
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 3, 25 pages.

https://doi.org/10.62056/a66cy7qiu
Check for updates

Efficient Maliciously Secure
Oblivious Exponentiations

Carsten Baum1 , Jens Berlips9, Walther Chen9, Ivan B. Damgård2 ,
Kevin M. Esvelt3 , Leonard Foner9, Dana Gretton3 , Martin Kysel9,

Ronald L. Rivest4, Lawrence Roy2, Francesca Sage-Ling9 , Adi Shamir5,
Vinod Vaikuntanathan4, Lynn Van Hauwe9, Theia Vogel9,

Benjamin Weinstein-Raun9, Daniel Wichs6,10, Stephen Wooster9,
Andrew C. Yao7 and Yu Yu8

1 Technical University of Denmark, DTU Compute, Kgs. Lyngby, Denmark
2 Aarhus University, Department of Computer Science, Aarhus, Denmark

3 MIT, Media Lab, Cambridge, USA
4 MIT, Computer Science & AI Lab, Cambridge, USA

5 Weizmann Institute, Department of Computer Science, Rehovot, Israel
6 Northeastern University, Khoury College of Computer Sciences, Boston, USA

7 Tsinghua University, Institute for Interdisciplinary Information Sciences, Beijing, China
8 Shanghai Jiao Tong University, Department of Computer Science and Engineering, Shanghai,

China
9 SecureDNA Foundation, Zug, Switzerland

10 NTT Research, Cryptography & Information Security, Sunnyvale, USA

Abstract. Oblivious Pseudorandom Functions (OPRFs) allow a client to evaluate
a pseudorandom function (PRF) on her secret input based on a key that is held
by a server. In the process, the client only learns the PRF output but not the key,
while the server neither learns the input nor the output of the client. The arguably
most popular OPRF is due to Naor, Pinkas and Reingold (Eurocrypt 2009). It is
based on an Oblivious Exponentiation by the server, with passive security under
the Decisional Diffie-Hellman assumption. In this work, we strengthen the security
guarantees of the NPR OPRF by protecting it against active attacks of the server.
We have implemented our solution and report on the performance.
Our main result is a new batch OPRF protocol which is secure against maliciously
corrupted servers, but is essentially as efficient as the semi-honest solution. More
precisely, the computation (and communication) overhead is a multiplicative factor
o(1) as the batch size increases. The obvious solution using zero-knowledge proofs
would have a constant factor overhead at best, which can be too expensive for certain
deployments.
Our protocol relies on a novel version of the DDH problem, which we call the Oblivious
Exponentiation Problem (OEP), and we give evidence for its hardness in the Generic
Group model. We also present a variant of our maliciously secure protocol that
does not rely on the OEP but nevertheless only has overhead o(1) over the known
semi-honest protocol. Moreover, we show that our techniques can also be used to
efficiently protect threshold blind BLS signing and threshold ElGamal decryption
against malicious attackers.

E-mail: cabau@dtu.dk (Carsten Baum), ivan@cs.au.dk (Ivan B. Damgård), ldr709@gmail.com
(Lawrence Roy)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-02 Accepted: 2024-09-02

https://doi.org/10.62056/a66cy7qiu
https://crossmark.crossref.org/dialog/?doi=10.62056/a66cy7qiu&domain=pdf&date_stamp=2024-09-20
https://orcid.org/0000-0001-7905-0198
https://orcid.org/0009-0003-6164-0896
https://orcid.org/0000-0001-8797-3945
https://orcid.org/0000-0003-4726-9149
https://orcid.org/0009-0008-3277-9668
https://orcid.org/0000-0002-3648-5594
mailto:cabau@dtu.dk
mailto:ivan@cs.au.dk
mailto:ldr709@gmail.com
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Efficient Maliciously Secure Oblivious Exponentiations

1 Introduction
Oblivious PRFs (OPRFs) are a well-known type of cryptographic protocols between a client
and a server. In an OPRF, the client holds a secret input q while the server holds a PRF key
K for a PRF fK(·). At the end of the protocol, the client will have learned y = fK(q) and
no other information - in particular nothing about K. At the same time, the server learns
no information about q or y. To protect the key K against attackers that could hack into a
server, the role of the server in the OPRF protocol is sometimes distributed by secret-sharing
K among multiple parties, requiring the client to interact with multiple servers to evaluate
the PRF. This leads to a so-called Distributed OPRF (or DOPRF) protocol. (D)OPRFs
have many applications in cryptography as parts of larger protocols, such as in Private-Set
Intersection [HL08], (Distributed) Password Authentication [CLN15, ECS+15], Password-
Authenticated Key Exchange [JKK14, JKKX17], single-sign on [AMMM18, BFH+20] or
the well-known Privacy Pass [DGS+18] protocol to just name a few. We refer to [CHL22]
for an excellent overview on (D)OPRFs.

The arguably most popular construction for a (D)OPRF is due to Naor, Pinkas and
Reingold [NPR99] (called Hashed-DH in the following) and relies on the Decision Diffie-
Hellman problem for its security. The Hashed-DH OPRF is defined as follows: the client
C has an input q ∈ {0, 1}∗, while the key K is chosen as K ∈ Zp for some prime p. Each
server Ki (in the following also denoted as key servers) holds a share k(i) of K, computed
using Shamir’s secret sharing scheme. We assume that there exists a group G of order p
where the Decisional Diffie Hellman problem is hard, as well as a fixed publicly known
g ∈ G. Furthermore, let H be a hash function (modeled as a random oracle) mapping
from {0, 1}∗ to G.

The DOPRF value of q is defined as fK(q) = H(q)K . To compute it obliviously, C
initially chooses a uniformly random r ∈ Zp, computes X = H(q) and sends L = Xr

to each Ki, where the blinding factor r is meant to hide X from the key servers. Each
Ki now computes Yi = Lk(i) and sends Yi to C. Finally, C uses Lagrange interpolation
in the exponent to obtain LK and then computes y = (LK)r−1 . It is well-known from
[NPR99] that this construction has passive security against a corrupt client or server.
At the same time, the Hashed-DH protocol clearly is insecure if any key server deviates
from the protocol: a single deviating server can, by changing it’s share from Yi = Lk(i) to
Yi = Lk(i)+ϵ (or even just responding with a random group element), nullify the guarantee
that the responses allow to reconstruct a PRF output1. This is problematic if e.g. output
consistency for multiple clients is necessary. While Zero Knowledge-based solutions exist
to tackle this problem, they impose a substantial computational overhead on (at least) the
servers to demonstrate that they sent the correct response.

Such Zero Knowledge-based solutions appear to be too strong if the protocol can
assume that the client is semi-honest. This makes sense in many cases, for instance when
a user stores his secret key in shared form on a number of servers (in which case the client
would always be the user’s own device, say his phone) or for applications of DOPRFs such
as the SecureDNA protocol2.

