
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 3, 24 pages.

https://doi.org/10.62056/a3txl86bm
Check for updates

Truncated multiplication and batch software
SIMD AVX512 implementation for faster
Montgomery multiplications and modular

exponentiation
Laurent-Stéphane Didier1 , Nadia El Mrabet2 , Léa Glandus1 and

Jean-Marc Robert1

1 Toulon, Laboratoire IMath, Université de Toulon, France
2 Saint-Etienne, Mines Saint-Etienne, CEA-LETI, Centre CMP, Department SAS, France

Abstract. This paper presents software implementations of batch computations,
dealing with multi-precision integer operations. In this work, we use the Single
Instruction Multiple Data (SIMD) AVX512 instruction set of the x86-64 processors,
in particular the vectorized fused multiplier-adder VPMADD52. We focus on batch
multiplications, squarings, modular multiplications, modular squarings and constant
time modular exponentiations of 8 values using a word-slicing storage. We explore
the use of Schoolbook and Karatsuba approaches with operands up to 4108 and 4154
bits respectively. We also introduce a truncated multiplication that speeds up the
computation of the Montgomery modular reduction in the context of software imple-
mentation. Our Truncated Montgomery modular multiplication improvement offers
speed gains of almost 20% over the conventional non-truncated versions. Compared
to the state-of-the-art GMP and OpenSSL libraries, our speedup modular operations
are more than 4 times faster. Compared to OpenSSL BN_mod_exp_mont_consttimex2
using AVX512 and VPMADD52 in 256-bit registers, in fixed-window exponentiations of
sizes 1024 and 2048, our 512-bit implementation provides speedups of respectively
1.75 and 1.38, while the 256-bit version speedups are 1.51 and 1.05 for 1024 and
2048-bit sizes (batch of 4 values in this case).

1 Introduction
The need of multi-precision computation in the context of cryptographic oper-
ations arose with the wide use of public key cryptography, linked to the RSA
cryptosystem [RSA78], Digital Signature Algorithm (DSA) [Sch96], Elliptic
Curve Cryptography [BSS99], or isogeny-based cryptography [BI21]. While
these protocols are destined to give way to the future post-quantum ones in the
long term, they are still widely used and the need of high throughput signature
and/or verification remains vital. One direction to ensure fast signature or
verification computations is to make use of the modern processor features.
The x86-64 processors include a 64-bit multiplier providing a 128-bit result.
This instruction is the foundation of several multi-precision libraries like GMP
(see [Ga]). Since the appearance of the SIMD (Single Instruction Multiple

This work has been partially funded by the AID (Agence pour l’Innovation de la Défense), project
2022151.

E-mail: laurent-stephane.didier@univ-tln.fr (Laurent-Stéphane Didier), nadia.el-mrabet@em
se.fr (Nadia El Mrabet), lea.glandus@univ-tln.fr (Léa Glandus), jean-marc.robert@univ-tln.fr
(Jean-Marc Robert)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-02 Accepted: 2024-09-02

https://doi.org/10.62056/a3txl86bm
https://crossmark.crossref.org/dialog/?doi=10.62056/a3txl86bm&domain=pdf&date_stamp=2024-09-25
https://orcid.org/0009-0008-8658-0064
https://orcid.org/0000-0003-3840-584X
https://www.emse.fr/~nadia.el-mrabet/
https://orcid.org/0009-0008-0966-0503
https://orcid.org/0000-0002-9634-5729
http://jrobert.univ-tln.fr
mailto:laurent-stephane.didier@univ-tln.fr
mailto:nadia.el-mrabet@emse.fr
mailto:nadia.el-mrabet@emse.fr
mailto:lea.glandus@univ-tln.fr
mailto:jean-marc.robert@univ-tln.fr
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Truncated multiplication and batch software implementation for faster mod. exp.

Data) instruction sets, especially the AVX and AVX2, allowing parallel computa-
tions, several works attempted to exploit the possibilities of these instructions.
In 2012, Gueron and Krasnov in [GK12] proposed the so called RSA_Z im-
plementation for OpenSSL. These software implementations take advantage
of the 32-bit parallel multipliers, i.e. four 32-bit multiplications (providing
four 64-bit results) can be performed simultaneously using the AVX2 256-bit
registers. However, these improvements rely on the microarchitecture version
used, since the complexity balance in terms of 32-bit multiplications leads to
the same multiplication instruction numbers in comparison with conventional
64-bit sequential architecture. Gueron et al. in [GK16, DGK18] proposed other
works using AVX512 to improve this balance. However, the carry management
and word alignment of the additions often necessitates time consuming op-
erations (shuffles or permutes, shifts, additions...) and the efficiency of the
computation of a single multi-precision multiplication using SIMD instruction
sets is not as efficient as expected. Furthermore, the carry management leads
to the so called reduce-radix approach, that is using 28 or 27-bit operands in
32-bit multipliers, in order to keep spare bits to ensure the carry management,
with a penalty in execution speed. Recently, the availability of the VPMADD52
instructions, computing up to 8 operations of the form a + b× c (AVX512) in
64-bit word-slicing with b and c of size 52 bits, brought some improvements.
Nevertheless, the speedup remains small, see Gueron et al. in [GK16] (see
also Bos et al. in [BMSZ14], Edamatsu and Takahashi in [DG19, ET20] and
Takahashi in [Tak20]).
To counteract the carry management and word alignment penalty, another way
is to design batch multipliers (and batch computations in general), using a word
slicing representation of a corresponding batch of values. This technique is well
known and used in the GPU context (see [BCC+09, Tre13, MC14, ELWW16,
EZW18, ABS10, Bos12]).
In 2008, Grabher et al. [GGP08] present cryptographic pairing software imple-
mentations, some of them using a technique close to the word slicing approach
with reduced radix (29 bit witdh) for inter-pairing parallel computations. Quite
recently (2022), Buhrow et al. in [BGH22] improved the concept with 32-bit
SIMD multipliers using the AVX512 instruction set (512-bit registers), applied
to CRT-RSA decryptions. These implementations compute 8 modular expo-
nentiations simultaneously, using the reduce-radix architecture, providing up
to 1.9 speedup in comparison with the OpenSSL throughput, for 2048-bit CRT-
RSA decryptions. With the AVX512 and VPMADD52 instructions, and in the
context of post-quantum SIKE protocol, Cheng et al. in [CFG+21, CFGR22]
proposed a batch implementation of the key exchange protocol. However,
their implementations are specific to the SIKE parameters, in particular the
Montgomery friendly primes for the modular operations. They make use of a
slightly reduced radix approach (51-bit operands for the 52-bit multiplier of
the VPMADD52). To the best of our knowledge, these multipliers are the fastest
for the considered sizes (e.g. 503 bits), but with a relaxed carry management
due to the specific modular reduction following each multiplication or squaring.
Therefore, the implementations of Cheng et al. cannot be used or transposed
in other contexts.
Recently, the OpenSSL library offers a new approach, which is intermediary
between a parallelized computation of a single exponentiation and a batch ver-
sion, implemented by Kyrillov and Matyukov (see[Pro]). This implementation
computes two exponentiations simultaneously using the VPMADD52 instruction
on 256-bit registers (when available on the platform). This avoids some mi-

Laurent-Stéphane Didier, Nadia El Mrabet, Léa Glandus, Jean-Marc Robert 3

croarchitecture issues of AVX512 while it is compliant to the Intel AVX10.1
new extension (see [Arc]). This function processes operands of 1024, 1536
and 2048 bits. To the best of our knowledge, these implementations are the
state-of-the-art.
Another topic we have focused on in this paper is the concept of truncated
operation applied to modular reduction. In his seminal paper, Barrett in [Bar86]
mentioned the idea, but did not implement the concept further. Montgomery
in [Mon85] did not pay attention to the idea either. Subsequent works on the
Montgomery modular reduction or multiplication developed the concept of
block or word approaches, like Koç in [KKAK96]. These are the CIOS (for
Coarsely Integrated Operand Scanning) and variants, which aim to improve
the performance by optimising the word addition numbers and the memory
access patterns. However, these approaches are not suitable for truncated
operations. Later on, Hars in [Har05] and [Har06] studied the concept of
truncated multiplications and their application to various contexts, mainly
Barrett and Montgomery multiplications. This work remained theoretical
and focused on possible improvements in hardware implementations but no
implementations have been developed. More recently, Ding et al. in [DL18]
proposed a hardware implementation of a 256-bit ECC processor using a
Barrett modular multiplication with a truncated multiplication. Later on
in [DL20], the same authors proposed FPGA implementations of 256 and
512-bit Montgomery modular multipliers based on 3 and 4 way Karatsuba
truncated multipliers. However, these approaches cannot be easily transferable
to the context of software implementations. Furthermore, since they only
present very few versions and sizes, their work is difficult to generalize.
In another recent work, Bos et al. in [BKP21] explore parallel implementa-
tions of Montgomery Multiplications in both cases: intra-parallelism of CIOS
approach with a multi-thread implementation, and inter-multiplication par-
allelism, using a word-slicing representation. However, they do not provide
implementation results.

