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Abstract. Blind signature schemes enable a user to obtain a digital signature
on a message from a signer without revealing the message itself. Among the most
fundamental examples of such a scheme is blind Schnorr, but recent results show that
it does not satisfy the standard notion of security against malicious users, One-More
Unforgeability (OMUF), as it is vulnerable to the ROS attack. However, blind Schnorr
does satisfy the weaker notion of sequential OMUF, in which only one signing session
is open at a time, in the Algebraic Group Model (AGM) + Random Oracle Model
(ROM), assuming the hardness of the Discrete Logarithm (DL) problem.
This paper serves as a first step towards characterizing the security of blind Schnorr
in the limited concurrency setting. Specifically, we show that blind Schnorr satis-
fies OMUF when at most two signing sessions can be concurrently open (in the
AGM+ROM, assuming DL). Our argument suggests that it is plausible that blind
Schnorr satisfies OMUF for up to polylogarithmically many concurrent signing ses-
sions. Our security proof involves interesting techniques from linear algebra and
combinatorics.
Keywords: Schnorr signatures · blind signatures · algebraic group model · ROS

1 Introduction
Envisioning an untraceable electronic payment system, David Chaum introduced the
concept of a Blind Signature Scheme (BSS): a two-party protocol which allows a user to
obtain a digital signature on a message from a signer without revealing that message to
the signer or knowing the signer’s secret key [Cha82]. Chaum explained the idea through
the analogy of sealing a document in a carbon-paper envelope before handing it to a signer.
Blind signatures have myriad applications including digital cash [DH22], anonymous
credentials [BL13], voting protocols [FOO92], and blockchain coin swaps [Nic19].

The typical security notions for a blind signature scheme are One-More Unforgeability
(OMUF), which is security against a malicious user, and Blindness, which is security against
a malicious signer. In this work, we focus on OMUF. Roughly speaking, we say that a
BSS satisfies ℓ-OMUF if no adversary can produce ℓ + 1 distinct valid message-signature
pairs after conducting up to ℓ signing sessions with the signer.

Introduced by Chaum and Pedersen in 1992, the Schnorr Blind Signature Scheme
(SBSS) is simple, efficient, and one of the most well-studied blind signature schemes [CP93].
In his 2001 security analysis of the scheme, Schnorr introduced the “ROS” problem, and
proved that if ROS is hard then the SBSS is secure in the Random Oracle Model (ROM)
+ Generic Group Model (GGM) [Sch01]. He also proved a sort of converse: if ROS is
easy, then the SBSS is not secure. On the intractability of ROS itself, Schnorr called it a

E-mail: fharding1@protonmail.com (Franklin Harding), xujiay@oregonstate.edu (Jiayu Xu)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-05 Accepted: 2024-09-02

https://doi.org/10.62056/a3qj5w7sf
https://crossmark.crossref.org/dialog/?doi=10.62056/a3qj5w7sf&domain=pdf&date_stamp=2024-09-10
https://orcid.org/0009-0004-9811-1610
https://orcid.org/0000-0002-0881-9980
mailto:fharding1@protonmail.com
mailto:xujiay@oregonstate.edu
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


2 Unforgeability of Blind Schnorr in the Limited Concurrency Setting

“plausible but novel complexity assumption,” and showed that it is statistically hard for
small enough parameters.

The GGM is a strong idealized model which is commonly used to justify hardness
assumptions; for instance, in the GGM it is possible to prove that any generic DL algorithm
runs in time Ω(p1/2) where p is the largest prime divisor of the group order [Sho97]. It
is sometimes problematic to apply the GGM on a “scheme level,” because there exist
real-world schemes which have proofs of security in the GGM but are completely broken
when instantiated with concrete groups (as in the real-world) [NS01, SPMS02]. This was
the impetus for researchers to investigate whether the SBSS is provably secure without the
GGM. Baldimtsi and Lysyanskaya gave a negative answer for ROM-only proofs, showing
that “current [as of 2013] techniques for proving security in the random oracle model do
not work for the Schnorr blind signature” [BL13]. The open question that remained was
whether the SBSS is provably secure in the ROM plus some other assumptions weaker
than the GGM.

The Algebraic Group Model (AGM) is a relatively new idealized model which lies
between the standard model and the GGM [FKL18]. Consequentially, a proof of SBSS
security in the AGM would be a better security guarantee than the existing GGM proof
due to Schnorr. In 2020, Fuchsbauer, Plouviez, and Seurin accomplished this: they showed
that the SBSS is secure in the ROM+AGM, assuming that ROS and One-More Discrete
Logarithm (OMDL) are hard [FPS20].1

Until recently, the fastest algorithm for ROS was the subexponential (but still super-
polynomial) time algorithm due to Wagner [Wag02]. However, in 2020, Benhamouda et
al. unveiled a polynomial-time algorithm for ROS [BLL+22]. This invalidated all existing
security proofs for the SBSS. Moreover, in light of Schnorr’s result that the SBSS is insecure
if ROS is easy, the scheme was rendered completely broken. Indeed, Benhamouda et al.
explicitly showed how their algorithm can be used to break OMUF of the SBSS and even
provided a Python implementation of their attack. The [BLL+22] algorithm only applies
when the dimension of the ROS problem, η, is no smaller than the security parameter λ.
In fact, if η = O((log λ)k) for some k ∈ N, then ROS is statistically hard [FPS20].

While the SBSS is completely broken according to the standard security notion for
blind signature schemes, it remains desirable for use in practice due to its efficiency,
simplicity, and compatibility with the standardized signature scheme EdDSA.2 Developers
have already had a chance to experiment with the scheme [Nic19], and there are existing
implementations. Therefore, it is natural to ask:

Does the SBSS satisfy a less stringent, yet still practical, notion of security?

Motivated by this question, Kastner, Loss, and Xu proved that the SBSS is still secure in
the sequential setting, where only one signing session can be open at a time [KLX22]. This
setting, in contrast to the standard concurrent setting where there is no limitation on the
number of signing sessions which can be open at the same time, has also been considered
by other authors for various schemes [JLO97, BL13].

The proof of SBSS security in the sequential setting by Kastner, Loss, and Xu essentially
relies on the fact that 1-ROS is statistically hard. Since η-ROS is statistically hard when
η = η(λ) is eventually bounded by some polylogarithmic function, it seems plausible that
the SBSS is secure when the adversary is only allowed to open a small number of signing
sessions concurrently. More formally:

Is the SBSS secure when at most η signing sessions can be open concurrently and η = 2?
What about η = O(1) or η = O((log λ)k) for some k ∈ N?

1ROM+AGM+ROS+OMDL is still weaker than ROM+GGM+ROS since one can prove that OMDL
is hard in the GGM [BFP21].

2https://csrc.nist.gov/pubs/fips/186-5/final

https://csrc.nist.gov/pubs/fips/186-5/final
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Blind Signatures: The State of the Art. Shortly after the ROS attack was published,
a number of new blind signature schemes were introduced. A variant of the SBSS called
Clause Blind Schnorr is concurrently secure under a novel modified ROS problem [FPS20].
Snowblind still relies upon the AGM (and DL), but is concurrently-secure and basically as
efficient as blind Schnorr [CKM+23]. Two new schemes which do not rely on any “non-
standard” assumptions (such as the AGM or OMDL) are Chairattana-Apirom et al.’s BS3
(CDH+ROM) [CATZ24], and Kastner et al.’s round-optimal scheme (sRSA+DDH+ROM)
[KNR24]. Lastly, Fuchsbauer and Wolf recently unveiled a method for concurrently secure
blind Schnorr that uses NIZK and PKE primitives [FW24].

With these innovative new schemes in mind, one might be tempted to dismiss the SBSS
as obsolete. However, it remains important in practice due to the recent standardization
of EdDSA by NIST, which is only a slight variation on the Schnorr signature scheme. Of
particular importance is compatibility with Ed25519, which is more widely adopted than
Ed448. Considering compatibility with existing standards, only two of the aforementioned
schemes are at all relevant: Clause Blind Schnorr and Fuchsbauer-Wolf. The former
appears incompatible with Ed25519 because it only achieves roughly 70 bits of security
when instantiated with a 256-bit curve. The latter requires a pairing-friendly curve (thus
incompatible), or otherwise is inefficient.

In summary, of pairing-free blind signatures from prime-order groups, no scheme is all
three: efficient, compatible with existing standards, and concurrently secure. The SBSS is
the only scheme that satisfies the first two, so it remains relevant for applications where
sequential signing is sufficient. Enforcing sequential signing on multiple threads on multiple
servers may prove practically difficult, possibly requiring the use of a distributed mutex.

Finally, the SBSS remains one of the most thoroughly studied and conceptually elegant
blind signature schemes to date; studying its exact level of security is of theoretical interest
in its own right, and could shed some light on security proofs involving other BSS’ in the
future.

Our Contributions. We prove that in the ROM+AGM, if OMDL is hard then the
SBSS is secure when at most 2 signing sessions can be open concurrently (henceforth the
2-concurrent setting). To the best of our knowledge, this is the first result on the security
of the SBSS in the “limited concurrency” setting; as such, our work serves as the first step
towards a complete characterization of SBSS security, namely closing the gap between the
security of the SBSS in the sequential setting [KLX22] and insecurity under the standard
definition [BLL+22]. While it is clear from the ROS attack that users targeting 128-bit
security should stick with sequential signing, our result has practical relevance: namely,
users have some “wiggle room.” That is, if some failure in a distributed mutex or some
race condition allows two signatures to be signed concurrently, the scheme still attains a
reasonable level of security.