More generally, the problem of checking that a server responded with a correct ex-
ponentiation Yi = Lk(i) is not a problem unique to the Hashed-DH DOPRF. When
considering e.g. threshold BLS signature schemes, or decryption of El Gamal ciphertexts,
the same problem of determining the correctness of exponentiation occurs when considering

1While computing the correct output for one incorrect response is still possible by guessing the cheater
and excluding it, this approach This approach, performs poorly if the number of corrupt parties increases
(as there are many subsets that have to be enumerated). In fact, even for the benign setting where
n >= 3t + 1 errors cannot simply be decoded as the Shamir shares (or rather, Reed Solomon code symbols)
are in the exponent, so Berlekamp-Welch or other decoding methods cannot be applied. [Pei06] showed
that, in general, decoding RS codewords with errors in the exponent is a computationally hard problem.

2See https://www.securedna.org as well as [GWE+24, BBC+24] for more details.

https://www.securedna.org

Baum et al. 3

potentially malicious servers.

1.1 Our contributions
In this work, we strengthen the security of the Hashed-DH DOPRF, in order to tolerate
potentially malicious servers.

As our main contribution, we describe a new protocol for the interaction between the
client and servers that can protect against malicious servers with essentially no overhead
compared to a semi-honest secure solution. Namely, while it is easy to get a constant
factor overhead using zero-knowledge proofs, our protocol achieves overhead o(1) assuming
the client sends many queries in parallel to the servers (which is indeed the case in many
applications). Our protocol works in every case where a set of servers hold shares of an
exponent E and a client wants their help to compute securely gE where g is a group
element.

To demonstrate that this improvement is meaningful in practice, we have implemented
our actively secure Hashed-DH DOPRF and benchmarked it against the passively secure
version. The computational overhead of our solution is < 5% in all of our tested scenarios,
and often is close to the noise of the measurements. The communication overhead between
the client and each key server is 2 G-elements, independent of the batch size.

Our actively secure DOPRF protocol has been deployed as part of the SecureDNA
project [GWE+24, BBC+24]. SecureDNA uses a DOPRF as part of a privacy-preserving
DNA synthesis order screening protocol. The use of our protocol protects the SecureDNA
screening system against actively corrupted key servers, which in their setting allows them
to mitigate insider threats. By using our protocol, this is done without the need to use
additional computational resources as part of the screening.

We also present an unconditionally secure variant of the oblivious exponentiation
protocol. The protocol is secure against a minority of maliciously corrupted servers, is
slightly less efficient than the first protocol but still has o(1) factor server-side computation
and overall communication overhead over the trivial semi-honest solution.

Finally, we show how our actively secure exponentiation protocols can be included into
threshold blind BLS signing and threshold ElGamal decryption protocols to achieve active
security against servers.

1.2 Technical Overview
Towards allowing verification, we let each Ki be committed to k(i) as gk(i) . Assume that
C sends m messages L1 = Xr1

1 , . . . , Lm = Xrm
m , to the key servers and wants to learn

XK
1 , . . . XK

m . We will construct a protocol C can verify that the result it obtains is correct.
Our key observation is that if C can be assumed semi-honest, we do not need heavy

zero-knowledge protocols if the group elements gK , gk(1)
, . . . , gk(n) are available to C. The

idea is that, by rerandomizing the pair g, gK (into, say G, GK), C can make random
instances of inputs to the PRF (G) where it knows what the answer should be (namely
GK). Rerandomization can be done simply by raising both g, gK to a random exponent
chosen by C. We exploit this as follows: Let Xj = H(qj) for j ∈ [m]. C can set

X0 = G · (
m∏

j=1
Xj)−1

and use X0, . . . Xm as inputs to the exponentiation protocol. That is, it chooses r0, . . . , rm,
sends Xr0

0 , . . . , Xrm
m to the key servers, and will compute Y0, . . . , Ym from their responses

using Lagrange interpolation.
Now, because X0 was constructed such that G =

∏m
j=0 Xj , C knows that if indeed

Yj = XK
j , it should be the case that GK =

∏m
j=0 Yj , and this equation can be easily

4 Efficient Maliciously Secure Oblivious Exponentiations

verified. Interestingly, due to the use of the random blinding factors rj that are applied
before sending Xj to the key servers, we can show that checking GK =

∏m
j=0 Yj is sufficient

to establish correctness of all the results. The protocol is trivially simulatable towards C,
while we show that key servers cannot cheat assuming that a certain problem which we call
Oblivious Exponentiation Problem (OEP) is hard in G. If the check does not go through,
C can do further checks (which do not require any extra communication to the servers) to
find out which server(s) returned incorrect answers, as we describe in more detail later.

We show that the Oblivious Exponentiation problem is equivalent to a simpler one
where you are given g, ga, gb and must output h, hab, so a variant of the Diffie-Hellman
problem. We give evidence that this problem is hard by reducing it to the Discrete
Logarithm problem in the Generic Group Model.

Note that, on the server side, the new DOPRF protocol is the same as the passive
version, except that one extra input instance has been added. On the client side, we add
O(m) multiplications in G, which are negligible compared to the O(m) exponentiations
we needed already in the passive version. So for the client we add 3 exponentiations, 2 to
get (G, GK) and 1 for blinding X0. Hence, the overhead indeed vanishes as m increases.

We also show a modification of the aforementioned protocol. This variant is uncon-
ditionally sound and reminiscent of [BGR98]. It is the same as our first protocol on the
server side and is marginally less efficient for the client. This variant is based on the classic
idea of checking a batch of input instances by checking a random linear combination of
them. In this case the linear combination happens in the exponent. The soundness of this
variant is independent of the blinding that the client uses for obliviousness, so it can be
used in general for making distributed exponentiation secure against malicious servers at
small amortized cost.

1.3 Related Work
A protocol to prove correctness of exponentiation with respect to a committed value
gk(i) was first introduced by Chaum [Cha91]. This approach, or similar Σ-protocols, have
constant computation and communication overhead for the server in the batch size m. Even
if this is only a constant factor overhead, it may be problematic in practical applications.
While one can compress the proof size using batching techniques such as [GLSY04], this
does not reduce the computational overhead as the server still has to compute at least
two group exponentiations: one to compute Yj,i = Xk(i)

j from Xj , and another to raise Xj

or Yj,i to a random exponent for a linear combination as part of the amortization proof.
This can also not be overcome by using folding techniques [BBB+18, AC20].