Contributions. In this paper, we present software implementations of batch
multi-precision multipliers, that is 8 simultaneous multiplications, using a
word slicing representation in radix 252 to take advantage of the AVX512
VPMADD52 instructions. We implement sizes up to 4108 bits, using the School-
book approach and up to 4154 bits using the Karatsuba approach. We use
these multipliers in order to implement Montgomery modular multiplications,
and propose, to the best of our knowledge, the first software implementa-
tion of Truncated Montgomery modular multiplication, which allows up to
20 % speedup over non-truncated versions and presents a more than 4 times
speedup over the OpenSSL RSA_Z (not using the 256-bit VPMADD52) and GMP
libraries. We make use of these modular multiplications in fixed-window mod-
ular exponentiations, for sizes 1024, 2048 and 4096 bits, with speedups up
to nearly 4 (1024 bits) over the OpenSSL BN_mod_exp_mont_consttime and
1.75 over the OpenSSL BN_mod_exp_mont_consttimex2 which computes two
exponentiations in parallel using the 256-bit VPMADD52. We also implemented
a 256-bit Truncated Montgomery exponentiation of our batch AVX512 using
VPMADD52 instructions one in order to compare with the corresponding OpenSSL
BN_mod_exp_mont_consttimex2, with a maximum speedup of 1.51 and 1.05
for 1024 and 2048-bit operands respectively.

4 Truncated multiplication and batch software implementation for faster mod. exp.

Organisation of the paper. This paper is organised as follows: Section 2
presents the implementation principles of the Schoolbook batch multiplications
and squarings, Section 3 deals with the Karatsuba versions of the batch
multiplications and squarings, Section 4 presents the Montgomery modular
batch multiplications. In Section 5, we then present the Truncated Montgomery
modular reduction and its batch implementation. This is followed by the
presentations of the implementation performance in Section 6, including the
fixed-window modular exponentiations. A conclusion ends the paper.

Notations.
• >> represents a logic RIGHT SHIFT
•
∨

represents a logic OR
• & represents a logic AND

Multiprecision numbers will be represented by either bits denoted as aki , or
in 64 bit word arrays denoted as A64k[i], or in 52 bit word arrays denoted as
Ak[i].

2 Batch Schoolbook multiplications
The objective of our implementations of batch Schoolbook multiplications is to
achieve eight simultaneous multiplications when using the AVX512 instruction
set, or a batch of four values when using the AVX2 one and will further refer to
their corresponding C variables types as __m512i and __m256i which are re-
spectively 256 and 512 bit vectors, representing integers. In the sequel, we focus
on the __m512i case since the conversion to the other case is straightforward.
We use a word slicing approach of the operands as follows.
Let us have a batch of eight values Ak, 0 ≤ k < 8 of t bits each. They can be
sliced into t64 = ⌈t/64⌉ words of 64 bits each. To be able to use the VPMADD52
instructions, we propose to split them into 52-bit words. This requires the use
of t52 = ⌈t/52⌉ 512-bit lines to store the 8 Ak’s.
More formally, we set:

Ak =
t∑

i=0
aki2i =

t64∑
i=0

A64k[i]264×i =
t52∑
i=0

Ak[i]252×i,

and store the eight values as shown in Table 1.

Table 1: Word Slicing storage of eight values in 52-bit words

64 bits︷ ︸︸ ︷ 64 bits︷ ︸︸ ︷ 64 bits︷ ︸︸ ︷ 64 bits︷ ︸︸ ︷ 64 bits︷ ︸︸ ︷ 64 bits︷ ︸︸ ︷ 64 bits︷ ︸︸ ︷ 64 bits︷ ︸︸ ︷
52 bits︷︸︸︷ 52 bits︷︸︸︷ 52 bits︷︸︸︷ 52 bits︷︸︸︷ 52 bits︷︸︸︷ 52 bits︷︸︸︷ 52 bits︷︸︸︷ 52 bits︷︸︸︷

A5120 0 | A0[0] 0 | A1[0] 0 | A2[0] 0 | A3[0] 0 | A4[0] 0 | A5[0] 0 | A6[0] 0 | A7[0]
A5121 0 | A0[1] 0 | A1[1] 0 | A2[1] 0 | A3[1] 0 | A4[1] 0 | A5[1] 0 | A6[1] 0 | A7[1]

...
...

... t52 512-bit lines

We present the VPMADD52 instructions, which are integer fused multiply–add
instructions, and denote them using the C-intrinsics [Int]:
_mm512_madd52lo_epu64(a, b, c)
_mm512_madd52hi_epu64(a, b, c)

Laurent-Stéphane Didier, Nadia El Mrabet, Léa Glandus, Jean-Marc Robert 5

1. __m512i _mm512_madd52lo_epu64(a, b, c)
for i = 0 . . . 7 do

// 52 least significant bits of b× c
Desti ← ai + [(bi × ci) mod 252]

end for

2. __m512i _mm512_madd52hi_epu64(a, b, c)
for i = 0 . . . 7 do

// 52 most significant bits of b× c
Desti ← ai + [(bi × ci) >> 52]

end for

In the rest of the paper we rename these instructions to madd52lo and
madd52hi.

2.1 Schoolbook multiplication

We target operands of RSA sizes, and more generally sizes which are multiples
of 64. Because we also aim at the VPMADD52 instructions, we convert radix
264 representation into radix 252 representation. This minimizes as much as
possible the number of words required to represent the operands.
For instance, in [CFGR22], the authors use radix 251 which is convenient for the
SIKE 503 case they focused on. They use 10-word operands with Schoolbook
or Karatsuba approaches. However, this requires 11 words in case of 512-bit
operands whereas 10 words are enough in radix 252.
After testing several configurations, we choose the Algorithm 1 (B_mul) in
order to limit the memory transfer of operands. Thus, we use the same 512-bit
line of the first operand, parsing the second operand lines and storing the
partial products in the corresponding line of the result. This configuration
necessitates a carry management at the end which is performed using a binary
mask mask52.

Algorithm 1 Batch Schoolbook multiplications, B_mul
Require: Two batches of 8 values Ak and Bk stored in 52-bit slices in t52 __m512i shares, mask52

is a 512-bit batch of eight 52-bit masks.
Ensure: A batch of 8 values Ck = Ak ×Bk stored in 52-bit slices in 2× t52 __m512i shares.

1: for k from 0 to 7 do in parallel
2: Ck[0]← 0
3: for i from 0 to t52 − 1 do
4: for j from 0 to t52 − 1 do
5: Ck[i + j]← madd52lo(Ck[i + j], Ak[i], Bk[j])
6: end for
7: end for
8: carryk ← 0 ▷ carry management
9: for i from 2 to 2× t52 − 2 do

10: carryk ← Ck[i− 1] >> 52
11: Ck[i]← Ck[i] + carryk

12: Ck[i− 1]← Ck[i− 1]&mask52
13: end for
14: carryk ← Ck[2× t52 − 2] >> 52
15: Ck[2× t52 − 1]← Ck[2× t52 − 1] + carryk

16: end for
17: return C

6 Truncated multiplication and batch software implementation for faster mod. exp.

2.2 Squaring

We applied a similar approach for the squaring operation (Alg. 2, B_square).
In this algorithm, the number of VPMADD52 operations is divided by nearly two
compared to the multiplication implementation presented in Section 2.1.

Algorithm 2 Batch Schoolbook squaring B_square
Require: One batch of 8 values Ak stored in 52-bit slices in t52 __m512i shares, mask52 is a

512-bit batch of eight 52-bit masks.
Ensure: A batch of 8 values Ck = A2

k stored in 52-bit slices in 2× t52 __m512i shares.
1: carry ← 0512bits

2: for k from 0 to 7 do in parallel
3: for ℓ from 0 to 2× t52 − 1 do
4: Ck[ℓ]← 0512
5: for (i, j) such that i + j = ℓ and j < i do
6: Ck[ℓ]← madd52lo(Ck[ℓ], Ak[i], Ak[j])
7: end for
8: for (i + j) such that i + j = ℓ− 1 and j < i do
9: Ck[ℓ]← madd52hi(Ck[ℓ], Ak[i], Ak[j])

10: end for
11: Ck[ℓ]← Ck[ℓ] << 1
12: if ℓ mod 2 = 0 then
13: i← ℓ/2
14: Ck[ℓ]← madd52lo(Ck[ℓ], Ak[i], Ak[i])
15: else
16: i← ⌊ℓ/2⌋
17: Ck[ℓ]← madd52hi(Ck[ℓ], Ak[i], Ak[i])
18: end if
19: Ck[ℓ]← Ck[ℓ] + carryk

20: carryk ← Ck[ℓ] >> 52
21: Ck[ℓ]← Ck[ℓ]&mask52
22: end for
23: end for
24: return C

2.3 Complexity comparison

As mentioned above, for t-bit operands split in 64-bit words, we store 8 operands
in t52 = ⌈t/52⌉ 512-bit lines. The Schoolbook batch multiplication requires t2

52
elementary multiplications, performed using both instructions (madd52lo and
madd52hi), that is 2× t2

52 VPMADD52 instructions. Algorithm 1 requires a few
extra 512-bit additions in order to manage the carries.
The batch squaring requires only t52(t52 + 1) VPMADD52 instructions and t52− 1
left shifts (i.e. multiplications by 2) and additions also in order to handle the
carries. These complexities are summarized in Table 2.

