., Gaussian elimination).

3. More general approach is to find a small set of exponents ei satisfying (2) and hope
for them to land on controlled states by chance, repeating the process until success.

4. Ensuring a small number of controlled states in (2) can be done by manipulating
the control bits which are hidden in Proposition 2 but are given in Theorem 1 and
Definition 1. This leads to a small improvement of the general attack.

These directions are explored in more details in the following subsections.

3.1 High-probability differentials
Throughout this section, the probability is taken over all possible values of a certain
intermediate state (e.g., sN−i for a small i), which are assumed to be uniformly distributed
over sufficiently long message prefixes.

The first observation is a probability-1 differential that can be clearly observed from
the TS-Hash pseudocode.

Proposition 3. For all m̂ ∈ FM
2 it holds Ĥ(m̂) + Ĥ(m̂ + (0, . . . , 0, 1)) = h with probability

1.
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For the second-to-last bit, the situation varies depending on h.

Proposition 4. If Tr(αh) = 0, then, for all m̂ ∈ FM
2 , it holds

Ĥ(m̂) + Ĥ(m̂ + (0, . . . , 0, 1, 0)) = gh

with probability 1/2.

Proof. Clearly the last state sN is controlled, and the state sN−1 is controlled with
probability 1/2 (under the assumption of uniform state and due to balancedness of the
Trace function). Consider the expression for the last two controlled steps of extended
TS-Hash:

sN = F (sN−1, mN ) = F (F (sN−2, mN−1), mN )
= F (gsN−2 + hmN−1Tr(αsN−2), mN )

= g2sN−2 + ghmN−1Tr(αsN−2) + hmN Tr(αgsN−2) + hmN mN−1Tr(αsN−2)Tr(αh).

Since Tr(αh) = 0 by the assumption, and the last two states are controlled, so that
sN strictly depends on both mN−1 and mN and the corresponding control bits (traces)
are equal to 1. This representation is linear in both mN−1 and mN and the monomial
ghmN−1Tr(αsN−2) implies the difference gh.

These results can be extended for longer distances to the end of the message with
decaying probability. This could be seen from the last proof and Theorem 1. The idea is to
linearize the expression in terms of the last message bits (while still having controlled ones),
which requires Tr(αhgi) = 0 for all i < k where k is the length of the linearized suffix.
Note that this condition is independent of the state and only depends on the constants
used to define a TS-Hash instance. Prefix/suffix linearization is discussed in more details
in Subsection 3.4, and it implies in particular the generalization of the above differentials.

3.2 Preimage attack on short messages

In this preimage attack, we require a promise that there exists a (compressed) message
of length ℓ resulting in the target hash. Note that this is different from the second
preimage attack, where the first message is given to the adversary. Since the length of the
message depends on the representation (compressed/extended), this section works with
both representations.

Recall the equation (2). Assume that the length N of the extended message is known.
Then, we can represent the unknown set of exponents ei by unknown binary coefficients
λi ∈ F2:

H(m) = s0gN + h ·

(
N∑

i=0
λig

i

)
,

This gives a linear equation system over F2 with n equations on the variables λi ∈ F2.
Assuming g is a generator, its minimal polynomial has degree n and the first n powers gi

are linearly independent. Thus, the set of coefficients λi (equivalent to the set of exponents
ei) is uniquely determined if N ≤ n, or has 2t candidates if N = n + t. Since the extended
message is on average twice as large as the compressed message, this condition is satisfied
for most compressed messages of length ℓ ≤ n/2. We conclude that hash digests of most
half-block messages can be attacked in polynomial time.
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Extending the attack The attack can be combined with an exhaustive search of a prefix
(or a suffix) of the message. Assume that we exhaustively check the first p compressed
message bits. We can now apply the linear algebraic attack on the (ℓ − p)-bit message,
assuming 2(ℓ − p)-bit extended representation. The rank-n system then yields 22ℓ−2p−n