One might alternatively replace the Hashed-DH OPRF with other constructions to
achieve malicious security. Two obvious alternative candidates for use of an OPRF are due
to Naor & Reingold [NR04] as well as Dodis & Yampolskiy [DY05]. The Naor-Reingold
OPRF exhibits better performance on the server-side than Hashed-DH due to possible
precomputations. The OT-based solution can be optimized using OT extension [IKNP03].
To the best of our knowledge, none of the OT-based Naor-Reingold OPRF constructions (or
batch constructions such as [KKRT16]) can efficiently be made secure against a malicious
server or work in the threshold setting without a substantial increase in computation or
communication. Although one can distribute the Dodis-Yampolskiy OPRF as shown in e.g.
[MPR+20] the resulting construction only achieves active security using expensive NIZKs.

Organization
In Section 2 we will describe necessary preliminaries for this work. We describe our
techniques to achieve active security against a dishonest servers in Section 3. Then,
we describe the Hashed-DH formally in Section 4, recap the security argument against
passive attackers and combine it with our new techniques to achieve security against active

Baum et al. 5

attackers. We provide experiments showing the practical efficiency of our approach to
protecting Hashed-DH in 5 and describe other applications of our protocols in more detail
in Section 6.

2 Preliminaries
In this work, we will denote the client as C and the n key servers as K1, . . . ,Kn. We will
assume that at most t of the n key servers are corrupted, where t < n/2. We implicitly
assume the existence of a PKI, authenticated channels among all parties as well as the
existence of a broadcast channel among the key servers. All corruptions are assumed to be
static, and the adversary is allowed to be rushing in the communication model. We use λ
to denote the security parameter. We use [x..y] as a shorthand for the set {x, . . . , y} and
write [x] for [1..x].

We assume that a group G of prime order p together with generators g, h ∈ G are
provided as a CRS to all parties, where logg(h) is not known. We use multiplicative
notation of G. We further assume that the DDH problem holds in the group G:

Definition 1 (Decisional Diffie-Hellman (DDH)). Consider the following game between a
challenger C and an adversary A:

1. C on input 1λ,G, g samples a, b, r ← Zp, δ ← {0, 1} and sets c← a · b if δ = 0 and
c← r if δ = 1. It then sends (G, g, ga, gb, gc) to A.

2. A, on input (1λ,G, A, B, C) outputs a bit δ̂.

3. We say A wins iff δ = δ̂.

Then we say an adversary breaks DDH if it wins the aforementioned game with probability
≫ 1/2 + negl(λ).

By saying that the DDH problem holds in G, we mean that no algorithm A with
runtime polynomial in λ can break DDH.

2.1 Shamir Sharing & Lagrange Interpolation
In this work, we use Shamir’s secret sharing scheme to keep the DOPRF key K secret.
This means that there implicitly exists a polynomial f of degree t such that f(0) = K,
while each key server Ki holds a share k(i) = f(i). As is known for Shamir’s secret sharing
scheme, this implies that given any t key shares, the value K looks uniformly random.

Assume a set A ⊂ Zp of size k = t + 1. Given such a minimal qualified set A =
{a1, . . . , ak} we then define the Lagrange coefficient λA

i,j which allows to interpolate a
polynomial f ∈ Zp[X] of degree t at the point j /∈ A given {f(i)}i∈A as

λA
i,j :=

∏
m∈A
m ̸=i

j −m

i−m
.

Whenever A = [0..t] we write ci,j = λA
i,j and we write c+

i,j if A = [t + 1]. If additionally
j = 0 then we write ci = λA

i,0. If A = [2t + 1] and j = 0 then we write di = λA
i,0.

2.2 Universal Composability
We use the (Global) Universal Composability or (G)UC model [Can01] for analyzing
security and refer interested readers to the original works for more details.

In UC protocols are run by interactive Turing Machines (iTMs) called parties. A
protocol π will have n parties denoted as P . The adversary A, which is also an iTM,

6 Efficient Maliciously Secure Oblivious Exponentiations

can corrupt a subset I ⊂ P as defined by the security model and gains control over
these parties. We say that parties are passively (or semi-honestly) corrupted if they still
follow the protocol flow but report their whole state to A, while parties are actively (or
maliciously) corrupted if they may deviate in any way from the protocol as instructed by
A.

The parties can exchange messages via resources, called ideal functionalities (which
themselves are iTMs) and which are denoted by F . For simplicity, we assume availability
of private authenticated channels for communication between parties but do not specify
these further.

As usual, we define security with respect to an iTM Z called environment. The
environment provides inputs to and receives outputs from the parties P as well as the
adversary A. To define security, let πF1,... ◦ A be the distribution of the output of an
arbitrary Z when interacting with A in a real protocol instance π using resources F1,
Furthermore, let S denote an ideal world adversary and F ◦ S be the distribution of the
output of Z when interacting with parties which run with F instead of π and where S
takes care of adversarial behavior.

Definition 2. We say that F UC-securely implements π if there exists an iTM S (with
black-box access to A) for every iTM A such that no PPT environment Z can distinguish
πF1,... ◦ A from F ◦ S with non-negligible probability in λ.

2.3 Setup Functionalities
In our construction we assume a Global Programmable and Observable Random Oracle
functionality GR

RO as depicted in Fig. 1. In comparison to [CDG+18] we parameterize the
Random Oracle functionality by a finite set R that allows to efficiently sample uniformly
random elements and efficient membership testing. For simplicity, we define

1. GRO−G = GGRO as a Random Oracle that outputs G-elements; and

2. GRO−Zp = GZp

RO as a Random Oracle that outputs Zp-elements.

For simplicity, we will write H(x) in this work whenever we mean that a party queries a
GS

RO-functionality on input x and where the output set S is clear.

Key Registration. In Fig. 2 we present the key generation and party registration
functionality FKeyReg. It generates key shares and verification keys for every Key Server
Ki. It can also be used by every party to obtain a verification key. FKeyReg does allow the
simulator A to obtain the key k(i) used by an adversarially controlled key server. We allow
A to corrupt up to t of the n ≥ 2t + 1 Key Servers statically in FKeyReg, as well as any
party.

3 Oblivious Exponentiation with actively corrupted
servers

We now present two approaches to protect exponentiation protocols against actively
corrupted servers.

Assume we have a client C and a server S. The server holds a secret exponent E ∈ Zp,
and the client has as input m group elements X1, . . . , Xm ∈ G, and we assume throughout
that none of them are 1. The goal is that C learns XE

1 , . . . , XE
m (and nothing else), while

S learns nothing new. S may be malicious, while C is semi-honest.
Of course, if S were honest, we would use the passively secure protocol from the

previous section: for j ∈ [m], C chooses rj ∈ Zp at random and sends X
rj

j to S. Then

Baum et al. 7

Functionality GR
RO

GR
RO is parameterized by an efficiently samplable finite set R with efficient membership

testing. The functionality keeps initially empty lists ListH,prog.