Table 2: Number of instructions of batch Schoolbook multiplications

VPMADD52 # shifts # Additions # maskings
Multiplication Alg. 1 2× t2

52 2× t52 − 2 2× t52 − 2 2× t52 − 2
Squaring Alg. 2 t52 × (t52 + 1) 2× t52 − 2 2× t52 − 2 2× t52 − 2

Laurent-Stéphane Didier, Nadia El Mrabet, Léa Glandus, Jean-Marc Robert 7

3 Batch Karatsuba multiplications
This batch construction is also adapted to Karatsuba multiplication. We
remind here this construction. Let A and B be two t-bit operands. We assume
that t is even. We first split the operands as follows:

A = aℓ + 2t/2ah, B = bℓ + 2t/2bh.

We then compute 3 elementary products (instead of four in the Schoolbook
method) and we similarly split them:

D0 = D0ℓ + 2t/2D0h ← aℓ × bl,
D1 = D1ℓ + 2t/2D1h ← (aℓ + ah)× (bℓ + bh),
D2 = D2ℓ + 2t/2D2h ← ah × bh.

The low-level multiplications are performed with the Schoolbook method. The
multiplication width is determined by (aℓ + ah)× (bℓ + bh). Finally, we obtain
the result as follows:

A×B = D0ℓ

+2t/2(D0h + D1ℓ −D0ℓ −D2ℓ)
+2t(D2ℓ + D1h −D0h −D2h)
+23t/2D2h.

The size of A and B and the size of the elementary multiplication are linked.
For example, if the largest elementary product requires 520-bit operands, A
and B have to be at most 2× 519 bits long. This means that t =1038. The
Table 3 sums up the sizes we consider in the rest of the paper.

Table 3: Operand and elementary multiplication size
Karatsuba mult. size t 518 1038 2078 4154∗

Elementary product 260 520 1040 2078
∗ double Karatsuba

In this construction, we represent the operands in two radix 2t/2 shares. They
are radix 252 numbers in case of one Karatsuba stage. In the special case of 4154
bits which requires two Karatsuba stages, we have the following representation:

A = aℓ + 22077ah,

with aℓ = aℓℓ + 21039aℓh and ah = ahℓ + 21039ahh. The shares are then
represented with 52-bit words. All these representations are stored in memory
in the batch way presented Section 2.
In terms of complexity, the number of Schoolbook elementary multiplications is
3 for 1038 and 2078 bits (respectively 520 and 1040-bit multiplications), and 9
Schoolbook elementary multiplications of size 1040 bits for the 4154-bit batch
Karatsuba multiplications. We provide the instruction count in Table 4.
While the VPMADD52 instruction count is smaller compared to the Schoolbook
case, the other instructions are much more numerous. This explains why the
Karatsuba approach is interesting only for the 4154-bit case for the squaring.

4 Batch Montgomery modular multiplications
Let us briefly remind of the Montgomery modular multiplication [Mon85].
In this operation, the product T of two t-bit operands is reduced modulo

8 Truncated multiplication and batch software implementation for faster mod. exp.

Table 4: Number of instructions of batch Karatsuba multiplications

VPMADD52 # shifts # Add./Sub. # maskings
Multiplication

with 3 elt. Alg. 1
3
2 × t2

52 8× t52 − 6 10× t52 − 7 8× t52 − 6

Squaring
with 3 elt. Alg. 2

3
4 t52 × (t52 + 2) 10× t52 − 1 9× t52 + 3 7× t52 + 4

a t-bit modulus N (Alg. 5). The returned result is C ← T × R−1 mod N
where R is a power of 2 in binary implementations. In order to handle
this multiplicative factor, the input operands are usually converted in the
Montgomery representation. This consists of multiplying the initial operands
by the square modulo R of N , using the same Montgomery modular reduction.
By this, one gets:

C ←MontRed(T ×R2, N) = A×R2

R
mod N

and
C = T ×R mod N.

This renders the representation stable in case of a sequence of multiple multi-
plications and squarings. A final Montgomery reduction is enough to convert
the result from this Montgomery representation.

Batch Montgomery multiplication. With this context, it is possible to
make a batch Montgomery reduction modulo 8 different moduli Ni using
AVX512 instructions. We investigated several approaches.
The first is based on the Schoolbook multiplication and/or squaring (Alg. 1
and Alg. 2) followed by the batch Montgomery reduction (Alg. 3). In this case,
we use a batch fused multiplier-adder (B_fma) operation at line 2 of Alg. 3.
This operation has the same cost as a single multiplication because of the use
of the VPMADD52 instructions. This makes free the addition required in the
Montgomery reduction.
With the Karatsuba multiplication, it is not possible to use a batch Karatsuba
B_fma because of the additions in the reconstruction phase. This explains why
the speedups are slightly better for the small sizes in the Schoolbook case.
We also implemented the word-level Montgomery reduction, adapted
from [KKAK96] also called CIOS and variants (BPS improvement in [BGH22]),
only on the Montgomery multiplication. This approach is presented Algo-
rithm 4.
In both Algorithms 3 and 4, the usual final subtraction is not required in our
case, since the size of the multiplication is greater enough than the size of the
modulus, see Gueron et al. in [GK12].

5 Truncated Batch Montgomery modular mul-
tiplications
The classic Montgomery reduction is reminded in Algorithm 5. This algorithm
computes T × R−1 mod N where the modulus N is a t-bit integer (with
t ≡ 0 mod 64) and the Montgomery constant R = 252×t52 .

Laurent-Stéphane Didier, Nadia El Mrabet, Léa Glandus, Jean-Marc Robert 9

Algorithm 3 Batch Montgomery reduction
Require: One batch of 8 values A stored in 52 word-slices in 2 × t52 __m512i shares, mask52

is a 512-bit batch of eight 52-bit masks, the 8 moduli N , some precomputed values N ′ =
(−N)−1 mod R with R = 252×t52 .

Ensure: A batch of 8 values such that Ck = Ak × R−1 mod Nk stored in 52 word-slices in t52
__m512i shares.

1: q ← B_mul(A, N ′) mod R
2: T ← B_fma(q, N, A) ▷ A + q ×N
3: C ← T/R ▷ returns the t higher words of T
4: return C

Algorithm 4 Batch CIOS inspired Montgomery multiplication
Require: Two batches of 8 values Ak and Bk stored in 52 word-slices in 2× t52 __m512i shares,

mask52 is a 512-bit batch of eight 52-bit masks, the 8 moduli Nk, some precomputed values
N ′

k = (−Nk)−1 mod R with R = 252×t52 .
Ensure: A batch of 8 values such that Ck = Ak ×Bk ×R−1 mod N stored in 52 word-slices in

t52 __m512i shares.
1: for k from 0 to 7 do in parallel
2: Yk ← ak[0] ·Bk

3: qk ← |Yk|252 ·N ′
k mod 252

4: Yk ← (Yk + qk ·Nk)/252

5: for i = 1 to t52 − 1 do
6: Yk ← Yk + ak[i] ·Bk

7: qk ← |Yk|252 ·N ′
k mod 252

8: Yk ← (Yk + qk ·Nk)/252

9: end for
10: end for
11: return C ← Y

At step 2 of Algorithm 5, the division by R is exact because T +q×N ≡ 0 mod R.
In other words, the 52× t52 least significant bits of T + q ×N are all zeroes.
Because we know the value of its least significant part, the computation of
the 52 × t52 least significant bits of q ×N can be avoided. We only need to
estimate the input carry in the sum of the 52× t52 most significant bits. These
remarks lead to Algorithm 6.
In this algorithm, T is a 2t52-word integer and the modulus N is a t52-word
integer. We denote T [0] the least significant 52-bit word of T . At step 2, we
compute only the most significant bits of the multiplication q ×N , denoted
q̂N ← ⌊ q×N

R ⌋. The carry cadd to be propagated from the lower part is computed
at line 3. Finally, the result is computed at line 4, where ⌊T/R⌋ is the t52 most
significant words of T .
In the rest of this paper, we deal with batch SIMD software implementations,
however, the idea may be applied to classical sequential implementations.
Theorem 1 provides the correctness of our Montgomery modular reduction
with truncated multiplication. Theorem 2 describes how to efficiently compute
the correct q̂N .