Since the proof of SBSS security in the sequential setting essentially relies on the
statistical hardness of 1-ROS, one could imagine that a straightforward adaptation of that
proof would yield security in the 2-concurrent setting based on the fact that 2-ROS is
hard, and perhaps even the η-concurrent setting where η is eventually bounded by some
polylogarithmic function. It turns out that this is far from true; even the 2-concurrent
setting is exponentially more complex than the sequential setting, and wrangling this
complexity requires new techniques that do not appear in the sequential setting proof. To
illustrate this point:

• Suppose that there are three signing sessions. In the sequential setting there is only
one possibility for the “structure” of how the sessions overlap. In the 2-concurrent
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setting, there are 11 possibilities.3 In general, the number of possibilities grows
exponentially with the number of signing sessions. As we cannot consider all of
them, we must make a combinatorial argument which “reduces” all of them to a few
essential cases.

• Further complicating things is that signing sessions are not necessarily closed. In
the sequential setting it is clear that the signing session which is never closed has
to be the last, which simplifies the proof considerably. In the 2-concurrent setting
there might be two unclosed sessions, and one of them might overlap with previous
sessions.

The roadmap for our proof of ℓ-OMUF (where ℓ is the number of signing sessions) in the
2-concurrent setting relative to the Schnorr blind signature scheme follows:

1. We prove that any adversary A′ for ℓ-OMUF in the 2-concurrent setting can be
turned into an adversary A for (ℓ + 2)-OMUF in the 2-concurrent setting which
closes all of its signing sessions and wins at least as often as A′.

2. We prove that (ℓ + 2)-OMDL reduces to (ℓ + 2)-OMUF in the 2-concurrent setting if
the adversary closes all of its signing sessions. The reduction constructs ℓ + 1 linear
equations χ1, . . . , χℓ+1 and wins if at least one of them is not zero.

3. To upper-bound the probability that the “bad event” χ1 = · · · = χi+1 = 0 occurs,
we first identify certain “special queries” of the SBSS random oracle. We then divide
the possible configurations of signing sessions and special queries into three cases:
(1) there are 2 special queries, both of which are made during the same single signing
session (recall that a special query can be made during up to 2 signing sessions); (2)
there are 3 special queries made during the same 2 signing sessions; or (3) neither of
the prior two cases occur.

4. We show that if case (1) occurs then we can use the adversary to solve 1-ROS, which
is essentially the same as [KLX22] except with an explicit reduction rather than a
statistical argument. Somewhat of an extension, we show that if case (2) occurs then
we can use the adversary to solve 2-ROS. The essentially different case is (3), in which
we make a direct argument that the bad event occurs with negligible probability.

The direct argument for case (3) of item 4 is specific to the 2-concurrent setting, although
all remaining parts of our approach easily generalize. We suspect that the direct argument
can also be made to work for larger values than 2, although that would require more
sophisticated reasoning using linear algebra and combinatorics (we explain at the end of
this paper why our current technique does not directly apply to the more general setting).

2 Preliminaries
Let λ be the security parameter. For n ∈ N, we use the notation [n] := {1, 2, . . . , n}.
We write a ←$ S to denote sampling a value a uniformly at random from an efficiently
samplable set S, and we write a ← A to denote assigning a to be the result of some
process A. We assume that setting and fetching entries from a hash table takes time O(1).
We call GenGroup a group generation algorithm if (G, p, g)← GenGroup(1λ) is such that
G = ⟨g⟩ is a group of prime order p and p > 2λ−1. When we work with a group G we
assume that its elements can be efficiently encoded as bitstrings, and we do not make the

3Label the sessions 1, 2, and 3. Two must be non-overlapping; suppose up to relabeling that they are
1 and 2. This induces five periods: before session 1, during session 1, between sessions 1 and 2, during
session 2, and after session 2. Session 3 must begin in one of the periods and end in a period no earlier
than it began, resulting in

∑5
i=1 = 15 possibilities. Four of them are identical up to relabeling.
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Game OMDLA
GenGroup,ℓ(λ)

(G, p, g)← GenGroup(1λ)
q ← 0

(xi)ℓ+1
i=1 ←$ Zℓ+1

p

(x′
i)ℓ+1

i=1 ← A
DL(G, p, g, gx1 , . . . , gxℓ+1 )

return (∀i ∈ [ℓ + 1] : xi = x′
i) ∧ q ≤ ℓ

Oracle DL(x)
q ← q + 1
return logg(x)

Figure 1: The ℓ-One-More Discrete Logarithm Game

distinction between a group element and its binary encoding. A function negl : N→ R is
negligible if for any positive integer c there exists some integer nc such that for all n ≥ nc,
we have |negl(n)| ≤ 1/nc. A problem P with parameters par is hard if for all probabilistic
polynomial-time adversaries A, the advantage of A in problem P relative to parameters
par, denoted AdvP

par,A(λ), is negligible.

2.1 The Algebraic Group Model
The Algebraic Group Model (AGM) is an idealized model in which all adversaries are
presumed algebraic relative to some group [FKL18]. An adversary is called algebraic if,
whenever it outputs a group element, it also outputs an explanation of how that element
can be computed in terms of the group elements the adversary has received. Formally,

Definition 1 (Algebraic Adversary). Let (G, p, g) be such that G is a group of order p
generated by g. Let A be an adversary who has received group elements h1, . . . , hn ∈ G
in that order. We say that A is algebraic relative to (G, p, g) if whenever A outputs a
group element x ∈ G, they also output e1, . . . , en ∈ Zp such that

x =
n∏

i=1
hei

i .

We use the notation x(e1,...,en) ← A(1λ). If A has access to an oracle, then we consider
any group elements output by that oracle to be part of the group elements received by A,
and any group elements A queries to the oracle as part of A’s output.

2.2 One-More Discrete Logarithm
Let ℓ be a positive integer and GenGroup a group generation algorithm. Given (G, p, g)←
GenGroup(1λ), group elements h1, . . . , hℓ+1 ∈ G called “challenges,” and access to a discrete
log oracle4 that can be queried at most ℓ times, the ℓ-One-More Discrete Logarithm (ℓ-
OMDL) problem relative to GenGroup is to compute x1, . . . , xℓ+1 ∈ Zp such that hi = gxi

for all i ∈ [ℓ + 1]. We describe a formal security game for ℓ-OMDL in fig. 1.

Definition 2 (ℓ-One-More Discrete Logarithm). Let ℓ ∈ N. We define the ℓ-OMDL
advantage of an adversary A relative to GenGroup as

AdvOMDL
GenGroup,ℓ,A(λ) := Pr[OMDLA

GenGroup,ℓ(1λ) = 1].
4Note that the discrete log oracle can be queried on any group elements rather than exclusively

challenges, and that this is a needless distinction in the AGM. An algebraic adversary would need to
“explain” how it computed the element which it is querying to the discrete log oracle in terms of the group
elements it has seen, i.e., the challenges and the generator. Since the discrete logs of these elements are
known, it would be easy to compute the discrete log of any group element the adversary could come up
with.
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Game ROSA
GenGroup,η(1λ)

(G, p, g)← GenGroup(1λ)
((ρ⃗i, auxi)η+1

i=1 , c⃗)← AHROS (G, p, g) // note ρ⃗i, c⃗ ∈ Zη
p

return ∀i, j ∈ [η + 1] : i ̸= j =⇒ (ρ⃗i, auxi) ̸= (ρ⃗j , auxj)
∧ ∀i ∈ [η + 1] : ρ⃗i · c⃗ = HROS(ρ⃗i, auxi)

Figure 2: The ROS Game

2.3 ROS
Let η be a positive integer. Given a prime p > 2λ−1 and random oracle HROS : Zη

p → Zp,
the Random Inhomogeneities in an Overdetermined Solvable System of η + 1 Linear
Equations (η-ROS) problem [Sch01] is to find distinct ρ⃗1, . . . , ρ⃗η+1 ∈ Zη

p and c⃗ ∈ Zη
p such

that

ρ⃗i · c⃗ = HROS(ρ⃗i) for all i ∈ [η + 1].

We define a formal security game in fig. 2. As in [FPS20], the addition of auxillary
information auxi corresponding to each ρ⃗i is for convenience and is equivalent to the
standard ROS formulation, as is the use of GenGroup.

Definition 3 (η-ROS). Let η ∈ N. We define the η-ROS advantage of an adversary A
relative to GenGroup as

AdvROS
GenGroup,η,A(λ) := Pr[ROSA

GenGroup,η(1λ) = 1].

The η-ROS problem is statistically hard for small values of η such as η = O(1) or
η = O((log λ)k) for some k ∈ N [FPS20, Lemma 2]. We recall this result in lemma 1.

Lemma 1 ([FPS20]). Let η ∈ N and GenGroup be a group generation algorithm. If A is
an adversary which makes at most qh queries to HROS, then

AdvROS
GenGroup,η,A(λ) ≤

(
qh

η+1
)

+ 1
2λ−1 .

2.4 Blind Signature Schemes
We restrict our definition of a BSS to “three-move” or “sigma” variants, of which the
Schnorr blind signature scheme is an example.

Definition 4 (Blind Signature Scheme). A (three-move) blind signature scheme (BSS) is
a tuple of algorithms BS = (ParGen, KeyGen, Sign1, Sign2, User1, User2, Verify). An honest
execution of the signing protocol is illustrated in fig. 3.

We use the convention that after pp← ParGen(1λ) and (sk, pk)← KeyGen(pp) are run,
it is implicit that pp is known to all parties.