Query: On input (Hash-Query, m) from party (P, sid) or A, parse m as (s, m′)
and proceed as follows:

1. Look up h such that (m, h) ∈ ListH. If no such h exists, sample h
$← R and

set ListH = ListH ∪ {(m, h)}.
2. If this query is made by A, or if s ≠ sid, then add (s, m′, h) to the (initially

empty) list of illegitimate queries Qs.
3. Send (Hash-Confirm, h) to the caller.

Observe: On input (Observe, sid) from A, if Qsid does not exist yet, set Qsid = ∅.
Output (List-Observe,Qsid) to A.

Program: On input (Program-RO, m, h) with h ∈ R from A, ignore the input
if there exists h′ ∈ R where (m, h′) ∈ ListH and h ≠ h′. Otherwise, set
ListH = ListH ∪{(m, h)}, prog = prog∪{m} and send (Program-Confirm)
to A.

IsProgrammed: On input (IsProgrammed, m) from a party P or A, if the input
was given by (P, sid) then parse m as (s, m′) and, if s ̸= sid, ignore this input.
Set b = 1 if m ∈ prog and b = 0 otherwise. Then send (IsProgrammed, b)
to the caller.

Figure 1: Restricted observable and programmable global random oracle functionality GR
RO

from [CDG+18].

S returns (Xrj

j)E , so C can compute XE
j = ((Xrj

j)E)r−1
j This requires 2 messages, 2m

exponentiations on the client side and m exponentiations on the server side. We want
an actively secure protocol with a minimal overhead compared to this passively secure
solution.

3.1 A computationally sound protocol
One approach that comes to mind is the well-known idea of checking that a certain
operation was applied correctly to a set of objects by taking a random linear combination
of them and then only the result of the linear combination is checked. The obvious way
to apply this idea in our setting is to do the linear combination in the exponent, so we
ask C to choose random exponents dj and compute

∏
j X

dj

j and
∏

j(XE
j)dj = (

∏
j X

dj

j)E .
Then, S can prove in Zero-Knowledge that this pair of group elements is of the right form.
However, this requires at least two extra messages and 2m extra exponentiations on the
client side. We shall now see that we can do much better. In a nutshell, C can arrange it
such that she already knows what the result of the linear combination should be, so no
zero-knowledge is needed. Furthermore, at the expense of assuming hardness of a specific
computational problem, the exponentiations C needs to do to raise Xj to rj , which is
necessary just for passive security, can already be leveraged for the check.

In the following, we will assume that C is initially given a pair of group elements that is
guaranteed to be of form (g0, gE

0). For instance, this can generated by S and proved to be
correct in zero-knowledge using a standard protocol or by using FKeyReg in the distributed

8 Efficient Maliciously Secure Oblivious Exponentiations

Functionality FKeyReg

This functionality communicates with K1, . . . ,Kn as well as parties P1, . . . , Pℓ and
the ideal adversary A. FKeyReg uses a group G of prime order p with fixed generator
g ∈ G. The functionality has a secret variable K that is initially not set. A may
corrupt up to t of the n ≥ 2t + 1 key servers and any party. We denote the set of
corrupted key servers as I.

Generate Keys: Upon first input (GenerateKey, sid) by an uncorrupted Ki:

1. Mark Ki as initialized and send (GenerateKey, sid, i) to S.
2. If t+1−|I| honest key servers are initialized then sample a uniformly random

K ∈ Zp and send (GenerateKey, sid, gK) to A.
3. A responds with (Shares, I, {k(i)}i∈I). Then set f to be a random degree-t

polynomial such that f(0) = K and f(i) = k(i). For i ∈ [n] \ I set k(i) = f(i)
and mark every Ki as registered.

4. Send (GenerateKeyOk, sid, k(i), gK , gk(1)
, . . . , gk(n)) to every honest Ki and A.

Obtain Verification Key: Upon input (GetVerKey, sid) by any P :

1. Send (ReqKey, sid, P) to A.

2. Send (VerKey, sid, gK , gk(1)
, . . . , gk(n)) to P .

Figure 2: Functionality FKeyReg for Key Generation and Party registration of the DVDOPRF

setting. This is only needed once and for all and so does not affect the efficiency if S is to
serve many requests from C, which is indeed the case in our application. We observe that
C can sample random pairs of the form (g, gE), by raising (g0, gE

0) to a random exponent.
Then, in the protocol, we will ask S to raise one additional element to the power E such
that the product of all outputs has to be gE . The protocol, which we call πMSEP, is described
in Fig. 3.

Note that, compared to the passively secure protocol, πMSEP adds a constant number of
exponentiations, no matter how large m is. Therefore, the amortized overhead for active
security can be made arbitrarily small.

We also note that the assumption that all inputs are different is necessary: if S
knows where repetitions are, then there is a simple attack. For simplicity, let m = 2 and
X2 = X1 = X. This means that S gets Xr1 and Xr2 as part of the message in Step
3. Instead of Y1 = (Xr1)E and Y2 = (Xr2)E it can also return Y ′

1 = (Xr1)E · Xr1 and
Y ′

2 = (Xr2)E ∗X−r2 , both of which can easily be computed. The check done by C in Step
4 will pass since

(Y ′
1)r−1

1 · (Y ′
2)r−1

2 = ((Xr1)E ·Xr1)r−1
1 · ((Xr2)E ∗X−r2)r−1

2

= X2E = (Y1)r−1
1 · (Y2)r−1

2

We will now show that πMSEP is sound if the computational problem (OEP) that we
define below is hard in G. In our application it may be the case that a corrupt S has
side information on the Xj ’s, he may get this information from another corrupt party. It
might even be the case that this other party has some influence on the choice of the Xj .
Namely, although the Xj are output from a random oracle, the inputs to the oracle may
be adversarially chosen. This is equivalent to giving the adversary a polynomial size set of
random group elements from which the Xj ’s should be chosen. This is the model used the
specification of OEP below.

Baum et al. 9

Protocol πMSEP

1. C has distinct inputs X1, . . . , Xm ∈ G as well as g0, gE
0 ∈ G. She samples a

random s ∈ Zp.

2. C sets (g, gE) := (gs
0, (gE

0)s) and computes X0 such that

g =
m∏

j=0
Xj .

3. C samples random exponents rj ∈ Z∗
p, j ∈ [0..m] and sends X

rj

j , j ∈ [0..m] to
S.

4. S returns Yj = (Xrj

j)E to C, who checks that

gE =
m∏

j=0
Y

r−1
j

j .

Figure 3: The Maliciously Secure Exponentiation Protocol πMSEP

Definition 3 (The Oblivious Exponentiation Problem (OEP)). The Oblivious Exponenti-
ation problem is defined as the following game between a challenger C and an adversary
A.

1. C samples a uniformly random set M ⊂ G of polynomial size and sends it to A.

2. A chooses distinct elements X0, . . . , Xm ∈M and sends this choice to C.

3. C for j ∈ [0..m] chooses random rj ∈ Z∗
p and sends X

rj

j to A.