candidate solutions, totaling in 22ℓ−p−n solutions when counting the 2p guessed prefixes.
This computation suggests that p should be maximized, as long as the number of candidate
solutions is not negligible. Indeed, an extra compressed message bit costs 1-bit guess in
the prefix guess or 2-bit (4-wise) increase in the number of candidates in the linear system
due to the extension. Thus, a (p + n/2)-bit compressed message can be recovered in time
O(2pnc) for some constant c depending on the computational model. In the extreme, for
an arbitrary target value we can expect to have an n-bit compressed preimage, leading to
the attack cost Õ(2n/2), comparable to the general meet-in-the-middle approach proposed
in [BT23b].

The attack naturally applies to preimages of longer message with a known prefix and/or
suffix, such that the unknown middle part is of small length.

3.3 Generalized birthday general preimage attack
Consider now the general preimage attack for arbitrary hash digest values. In this section,
we only consider the extended representation. Recall the polynomial equation for TS-Hash:

H(m) = s0gN + h(gN−e1 + gN−e1−e2 + gN−e1−e2−e3 + . . . + gN−e1−...−ek ),

which applies when all states sei
are controlled. Although we can not ensure that the

chosen states are controlled, we can hope that it happens by chance. Each bit is controlled
with probability 1/2, so that for k monomials we need about 2k “random” attempts
to succeed. We thus arrive at the problem of representing H(m)−s0gN

h by a very sparse
polynomial in g with binary coefficients. As the degree of the polynomial defines the
message length, it has to be bounded too.

Problem 1. Given g, r ∈ F2n , find a polynomial q(x) ∈ F2[x] of low degree and few
nonzero coefficients, such that q(g) = r.

It follows that a preimage attack on TS-Hash can be reduced to finding about 2k

solutions with k nonzero coefficients to the above problem. Indeed, each solution has
chance 2−k so be correct (to have all the states corresponding to nonzero coeffficients
controlled), so that we can expect 1 solution on average. Note that a given polynomial
may be tested efficiently (to have all necessary bits controlled) by computing only the
relevant states: one such jump requires computing a power of g using fast exponentiation.
This is in contrast to direct evaluation of all N states of TS-Hash, which can be slow for
long messages (arising from a possibly high degree of the polynomial q).

In particular, Problem 1 can be solved by the generalized birthday algorithm by Wagner
[Wag02].

Generalized birthday procedure Consider the list L0 =
{

gi | 0 ≤ i < 2t+1}. Using a
hash-table on t (say) least-significant bits, we can find all pairs (i, j) such that gi + gj has
t least significant bits equal to zero. We can expect

(|L|
2
)
2−t ≈ 2t+1 such pairs. Denote the

new list by L1. By repeating the procedure on the next t bits on pairs from L1, we get a
new list L2 of the same size with 2t chosen bits equal to zero. After d =

⌈
n
t

⌉
iterations, we

obtain a list Ld containing zero vectors, obtained as sums of 2d monomials gi. Complexity
of this procedure is O (d2t) = O

(
d2n/d

)
hash-map and field operations.

Although we obtain a polynomial evaluating to zero at g, this approach can be easily
adapted to makes the sum equal to any predetermined value instead of zero. This requires
maintaining, in addition, lists Ti with ti least significant bits matching the target value
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r̄ ∈ Fti
2 . These lists can be merged from Ti−1 and Li−1 (for example, by merging Ti−1⊕(0||r̄)

and Li−1 to match ti zero bits as in the basic procedure). Thus, the total number of list
merges is only doubled (one merge for Li and one for Ti, per each iteration i, 1 ≤ i ≤ d).

In order to mount the preimage attack on TS-Hash, we need 22d such solutions
(since we have k = 2d monomials). The total complexity is thus O

(
22d

nc + d2n/d
)

,
where nc corresponds to the complexity of testing a candidate polynomial in g. Setting
d = log n − log log n, we get complexity

O
(

2
n

log n nc + (log n)2
n

log n−log log n

)
= O

(
(log n)2

n
log n−log log n

)
.