Definition 5 (Correctness). We say that a blind signature scheme BS satisfies correctness
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Signer(sk) User(pk, m)

(cmt, stS)← Sign1(sk) cmt

ch (ch, stU )← User1(pk, m, cmt)

rsp← Sign2(sk, stS , ch) rsp

σ ← User2(stU , rsp)

Figure 3: BSS Signing Session

if for all m ∈ {0, 1}∗,

Pr

 Verify(pk, m, σ) = 1

pp← ParGen(1λ)
(sk, pk)← KeyGen(pp)
(cmt, stS)← Sign1(sk)

(ch, stU )← User1(pk, m, cmt)
rsp← Sign2(sk, stS , ch)
σ ← User2(pk, stU , rsp)

 = 1.

2.4.1 One-More Unforgeability

The standard notion of security against malicious users for a blind signature scheme is
ℓ-One-More Unforgeability (ℓ-OMUF). The weakened ℓ-Sequential One-More Unforgeability
(ℓ-SEQ-OMUF) notion restricts adversaries to opening no more than one signing session
at a time [KLX22]. We define a more general security property which parameterizes the
maximum number of signing sessions which may be open concurrently, thus encompassing
both ℓ-OMUF and ℓ-SEQ-OMUF. We say that a BSS satisfies (ℓ, η)-OMUF if it satisfies
ℓ-OMUF and no more than η signing sessions were ever open concurrently. As two special
cases, ℓ-OMUF = (ℓ,∞)-OMUF, and ℓ-SEQ-OMUF = (ℓ, 1)-OMUF. To accommodate for
this change, the OMUF security game in fig. 4 is identical to the definition in [FPS20]
except that it additionally checks the max number of signing sessions which were open
concurrently at any point in time during the game. The game uses the following variables:

• k1, the number of signing sessions which have been opened;

• k2, the number of signing sessions which have been closed and should not surpass ℓ;

• S, the set of indices of currently open signing sessions; and,

• η∗, the maximum value that |S| ever takes on, i.e., the max number of signing sessions
open concurrently at any point in time during the game (so it should not surpass η).
Note that when a session is closed, |S| decrements but η∗ remains unchanged.

When the game ends, it outputs a bit b which is 1 if the adversary outputs ℓ + 1 distinct
valid message-signature pairs and never opened more than η signing sessions concurrently.

Definition 6 ((ℓ, η)-One-More Unforgeability). Let ℓ, η ∈ N. We define the (ℓ, η)-OMUF
advantage of an adversary A relative to BS as

AdvOMUF
BS,ℓ,η,A(λ) := Pr[OMUFA

BS,ℓ,η(1λ) = 1].
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Game OMUFA
BS,ℓ,η(1λ)

pp← ParGen(1λ)
(sk, pk)← KeyGen(pp)
k1 ← 0; k2 ← 0;S ← ∅
η∗ ← 0

(m∗
i , σ∗

i )ℓ+1
i=1 ← A

S1,S2 (pk)
return k2 ≤ ℓ ∧ η∗ ≤ η ∧
∧ ∀i, j ∈ [ℓ + 1] : i ̸= j =⇒ (m∗

i , σ∗
i ) ̸= (m∗

j , σ∗
j )

∧ ∀i ∈ [ℓ + 1] : Verify(pk, m∗
i , σ∗

i ) = 1

Oracle S1()
k1 ← k1 + 1
(cmt, stk1 )← Sign1(sk)
S ← S ∪ {k1}
η∗ ← max(η∗, |S|)
return (k1, cmt)

Oracle S2(j, ch)
if j ̸∈ S then return ⊥
rsp← Sign2(sk, stj , ch)
S ← S \ {j}; k2 ← k2 + 1
return rsp

Figure 4: The One-More-Unforgeability Game

An existing result [FPS20, Lemma 3] says that (translated into our notation) any
adversary for (ℓ,∞)-OMUF opening at most qs signing sessions can be turned into an
adversary for (qs,∞)-OMUF which closes all of its signing sessions.5 In (ℓ, η)-OMUF, a
winning adversary closes at most ℓ signing sessions and never opens more than η signing
sessions concurrently. Consequently, a winning (ℓ, η)-OMUF adversary never opens more
than ℓ + η signing sessions. From this observation, it follows from the proof of [FPS20,
Lemma 3] that a winning adversary for (ℓ, η)-OMUF can be turned into a winning adversary
for (ℓ + η, ℓ + η)-OMUF which closes all of its signing sessions. We now introduce a lemma
which is slightly stronger than this result: any winning adversary for (ℓ, η)-OMUF can be
turned into a winning adversary for (ℓ + η, η)-OMUF which closes all of its signing sessions.

Lemma 2. Let ℓ, η ∈ N and BS be a blind signature scheme satisfying correctness. Let A
be an adversary for (ℓ, η)-OMUF running in time τ and outputting messages of length at
most mlen. Then there exists an adversary B for (ℓ + η, η)-OMUF making exactly ℓ + η
queries to S1 and exactly ℓ + η valid queries (i.e., whose output is not ⊥) to S2 such that

AdvOMUF
BS,ℓ+η,η,B(λ) ≥ AdvOMUF

BS,ℓ,η,A(λ),

and B runs in time τ + O(mlen2).

Proof. Let B be the adversary described in fig. 5. In fig. 5, diag is standard bitwise
diagonalization after padding.

Claim. B makes exactly ℓ + η queries to S1 and exactly ℓ + η valid queries to S2.

When A halts, k′
1 ≤ ℓ + η is the number of queries that have been made to S1 and

k′
2 ≤ ℓ is the number of valid queries that have been made to S2. Note that |S| = k′

1 − k′
2.

Considering the total number of queries to S1, we count

k′
1 + (η − |S|) + (ℓ− k′

1 + |S|) = ℓ + η. (1)

If j ∈ S after A halts then A never made a valid S2(j, ·) query. Hence, B’s S2 queries after
A halts are guaranteed to be valid by correctness of BS. Therefore, the total number of
valid S2 queries is

k′
2 + |S|+ (η − |S|) + (ℓ− k′

1 + |S|) = ℓ + η − (k′
1 + k′

2) + |S| = ℓ + η. (2)
5Their lemma is written for the SBSS, but its proof essentially works for any correct three-move BSS.
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BS1,S2(pk)
S ← ∅; S ← ( )
k′

1 ← 0; k′
2 ← 0; η′ ← 0

(m∗
i , σ∗

i )ℓ+1
i=1 ← A

S′
1,S′

2 (pk)
s⃗← (m∗

i , σ∗
i )ℓ+1

i=1

m← diag(m∗
1, . . . , m∗

ℓ+1)
// use A’s unfinished sessions to create more valid signatures

for j in S // |S| = k
′
1 − k

′
2

(ch, stU )← User1(pk, m∥0∥0j ,S(j))
rsp← S2(j, ch)
σ ← User2(pk, stU , rsp)
s⃗← s⃗∥(m∥0∥0j , σ)

// to guarantee (ℓ + 1) + |S| + (η − |S|) = ℓ + η + 1 signatures

for i in [η − |S|]
(j, cmt)← S1()
(ch, stU )← User1(pk, m∥1∥0i, cmt)
rsp← S2(j, ch)
σ ← User2(pk, stU , rsp)
s⃗← s⃗∥(m∥1∥0i, σ)

// to guarantee exactly ℓ + η S1 and S2 queries

for i in [ℓ− k′
1 + |S|]

(j, cmt)← S1()
(ch, stU )← User1(pk, ϵ, cmt)
rsp← S2(j, ch)

return s⃗

Oracle S′
1()

if k′
1 ≥ ℓ + η then

return ⊥
(j, cmt)← S1()
S ← S ∪ {j}
η′ ← max(η′, |S|)
S(j)← cmt
k′

1 ← k′
1 + 1

return (j, cmt)

Oracle S′
2(j, ch)

if k′
2 ≥ ℓ ∧ j ∈ S then

return ⊥
rsp← S2(j, ch)
if rsp ̸= ⊥ then
S ← S \ {j}
k′

2 ← k′
2 + 1

return rsp

Figure 5: Adversary B for (ℓ + η, η)-OMUF which closes every signing session
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Claim. If η′ ≤ η when A halts, then B never opens more than η signing sessions concur-
rently.

Throughout the entire game |S| ≤ η′, so if η′ ≤ η when A halts then up to that point
in the game |S| has never exceeded η. Therefore, B has not opened more than η signing
sessions concurrently. After A halts B closes all open signing sessions and then only opens
and closes signing sessions sequentially, so the number of maximum concurrently open
signing sessions is not affected.

Claim. Considering A’s output (m∗
i , σ∗

i )ℓ+1
i=1 and η′ after A halts,

Pr

 ∀i ∈ [ℓ + 1] : Verify(pk, m∗
i , σ∗

i ) = 1
∀i, j ∈ [ℓ + 1] : i ̸= j =⇒ (m∗

i , σ∗
i ) ̸= (m∗

j , σ∗
j )

η′ ≤ η

 ≥ AdvOMUF
BS,ℓ,η,A(λ).

The left-hand side is exactly A’s winning condition (k′
2 ≤ ℓ is implied), so it suffices

to show that B perfectly simulates the (ℓ, η)-OMUF game to A assuming A wins. While
simulating (ℓ, η)-OMUF, adversary B does nothing more than forward A’s queries to S′

1
and S′

2 to its own (respective) S1 and S2 oracles — except that B might return ⊥ if
k′

1 ≥ ℓ + η on a query to S′
1 or if k′

2 ≥ ℓ on a query to S′
2. But a winning adversary cannot

open more than ℓ + η sessions or close more than ℓ sessions, so B’s behavior in these cases
does not matter.

Claim.