4. A wins if she outputs Zj ∈ G, j ∈ [0..m] such that at least one Zj is different from 1,
and

∏m
j=0 Z

r−1
j

j = 1.

We believe that the OEP problem can reasonably be conjectured to be hard, and give
evidence for this below.

Note that since the underlying group G is exponentially large, a polynomial size set
of random elements in the group (such as M) will all be distinct except with negligible
probability. For simplicity, we will assume this about M in following without explicit
discussion. Note also that OEP is not hard unless the adversary is required to choose
distinct elements as X0, . . . , Xm.

In line with the definition of OEP, we define the following game played by a corrupt
key server S:

1. C samples a uniformly random set M ⊂ G of polynomial size and sends it to A.

2. A chooses distinct elements X1, . . . , Xm ∈M and sends this choice to C.

3. S runs the protocol πMSEP where the honest client uses
X1, . . . , Xm as input. We say that corrupt S is successful if the client accepts, but
at least one output Yj is incorrect.

Lemma 1. A corrupt S that is successful in the aforementioned game with probability ϵ
can be used to solve OEP with probability ϵ and essentially the same running time.

10 Efficient Maliciously Secure Oblivious Exponentiations

Proof. To see this, assume we have a successful corrupt key server, and a set M as input
to the OEP problem. We send M to S and let X1, . . . , Xm be the set of selected elements,
we select a new element in M , call it X0, send X0, . . . , Xm to the OEP challenger and
receive X

rj

j for j ∈ [0..m].
We can define g =

∏m
j=0 Xj and note that the joint distribution of g and the Xj ’s

is the same as in the protocol, namely M contains uniformly random group elements,
so choosing a random g first and computing X0 to match the equation is equivalent to
choosing X0 first. Thus if we send the X

rj

j to the server, we get answers back with the
same distribution as in the protocol, so they represent a successful cheat with probability
ϵ.

Define Zj by Yj = (Xrj

j)EZj . In other words, Zj is the factor by which the answer
from the server is off from what it should be.

A successful cheat means that not all Zj are 1 (at least one answer is incorrect), but
still the client is happy, that is, we have

gE =
m∏

j=0
Y

r−1
j

j =
m∏

j=0
((Xrj

j)EZj)r−1
j =

m∏
j=0

XE
j Zr−1

j

From this and g =
∏m

j=0 Xj , it follows immediately that
∏m

j=0 Z
r−1

j

j = 1 so we have solved
the problem.

Lemma 2. The view of a semi-honest C executing the πMSEP protocol with an honest S
can be perfectly simulated given {XE

j }i∈[m].

Proof. To do the simulation, we can simply emulate C’s side of the protocol as it stands,
this is possible because we are given the responses Yj = XE

j of S for j ∈ [m]. Whereas

we are not given Y0, we know that in the real execution, the equation gE =
∏m

j=0 Y
r−1

j

j

always holds, so we just solve this equation for Y0.

3.1.1 Analysis of the OEP

We justify the hardness of OEP by presenting a another problem, Chosen-Base CDH3, and
showing that OEP can be reduced to it. Chosen-Base CDH is a simpler problem that is
easier to understand and analyse.

Definition 4 (The Chosen-Base CDH Problem). The The Chosen-Base CDH Problem is
defined as the following game between a challenger C and an adversary A.

1. C samples a random generator g of a group G of prime order p, as well as random
x, y ∈ Z∗

p.

2. C gives A g, gx, and gy.

3. A chooses a non-identity element h ∈ G , and wins if she outputs hxy.

We conjecture that the Chosen-Base CDH problem is hard. Informally, the problem is
similar enough to CDH that it appears to be hard. More formally, it is hard in the Generic
Group Model (GGM), which provides evidence towards its hardness for concrete groups.

Lemma 3. Any adversary in the GGM performing at most q group operations has
probability at most

3
2 (q+3)2+3

p−1 of solving Chosen-Base CDH in a prime group of order p.
3Note that a very similar name was given to a completely different problem defined in [AP05]. That

problem was later broken in [Szy06].

Baum et al. 11

Proof. We can rephrase the Chosen-Base CDH problem in terms of an adversary A
obtaining evaluations of degree-1 polynomials in the exponent of g in x, y, while having to
compute a degree-2 polynomial in x, y in the exponent of g from these.

Using this, the proof follows from the interactive GGM master theorem [BFF+19,
Theorem 5], which shows that the bound above holds unless there exists a0, b0, c0, a1, b1, c1 ∈
Zp such that

XY (a0 + b0X + c0Y) = a1 + b1X + c1Y

a0 + b0X + c0Y ̸= 0

holds over Zp[X, Y]. The left side of the equality (which A has to compute) must have
total degree 2 or 3, while the right side (which is what A obtains from C) can only have
total degree 0 or 1, so no such solution can exist.

Lemma 4. Any adversary that solves OEP with probability ϵ can be used to solve Chosen-
Base CDH with probability ϵ/2, at the additional cost of O(|M |) group exponentiations.

Proof. Without loss of generality, we can assume that the adversary chooses the whole
set M , i.e. that M = {X0, . . . , Xm}, because she can always set Zj = 1 for elements she
doesn’t want to use. The reduction starts by receiving g, X = gx, and Y = gy from the
challenger, and for each j ≤ m samples bits bj and random numbers uj , vj ∈ Zp. It then
sets Xj = Xuj and X

rj

j = gvj if bj = 0, and otherwise sets Xj = guj and X
rj

j = Y vj , and
gives these to the adversary. Essentially, the reduction has set rj = vj

ujx if bj = 0, and
rj = vjy

uj
otherwise.4 If there is a collision for some Xk with a previous Xj , the reduction

resamples uk until the collision is avoided. Note that the distribution of (Xj , rj)j∈[0..m] is
identical to their distribution with the OEP.

The adversary now outputs {Zj}j∈[0..m], where there is some Zk such that Zk ̸= 1. She

solves the OEP if 1 =
∏m

j=0 Z
r−1

j

j . Equivalently,

1 =
m∏

j=0
bj=0

Z

uj x

vj

j

m∏
j=0
bj=1

Z

uj
vj y

j

1 =

 m∏
j=0
bj=0

Z

uj
vj

j


xy

m∏
j=0
bj=1

Z

uj
vj

j = hxyA,

for elements h and A that the reduction can compute. The reduction then outputs both
h and A−1, which equals hxy if the adversary wins her game. Therefore, the reduction
succeeds if the adversary wins and h ̸= 1.