More concretely, for n = 128, we can use d = 5 to have lists of length 232 over 5 levels
and testing 232 final candidate solutions, which is practical.

The attack was implemented and verified using SageMath [Sag24] on n = 80 taking
about 2 minutes.

Second-preimage attack Solving Problem 1 with t = 0 allows to find a collision for
the TS-Hash function. This problem is equivalent to finding a low-weight multiple of the
minimal polynomial of g ≃ p0(X) ∈ F2[X]; it was actively studied in relations to attacks
on stream ciphers [Sie86, MS88, CJM02, Aim21].

3.4 Prefix/suffix linearization technique
We will now try to linearize the TS-hash function. Recall the expression from Theorem 1:

sN = s0gN +
∑

I⊆{1,...,N}
I ̸=∅

(∏
i∈I

mi

)
︸ ︷︷ ︸

monomial in m

· hgN−max(I)︸ ︷︷ ︸
constant

· Tr(αs0gmin(I)−1) ·
|I|∏

j=2
Tr(αhgij−ij−1−1)︸ ︷︷ ︸

control bit

.

The goal is, for monomials mI with |I| ≥ 2, to force the corresponding control bits to
be equal to zero. This can be done by fixing certain message bits to zero. Then, sN will
become a linear function of the remaining (non-fixed) message bits. The total control bit
for each monomial consists of two parts.

Part 1: steps between variable indexes Consider a monomial of degree at least
2. Its control bit is equal to zero in particular when

∏|I|
j=2 Tr(αhgij−ij−1−1) = 0. Thus,

we can choose steps between variables to ensure this condition. If we keep message
bits mi1 , mi2 , . . . , mik

, i1 < i2 < . . . < ik, then for all j < j′ we need that s = i′
j − ij

satisfies Tr(αhgs−1) = 0, otherwise the monomial mℓmℓ+s will be present at some offset ℓ.
Therefore, we want to minimize the number of unique distances between active message
variables. It is easy to see that this is achieved when variables are placed at a fixed step s
from each other: mℓ, mℓ+s, . . . , mℓ+(k−1)s. The set of distances between positions is then
simply s, 2s, . . . , (k − 1)s. A random choice s can be expected to satisfy the respective
constraint (Tr(αhgis−1) = 0 for i ∈ {1, . . . , k − 1}) with probability 2−k+1. Therefore, we
can expect to find one after about 2k−1 trials, and it should be about (k − 1)-bit long.

Part 2: First active variable’s offset The second contributor to the control bit is the
term Tr(αs0gmin(I)−1). It only depends on the smallest index of a variable involved in the
monomial. Since we aim to allow (and enforce the control of) linear monomials, it has to
be equal to 1. Otherwise, the chosen active bits would simply become inactive. In order to
keep all k chosen bits active, it must hold

Tr(αs0gℓ+is−1) = 1 ∀i{0, . . . , k − 1}.
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A good such offset ℓ can be found again by random sampling, since all these constraints
are satisfied with probability 2−k. Note that this sampling is done after the first step, and
thus the complexity is added (and not multiplied).

Linearization summary We conclude with the final linearization procedure:

1. choose parameter k;

2. sample random s ≥ 1 until Tr(αhgis−1) = 0 for all i ∈ {1, . . . , k − 1};

3. sample random ℓ ≥ 1 until Tr(αs0gℓ+is−1) = 1 for all i ∈ {0, . . . , k − 1}.

Both sampling steps can be expected to work in time O
(
2k
)

finite field operations.

Theorem 2. Let k, s, ℓ satisfy the conditions above and let m ∈ Fℓ+ks
2 be such that

mℓ+is = xi+1 for i ∈ {1, . . . , k} and mj = 0 in all other positions, where xi ∈ F2 are
variables. Then, H(m) is a linear function in x1, . . . , xk and is non-degenerate in each
variable.