AdvOMUF
BS,ℓ+η,η,B(λ) ≥ Pr

 ∀i ∈ [ℓ + 1] : Verify(pk, m∗
i , σ∗

i ) = 1
∀i, j ∈ [ℓ + 1] : i ̸= j =⇒ (m∗

i , σ∗
i ) ̸= (m∗

j , σ∗
j )

η′ ≤ η


Assuming the conditions on the right-hand side, we show that B wins by checking its

winning conditions one by one:

• Adversary B’s output message-signature pairs are valid: After A halts, each j ∈ S is
such that (j,S(j)) was the output of some S1 query but no valid S2(j, ch) query was
ever made for some ch. Hence, by correctness of BS, each (m∥0∥0j , σ) pair that B
adds to s⃗ is such that Verify(pk, m∥0∥0j , σ) = 1, as are the (m∥1∥0i, σ) pairs.

• Adversary B’s output message-signature pairs are distinct: As m is distinct from
m∗

1, . . . , m∗
ℓ+1, the (ℓ + 2)-th through (ℓ + η + 1)-th elements of s⃗, which are of the

form

(m∥0∥01, ·), · · · , (m∥0∥0|S|, ·), (m∥1∥01, ·), · · · , (m∥1∥0η−|S|, ·),

are all distinct from each other and distinct from the first (ℓ + 1)-th elements of s⃗.
The first ℓ elements of s⃗ are distinct by assumption.

• Adversary B never opens more than η signing sessions concurrently: η′ ≤ η implies
by a previous claim that B never opens more than η signing sessions concurrently.

• Adversary B does not make more than ℓ + η valid queries to S2: previously shown.
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ParGen(1λ)
(G, p, g)← GenGroup(1λ)
return (G, p, g)

Sign1(x)
r ←$ Zp

r← gr

return (r, r)

Sign2(x, r, c)
s← r + cx

return s

Verify(x, m, σ = (r′, s′))
c′ ← H(r′, m)

return gs′
= r′ · xc′

KeyGen(pp)
x←$ Zp

x← gx

return (x, x)

User1(x, m, r)
α, β ←$ Zp

r′ ← r · gα · xβ

c′ ← H(r′, m)
c← c′ + β

stU ← (r, α, β, c)
return (c, stU )

User2(x, stU , s)
(r, α, β, c)← stU

if gs ̸= r · xc then
return ⊥

r′ ← r · gα · xβ

s′ ← s + α

σ ← (r′, s′)
return σ

SBSGenGroup = (ParGen, KeyGen, Sign1, Sign2, User1, User2, Verify)

Figure 6: The Schnorr Blind Signature Scheme [CP93]
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2.5 Schnorr Blind Signature Scheme
Let GenGroup be a group generation algorithm and H : {0, 1}∗ → Zp a random oracle. The
Schnorr Blind Signature Scheme (SBSS) is presented in fig. 6.

Theorem 1 ([CP93]). SBSGenGroup satisfies correctness.

Corollary 1. Lemma 2 holds if BS = SBSGenGroup and A is algebraic relative to GenGroup.
Furthermore, B can be constructed such that it is algebraic relative to GenGroup.6

Proof. The SBSS satisfies correctness per theorem 1, so lemma 2 applies. To make B
algebraic:

• For the first ℓ + 1 elements of s⃗, output the algebraic representation output by A.

• The (ℓ + 2)-th through (ℓ + η + 1)-th elements of s⃗, as well as any queries to
H, result from honest execution of the SBSGenGroup algorithms User1 and User2.
These algorithms are algebraic, so it is possible to output algebraic representations
accordingly.

3 Unforgeability in the 2-Concurrent Setting
In this section, we show that the SBSS is (ℓ′, 2)-OMUF in the ROM+AGM, assuming the
hardness of ℓ-OMDL where ℓ := ℓ′ + 2. We first explain the high-level idea behind the
proof.

Reduction From OMDL. Per corollary 1, we can assume that A plays the (ℓ, 2)-OMUF
game and closes all its signing sessions. Let h1, . . . , hℓ+1 with discrete log oracle DL be
an ℓ-OMDL instance. Our goal is to compute x1, . . . , xℓ+1 such that gxi = hi for all
i ∈ [ℓ + 1], and we can only query DL at most ℓ times. To accomplish this, we’ll exploit
A’s ability to generate ℓ + 1 valid signatures after conducting only ℓ signing sessions.

We simulate the OMUF game to A using x = hℓ+1 as the public key and h1, . . . , hℓ as
answers to S1 queries. To simulate valid S2(j, cj) queries, we return

sj := DL(hj xcj ). (3)

Since A makes ℓ valid queries to S2, we queried DL only ℓ times. Assuming A wins, their
output (m∗

i , σ∗
i = (r∗

i , s∗
i ))ℓ+1

i=1 is such that every message-signature pair is valid, meaning

gs∗
i = r∗

i xc∗
i (4)

where c∗
i = H(h∗

i , m∗
i ). Since A is algebraic it provides an algebraic representation of each

r∗
i in terms of the group elements it received, i.e., (γ∗

i , ξ∗
i , ρ∗

i,1, . . . , ρ∗
i,ℓ) such that

r∗
i = gγ∗

i xξ∗
i

ℓ∏
j=1

hρ∗
i,j

j . (5)

With some calculations, eqs. (3) to (5) yield

gs∗
i −γ∗

i −
∑ℓ

j=1
ρ∗

i,jsj = xc∗
i +ξ∗

i −
∑ℓ

j=1
ρ∗

i,jcj .

If χi := c∗
i + ξ∗

i −
∑ℓ

j=1 ρ∗
i,jcj is not zero for some i ∈ [ℓ + 1], we can compute the

discrete log x ∈ Zp of x = hℓ+1. Also, we can “recover” the discrete log of hi for all
i ∈ [ℓ] since eq. (3) implies hi = gsi−cix. Altogether, we obtain a solution to the ℓ-OMDL
instance. Up to this point, the argument has been completely analogous to [FPS20].

6Adversary B is not explicitly constructed so that it is algebraic in [FPS20, Lemma 3].
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Bad Event: No Invertible χi. The elephant in the room is the assumption that
χ1 = · · · = χℓ+1 = 0 doesn’t happen. Showing that this “bad event” happens with
negligible probability is the crux of the entire proof and where our argument differs from
[FPS20] and [KLX22]. In [FPS20], an upper bound is accomplished via a reduction from
ℓ-ROS. However, as shown in [BLL+22], ℓ-ROS is actually easy if ℓ ≥ λ, meaning that this
argument only works if the adversary opens fewer than λ signing sessions. [KLX22] gives
a statistical upper-bound for the probability of this “bad event,” which they denote E, in
the sequential setting. Their argument, in broad strokes, is by the following steps:

1. If A does not query H(r∗
i , m∗

i ) for some i ∈ [ℓ+1] then χi = 0 occurs with probability
1/p. Now assume that A queries H(r∗

i , m∗
i ) for all i ∈ [ℓ + 1]; call this the i-th special

query and assume without loss of generality that A never repeats an H query.

2. If A makes a special query when no signing sessions are open, event E occurs with
probability at most 1/p.7

3. Assuming that neither of the first two cases happen, every special query is made
when a signing session is open. As there are ℓ + 1 of these queries and only ℓ signing
sessions, there is some signing session in which two of these queries, say the i-th
and (i + 1)-th, are made. If χi = χi+1 = 0 then they effectively constitute a 1-ROS
solution. Indeed, one can explicitly reduce from 1-ROS to E occurring in this case.

The first two cases also appear in the limited concurrency setting and their respective
arguments can essentially be reused. However, it is surprisingly non-trivial to make an
argument analogous to the third case in even just the 2-concurrent setting, as signing
sessions can overlap and be interleaved in a manner decided by the adversary, generating
a large number of possibilities that we must consider. For intuition, we discuss two
representative examples of how an adversary might behave in this setting.

r1 c1

c∗
1

r2 c2

r3 c3

c∗
2 c∗

3 c∗
5

r4 c4

c∗
4

Figure 7: Example (4, 2)-OMUF game. Left: visualized as a timeline. Right: visualized as
a graph where distinct signing sessions are connected by special queries.

First Example. Our first example is illustrated in fig. 7. Each “staple” represents a
signing session; each rj , which is the output of an S1 query, marks the start of a signing
session; each cj , which is the input of an S2 query, marks the end of a signing session;
and each dashed line, marked by c∗

i , represents the i-th special query by the adversary, of
which c∗

i is the output. The bad event occurs if χi = 0 for all i ∈ [5], which corresponds to
eq. (6). 

c∗
1 + ξ∗

1 − ρ∗
1,1c1 = 0

c∗
2 + ξ∗

2 − ρ∗
2,1c1 − ρ∗

2,2c2 − ρ∗
2,3c3 = 0

c∗
3 + ξ∗

3 − ρ∗
3,1c1 − ρ∗

3,2c2 − ρ∗
3,3c3 = 0

c∗
5 + ξ∗

5 − ρ∗
5,1c1 − ρ∗

5,2c2 − ρ∗
5,3c3 = 0

c∗
4 + ξ∗

4 − ρ∗
4,1c1 − ρ∗

4,2c2 − ρ∗
4,3c3 − ρ∗

4,4c4 = 0

(6)

7This is called “C1” in [KLX22] and the loose upper-bound there is qh/p where qh is the number of H
queries made by the adversary.
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Obtaining a 4-ROS solution is straightforward: when A queries H(r∗
i , m∗

i ), return c∗
i :=

HROS(ρ∗
i , (γ∗

i , ξ∗
i , m∗

i )) − ξ∗
i (this is what is done in [FPS20]). However, this is not good

enough: if ℓ ≥ λ, then we can only reduce from ℓ-ROS, which is easy. In our setting, where
A can only open at most 2 concurrent signing sessions, we show how to obtain a 2-ROS
solution. When A queries H(r∗

1, m∗
1), no sessions have been closed, and we answer with

HROS((ρ∗
1,1 0), (γ∗

1 , ξ∗
1 , ρ∗

1, m∗
1)) − ξ∗

1 — similar to how we solve 4-ROS above. However,
when A queries H(r∗

2, m∗
2), session 1 has been closed and c1 (together with its algebraic

coefficient ρ∗
1,1) has been determined, so we can incorporate that item into the query answer.