Theorem 1 (Correctness of the Truncated MontMul). With T < 4N2, a
t-bit modulus N , an integer R = 252×t52 , with t52 ≥ ⌈t/64⌉, precomputed value
N ′ = (−N)−1 mod R, Algorithm 6 correctly computes C ≡ T × R−1 mod N
and C < 2N .

Proof. The key point of Algorithm 6 is that we know that T +q×N mod R ≡ 0.
In other words, the 52× t52 least significant bits are zeroes. This makes easier

10 Truncated multiplication and batch software implementation for faster mod. exp.

Algorithm 5 Montgomery modular reduction: MontRed
Require: T < 4N2, N the t-bit modulus, R = 252×t52 , with t52 ≥ t, precomputed value

N ′ = (−N)−1 mod R.
Ensure: C ≡ T ×R−1 mod N and C < 2N

1: q ← T ×N ′ mod R ▷ q < R
2: C ← T +q×N

R
▷ C < 2N

3: return C

Algorithm 6 Montgomery modular reduction with truncated multiplication
Require: T < 4N2, N the t-bit modulus, R = 252×t52 , with t52 ≥ t, precomputed value

N ′ = (−N)−1 mod R.
Ensure: C ≡ T ×R−1 mod N and C < 2N

1: q ← T ×N ′ mod R ▷ q < R

2: q̂N ← ⌊(q ×N)/R⌋
3: cadd =

∨t52−1
i=0 T [i]

4: C ← ⌊T/R⌋+ q̂N + cadd

5: return C

the computation of the carry cadd.
If the least significant bit of T is 0, then the least significant bit of q ×N is
also 0, and no carry is propagated to the next position. This property holds
until the first bit of T equals 1.
If the ith bit of T is 1, then the ith bit of qN must also be 1 and a carry must
be propagated to position i + 1 in order to ensure that the ith bit of T + q×N
is 0. Next, to ensure that the next bit of T + q×N is 0, only one of the i + 1th

bits of T and qN must be 1. These conditions are summarized in the table
below:

bits i i + 1
T 1 0 1

q ×N 1 1 0
generated carry cadd 1 1

Thus, if a carry is generated at position ith, then another carry is generated at
position i + 1th. As a consequence, the carry generated at position 52× t52 − 1
is 1 only if there is at least one of the 52× t52 − 1 least significant bits that is
1. This carry is output from the t52 − 1th word.

cadd = cadd 52×(t52−1) =
t52−1∨
i=0

T [i]. (1)

Finally, in Algorithm 5, the result C is computed as follows:

C =
(2×t52−1∑

i=0
T [i]2i52 + q̂N252×t52 + q̂N

)
>> (52× t52),

where q̂N = qN mod R. As a consequence:

C =
2×t52−1∑

i=t52

T [i]252(i−t52) + q̂N +

(
t52−1∑

i=0

T [i]2i52 + q̂N

)
>> (52× t52).

The last term of this sum is cadd that we compute with equation (1) at line 3
in Algorithm 6.

Laurent-Stéphane Didier, Nadia El Mrabet, Léa Glandus, Jean-Marc Robert 11

In Algorithm 6 the computation of q̂N do not require to compute all the partial
products of q ×N , as shown in Theorem 2.

Theorem 2 (Computation of q̂N). The correct computation of q̂N requires
only the partial products of q ×N of weight at least t52 − 1.

Proof. Since we know that T + q ×N mod R ≡ 0, the computation q̂N can be
simplified. Figure 1 illustrates the computation of q ×N . It is not necessary
to compute all the least significant partial products of q ×N and sum them in
order to know which carries to propagate and to compute q̂N correctly.

Figure 1: Detail of q ×N

Let us denote (̃qN)[i] the sum of the partial products of weight i. More formally,
the partial product of weight 52t52 − 1 is a ⌈log2(t52 − 1)⌉+ 52-bit word and is
computed as follows:

(̃qN)[t52 − 1]←
t52−1∑

i=0,j=0,i+j=t52−1
mul52lo(q[i], N [j])

+
t52−2∑

i=0,j=0,i+j=t52−2
mul52hi(q[i], N [j])

+ (̃qN)[t52 − 2] >> 52,

(2)

where mul52hi and mul52lo compute respectively the 52 higher and lower bits
of two 52-bit operands. Therefore, the t52 − 1th word of T + qN (which is
known to be 0) is:

(T + qN)[t52 − 1] = (T [t52 − 1] + (̃qN)[t52 − 1] + cadd) mod 252

and then
(T [t52 − 1] + (̃qN)[t52 − 1] + cadd) mod 252 = 0. (3)

If cadd = 0: This means that all T [i] = 0 for i ≤ t52 − 1 and so for q[i],
because q = T × N ′ mod R in Alg. 6. Therefore in equation (2), only the
partial products of weight greater than or equal to t52 − 1 are needed.

12 Truncated multiplication and batch software implementation for faster mod. exp.

If cadd = 1: The only way the equation (3) can be verified is if the binary
vector T [t52 − 1] + (̃qN)[t52 − 1] has all its 52 least significant bits set to 1.
Using Eq. (2), equation (3) can be written as follows:

(UP + (̃qN)[t52 − 2] >> 52 + cadd) mod 252 = 0, (4)

where

UP ←T [t52 − 1] +
t52−1∑

i=0,j=0,i+j=t52−1
mul52lo(q[i], N [j])

+
t52−2∑

i=0,j=0,i+j=t52−2
mul52hi(q[i], N [j]).

Figure 2: Detail of UP + ((̃qN)[t52 − 2] >> 52)

Therefore, (̃qN)[t52 − 2] >> 52 can be computed with the least significant bits
of UP and its sum with UP does not generate any carry out of the 52th bit.
Thus (̃qN)[t52 − 1] >> 52 is computed only with the most significant bits of
UP and the carry cadd which is propagated to the 53rd bit of UP.

As a conclusion (̂qN)[0] is computed only with the partial products of weight
at least equal t52 − 1:

(̂qN)[0]←
t52∑

i=0,j=0,i+j=t52

mul52lo(q[i], N [j])

+
t52−1∑

i=0,j=0,i+j=t52−1
mul52hi(q[i], N [j])

+ (̃qN)[t52 − 1] >> 52 + cadd.

(5)

5.1 Complexity of the Truncated Montgomery multipli-
cation
The truncated multiplication in Algorithm 6 at line 2 can be done in several
ways.

Schoolbook multiplication. Here, we compute only the t52 + 1 most sig-
nificant words of the q ×N product. The instruction count in Table 5 shows
that the instruction count is divided by nearly two for the truncated B_fma,
which replaces the operation line 2 Algorithme 3. Thus, for the whole Mont-
gomery multiplication, this leads to a global complexity of slightly more than 2
multiplications, instead of 2.5 in the classical approaches, including the CIOS.

Laurent-Stéphane Didier, Nadia El Mrabet, Léa Glandus, Jean-Marc Robert 13

Table 5: Batch Schoolbook truncated B_fma used in Alg. 3, instruction number comparison

VPMADD52 # shifts # Additions # maskings # OR
B_fma 2t2

52 2t52 − 2 2t52 − 2 2t52 − 2 -
trunc. B_fma t2

52 + 3/2t52 − 1 t52 t52 + 2 t52 + 2 t52 − 1

Karatsuba multiplication. In this approach of the truncated multiplica-
tion, the operands have to be split with the following construction:

trunc(A×B) = 2t(D2ℓ + D1h −D0h −D2h) + 23t/2D2h.

We therefore compute only D2ℓ, D2h, D1h and D0h, that is one and two halves
of elementary multiplications instead of three. The cost of this truncated
multiplication is roughly two-thirds of a complete multiplication. And we
need also half of a whole addition to achieve the last step of the Montgomery
reduction.
The halves of elementary multiplications are computed using the same approach
than the one for the Schoolbook. The correctness is ensured by the same kind
of carry evaluation and propagation.
Thus, in this case, for the whole Montgomery multiplication, this leads to a
global complexity of a little more than 2.17 multiplications with Karatsuba,
instead of 2.0 for the truncated approaches with Schoolbook, or 2.5 for the
conventional approaches, either classical or CIOS (word level Montgomery).