Note that this result does not imply that the TS-Hash itself is linearized: compressed
messages corresponding to various choices of x1, . . . , xk would typically even have different
size. However, this is a useful tool for cryptanalytic purposes, since any extended message
(e.g., a preimage solution) always has a corresponding compressed message.

Suffix linearization This technique can be modified to work in the decryption direction.

3.5 Linearization with quadratic constraints
Recall the TS-hash step function from Definition 1:

F : (s, m) 7→ g · s + h · m · Tr(α · s).

Assume that the current state s is a linear function of some previous message bits:

s = β1m1 + β2m2 + . . . + βkmk,

where βi ∈ Fn
2 are constants. This can be achieved for example using the prefix linearization

technique described previously. Our goal is to linearize the next state

s′ = F (s, mk+1) = g · s + h · mk+1 · Tr(α · s).

This can be done by adding a linear constraint mk+1 = c or Tr(α · s) = c for a constant
c ∈ F2. However, we would not gain a new degree of freedom unless Tr(α · s) = c holds by
the construction of s.

Instead, we can use a quadratic constraint

(mk+1 + 1)(Tr(α · s) + 1) = 0, (3)

which implies

mk+1Tr(αs) = (mk+1 + 1)(Tr(αs) + 1) + mk+1 + Tr(αs) + 1 = mk+1 + Tr(αs) + 1,

and so
s′ = g · s + h · mk+1 + h · Tr(αs) + h,

which is now a linear non-degenerate function of m1, . . . , mk+1 under the constraint (3).
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Theorem 3. There exist at most M − 1 quadratic constraints of the form〈
β̄i, (1, m1, . . . , mi)

〉
· (mi+1 + 1) = 0, 1 ≤ i ≤ M − 1, β̄i ∈ Fi+1

2

such that the extended TS-hash function H(m) is linear in m for all messages m satisfying
the constraints. Furthermore, the linear representation of H and the constraints can be
computed in polynomial time.

This result can be used to mount preimage attack in two ways. The advantage of
this approach compared to the generalized birthday attack is that it can bin principle be
mounted with rather short messages for arbitrary target digests.

Approach 1: Finding preimages by solving the quadratic equation system
The direct approach is to simply solve the system of quadratic constraints and linear
equations arising from equating sM with the target digest value). The simple structure of
the constraint system may potentially lead to efficient methods. This avenue is left for
future research.

Approach 2: Probabilistic preimage solving A rather straightforward technique is
to sample a random solution to the linear part of the system (which is under-defined for
M > n), and hope to satisfy the quadratic constraints by chance. Indeed, each quadratic
constraint can be expected to be satisfied with probability 3/4 due to its shape, leading
to probability (3/4)M−1 of the partial solution to be correct. It follows that it is more
efficient to choose M = n and to randomize the target preimage by doing random reverse
steps from the original target.

The attack can be combined with the prefix/suffix linearization: these bits simply
provide extra degrees of freedom without adding quadratic constraints. Recall that k-
dimensional linearization can be done in time O

(
2k
)
, both for the prefix and the suffix.

Then, the n − 2k missing dimensions have to be covered with quadratic constraints, costing
a factor 4/3 each. This leads to complexity Õ

(
2k + (4/3)n−2k

)
, which is minimized when

the two parts are balanced, namely when k = n
2+log4/3 2 ≈ 0.227n, leading to final attack

complexity Õ
(
20.227n

)
, which is significantly better than the basic meet-in-the-middle

complexity Õ
(
20.5n

)
, while asymptotically worse than the generalized birthday complexity

Õ
(

2
n

log n−log log n

)
.

4 Discussion
As described in [BT23b], the TS-Hash is an instance of the so-called Cayley / group-
theoretic hash functions [TZ94a]. Given linear bijections T0, T1 : Fn

2 → Fn
2 , a nonlinear

bijection S : Fn
2 → Fn

2 and a starting state s0 ∈ Fn
2 , a hash function h can be defined such

that for a message m = (m1, m2, . . . , mM ) ∈ FM
2 it is given by

h(m) = TmM
◦ S ◦ . . . ◦ Tm2 ◦ S ◦ Tm1 ◦ S(s0).