That is, we answer the query with HROS((ρ∗
2,1 0), (γ∗

2 , ξ∗
2 , ρ∗

2, m∗
2)) − ξ∗

2 + ρ∗
2,1c1. Oracle

queries H(r∗
3, m∗

3) and H(r∗
5, m∗

5) are answered similarly, and when the H(r∗
4, m∗

4) query is
made, sessions 1, 2 and 3 are all closed, so the answer is HROS((ρ∗

4,4 0), (γ∗
4 , ξ∗

4 , ρ∗
4, m∗

4))−
ξ∗

4 + ρ∗
4,1c1 + ρ∗

4,2c2 + ρ∗
4,3c3. In this way we eliminate all cj where session j has been

closed when the special query is made, making sure that every equation has at most 2
outstanding cj items. Answering H queries in this manner, eq. (6) becomes

HROS((ρ∗
1,1 0), (γ∗

1 , ξ∗
1 , ρ∗

1, m∗
1))− ρ∗

1,1c1 = 0
HROS((ρ∗

2,2 ρ∗
2,3), (γ∗

2 , ξ∗
2 , ρ∗

2, m∗
2))− ρ∗

2,2c2 − ρ∗
2,3c3 = 0

HROS((ρ∗
3,2 ρ∗

3,3), (γ∗
3 , ξ∗

3 , ρ∗
3, m∗

3))− ρ∗
3,2c2 − ρ∗

3,3c3 = 0
HROS((ρ∗

5,2 ρ∗
5,3), (γ∗

5 , ξ∗
5 , ρ∗

5, m∗
5))− ρ∗

5,2c2 − ρ∗
5,3c3 = 0

HROS((ρ∗
4,4 0), (γ∗

4 , ξ∗
4 , ρ∗

4, m∗
4))− ρ∗

4,4c4 = 0

(7)

We obtain a 2-ROS solution as (ρ∗
i,2 ρ∗

i,3) · (c2 c3) = HROS((ρ∗
i,2, ρ∗

i,3), (γ∗
i , ξ∗

i , ρ∗
i , m∗

i )) for
all i ∈ {2, 3, 5}. It could have also been the case that c∗

5 was queried in the first signing
session, in which case we could try to obtain a 1-ROS solution with some minor changes to
how we answer H queries. In either case there is some “nice” structure to the adversary’s
behavior which we are exploiting. However, this structure is not inherent.

r1 c1

c∗
1

r2 c2

r3 c3 r4 c4

c∗
2 c∗

5 c∗
3 c∗

4

Figure 8: “Problematic” (4, 2)-OMUF game. Left: visualized as a timeline. Right:
visualized as a graph where distinct signing sessions are connected by special queries.

Second Example. Considering fig. 8, even if we answer H queries as previously described,
χi = 0 for all i ∈ [5] only boils down to eq. (8).

HROS((ρ∗
1,1 0), (γ∗

1 , ξ∗
1 , ρ∗

1, m∗
1))− ρ∗

1,1c1 = 0
HROS((ρ∗

2,2 ρ∗
2,3), (γ∗

2 , ξ∗
2 , ρ∗

2, m∗
2))− ρ∗

2,2c2 − ρ∗
2,3c3 = 0

HROS((ρ∗
5,2 ρ∗

5,3), (γ∗
5 , ξ∗

5 , ρ∗
5, m∗

5))− ρ∗
5,2c2 − ρ∗

5,3c3 = 0
HROS((ρ∗

3,2 ρ∗
3,4), (γ∗

3 , ξ∗
3 , ρ∗

3, m∗
3))− ρ∗

3,2c2 − ρ∗
3,4c4 = 0

HROS((ρ∗
4,2 ρ∗

4,4), (γ∗
4 , ξ∗

4 , ρ∗
4, m∗

4))− ρ∗
4,2c2 − ρ∗

4,4c4 = 0

(8)

No 1-ROS or 2-ROS solution is to be found, but we can make a more direct argument.
The key point is to isolate H(r∗

2, m∗
2) and H(r∗

5, m∗
5) queries, both of which are made during

sessions 2 and 3; and H(r∗
3, m∗

3) and H(r∗
4, m∗

4) queries, both of which are made during
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sessions 2 and 4. Looking at eq. (8), from χ2 = χ5 = 0 we obtain(
ρ∗

2,2 ρ∗
2,3

ρ∗
5,2 ρ∗

5,3

)
︸ ︷︷ ︸

L

(
c2
c3

)
=
(

HROS((ρ∗
2,2 ρ∗

2,3), (γ∗
2 , ξ∗

2 , ρ∗
2, m∗

2))
HROS((ρ∗

5,2 ρ∗
5,3), (γ∗

5 , ξ∗
5 , ρ∗

5, m∗
5))

)
(9)

and from χ3 = χ4 = 0 we obtain(
ρ∗

3,2 ρ∗
3,4

ρ∗
4,2 ρ∗

4,4

)
︸ ︷︷ ︸

R

(
c2
c4

)
=
(

HROS((ρ∗
3,2 ρ∗

3,4), (γ∗
3 , ξ∗

3 , ρ∗
3, m∗

3))
HROS((ρ∗

4,2 ρ∗
4,4), (γ∗

4 , ξ∗
4 , ρ∗

4, m∗
4))

)
(10)

Assuming that both L and R are full-rank, eq. (9) has a unique solution (c2, c3) uniform
in Z2

p, and eq. (10) has a unique solution (c′
2, c4) uniform in Z2

p. As c2 = c′
2 occurs with

probability 1/p, the bad event that χi = 0 for all i ∈ [5] occurs with probability at most
1/p, conditioned on c∗

3 and c∗
4 being the specific H queries picked by A as special queries.

Adversary A could make many (not exceeding qh) queries when sessions 2 and 4 are open
and for each pair check whether the solution in terms of those special queries satisfies
c2 = c′

2. By the union bound, χi = 0 for all i ∈ [5] occurs with probability
(

qh

2
)
/p.

In the formal proof we will also argue that if L (resp. R) is not full-rank, then
χ2 = χ5 = 0 (resp. χ2 = χ4 = 0) occurs with probability at most 1/p.

Summary: Handling the Bad Event χ1 = · · · = χi+1 = 0. Summarizing the two
examples above,

1. In fig. 7, there are two signing sessions (2 and 3) and three special queries (whose
results are c∗

2, c∗
3, c∗

5) such that all three queries are made during the two sessions.
In general, this case can be reduced from 2-ROS.8 Similarly, if there is one signing
session and two special queries such that both queries are made during the session
(and no other sessions), then it can be reduced from 1-ROS (this argument has
already been made in [KLX22]).

2. The case in fig. 8 is less intuitive to generalize, but the point is as follows: signing
sessions 2, 3 and 4 form a grouping that is disjoint from the other signing session, and
there are four special queries (c∗

2, c∗
3, c∗

4, c∗
5) that occur within this group. These four

special queries can be partitioned into two disjoint sets: c∗
2 and c∗

5 involve signing
sessions 2 and 3, and c∗

3 and c∗
4 involve signing sessions 2 and 4. Each set corresponds

to a linear system with two unknowns and two equations. The key is that there is
a single session (session 2) that “bridges” these two sets of special queries, which
means that there is a single unknown (c2) that appears in both linear systems, and
the probability that there is a value for c2 that satisfies both linear systems is 1/p,
conditioned on the choice of c∗

3 and c∗
4.

In general we first isolate a signing session grouping G′ where there are more special
queries than signing sessions, and then partition all special queries that occur within
G′ into two sets, U and V , such that (1) all signing sessions in U come before all
signing sessions in V , (2) each set involves at least as many special queries as signing
sessions, and (3) there is a single signing session that is involved in both sets of
special queries. In this case we can make a direct argument that χi = 0 for all
i ∈ [ℓ + 1] occurs with probability at most

(
qh

2
)
/p.

The rest of the proof is to show that essentially one of the two cases above must occur for a
(ℓ, 2)-OMUF adversary. Roughly, this is because of the following: for any two concurrently
open signing sessions in the same grouping G′, there is a special query “connecting” them;

8In fact it suffices even if some of the three queries are made during one of the two sessions.
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this “uses up” |G′| − 1 special queries, but more than |G′| special queries are made during
G′, so there are at least two remaining special queries; let them be the j-th and then
the k-th. If queries j and k are made during the same pair of signing sessions then case
1 happens. Otherwise let U be all special queries before k, and V be all special queries
afterwards; then there must be a signing session that “bridges” U and V , so case 2 happens.

Theorem 2. Let GenGroup be a group generation algorithm and ℓ′ ∈ N. Let A′ be an
algebraic adversary for the (ℓ′, 2)-OMUF game relative to SBSGenGroup making at most qh

queries to the random oracle H and outputting messages of length at most m. Define
ℓ := ℓ′ + 2. Then there exist adversaries BOMDL, B1, and B2 such that

AdvOMUF
SBS,ℓ′,2,A′(λ) ≤ AdvOMDL

GenGroup,ℓ,BOMDL
(λ) +

2∑
η′=1

AdvROS
GenGroup,η′,Bη′ (λ) + q2

h + qh + 10
2p

.