6 Performances of the implementations
Our batch multiplications, batch Montgomery multiplications and the corre-
sponding exponentiations have been implemented in C. All the source codes
are available at https://github.com/lea-gl/TruncatedBatchSIMDAVX512
MontgomeryMultiplicationsModularExponentiation.git.
In this section, after the presentation of the performance measurement pro-
cedure, we provide the results of the batch AVX512 multiplications, Batch
Montgomery multiplications and squarings, and corresponding exponentiations.
This section concludes with the performances of the 256-bit batch exponentia-
tion counterparts. All these experiments are compared to state-of-the-art GMP
and OpenSSL performances, compiled and run on the same platform and using
the same measurement procedure.

6.1 Performances measurement procedure
It is known that the intensive use of vectorized computation with AVX2 and
AVX512 extensions can lead to penalties due to the resulting high power con-
sumption [Kra17]. Intel processors have a limited power budget and may reduce
their frequency when executing complex AVX2 and AVX512 instructions. This
might also affect the execution of adjacent non-vectorized code. However, the
impact of this issue depends on the power budget allowed by the processor and
how efficiently it is cooled. Our goal here is to provide a fair evaluation of the
sequential and our parallel algorithms. In order to perform this comparison as
fairly as possible, we focused on measuring clock cycles. Measurements were
performed on a Dell Inspiron laptop with a tiger lake processor.

vendor_id : GenuineIntel

https://github.com/lea-gl/TruncatedBatchSIMDAVX512MontgomeryMultiplicationsModularExponentiation.git
https://github.com/lea-gl/TruncatedBatchSIMDAVX512MontgomeryMultiplicationsModularExponentiation.git

14 Truncated multiplication and batch software implementation for faster mod. exp.

cpu family : 6
model : 140
model name : 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz

The compiler is gcc version 9.4.0, the compiler options are as follows:
-O3 -funroll-all-loops -g -march=native -lgmp -lcrypto.
We kept the -funroll-all-loops option though it does not provide signifi-
cant improvements. We follow the same kind of test procedure as described
in [DGK18] or in [RV22]:

• the Turbo-Boost® is deactivated during the tests;
• 1000 runs are executed in order to "warm-up" the cache memory;
• 50 random data sets are generated, and for each data set the minimum of

the execution clock cycle numbers over a batch of 1000 runs is recorded;
• the performance is the average of all these minimums;

The clock cycles have been counted with rdtsc/rdtscp instructions.

6.2 Performances of the batch multipliers
We have implemented both batch squaring and multiplication for several sizes.
The timings are shown in Table 6 where the best results are in bold. We target
operands having between 260 and 4154 bits. Due to the Karatsuba splitting,
the size of Karatsuba implementations are slightly different. Karatsuba multi-
plication is inefficient for small operands so we have not implemented it for
260-bit operands. The 4154-bit operands are large enough to permit a double
Karatsuba splitting.
We have compared our implementations with 8 successive GMP low level mul-
tiplications mpn_mul_n(). It can be observed that the batch approach takes
advantage of vector instructions for both squaring and multiplication. The
batch approach is 5 to 9 times faster than GMP. For large enough operands, the
Karatsuba approach is the fastest.

Table 6: Batch Schoolbook (SB) and Karatsuba multiplications, clock cycles.

op. size (bits) SB 260 520 1040 2080 4108
op. size (bits) Karatsuba 518 1038 2078 4154

clock cycles
GMP mpn_mul_n() (×8) 574 1526 5213 16361 50099
GMP mpn_sqr() (×8) 376 967 2994 9871 31322

Mul. Schoolbook 61 223 890 4076 16326
Mul. Karatsuba 258 849 3054 10367

Squaring Schoolbook 49 149 501 1898 8923
Squaring Karatsuba 220 622 1964 6882

A few comments on the results:

• Concerning the multiplication, the Schoolbook Algorithm 1 is better than
its Karatsuba counterpart for the 260 and 520-bit sizes. This is consistent
with the complexities

• Concerning the squaring, one can see that the Karatsuba approach is
better only in the 4154-bit case. This is explained by the fact that the
Schoolbook squaring (Algorithm 2) makes intensive use of the madd52lo

Laurent-Stéphane Didier, Nadia El Mrabet, Léa Glandus, Jean-Marc Robert 15

and madd52hi instructions with no use of additions except for the carry
management, whereas in the Karatsuba case, except for the elementary
squarings, the final reconstruction requires a lot of additions which can
not be saved in the same way as in Schoolbook case. Thus, the threshold
for better efficiency in the Karatsuba case is much higher in comparison
with the multiplication case.

6.3 Performances of the batch Montgomery multiplica-
tion and squaring

The performances of the batch Montgomery multiplications and squarings are
given in Table 7, for the classical and truncated versions. We evaluated our
implementations for 1024, 2048 and 4096-bit operands.
Because of the interleaved word-size multiplications, Algorithm 4 has only been
implemented with the Schoolbook multiplication. The 1024-bit Karatsuba
multiplication is slower than the Schoolbook multiplication. As a consequence,
we have not implemented Truncated Karatsuba versions for this size.
For comparison sake, we implemented Montgomery modular multiplica-
tion and squaring using GMP mpn Montgomery operations, and OpenSSL
BN_mod_mul_montgomery functions. However, we have not found a specific
OpenSSL counterpart of the Montgomery modular squaring. The best timings
are in bold in Table 7. The best implementations are more than 4 times faster
than OpenSSL in all cases. Furthermore, the truncated approach is about 21 %
faster than the conventional Schoolbook Montgomery multiplication, and up
to nearly 28 % faster than the 4108-bit squaring.
For the Karatsuba approaches, the truncated version is almost 21 % faster than
the classical multiplication for 2048-bit operands and up. In the case of the
squaring the improvement is about 15 %. Even for the largest size (4154 bits),
the Truncated Karatsuba modular squaring remains slightly slower than its
Schoolbook counterpart, while the Karatsuba modular multiplication is nearly
10 % faster than the Schoolbook version.

Table 7: Batch Montgomery multiplications and squarings (normal and truncated) # clock
cycles.

Montgomery Montgomery
modular modular

multiplications squarings
Modulus Size 1024 2048 4096 1024 2048 4096

GMP (×8) 9862 35497 120342 8358 30465 101373
OpenSSL (×8) 7949 29928 116898 - - -

Batch Multiplication This work
Algorithm 3 Schoolbook 2276 8696 38609 1885 7154 32107
Algorithm 4 Schoolbook 2162 8936 42730 - - -
Algorithm 3 Truncated Schoolbook 1847 7306 30492 1439 5548 23413

speedup vs GMP 5.34 4.86 3.95 5.81 5.49 4.33
speedup vs OpenSSL 4.31 4.10 3.69 - - -

Algorithm 3 Karatsuba 2423 8400 34628 2191 7330 28841
Algorithm 3 Truncated Karatsuba - 7286 27594 - 6202 23736

speedup vs GMP 4.07 4.87 4.36 3.81 4.91 4.27
speedup vs OpenSSL 3.28 4.12 4.24 - - -

16 Truncated multiplication and batch software implementation for faster mod. exp.

6.4 Window exponentiation with Truncated Montgomery
Modular Mutiplication
We have implemented Left-to-Right fixed-window exponentiation in a constant
time fashion for 1024, 2048 and 4096-bit operands, i.e. the modulus size. These
implementations make use of the batch Montgomery squarings, B_fmas and
multiplications mentioned above.

Algorithm 7 Constant-time Batch Fixed-Window Left-to-Right Exponentiation
Require: Eight values ak, the corresponding eight s-bit exponents and moduli ek and mk, all

stored in 64-bit word arrays, the window width w.
Ensure: The eight modular exponentiations yk = a

ek
k mod mk

//batch of 8 values Ak stored in 52-bit slices in t52 __m512i shares
1: Ak ←expand(a0, . . . , a7)

//batch of 8 moduli Mk stored in 52-bit slices in t52 __m512i shares
2: Mk ←expand(m0, . . . , m7)

//batch of 8 exponents Ek stored in 64-bit slices in t64 __m512i shares
3: Ek ←expand64(e0, . . . , e7)
4: for k from 0 to 7 do in parallel
5: Yk ← 1 // batch of ones
6: for i from 0 to 2w do //precomputation
7: Gk[i]← Ai

k mod Mk

8: end for
9: for i from s− 2w to 0 by w do// main loop

10: bk ← Ek[i, i + w − 1] // w bits of Ek

11: tmpk ← Gk(bk) // constant-time batch selection
12: Yk ← Y 2w

k mod Mk // w-batch Montgomery squarings
13: Yk ← Yk × tmpk mod Mk

14: end for
15: loop epilog if necessary
16: end for

//backward conversion of the 8 results in 64-bit word arrays
17: yk ← contract(Yk)
18: return the eight results yk = a

ek
k mod mk

They aim to compare our approach for the modular operations with state-
of-the-art modular exponentiations. The exponentiation functions take as
arguments big integers represented by 64-bit word arrays, identical to those
used in the low-level functions of the GMP library. The result is stored in the
same fashion.
Thus, the exponentiation is processed as follows:

• conversion of a batch of operands stored in 64-bit word arrays in word-
slicing representation.