We now argue that Pr[h ≠ 1 | adversary wins] ≥ 1
2 . Both the adversary’s view (the Xj

and X
rj

j) and whether she wins are entirely determined by uj and rj for all j. However,
the bits bj are independent of these because rj is completely masked by vj . These bits are
also independent from x and y for the same reason. Therefore, h will be the product of
a random subset (chosen by bj = 0) of the group elements Rj = Z

x−1r−1
j

j (which equals
Z

uj/vj

j when bj = 0). We have that at least one Rk ̸= 1, so bk = 0 and bk = 1 must lead to
two different values of h in either case, which therefore cannot both be 1. Hence, h must
differ from 1 with probability at least 1

2 .
4Note that the reduction cannot actually compute rj .

12 Efficient Maliciously Secure Oblivious Exponentiations

3.2 An unconditionally sound protocol
We now present an alternative protocol that is unconditionally sound, but somewhat less
efficient on the client side. The idea is not to use the rj values for the random linear
combination, but use independent coefficients dj from a bounded set. Set-up and notation
is the same as for πMSEP, and the construction can be found in Fig. 4.

Protocol πUMSEP

1. C has input X1, . . . , Xm ∈ G as well as g0, gE
0 ∈ G. She samples a random

s ∈ Zp as well as exponents dj randomly sampled from [1..2κ] where 2κ < p.

2. C sets (g, gE) := (gs
0, (gE

0)s) and computes X0 such that

g =
m∏

j=0
X

dj

j

3. C samples random exponents rj ∈ Z∗
p, j ∈ [0..m] and sends X

rj

j , j ∈ [0..m] to
S.

4. S returns Yj = (Xrj

j)E to C, who checks that

gE =
m∏

j=0
Y

r−1
j

dj

j .

Figure 4: The Unconditionally and Maliciously Secure Exponentiation Protocol πUMSEP

Completeness of πUMSEP follows from the fact that if both parties are honest, we have∏
j

Y
r−1

j
dj

j =
∏

j

X
rjEr−1

j
dj

j =
∏

j

(Xdj

j)E = gE

πUMSEP has the same overhead as πMSEP for S but adds 2m exponentiations for C. However,
we shall see that the soundness error is 2−κ, and it will usually be sufficient to have 2κ ≪ p.
This means that dj ≪ p so the added exponentiations add only a small constant factor.

We proceed to show that πUMSEP is sound:

Lemma 5. If at least one of the values sent by S in πUMSEP is incorrect, then C rejects,
except with probability 2−κ.

Proof. Since the group G has prime order, and we assume Xj ̸= 1, Xj generates the group,
so we can always write Y

r−1
j

j = X
E+ej

j where ej is an error introduced by S, and where of
course ej = 0 if S is honest. Now, the equation C checks can be rewritten as follows:

gE =
m∏

j=0
Y

r−1
j

dj

j =
m∏

j=0
X

(E+ej)dj

j

=
m∏

j=0
X

E·dj

j X
ejdj

j =
m∏

j=0
(Xdj

j)EX
ejdj

j

= gE
m∏

j=0
X

ejdj

j

Baum et al. 13

So the check goes through if and only if
∏m

j=0 X
ejdj

j = 1. We can write each Xj as a
power of, say g0, as Xj = g

uj

0 . Plugging this into the condition for the errors, we see that
the check goes through exactly if

m∑
j=0

dj · (ujej) mod p = 0

Clearly, the dj ’s are chosen independently of the uj ’s and the ej ’s5. Furthermore, all uj

are different from 0, since no Xj is 1. So, if some ek ̸= 0 is non-zero, also ekuk ̸= 0 is
non-zero. But then the above equation is satisfied only if

dk = (ekuk)−1
∑
j ̸=k

dj · ujej

which happens with probability 2−κ.

Using a similar argument as for Lemma 2, we can show:

Lemma 6. The view of a semi-honest C executing πUMSEP with an honest S can be perfectly
simulated given {XE

j }j∈[m].

4 Hashed-DH secure against active attackers
In this section we describe the UC-secure Verifiable DOPRF FDOPRF and recap its proof of
security against passive attacks in the Key Registration and Global Random Oracle model.
Afterwards, we will show how to apply the techniques from Section 3 to make it secure
against actively corrupted servers.

In Fig. 5 we describe a DOPRF that can be statically corrupted. For simplicity, we
only allow batch queries by the user.

The protocol which realizes FDOPRF with security against passive key servers is described
in Fig. 6. It follows the standard approach outlined in the introduction.

We will now prove security of πDOPRF when both the parties and the key servers can
only be passively corrupted. The proof is a standard argument that one can find e.g. in
[JKKX17], and we just include it for completeness. In the next subsection, we then modify
the protocol to make it secure against actively corrupted key servers.

Theorem 1. The protocol πDOPRF UC-securely implements the functionality FDOPRF in the
GRO−G,FKeyReg-hybrid model with security against static passive corruptions assuming the
DDH problem holds in G.

Proof. To prove the theorem, we have to construct a simulator S which in the presence
of A as well as with access to FDOPRF simulates the messages of uncorrupted “honest”
parties in the protocol. Since parties in our case are only passively corrupted, we assume
that S obtains the input and randomness of these honest parties controlled by A during
simulation6.

5Note that this is true despite the fact that we choose X0 so that the equation g =
∏m

j=0 X
dj

j holds.
This is because g is a fresh random group element. Therefore, an equivalent random experiment would be
to choose X0 (and d0) independently at random and define g by g =

∏m

j=0 X
dj

j .
6This may seem strange at first, but is straightforward when keeping in mind what a simulation proof

does: it shows that the view of dishonest parties can be simulated given only their inputs and the outputs
of the ideal functionality. Non-UC simulation proofs actively have to choose the randomness of dishonest
parties themselves, so making this randomness and the inputs accessible to S is necessary in the passive
setting.

14 Efficient Maliciously Secure Oblivious Exponentiations

Functionality FDOPRF

The functionality is parameterized by a group G of prime order p. This functionality
communicates with K1, . . . ,Kn as well as parties P = {C1, . . . , Cℓ} and an ideal
adversary A. A may initially corrupt up to t < n/2 of the Key Servers as well
as any party in P . We denote the corrupted key servers as I. The functionality
internally stores a list T that is initially empty.

Init: Upon first input (Init, sid, i) by Ki or (Init, sid, i) from A for i ∈ I:

1. Send (Init, ssid,Ki) to A.
2. If t + 1 Init messages were received then mark FDOPRF as ready.

Query: Upon input (Query, sid, ssid, {q1, . . . , qm}) by party C or A for a previously
unused ssid where qj ∈ {0, 1}∗ and if FDOPRF is marked as ready:

1. Send (Query, sid, ssid, C, m) to each honest Ki and A. Wait until each honest
Ki and A responds with (Ok, sid, ssid).

2. For any qj , j ∈ [m]: if (sid, qj , y′
j) ∈ L then set yj ← y′

j . Otherwise sample
yj

$← G uniformly at random and add (sid, qj , yj) to L.
3. Send (Response, sid, ssid, {qj , yj}j∈[m]) to C.