Moreover, BOMDL runs in time τ + O(m2 + qh) and B1,B2 make at most qh queries to their
respective HROS oracles.

The following corollary immediately follows from theorem 2 and lemma 1.

Corollary 2. Let GenGroup be a group generation algorithm and ℓ ∈ N. If (ℓ + 2)-OMDL
is hard relative to GenGroup, then SBSGenGroup satisfies (ℓ, 2)-OMUF in the AGM+ROM.

Proof of theorem 2. By corollary 1, there exists an algebraic adversary A for (ℓ, 2)-OMUF
such that AdvOMUF

SBS,ℓ,2,A(λ) ≥ AdvOMUF
SBS,ℓ′,2,A′(λ), and A makes exactly ℓ queries to S1 and ℓ

valid queries to S2. We also assume without loss of generality that A queries H(r, m) at
most once for each pair (r, m).

Consider the sequence of games illustrated in fig. 9. As A makes exactly ℓ valid queries
to S2, we omit k2 ≤ ℓ as part of A’s winning condition. We check if there exist distinct
indices i, j ∈ [ℓ + 1] such that (r∗

i , m∗
i ) = (r∗

j , m∗
i ) rather than (m∗

i , σ∗
i = (r∗

i , s∗
i )) =

(m∗
j , σ∗

j = (r∗
j , s∗

j )), which is equivalent as s∗
i is completely determined by r∗

i and m∗
i for a

valid signature. Additionally, we halt and output 0 immediately if η∗ > η after A halts.
We now outline the high-level idea behind each game hop:

Game1. We keep track of the algebraic representations of each r in an H(r, m) query. Once
the adversary is finished, in addition to checking the previous winning conditions, we
let the adversary lose if χ1 = · · · = χi+1 = 0 and Si = ∅ for some i ∈ [ℓ + 1]. This
rules out the “bad event” discussed in the outline of the proof, in the case that there
was a special query made when no signing sessions were open; this corresponds to
step 2 of the [KLX22] argument (see the summary of [KLX22] above).

Game2. This game changes corresponds to the case where we can upper-bound the
probability of the bad event χ1 = · · · = χi+1 = 0 via reduction from 1-ROS (|I| = 2),
or 2-ROS (|I| = 3). The former event corresponds to step 3 of the [KLX22] argument,
while Figure 7 is a representative example of the latter event.

Game3. This final game change corresponds to the only remaining case that the bad
event χ1 = · · · = χi+1 = 0 can occur: every special query was made during a
signing session, but there is no way to reduce from 1-ROS or 2-ROS. Figure 8 is a
representative example of this case.

Finally, we upper-bound the adversary’s advantage in Game3 via a reduction from the
hardness of ℓ-OMDL.

Claim.

AdvGame1
A (λ) ≥ AdvOMUF

SBS,ℓ,2,A(λ)− 1
p

.
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OMUFA
SBS,ℓ(1λ) Game1 Game2 Game3

(G, p, g)← GenGroup(1λ)
(x, x)← KeyGen(pp)
k1 ← 0; k2 ← 0;S ← ∅
η∗ ← 0

S ← ( ); T ← ( ); U ← ( )

(m∗
i , σ∗

i = (r∗
i , s∗

i ))ℓ+1
i=1 ← A

S1,S2 (x)
if η∗ > η then

return (0, η∗)
if ∃i, j ∈ [ℓ + 1] : i ̸= j

∧ (r∗
i , m∗

i ) = (r∗
j , m∗

j ) then
return 0

(Si)ℓ+1
i=1 ← (S(r∗

i , m∗
i ))ℓ+1

i=1

(c∗
i )ℓ+1

i=1 ← (H(r∗
i , m∗

i ))ℓ+1
i=1

(γ∗
i , ξ∗

i , ρ∗
i )ℓ+1

i=1 ← (U(r∗
i , m∗

i ))ℓ+1
i=1

(χi)ℓ+1
i=1 =

(
c∗

i + ξ∗
i −

ℓ∑
j=1

ρ∗
i,jcj

)ℓ+1

i=1

if ∀i ∈ [ℓ + 1] : χi = 0 then
if ∃i ∈ [ℓ + 1] : Si = ∅ then

return 0

if ∃I ⊆ [ℓ + 1] : |I| = 2
∧ | ∪i∈I Si| = 1 then

return 0
if ∃I ⊆ [ℓ + 1] : |I| = 3

∧ | ∪i∈I Si| = 2 then
return 0

return 0

return (∀i ∈ [ℓ + 1] : Verify(x, m∗
i , σ∗

i ) = 1, η∗)

Oracle S1()
k1 ← k1 + 1
(rk1 , rk1 )← Sign1(x)
S ← S ∪ {k1}
η∗ ← max(η∗, |S|)
return (k1, r)

Oracle S2(j, c)
if j ̸∈ S then return ⊥
cj ← c

s← Sign2(x, rj , c)
S ← S \ {j}; k2 ← k2 + 1
return s

Oracle H(r(γ,ξ,ρ), m)
if T (r, m) = ⊥ then

S(r, m)← S
U(r, m)← (γ, ξ, ρ)
T (r, m)←$ Zp // (♢)

return T (r, m)

Figure 9: Sequence of games for (ℓ, 2)-OMUF. In each successive game more code is added
to the previous game, starting with OMUFA

SBS,ℓ. For example, Game2 is all of the unboxed
code plus all of the dashed box code plus all of the solid box white background code
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In Game1 we simulate queries to H via lazy sampling, which makes no external change.
The other change is that Game1 outputs 0 if χi = 0 for all i ∈ [ℓ + 1] and there is some
i ∈ [ℓ + 1] such that Si = S(r∗

i , m∗
i ) = ∅. Si is set to S when H(r∗

i , m∗
i ) is queried, at which

point S is the set of indices of signing sessions that are open. Note that if A does not
query H(r∗

i , m∗
i ), then the challenger makes this query after A halts. Therefore, Si = ∅

can occur as a result of exactly one of the following two scenarios:

1. The challenger queried H(r∗
i , m∗

i ) after A halted; or,

2. Adversary A queried H(r∗
i , m∗

i ) when no signing sessions were open.

The first case is easy: c∗
i is sampled uniformly at random from Zp after all other terms in χi

are fixed, so χi = 0 occurs with probability 1/p. For the second case, consider the moment
when A queries H(r∗

i , m∗
i ). At this point, A has received group elements x and r1, . . . , rk1 .

As all signing sessions are closed, c1, . . . , ck1 are fixed. As A has not yet received group
elements rk1+1, . . . , rℓ, we have ρ∗

i,j = 0 for all j ∈ {k1 + 1, . . . , ℓ}. Putting this together,

χi = c∗
i + ξ∗

i −
ℓ∑

j=1
ρ∗

i,jcj = c∗
i + ξ∗

i −
∑

j∈[k1]

ρ∗
i,jcj . (11)

Additionally, A provides ξ∗
i and ρ∗

i,1, . . . , ρ∗
i,k1

when they query H(r∗
i , m∗

i ), at which point
they are fixed.9 As everything in eq. (11) is fixed before c∗

i is sampled uniformly at random
from Zp, we conclude that χi = 0 occurs with probability 1/p.

Claim. There exist adversaries B1,B2 for 1-ROS and 2-ROS respectively, making at most
qh queries to their respective HROS oracles, such that

AdvGame2
A (λ) ≥ AdvGame1

A (λ)−
2∑

η′=1
AdvROS

GenGroup,η′,Bη′ (λ).

Adversary A has identical advantage in Game2 unless χi = 0 for all i ∈ [ℓ + 1]; there is
no i ∈ [ℓ + 1] such that Si = ∅; and for some η′ ∈ {1, 2} there exists I ⊆ [ℓ + 1] of size η′ + 1
such that

∣∣⋃
i∈I Si

∣∣ = η′. If there is no i ∈ [ℓ + 1] such that Si = ∅ then for all i ∈ [ℓ + 1]
adversary A queries H(r∗

i , m∗
i ), and when they do so there is some signing session which is

open. We call the query to H(r∗
i , m∗

i ) the i-th special query. With this terminology, we
can restate the previous claim more intuitively: A’s advantage is the same unless χi = 0
for all i ∈ [ℓ + 1]; every special query occurs during a signing session; and either there are
two special queries which occur during the same signing session, or there are three special
queries and two signing sessions such that all three queries are made during one or two
of these sessions (see fig. 7 for an example). We call the former event R1, and the latter
event R2. We upper-bound Pr[R1] via reduction from 1-ROS, and Pr[R2] via reduction
from 2-ROS. Let BHROS

η′ be the η′-ROS adversary which, on input (G, p, g) where G = ⟨g⟩
is a group of prime order p > 2λ and oracle HROS, does the following:

1. Simulate Game2 to A with (G, p, g) and instead of T (r, m)←$ Zp on the line with
comment (♢) in H, do the following:

(a) Let S = {j1, . . . , jk1−k2} where j1 < · · · < jk1−k2 . Also, define G := [k1] \ S,
that is, the set of indices of signing sessions that have been closed.

9This argument is also made in [FPS20, KLX22]. Adversary A provides algebraic representations of r∗
i

when it queries H(r∗
i , m∗

i ) and also when it finally outputs r∗
i . These representations might differ, so it

is important that ξ∗
i and ρ∗

i are fixed on the H query in Game1. This is done in [FPS20], but [KLX22]
incorrectly takes the representation from when A outputs r∗

i .
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(b) Set T (r, m) to be

HROS((ρj1 · · · ρjk1−k2
)∥0k−(k1−k2), (γ, ξ, ρ, m))− ξ +

∑
j∈G

ρjcj .