• computation of the batch exponentiation
• backward conversion to a batch of results stored in 64-bit word arrays.

This conversion is implemented in conventional C using maskings and shiftings.
Since the complexity is linear in the operand size, the cost remains negligible.
Nevertheless, we provide in Table 8 the timings of our implementations in clock
cycles. The forward conversion from the conventional representation to the
batch 52-bit representation is called expand and the backward conversion is
called contract.
We tested window sizes from 1 (L-R Square-and-Multiply-always) to 5. The
best window size is 4 for 1024-bit moduli and 5 in the other cases. We used

Laurent-Stéphane Didier, Nadia El Mrabet, Léa Glandus, Jean-Marc Robert 17

Table 8: Batch conversions, #103 clock cycles.

size 1040 2080 4108

clock cycles expand 1165 2411 4790

contract 1726 3274 6505

the fastest modular squaring and multiplication. For 1024-bit moduli, we used
Algorithm 4. In the other cases, we used Algorithm 3. This approach is shown
Algorithm 7.

6.4.1 Experimentation of AVX512 versions

The timings are summarized in the last three columns of Table 9, for the
implemented modulus sizes (1024, 2048 and 4096 bits).
Whatever the multiplication used (Schoolbook or Karatsuba), the truncated
version is always faster than the classical version. The improvement ranges
from 13% faster with the 4096-bit Truncated Karatsuba, to 20 % faster with the
1024-bit Truncated Schoolbook version. As expected, the Karatsuba approach
is only better for the largest size of 4096 bits.
We compare these results with GMP and OpenSSL libraries, providing the timings
for eight modular exponentiation computations.

• The GMP version is the 6.2.0 and we used the function mpn_sec_powm,
which is specifically designed for cryptographic use.

• The OpenSSL version is the 3.2.1. This version is compiled on our platform
and provides the RSA_Z operations, which make use of the AVX2 instruction
set. We measured the performance of two functions:

– BN_mod_exp_mont_consttime, which is the RSA_Z implementation
(AVX2 version, see [GK12]).

– BN_mod_exp_mont_consttimex2, which computes 2 exponentiations
simultaneously. For 1024 and 2048-bit operands, this function im-
plements the VPMADD52 instructions, but in 256-bit registers. For
the 4096-bit operands, this function falls back on two calls of
BN_mod_exp_mont_consttime. This explains why we do not present
4096-bit performance results for this function Table 9.

These functions are constant-time fixed-window exponentiations, and
implement a CIOS-like Montgomery modular multiplication and squaring.

The OpenSSL functions offers better results than GMP ones.
Our implementation uses a constant time fixed-window approach sim-
ilar as the one of the OpenSSL functions. Compared to OpenSSL
BN_mod_exp_mont_consttime, the best speedup of our implementations is
achieved for the 1024-bit operands, with almost 4 times fewer cycles per expo-
nentiation (our Truncated Schoolbook). The best other cases provide speedups
of 3.71 and 3.37, respectively, for the 2048-bit Schoolbook and the 4096-bit
Karatsuba.
Compared to OpenSSL BN_mod_exp_mont_consttimex2, the best speedup of
our implementations is achieved for the 1024-bit operands, with 1.75 times fewer
cycles per exponentiation (our Truncated Schoolbook). The best other cases
provide speedups of 1.38 and 1.27, respectively, for the 2048-bit Schoolbook
and Karatsuba.

18 Truncated multiplication and batch software implementation for faster mod. exp.

One may notice that the non-truncated versions remain better than their RSA_Z
BN_mod_exp_mont_consttime or BN_mod_exp_mont_consttimex2 counter-
parts.

Table 9: Batch of 8 modular fixed-window exponentiations, #103 clock cycles.

×8 Modular Fixed-Window exponentiation (×103#cc)
Modulus Size 1024 2048 4096

GMP (×8) 11333 81288 614637
OpenSSL BN_mod_exp_mont_consttime (×8) 8313 58445 434359

OpenSSL BN_mod_exp_mont_consttimex2 (×4) 3648 21674 442533
Batch multiplication This work

Algorithm 3 & 4 Schoolbook 2589 19678 177095
Algorithm 3 Truncated Schoolbook 2090 15736 131753

speedup vs GMP 5.42 5.17 4.66
speedup vs OpenSSL BN_mod_exp_mont_consttime 3.98 3.71 3.30

speedup vs OpenSSL BN_mod_exp_mont_consttimex2 1.75 1.38 -
Algorithm 3 Karatsuba - 19717 144567
Algorithm 3 Truncated Karatsuba - 17124 129015

speedup vs GMP - 4.75 4.76
speedup vs OpenSSL BN_mod_exp_mont_consttime - 3.41 3.37

speedup vs textttOpenSSL BN_mod_exp_mont_consttimex2 - 1.27 -

6.4.2 Experimentation of 256-bit versions

In order to provide a fair comparison with the BN_mod_exp_mont_consttimex2
OpenSSL implementation using the 256-bit vectorized fused multiplier-adder
(_mm256_madd52*_epu64(a, b, c)), we derived 256-bit versions from the pre-
vious implementations, computing a batch of four values instead of eight for
512-bit versions.

Comparison between 256-bit and 512-bit implementations. We dis-
cuss here the register size impact. In our implementations, the difference
between both 512-bit and 256-bit versions is in the registers used: respectively
zmm and ymm. Thus, one might expect the retired instruction number to be
the same between the two versions. However, this is not the case for the clock
cycle numbers, since the instruction throughput in the 256-bit case is much
lower than that of the 512-bit instructions. In order to check the performance
level of both versions, we provide the clock cycle numbers per exponentiation
of both versions. In other words, this is the batch delay divided by the number
of operations in the batch, 8 and 4 respectively (Table 10).
In any case, the clock cycle number per exponentiation is better in the AVX512
configurations. The advantage ranges from 14.4% (Truncated - 1024 bits) to
31.5 % (Truncated - 2048 bits) while it is between 20 and 30 % in the other
configurations.

Comparison with OpenSSL BN_mod_exp_mont_consttimex2 function.
Since the BN_mod_exp_mont_consttimex2 function provides vectorized com-
putations for sizes from 1024 to 2048 bits, we provide the comparison between
our work and the OpenSSL function for these sizes (Table 11). We compare our

Laurent-Stéphane Didier, Nadia El Mrabet, Léa Glandus, Jean-Marc Robert 19

Table 10: Batch Modular fixed-window exponentiations, #103 clock cycles per exponentia-
tion.

Modular Fixed-Window exponentiation
Register Type 512-bit 256-bit

×103#cc/8 ×103#cc/4
Mod.size Multiplication This work

1024 bits Schoolbook 325 419

Truncated Schoolbook 263 301

2048 bits Schoolbook 2401 2918

Truncated Schoolbook 1965 2583

batch implementation, which computes 4 exponentiations simultaneously, with
two successive runs of the OpenSSL BN_mod_exp_mont_consttimex2.

Table 11: Batch of 4 Modular fixed-window exponentiations, #103 clock cycles.

×4 Modular Fixed-Window exponentiation (×103#cc)
Modulus Size bits 1024 2048 ratio

2048/1024
OpenSSL BN_mod_exp_mont_consttimex2 (×2) 1824 10837 5.94
Batch Multiplication This work

Algorithm 3 & 4 Schoolbook 1678 11632 6.96
Algorithm 3 Truncated Schoolbook 1203 10290 8.59

speedup truncated vs BN_mod_exp_mont_consttimex2 1.52 1.05

Some comment on this table about the 256-bit versions of our modular expo-
nentiation:

• The best speedup is achieved for the 1024-bit modulus size. Our imple-
mentation using the Truncated Montgomery reduction provides a speedup
of 1.51 (window width = 5).

• Our 1024-bit modulus implementation using the conventional Montgomery
reduction is also slightly faster than the BN_mod_exp_mont_consttimex2
function, with a 1.09 speedup (window width = 4).

• For the 2048-bit modulus, our implementation using the con-
ventional Montgomery reduction is slightly slower than the
BN_mod_exp_mont_consttimex2 function. We remind here that
for a square-and-multiply variant algorithm based implementation, the
theoretical ratio should be 8 between the 2048-bit and the 1024-bit
versions. These ratios are indicated in the right column of Table 11.
One can see that this ratio is better in the OpenSSL case, especially
compared to our versions using the Truncated Montgomery reduction. As
a conclusion, compared to the BN_mod_exp_mont_consttimex2 function,
while our implementation using the conventional Montgomery reduction
is slightly slower by around 7 % (window width = 5), the one using
our truncated approach for the modular reduction gives a 1.05 speedup
(window width = 4).