Figure 5: Functionality FDOPRF representing a distributed OPRF

We construct S for a fixed setting of I, S, m to simplify notation. Namely, we assume
that exactly t key servers, for simplicity K1, . . . ,Kt, are corrupted. This is because the
proof easily generalizes to other parties or smaller thresholds being corrupted (the simulator
can just “pretend” that t parties are corrupted). Moreover, we assume that S = [t + 1] is
chosen by each sender and that m = 1. Again, this is for the sake of simplicity and the
same argument works for any choice S, m. S then runs as follows:

• S will simulate the hybrid functionalities, i.e. GRO−G and FKeyReg.

• Whenever FDOPRF outputs (Init, sid,Kj) to S for an uncorrupted Kj then send
(GenerateKey, sid) in the name of Kj to FKeyReg and simulate its behavior. Whenever
A sends Shares for a set J to FKeyReg then forward Init for each party in J to FDOPRF.

• Whenever S obtains (Query, sid, ssid, C, 1) from FDOPRF (for an honest C that queried
the DOPRF) then sample a uniformly random group element h from G and send
(DOPRF− Compute, sid, ssid, h, S) to all dishonest key servers. Then upon obtaining
the responses from the corrupt key servers, send (Ok, sid, ssid) to FDOPRF.

• For a query (DOPRF− Compute, sid, ssid, h) from a dishonest party C we have
the input q and randomness r by assumption because C can only be semi-honest.
Then S sends (Query, sid, ssid, {q}) to FDOPRF. Moreover, send (Ok, sid, ssid, I).
Upon obtaining (Response, sid, ssid, q, y) we know that the dishonest key servers
will generate shares Y1 = Lk(i)·λS

1,0 , . . . , Yt = Lk(t)λS
t,0 , and we set the last share as

Yt+1 = yr/(Y1 · · ·Yt).

Clearly, S runs in polynomial time as all computations are straightforward. Towards
indistinguishability, we define the following distributions:

I: This is the view of Z in S.

Baum et al. 15

Protocol πDOPRF

The protocol πDOPRF runs between Key Servers K1, . . . ,Kn and parties P =
{C1, . . . , Cℓ}. The protocol is defined in the GRO−G,FKeyReg-hybrid model where
parties communicate via authenticated channels.

Init: Upon first input (Init, sid) to a Key Server Ki:

1. Send (GenerateKey, sid) to FKeyReg.
2. If FKeyReg responds with

(GenerateKeyOk, sid, k(i), G, G(1), . . . , G(t)) then store k(i) locally and output
Init.

Query: Upon input (Query, sid, ssid, {q1, . . . , qm}) to party C, where qj ∈ {0, 1}∗:

1. Choose a set S ⊆ [n] of size t + 1 uniformly at random.
2. For each j ∈ [m] send (Hash− Query, qj) to GRO−G to obtain

(Hash− Confirm, Xj). Also check (IsProgrammed, qj) and abort if GRO−G re-
turns (IsProgrammed, qj , 1).

3. For each j ∈ [m] sample rj
$← Z∗

p and compute Lj ← X
rj

j in G.
4. C sends (DOPRF− Compute, sid, ssid, {L1, . . . , Lm}, S) to each Ki, i ∈ S.
5. Upon receiving (DOPRF− Compute, sid, ssid, {L1, . . . , Lm}, S) from C for

which each receiving Ki has k(i), Ki computes its Lagrange coeffi-
cient λS

i,0, computes Yi,j ← L
k(i)·λS

i,0
j for each j ∈ [m] and sends

(DOPRF− Response, sid, ssid, {Yi,1, . . . , Yi,m}) back to C.
6. Upon having received (DOPRF− Response, sid, ssid, {Yi,1, . . . , Yi,m}) from

each Ki, C computes and outputs yj =
(∏

i∈[n] Yi,j

)1/rj

for each j ∈ [m].

Figure 6: Protocol πDOPRF that implements the distributed OPRF

H1: Is the same as I except that we replace the random group element h being sent for
honest queries with a message as it is being sent in the protocol.

H2: Is the same as H1 except that FDOPRF now uses the random value K ∈ Zp chosen by
GRO−G and outputs H(q)K instead of a uniformly random group element from G.

H3: Is the same as H2 except that we replace Yt+1 with the correctly formed message
according to the shared key K.

R: Is the view of Z in the real protocol.

Towards indistinguishability, we first note that queries of honest parties C or corrupted
such parties always yield the same output, so any distinguishing environment Z must
distinguish based on the protocol messages and distribution of protocol outputs. Observe
that G is of prime order so every element except 1 is a generator of G. Since the output
of GRO−G on query q is a random group element X which is a generator (except with
probability 1/p), Xr is a random group element in G which is not 1. Moreover, if X = 1
then Xr = 1 as well. Hence, h has the same distribution as the message H(q)r and I and
H1 are perfectly indistinguishable.

Concerning H1 and H2 we can make a hybrid argument, replacing (consistently for
re-queries) the first query q1 to FDOPRF with H(q1)K etc. Then, any Z distinguishing two

16 Efficient Maliciously Secure Oblivious Exponentiations

such consecutive hybrids is exactly solving the DDH problem. Concerning H2 and H3
observe that Yt+1 is uniquely determined by the constraint that Y = Y1 · · ·Yt+1 so this
change is just of notation and perfectly indistinguishable. But then, H3 is identical to R
and the claim follows.

4.1 Using πMSEP in πDOPRF

We use πMSEP in a two-step process in the Hashed-DH protocol to achieve active security.
First, recall that the client sends a set of blinded requests {Xrj

j } to all the key servers and
then combines the responses to form what should be {(Xrj

j)K}. We can abstractly think
of the entire process, starting from the X

rj

j and ending with the (Xrj

j)K values, as one
(possibly corrupt) server S executing exponentiations to power E = K. If we make sure
that a correct pair (g0, gK

0) is obtained from FKeyReg, we can then use the method from
πMSEP to check the final output of the client.

If this check fails, we can instead check the individual responses from the key servers,
namely we note that each key server is supposed to raise the inputs it gets to a particular
exponent. So we can look at the responses from each individual key server and apply the
check from πMSEP, where the key server plays the role of S and the key server’s share of
the global key plays the role of E. This, of course, assumes that a correct pair of form
(g0, g

f(i)
0) is obtained from FKeyReg. The protocol is described in Fig. 7.

To see why protocol πDOPRF−A will not incorrectly identify an honest key server, observe
that (G(i))s·λS

i,0 = gk(i)·λS
i,0 , so by g =

∏m
j=0 Xj the check is true for every honest key

server. Furthermore, if the per-key server check in Step 9 is reached, then we must have
that at least one party will be identified - otherwise, the previous check in Step 8 trivially
would have been true to begin with. In many deployments, one can expect that data from
the key servers will be correct most of the time, so it pays off to optimistically check the
global answer first.