2. Trying all combinations,10 find I ⊆ [ℓ + 1] of size η′ + 1 such that
∣∣⋃

i∈I Si

∣∣ = η′.
If no such indices exist, then halt. Otherwise, let

⋃
i∈I Si = {j1, . . . , jη′} where

j1 < j2 < · · · < jη′ .

3. For each i ∈ [ℓ + 1], set auxi ← (γ∗
i , ξ∗

i , ρ∗
i , m∗

i ).

4. Output (((ρ∗
iq,j1

· · · ρ∗
iq,jη′ ), auxq)η′+1

q=1 , (cj1 · · · cjη′ )).

As r is completely determined by A’s choice of its algebraic representation (γ, ξ, ρ), and
HROS outputs uniformly random elements in Zp, adversary A’s view is identical in Game2
and in Bη′ ’s simulation. Hence, Rη′ occurs with the same probability in Game2 and in Bη′ ’s
simulation of Game2 to A. If Rη′ occurs in Bη′ ’s simulation, then Bη′ does not halt on item 2.
Note that when A queries H(r∗

i , m∗
i ) for any i ∈ [ℓ + 1], B sets G ← [k1] \Si. As A has only

received group elements x and r1, . . . , rk1 by this point, we have ρ∗
i,k1+1 = . . . = ρ∗

i,ℓ = 0.
Therefore, at the end of the game once ci is defined for all i ∈ [ℓ],

∑
j∈G

ρ∗
i,jcj =

∑
j∈[k1]\Si

ρ∗
i,jcj +

ℓ∑
j=k1+1

0 · cj =
∑

j∈[ℓ]\Si

ρ∗
i,jcj .

We have χi = 0 for all i ∈ [ℓ + 1], which implies that for all i ∈ I,

χi = c∗
i + ξ∗

i −
ℓ∑

j=1
ρ∗

i,jcj

=

HROS((ρi,j1 · · · ρi,jη′ ), auxi)− ξ∗
i +

∑
j∈[ℓ]\Si

ρ∗
i,jcj

+ ξ∗
i −

ℓ∑
j=1

ρ∗
i,jcj

= HROS((ρi,j1 · · · ρi,jη′ ), auxi)−
∑
j∈Si

ρ∗
i,jcj

= HROS((ρi,j1 · · · ρi,jη′ ), auxi)−
∑

k∈[η′]

ρ∗
i,jk

cjk
= 0.

If Rη′ occurs then (r∗
1, m∗

i ), . . . , (r∗
ℓ+1, m∗

ℓ+1) are all distinct (otherwise A would have
halted before Rη′ could occur), so aux1, . . . , auxη′+1 are all distinct. Therefore, Bη′ wins
the η′-ROS game. Moreover, BHROS

η′ makes qh queries to HROS as A makes qh queries to H.

Claim.

AdvGame3
A (λ) ≥ AdvGame2

A (λ)− q2
h + qh + 8

2p
.

Adversary A has identical advantage in Game3 unless χi = 0 for all i ∈ [ℓ + 1]; there is
no i ∈ [ℓ + 1] such that Si = ∅; and for all η′ ∈ {1, 2}, if I ⊆ [ℓ + 1] is of size η′ + 1 then∣∣∣∣∣⋃

i∈I

Si

∣∣∣∣∣ > η′.

10This takes time O(ℓη′ ), but we don’t actually care about the running time of Bη′ .
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See fig. 8 for an example. For a set V of indices of signing sessions, define

QV := {i ∈ [ℓ + 1] : Si ∩ V ̸= ∅}.

Recall that Si is the set of signing sessions which are open when A makes the i-th special
query. Set QV is basically the special queries which occur when at least one signing session
in V is open. Consider the following graph:

G := ([ℓ], {{a, b} : a, b ∈ Si for some i ∈ [ℓ + 1] ∧ a ̸= b}).

G is visualized for concrete OMUF games in figs. 7 and 8. Vertices correspond to signing
sessions and distinct vertices a, b are connected by an edge if there was a special query
which was made when signing sessions a and b were both open. We refer to each connected
component of G as a signing session grouping. As each special query, of which there are
ℓ + 1, occurs during a signing session, of which there are ℓ, there exists a signing session
grouping with vertex set G′ such that

|QG′ | ≥ |G′|+ 1, (12)

that is, in which more special queries occur than there are signing sessions. Additionally,
we have the requirements

∀ distinct i, j ∈ [ℓ + 1] : |Si ∪ Sj | > 1 (⋆)
∀ distinct i, j, k ∈ [ℓ + 1] : |Si ∪ Sj ∪ Sk| > 2 (⋆⋆)

We may assume that |G′| ≥ 3, otherwise eqs. (⋆) and (⋆⋆) cannot hold. Since G′ is the set of
vertices of a connected component of G, and each special query connects at most two vertices,
there is a set B ⊆ [ℓ + 1] of size |G′| − 1 such that edges {{a, b}, a, b ∈ Si for some i ∈ B}
span G′. In other words, if T is a tree that covers all vertices of G′, then B is the set
of special queries corresponding to the edges of T . As B ⊆ QG′ , there are at least two
remaining special queries in QG′ \B per eq. (12); let them be j and k, and assume w.l.o.g.
that the j-th special query occurs before the k-th.

Claim. There exists some v ∈ G′ such that v ∈ Sk and v ̸∈ Sj. That is, there is some
signing session v such that the k-th special query is made during signing session v but the
j-th special query is not.

As j ∈ QG′ and at most two signing sessions can be open when the j-th special query
is made, we have |Sj | = 1 or |Sj | = 2.

Suppose Sj = {t, u} for some t, u ∈ G′. Then signing sessions t and u are connected
and at some point concurrently open. As they are at some point concurrently open and
at most two signing sessions can ever be concurrently, the only way that B spans G′ is
if there is some i ∈ B such that Si = {t, u} also. If Sk ⊆ Sj then i, j, k are such that
|Si ∪ Sj ∪ Sk| = 2, which contradicts eq. (⋆⋆)

Next, suppose Sj = {t} for some t ∈ G′. If Sk = {t} then i, j contradict eq. (⋆). If
Sk = {t, u} for some u ∈ G′, then there is some i ∈ B such that Sk = {t, u} also, and then
i, j, k contradict eq. (⋆⋆).

Claim. There exist U, V ⊆ [ℓ + 1] which partition QG′ such that∣∣∣∣∣
(⋃

i∈U

Si

)
∩

(⋃
i∈V

Si

)∣∣∣∣∣ = 1,

∣∣∣∣∣⋃
i∈U

Si

∣∣∣∣∣ ≤ |U |,
∣∣∣∣∣⋃
i∈V

Si

∣∣∣∣∣ ≤ |V |,
and all the special queries in U occur before all the special queries in V .
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There is a lot of notation to unpack here,11 so we restate the claim in plain English:
we can partition all of the special queries which occur in the signing session grouping G′

into two sets, U and V , such that:

• the signing sessions open when the special queries in U are made and the signing
sessions open when the special queries in V are made have only one in common;

• the number of signing sessions open when the special queries in U are made is at
most the number of special queries in U , and likewise for V ; and,

• all the special queries in U occur before all the special queries in V .

As at least one and at most two signing sessions are open when the k-th special query is
made, |Sk| ∈ {1, 2}.

Suppose that Sk = {v} for some v ∈ G′. The idea is to let U start from j and V start
from k (recall that j and k are the two special queries that are not in B, and j comes
first); then we extend U to include all special queries in QG′ that occur before the k-th,
and extend V to include all special queries in QG′ that occur afterwards. Formally, let

V = {k} ∪ {i′ ∈ QG′ : the i′-th special query occurs after the k-th},

and U = QG′ \V . Clearly U and V partition QG′ and are such that all of the special queries
in U occur before all of the special queries in V . We now show that

(⋃
i∈U Si

)
∩
(⋃

i∈V Si

)
=

{v}. Since Sk = {v}, any special query after k is made during v or some signing session
which is opened after k is queried, so it is not in

⋃
i∈U Si; similarly, any special query

before k is made during v or some signing session which is closed before k is queried, so it
is not in

⋃
i∈V Si. Essentially, query k acts as a “barrier” for signing sessions. Therefore,(⋃

i∈U Si

)
∩
(⋃

i∈V Si

)
⊆ {v}. As v ∈ Sk and k ∈ V we know that

⋃
i∈V Si contains v.

Additionally, by the previous claim v ̸∈ Sj , however G′ is connected which means that at
least one of the signing sessions which is open when j is queried is connected to signing
session v. Therefore, there is some special query in QG′ which occurs before k and is
made when v is open, so

⋃
i∈U Si contains v. Thus

(⋃
i∈U Si

)
∩
(⋃

i∈V Si

)
= {v}. Now

considering
⋃

i∈V Si, we already know that this union contains v. For each additional
signing session in G′ which is opened after the k-th special query is made, there is an
additional special query in V which connects it to the rest of the signing sessions in

⋃
i∈V Si.

We conclude |V | ≥ |
⋃

i∈V Si|. The argument for |U | ≥ |
⋃

i∈U Si| is analogous.
Now suppose that Sk = {u, v} for some distinct u, v ∈ G′. If there exists i ∈ SG′ such

that Si = {u, v} also and the i-th special query occurs before the k-th then let q = i;
otherwise set q = k. Let

V = {q} ∪ {i′ ∈ QG′ : the i′-th special query occurs after the q-th},

and U = QG′ \V . Clearly U and V partition QG′ and are such that all of the special queries
in U occur before all of the special queries in V . In this case one can argue analogously
that either

(⋃
i∈U Si

)
∩
(⋃

i∈V Si

)
= {u} or

(⋃
i∈U Si

)
∩
(⋃

i∈V Si

)
= {v} depending on

which of u or v is opened first. Also, similarly to the previous argument, for each signing
session in G′ opened after q is made, there is an additional special query which connects it
to the rest of the sessions in

⋃
i∈V Si.