As a conclusion, this shows the potential of the Truncated Montgomery re-
duction applied to various implementation situations. In every case explored

20 Truncated multiplication and batch software implementation for faster mod. exp.

here, our proposed approach is, to the best of our knowledge, faster than the
state-of-the-art implementations.

7 Conclusion
In this paper, we present new software implementations using AVX512 instruc-
tion set and taking advantage of the VPMADD52 instructions, which compute
a vectorized fused multiplication-addition. We implemented multi-precision
multiplications and squarings, for sizes from 260 to 4154 bits. We used these
implementations in Montgomery modular multiplications and squaring along
with CIOS Montgomery multiplications. We also present a new approach of
Truncated Montgomery multiplication computing the most significant higher
half part of one of the multiplications involved in the Montgomery modu-
lar reduction in order to speedup the computation. Our implementations of
this approach are more than 4 times faster than the OpenSSL ones. More-
over, used in fixed-window exponentiations of sizes 1024, 2048 and 4096
bits, compared to BN_mod_exp_mont_consttime, the best speedups are re-
spectively 3.98, 3.71, 3.37 for our implementations using our new Truncated
Schoolbook or Karatsuba Montgomery modular multiplications. Compared to
BN_mod_exp_mont_consttimex2 using madd52* in 256-bit registers, in fixed-
window exponentiations of sizes 1024 and 2048, our AVX512 implementations
provide speedups of 1.75 and 1.38 respectively, while their 256-bit counterparts
give speedups of 1.51 and 1.05 for 1024 and 2048-bit sizes (batch of 4 values in
this case).
The speedups are good because the batch operations are highly parallel and can
be easily vectorized. Similar results could be obtained on other processors whose
architecture has SIMD instruction sets. The NEON instruction set on ARM
processors [ARM] offers such possibilities. However, these instructions are not
exactly identical to AVX512 extensions. For example, VPMADD52 instructions
have only a 32-bit equivalent on this architecture. This could lead to a
different word slicing of the operands. Very significant gains over sequential
implementations can be reach, but may not be the same to those with AVX512
instructions.

Perspectives. The improvements presented in this work could be adapted
to other contexts as well. Batch computations have demonstrated their value
and could be utilized, for instance, in post-quantum schemes. While our
study of Truncated Montgomery multiplication was focused on RSA, there
are other potential applications worth studying. Indeed, schemes relying on
supersingular elliptic curves like pairing-based cryptography (see [MJ17] and
[DL06]) or isogeny based post-quantum protocols (see [FKL+20]), also require
large integer modular multiplications.
In addition, homomorphic encryption protocols based on large integers may
take advantage of our approach, among them, Coron et al. [CMNT11] and
Dyer et al. [DDX19].

References
[ABS10] S. Antão, J.-C. Bajard, and L. Sousa. Elliptic Curve Point Multipli-

cation on GPUs. In ASAP 2010-21st IEEE International Confer-

Laurent-Stéphane Didier, Nadia El Mrabet, Léa Glandus, Jean-Marc Robert 21

ence on Application-specific Systems, Architectures and Processors,
pages 192–199. IEEE, 2010. doi:10.1109/ASAP.2010.5541000.

[Arc] Architecture specification. Intel Advanced Vector extensions
10. https://www.intel.com/content/www/us/en/content-
details/784267/intel-advanced-vector-extensions-10-intel-avx10-
architecture-specification.html.

[ARM] ARM. Neon intrinsics reference. https://developer.arm.com/
architectures/instruction-sets/intrinsics/.

[Bar86] P. Barrett. Implementing the Rivest Shamir and Adleman Public
Key Encryption Algorithm on a Standard Digital Signal Processor.
Advances in Cryptology — CRYPTO’ 86, 263:311–323, 1986. doi:
10.1007/3-540-47721-7_24.

[BCC+09] D. J. Bernstein, H.-C. Chen, M.-S. Chen, C.-M. Cheng, C.-H.
Hsiao, T. Lange, Z.-C. Lin, and B.-Y. Yang. The Billion-Mulmod-
Per-Second PC. In Workshop record of SHARCS, volume 9, pages
131–144, 2009.

[BGH22] B. Buhrow, B. Gilbert, and C. Haider. Parallel Modular Mul-
tiplication using 512-bit Advanced Vector Instructions: RSA
Fault-Injection Countermeasure via Interleaved Parallel Multi-
plication. Journal of Cryptographic Engineering, 12(1):95–105,
2022. doi:10.1007/s13389-021-00256-9.

[BI21] C. Bouvier and L. Imbert. An Alternative Approach for SIDH
Arithmetic. In Juan A. Garay, editor, Public-Key Cryptography
– PKC 2021, pages 27–44, Cham, 2021. Springer International
Publishing. doi:10.1007/978-3-030-75245-3_2.

[BKP21] J. W. Bos, T. Kleinjung, and D. Page. Efficient Modular Multipli-
cation, chapter 8. Lecture note series. Cambridge University Press,
2021. URL: www.cambridge.org/9781108795937.

[BMSZ14] J. W. Bos, P. L. Montgomery, D. Shumow, and G. M. Zaverucha.
Montgomery Multiplication Using Vector Instructions. In Selected
Areas in Cryptography – SAC 2013, pages 471–489, Berlin, Heidel-
berg, 2014. Springer Berlin Heidelberg. doi:10.1007/978-3-662
-43414-7_24.

[Bos12] J. W. Bos. Low-latency Elliptic Curve Scalar Multiplication. In-
ternational Journal of Parallel Programming, 40:532–550, 2012.
doi:10.1007/s10766-012-0198-5.

[BSS99] I. F. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryp-
tography. Cambridge University Press, 1999. doi:10.1017/CBO9
781107360211.

[CFG+21] H. Cheng, G. Fotiadis, J. Groszschädl, P. Y.A. Ryan, and P. Roenne.
Batching CSIDH Group Actions using AVX-512. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems (TCHES),
2021(4):618–649, 2021. doi:10.46586/tches.v2021.i4.618-6
49.

[CFGR22] H. Cheng, G. Fotiadis, J. Groszschädl, and P. Y.A. Ryan. Highly
Vectorized SIKE for AVX-512. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems (TCHES), 2022(2):41–68,
2022. doi:10.46586/tches.v2022.i2.41-68.

https://doi.org/10.1109/ASAP.2010.5541000
https://developer.arm.com/architectures/instruction-sets/intrinsics/
https://developer.arm.com/architectures/instruction-sets/intrinsics/
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/s13389-021-00256-9
https://doi.org/10.1007/978-3-030-75245-3_2
www.cambridge.org/9781108795937
https://doi.org/10.1007/978-3-662-43414-7_24
https://doi.org/10.1007/978-3-662-43414-7_24
https://doi.org/10.1007/s10766-012-0198-5
https://doi.org/10.1017/CBO9781107360211
https://doi.org/10.1017/CBO9781107360211
https://doi.org/10.46586/tches.v2021.i4.618-649
https://doi.org/10.46586/tches.v2021.i4.618-649
https://doi.org/10.46586/tches.v2022.i2.41-68

22 Truncated multiplication and batch software implementation for faster mod. exp.

[CMNT11] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi. Fully
homomorphic encryption over the integers with shorter public keys.
In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO
2011, pages 487–504, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg. doi:10.1007/978-3-642-22792-9_28.

[DDX19] J. Dyer, M. Dyer, and J. Xu. Practical homomorphic encryption
over the integers for secure computation in the cloud. International
Journal of Information Security, 18(5):549–579, Oct 2019. doi:
10.1007/s10207-019-00427-0.

[DG19] N. Drucker and S. Gueron. Fast Modular Squaring with
AVX512IFMA. In 16th International Conference on Informa-
tion Technology-New Generations (ITNG 2019), pages 3–8, Cham,
2019. Springer International Publishing. doi:10.1007/978-3-0
30-14070-0_1.

[DGK18] N. Drucker, S. Gueron, and V. Krasnov. Fast Multiplication
of Binary Polynomials with the Forthcoming Vectorized VP-
CLMULQDQ Instruction. In 2018 IEEE 25th Symposium on
Computer Arithmetic (ARITH), pages 115–119, 2018. doi:
10.1109/ARITH.2018.8464777.

[DL06] S. Duquesne and T. Lange. Pairing-based cryptography, chapter 24,
pages 573–590. Discrete Mathematics and Its Applications. Chap-
man and Hall/CRC Press, 2006. doi:10.1201/9781420034981.
ch24.

[DL18] J. Ding and S. Li. A Modular Multiplier Implemented With
Truncated Multiplication. IEEE Transactions on Circuits and
Systems II: Express Briefs, 65(11):1713–1717, 2018. doi:10.110
9/TCSII.2017.2771239.