In particular, the TS-Hash is given by the “shift” function S(s||0) = S(0||s), S(s||1) =
(s||1), and the T0, T1 being multiplications by X in F2[X]/(p0(X)) and F2[X]/(p1(X))
respectively.

This structure can in principle be secure, since the modern sponge-based hashing can
be viewed as an example of it (with single-bit message injection). However, this requires a
sufficiently strong nonlinear mixing map S, which is not the case for TS-Hash. Furthermore,
there is a lot of interaction between the functions S, T0, T1: the functions S and T0 “almost”
commute, and T1 is equal to T0 with a constant addition.
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4.1 Countermeasures
The rest of the section discusses potential countermeasures.

Output truncation Typical sponge-based hash functions output only part of the final
state (“squeezing”). Truncating the TS-hash function could lead to increase in security
against some of the attacks, for a fixed output length: the meet-in-the-middle attack
[BT23b] requires full-state collision, so that its complexity O

(
2n/2) for n-bit state can be

worse than generic exhaustive preimage search for an output size less than n/2. However,
this would not affect the short message attack and the generalized birthday attack.

External padding of the message A natural idea for protecting the hash function
against short message attacks is to pad it with fixed bits. However, a prefix padding does
not add any security since it only adjusts the starting state. A suffix padding is similarly
useless on itself, but it can be more useful in combination with truncation: the map

Pℓ = (T1 ◦ S ◦ T0 ◦ S)ℓ

corresponding to padding the message suffix with (0, 1, 0, 1, . . .) for a sufficiently large ℓ (for
example, ℓ = 2n) may provide a good source of nonlinearity to thwart the linearity-based
attacks (e.g., the short-message and the generalized birthday attacks). This requires to
increase the state size n sufficiently to secure against full-state generalized birthday and
similar attacks, and truncating the output state (after processing the padding) to prevent
the inversion of the padding function.
Remark 3. Alternating message bits between 0 and 1 ensures that neither F2[X]/(p0(X))
nor F2[X]/(p1(X)) representations lead to a small number of possible linearizations. For
example, padding with an all-1 suffix would make the padding map equivalent to the
multiplication by Xℓ±ε in the second field, for some small value of ε.

Note that securing the internal state against the generalized birthday attack requires
state size more than 512 to achieve 128-bit security, which makes the hash function much
less attractive, compared to the original variant.

Internal padding of the message Another countermeasure aiming to increase the
confusion of absorbing the message bits is to inject an internal padding (constant bits)
between the consecutive message bits. Similarly to the external padding, alternating 0-1
bits are a good candidate. In other words, replace the step function Tmi ◦ S by

Pℓ′ ◦ Tmi
◦ S = (T1 ◦ S ◦ T0 ◦ S) ◦ (T1 ◦ S ◦ T0 ◦ S) ◦ . . . ◦ Tmi

◦ S

for some small number ℓ′, for example ℓ′ = 8. This countermeasure makes it much more
difficult to control states. For example, in the generalized birthday attack, the cost of
controlling one summand gei increases significantly: the attacker has now to match both gei

and additional ℓ′ summands arising from the internal padding, decreasing the probability
from 1/2 to 1/2ℓ′ .

4.2 Conclusion
This section outlined two countermeasures against the proposed attacks. Concrete evalua-
tion of these countermeasures as well as choices of suitable parameters is left as a future
work.

It is an interesting open problem whether there exists an instantiation of TS-Hash with
countermeasures that has still interesting properties, such as being lightweight in code size
and having a small state, or being extendable (i.e., the digest is equal to the full internal
state, allowing incremental hashing). The latter property however is not preserved under
the truncation countermeasure.
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