Claim. Pr[χi = 0 for all i ∈ G′] ≤ (qh
2 )+qh+4

p = q2
h+qh+8

2p .

11As an example, in fig. 8, U = {2, 5} and V = {3, 4}: when the second and fifth special queries are
made, signing sessions 2 and 3 are open; when the third and fourth special queries are made, signing
sessions 2 and 4 are open; and there is one signing session in common, namely session 2.
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Let |U | = q, and sort all special queries in U from first to last as U = {i1, . . . , iq}.
Similarly, let |V | = r and sort all special queries in V from first to last as V = {j1, . . . , jr}.
Consider the algebraic coefficients ρ∗

i1
, . . . , ρ∗

iq
, ρ∗

j1
, . . . , ρ∗

jr
; we identify three cases which

follow.
Suppose that ρ∗

i1
= 0⃗. We have χi1 = c∗

i1
+ ξ∗

i1
and ξ∗

i1
is fixed before c∗

i1
is sampled

uniformly at random from Zp, so Pr[χi1 = 0] = 1/p. Similarly, if ρ∗
j1

= 0⃗, then Pr[χj1 =
0] = 1/p.

Next, suppose that ρ∗
i1
̸= 0⃗ and {ρ∗

i1
, . . . , ρ∗

iq
} is linearly dependent. It follows that there

is some j ≥ 2 such that ρ∗
ij

is a linear combination of ρ∗
i1

, . . . , ρ∗
ij−1

. Let λ1, . . . , λj−1 ∈ Zp

such that ρ∗
ij

=
∑j−1

k=1 λkρ∗
ik

. Now we upper-bound Pr[χij
= 0 | χi1 = · · · = χij−1 = 0].

Consider the moment when A makes the (ij)-th query to H. At this point, ρ∗
ij

is fixed and
χij

= 0 holds if

χij
= c∗

ij
+ ξ∗

ij
− ρ∗

ij
· (c1 · · · cℓ)

= c∗
ij

+ ξ∗
ij
−

(
j−1∑
k=1

λkρ∗
ik

)
· (c1 . . . cℓ)

= c∗
ij

+ ξ∗
ij
−

j−1∑
k=1

λk(c∗
ik
− ξ∗

ik
) = 0,

where the last equation is because χik
= 0. All terms in the expression are fixed before

c∗
ij

is sampled uniformly at random from Zp, hence this occurs with probability at most
1/p. By an analogous argument, if {ρ∗

i }i∈V is linearly dependent then χi = 0 for all i ∈ [ℓ]
occurs with probability 1/p.

Finally, suppose that both {ρ∗
i }i∈U and {ρ∗

i }i∈V are linearly independent. By the
previous claim |

⋃
i∈U Si| ≤ |U | and if the inequality is strict then {ρ∗

i }i∈U cannot be linearly
independent. Hence |

⋃
i∈U Si| = |U | = q and by the same argument |

⋃
i∈V Si| = |V | = r.

Also recall that all the special queries in U come before all the special queries in V .
Let

⋃
i∈U Si = {a1, . . . , aq} and

⋃
i∈V = {b1, . . . , br}. The system {χi = 0}i∈U corre-

sponds to the matrix equationρ∗
i1...

ρ∗
iq


ca1

...
caq

 =

c∗
i1

+ ξ∗
i1...

c∗
iq

+ ξ∗
iq

 ,

which has a unique solution (ca1 , . . . , caq
) which is uniform in Zq

p. Now we consider the
system {χi = 0}i∈V . Recall from the previous claim that our specific construction of V is
such that the first special query in V occurs when signing session v is open, i.e., v ∈ Sj1 ;
where

(⋃
i∈U Si

)
∩
(⋃

i∈V Si

)
= {v}. Consider the set Sj1 :

• If Sj1 = {v}, then χj1 = c∗
j1

+ ξ∗
j1
− ρ∗

j1,vcv = 0 implies cv = c∗
j1

(ρ∗
j1,v)−1. On the

other hand, v ∈
⋃

i∈U Si, so (as argued above) the system {χi = 0}i∈V has a unique
solution for cv which is uniform in Zp. The probability that the same cv works for
both systems is 1/p conditioned on the specific H query that A picks for j1, of which
there are fewer than qh possibilities.12 By the union bound, Pr[χj1 = 0] ≤ qh/p.

• If Sj1 = {u, v} for some u ∈ G′ then our construction was such that Sj2 = {u, v}.
Similarly to before, χj1 = χj2 = 0 has a unique solution for cv which is uniform in
Zp. Considering the number of ways to choose special queries j1 and j2 from the
total number of H queries, we obtain Pr[χj1 = χj2 = 0] ≤

(
qh

2
)
/p.

12Note that A can make a number of H queries, and after seeing the results check if any of the
corresponding cv works for both systems.
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Claim. There exists an adversary BOMDL such that

AdvOMDL
GenGroup,ℓ,BOMDL

(λ) = AdvGame3
A (λ)

and BOMDL runs in time τ + O(m2 + qh).

Let BOMDL be the adversary which, on OMDL instance (G, p, g, h1, . . . , hℓ+1) and
discrete log oracle DL, simulates Game3 to A with public parameters (G, p, g), x = hℓ+1,
and the following changes:

• While answering A’s S1 queries, instead of doing (rk1 , rk1)← Sign1(x), which cannot
be simulated without knowledge of the discrete logarithm of x, set rk1 ← hk1 .

• While answering A’s S2 queries, instead of doing s← Sign2(x, rj , c), which cannot
be simulated without knowledge of rj , the discrete logarithm of rk1 = hk1 , query

sj ← DL(hj xc) (13)

and set s← sj .

As h1, . . . , hℓ+1 are uniform in G, adversary B’s simulation of S1 is perfect. Additionally,
sj is uniform in Zp and such that gsj = hjxcj for all j ∈ [ℓ], so B’s simulation of S2 is also
perfect.

After A halts, s1, . . . , sℓ are defined since A makes exactly ℓ valid queries to S2. Then:

1. Find some k ∈ [ℓ + 1] such that χk ̸= 0. If none exists, then halt.

2. Compute xℓ+1 ← χ−1
k (s∗

k − γ∗
k −

∑ℓ
j=1 ρ∗

k,jsj).

3. Compute xi ← si − cixℓ+1 for all i ∈ [ℓ].

4. Output (x1, . . . , xℓ+1).

As B’s simulation of Game3 is perfect,

Pr
[

∃k ∈ [ℓ + 1] : χk ̸= 0 ∧
∀i ∈ [ℓ + 1] : Verify(x, m∗

i , σ∗
i = (r∗

i , s∗
i )) = 1

]
= AdvGame3

A (λ). (14)

If the first event occurs then B does not halt on item 1, and if the second occurs then for
all i ∈ [ℓ + 1],

gs∗
i = r∗

i xc∗
i . (15)

Since A is algebraic, it outputs (γ∗
k , ξ∗

k, ρ∗
k) such that

r∗
k = gγ∗

k xξ∗
k

ℓ∏
j=1

hρ∗
k,j

j . (16)

Using that gs∗
k x−c∗

k = r∗
k from eq. (15), we rewrite eq. (16) as

gs∗
k x−c∗

k = gγ∗
k xξ∗

k

ℓ∏
j=1

hρ∗
k,j

j .

Plugging in that gsj x−cj = hj for all j ∈ [ℓ] from eq. (13),

gs∗
k x−c∗

k = gγ∗
k xξ∗

k

ℓ∏
j=1

(gsj x−cj )ρ∗
k,j .
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Finally, rewriting the equation, we get

gs∗
k−γ∗

k−
∑ℓ

j=1
ρ∗

k,jsj = xc∗
k+ξ∗

k−
∑ℓ

j=1
ρ∗

k,jcj .

Therefore gxℓ+1 = gχ−1
k

(s∗
k−γ∗

k−
∑ℓ

j=1
ρ∗

k,jsj) = x. Using eq. (13), we have gsix−ci = hi for
all i ∈ [ℓ], hence gxi = gsi−cixℓ+1 = gsix−ci = hi for all i ∈ [ℓ]. As A queries S2 exactly ℓ
times, B made exactly ℓ queries to DL, so B wins. We have that

AdvGame3
B (λ) = Pr

[
∃k ∈ [ℓ + 1] : χk ̸= 0 ∧

∀i ∈ [ℓ + 1] : Verify(x, m∗
i , σ∗

i = (r∗
i , s∗

i )) = 1

]
. (17)

Combining eq. (14) and eq. (17) yields the claim.

Difficulties Generalizing to Polylog-Concurrency. One might ask whether our
security proof in the 2-concurrent setting can be generalized to the η-concurrent setting
where η = O((log λ)k). As discussed in the introduction, all of our argument can essentially
be reused in the more general setting, except for the case where the probability of the
“bad event” cannot be upper-bounded via a reduction from ROS—i.e., Game3 in the formal
proof. To see the difficulties here, recall that our proof relies on analyzing signing session
groupings represented by a graph G, where vertices correspond to signing sessions and
two vertices are connected if a special query is made while both signing sessions are open.
Even in the 3-concurrent setting, it is unclear what G would become, since it is possible
that a special query is made during three sessions. In fact, the number of “essentially
different cases” of how signing sessions may interleave appears to grow rapidly while η
increases, so we might need more powerful tools from combinatorics and/or linear algebra
to make an argument for the more general η-concurrent setting.
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