[DL20] J. Ding and S. Li. A Low-Latency and Low-Cost Montgomery
Modular Multiplier Based on NLP multiplication. IEEE Transac-
tions on Circuits and Systems II: Express Briefs, 67(7):1319–1323,
2020. doi:10.1109/TCSII.2019.2932328.

[ELWW16] N. Emmart, J. Luitjens, C. Weems, and C. Woolley. Optimizing
Modular Multiplication for Nvidia’s Maxwell GPUs. In 2016 IEEE
23nd symposium on computer arithmetic (ARITH), pages 47–54.
IEEE, 2016. doi:10.1109/ARITH.2016.21.

[ET20] T. Edamatsu and D. Takahashi. Accelerating Large Integer Multi-
plication Using Intel AVX-512IFMA. In Algorithms and Architec-
tures for Parallel Processing, pages 60–74, Cham, 2020. Springer
International Publishing. doi:10.1007/978-3-030-38991-8_5.

[EZW18] N. Emmart, F. Zheng, and C. Weems. Faster Modular Exponentia-
tion using Double Precision Floating Point Arithmetic on the GPU.
In 2018 IEEE 25th Symposium on Computer Arithmetic (ARITH),
pages 130–137. IEEE, 2018. doi:10.1109/ARITH.2018.8464792.

[FKL+20] L. De Feo, D. Kohel, A. Leroux, C. Petit, and B. Wesolowski.
SQISign: compact post-quantum signatures from quaternions and
isogenies. Cryptology ePrint Archive, Paper 2020/1240, 2020. URL:
https://eprint.iacr.org/2020/1240, doi:10.1007/978-3-0
30-64837-4_3.

[Ga] T. Granlund and al. GNU multiple Precision Arithmetic Library
6.1.2. https://gmplib.org/.

https://doi.org/10.1007/978-3-642-22792-9_28
https://doi.org/10.1007/s10207-019-00427-0
https://doi.org/10.1007/s10207-019-00427-0
https://doi.org/10.1007/978-3-030-14070-0_1
https://doi.org/10.1007/978-3-030-14070-0_1
https://doi.org/10.1109/ARITH.2018.8464777
https://doi.org/10.1109/ARITH.2018.8464777
https://doi.org/10.1201/9781420034981.ch24
https://doi.org/10.1201/9781420034981.ch24
https://doi.org/10.1109/TCSII.2017.2771239
https://doi.org/10.1109/TCSII.2017.2771239
https://doi.org/10.1109/TCSII.2019.2932328
https://doi.org/10.1109/ARITH.2016.21
https://doi.org/10.1007/978-3-030-38991-8_5
https://doi.org/10.1109/ARITH.2018.8464792
https://eprint.iacr.org/2020/1240
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-64837-4_3
https://gmplib.org/

Laurent-Stéphane Didier, Nadia El Mrabet, Léa Glandus, Jean-Marc Robert 23

[GGP08] P. Grabher, J. Groszschaedl, and D. Page. On Software Parallel
Implementation of Cryptographic Pairings. Cryptology ePrint
Archive, Paper 2008/205, 2008. URL: https://eprint.iacr.or
g/2008/205, doi:doi.org/10.1007/978-3-642-04159-4_3.

[GK12] S. Gueron and V. Krasnov. Software Implementation of Modular
Exponentiation, using Advanced Vector Instructions Architectures.
In Arithmetic of Finite Fields: 4th International Workshop, WAIFI
2012, Bochum, Germany, July 16-19, 2012. Proceedings 4, pages
119–135. Springer, 2012. doi:10.1007/978-3-642-31662-3_9.

[GK16] S. Gueron and V. Krasnov. Accelerating Big Integer Arithmetic
using Intel IFMA Extensions. In 2016 IEEE 23nd Symposium on
Computer Arithmetic (ARITH), pages 32–38. IEEE, 2016. doi:
10.1109/ARITH.2016.22.

[Har05] L. Hars. Fast Truncated Multiplication for Cryptographic Ap-
plications. In Cryptographic Hardware and Embedded Systems
– CHES 2005, pages 211–225. Springer Berlin Heidelberg, 2005.
doi:10.1007/11545262_16.

[Har06] L. Hars. Applications of Fast Truncated Multiplication in Cryptog-
raphy. EURASIP Journal on Embedded Systems, 2007(1):061721,
Dec 2006. doi:10.1155/2007/61721.

[Int] Intel. Intel intrinsics guide. https://www.intel.com/content/
www/us/en/docs/intrinsics-guide/index.html.

[KKAK96] C. Kaya Koc, T. Acar, and B.S. Kaliski. Analyzing and Comparing
Montgomery Multiplication Algorithms. IEEE Micro, 16(3):26–33,
1996. doi:10.1109/40.502403.

[Kra17] V. Krasnov. On the dangers of intel’s frequency scaling, 2017.
URL: https://blog.cloudflare.com/on-the-dangers-of-i
ntels-frequency-scaling/.

[MC14] E. M Mahé and J.-M. Chauvet. Fast GPGPU-Based Elliptic Curve
Scalar Multiplication. Cryptology ePrint Archive, 2014. URL:
https://eprint.iacr.org/2014/198.

[MJ17] N.E. Mrabet and M. Joye. Guide to Pairing-Based Cryptography.
Chapman and Hall/CRC Cryptography and Network Security
Series. CRC Press, 2017. URL: https://books.google.fr/book
s?id=jmwNDgAAQBAJ.

[Mon85] P. L. Montgomery. Modular Multiplication Without Trial Division.
Mathematics of Computation, 44(170):519–521, 1985. doi:10.230
7/2007970.

[Pro] The OpenSSL Project. Openssl. https://www.openssl.org/.
[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtain-

ing Digital Signatures and Public-Key Cryptosystems. Commun.
ACM, 21(2):120–126, 1978. doi:10.1145/359340.359342.

[RV22] J. M. Robert and P. Véron. Faster Multiplication over F2[X]
using AVX512 Instruction Set and VPCLMULQDQ Instruction.
Journal of Cryptographic Engineering, January 2022. URL: https:
//cnrs.hal.science/hal-03520854, doi:10.1007/s13389-021
-00278-3.

[Sch96] B. Schneier. Applied Cryptography - Protocols, Algorithms, and
Source Code in C, 2nd Edition. Wiley, 1996. URL: https://www.
worldcat.org/oclc/32311687.

https://eprint.iacr.org/2008/205
https://eprint.iacr.org/2008/205
https://doi.org/doi.org/10.1007/978-3-642-04159-4_3
https://doi.org/10.1007/978-3-642-31662-3_9
https://doi.org/10.1109/ARITH.2016.22
https://doi.org/10.1109/ARITH.2016.22
https://doi.org/10.1007/11545262_16
https://doi.org/10.1155/2007/61721
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://doi.org/10.1109/40.502403
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://eprint.iacr.org/2014/198
https://books.google.fr/books?id=jmwNDgAAQBAJ
https://books.google.fr/books?id=jmwNDgAAQBAJ
https://doi.org/10.2307/2007970
https://doi.org/10.2307/2007970
https://www.openssl.org/
https://doi.org/10.1145/359340.359342
https://cnrs.hal.science/hal-03520854
https://cnrs.hal.science/hal-03520854
https://doi.org/10.1007/s13389-021-00278-3
https://doi.org/10.1007/s13389-021-00278-3
https://www.worldcat.org/oclc/32311687
https://www.worldcat.org/oclc/32311687

24 Truncated multiplication and batch software implementation for faster mod. exp.

[Tak20] D. Takahashi. Fast multiple Montgomery Multiplications Using In-
tel AVX-512IFMA Instructions. In Computational Science and Its
Applications – ICCSA 2020, pages 655–663, Cham, 2020. Springer
International Publishing. doi:10.1007/978-3-030-58814-4_52.

[Tre13] Wilke Trei. Efficient modular arithmetic for SIMD devices. Cryp-
tology ePrint Archive, Report 2013/652, 2013. URL: https:
//eprint.iacr.org/2013/652.

https://doi.org/10.1007/978-3-030-58814-4_52
https://eprint.iacr.org/2013/652
https://eprint.iacr.org/2013/652

	Introduction
	Batch Schoolbook multiplications
	Schoolbook multiplication
	Squaring
	Complexity comparison

	Batch Karatsuba multiplications
	Batch Montgomery modular multiplications
	Truncated Batch Montgomery modular multiplications
	Complexity of the Truncated Montgomery multiplication

	Performances of the implementations
	Performances measurement procedure
	Performances of the batch multipliers
	Performances of the batch Montgomery multiplication and squaring
	Window exponentiation with Truncated Montgomery Modular Mutiplication

	Conclusion
	References