Theorem 2. The protocol πDOPRF−A UC-securely implements the functionality FDOPRF in the
GRO−G,FKeyReg-hybrid model with security against static passive corruptions of C and active
corruptions of Ki assuming the DDH and OEP problems hold in G.

Proof. The proof is almost identical to the proof of Theorem 1. The only difference is that
for a simulated honest party, we now only accept a response set Yi,j sent by A for any
dishonest key server iff each Yi,j is exactly L

k(i)·λS
i,0

j , whereas in πDOPRF−A the honest party
also accepts as long as the checks in Steps 8 and 9 hold. By adding an additional hybrid
for this difference, any distinguishing environment must break the OEP problem as proven
in Lemma 1. The additional message Yi,0 that a simulated honest key server sends to a
dishonest C furthermore reveals no information, as proven in Lemma 2.

5 Implementation & Experiments
In this section, we report on experiments on the overhead of our approach to active security.
Towards this, we have implemented the DOPRF protocol with only passive security (πDOPRF)
as a baseline. We then implemented two versions of πDOPRF−A, one which utilizes πMSEP
to achieve active security against corrupted Servers (πDOPRF−A) and one that uses πUMSEP.
For the experiments, we have not implemented the key generation functionality FKeyReg
but instead assume distributed server verification information as a setup. The code is
publicly available on https://github.com/SecureDNA/SecureDNA, together with scripts
and instructions how to re-run the experiments (https://github.com/SecureDNA/Secur
eDNA/tree/main/test/perftest).

https://github.com/SecureDNA/SecureDNA
https://github.com/SecureDNA/SecureDNA/tree/main/test/perftest
https://github.com/SecureDNA/SecureDNA/tree/main/test/perftest

Baum et al. 17

Protocol πDOPRF−A

The protocol πDOPRF−A runs between Key Servers K1, . . . ,Kn and parties C1, . . . , Cℓ.
The protocol is defined in the GRO−G,FKeyReg-hybrid model where parties communi-
cate via authenticated channels.

Init: Upon first input (Init, sid) to a Key Server Ki:

1. Send (GenerateKey, sid) to FKeyReg.
2. If FKeyReg responds with (GenerateKeyOk, sid, k(i), G(0), . . . , G(n)) then store

k(i) locally and output Init.

Query: Upon input (Query, sid, ssid, {q1, . . . , qm}) to party C, where qj ∈ {0, 1}∗:

1. Send (GetVerKey, sid) to FKeyReg to obtain (VerKey, G(0), . . . , G(n)). Denote
the fixed generator of FKeyReg as g0.

2. Choose a set S ⊆ [n] of size k = t + 1 uniformly at random.
3. For each j ∈ [m] send (Hash− Query, qj) to GRO−G to obtain

(Hash− Confirm, Xj). Also check (IsProgrammed, qj) and abort if GRO−G re-
turns (IsProgrammed, qj , 1).

4. C samples a uniformly random s ∈ Z∗
p and computes (g, G) = (gs

0, (G(0))s) as

well as X0 = g/(
m∏

j=1
Xj).

5. For each j ∈ [0..m] sample rj
$← Z∗

p and compute Lj ← X
rj

j in G.
6. C sends (DOPRF− Compute, sid, ssid, {L0, . . . , Lm}, S) to each Ki, i ∈ S.
7. Upon receiving (DOPRF− Compute, sid, ssid, {L0, . . . , Lm}, S) from C for

which each receiving Ki has k(i), Ki computes its Lagrange coeffi-
cient λS

i,0, computes Yi,j ← L
k(i)·λS

i,0
j for each j ∈ [0..m] and sends

(DOPRF− Response, sid, ssid, {Yi,0, . . . , Yi,m}) back to C.
8. Upon having received (DOPRF− Response, sid, ssid, {Yi,0, . . . , Yi,m}) from

each Ki, C first for each j ∈ [0..m] computes Yj =
∏

i∈S

Yi,j . Then she checks

that G =
m∏

j=0
Y

r−1
j

j . If this holds then she outputs Y
r−1

j

j for j ∈ [m].

9. If the check did not hold, then C for each i ∈ S checks that (G(i))s·λS
i,0 =

m∏
j=0

Y
r−1

j

i,j . It then reruns the protocol with a new set S′ that does not contain

the key servers for which this check did not hold.

Figure 7: Protocol πDOPRF−A that implements the distributed OPRF with security against
actively corrupted key servers.

Setup. We implemented our protocols in Rust 1.76, implementing G with the library
curve25519-dalek 4.1.1. As hash function that implements the random oracle to G, we
use sha3 0.10.8 in combination with Ristretto.

All experiments were performed on an AMD Ryzen 9 5950X, 16 cores and 128 GiB of
RAM. No GPUs or other hardware accelerators were employed. The machine is running
Ubuntu 22.04.4 LTS, with protocol parties simulated as Docker containers with a virtualized
network. We limited the Client and Server to 1 core and simulated network delay using tc.

18 Efficient Maliciously Secure Oblivious Exponentiations

For each experiment, we first loaded all respective parties as containers and ran the
test once to avoid cache misses in the experiment. Then we ran each experiment 10 times
and took the average.

Experiments. We conducted two types of experiments:

1. We ran both πDOPRF and πDOPRF−A with 0–1 ms communication delay. We implemented
both the regular πDOPRF−A and a version based on πUMSEP with 40 bits of statistical
security. For 5 Servers, we measured the cost of active security for 5.000, 10.000
and 20.000 DOPRF inputs to measure the impact of the number of inputs on active
security. See Table 1 for the results.

2. We ran both πDOPRF and πDOPRF−A with 0–1 ms and 100 ms communication delay. For
5.000 DOPRF inputs, we measured the runtime of the protocols with 1, 3, 5, 7, 10 or
20 servers, for passive and active security. See Table 2 for the results.

Table 1: Time (in ms) to run DOPRF protocol with 5 Servers, 0–1 ms latency.

Inputs 5.000 10.000 20.000
πDOPRF 337 677 1.405
πDOPRF−A (with πMSEP) 339 681 1.405
πDOPRF−A (with πUMSEP) 348 705 1444
Overhead (with πMSEP) 0, 59% 0, 59% 0, 00%
Overhead (with πUMSEP) 3, 26% 4, 14% 2, 78%

Table 2: Time (in ms) to check 5.000 inputs, different number of servers.

Servers 1 3 5 7 10 20
πDOPRF, 0–1 ms latency 253 295 337 372 421 570
πDOPRF−A (with πMSEP), 0–1 ms latency 255 299 339 374 421 572
πDOPRF−A (with πUMSEP), 0–1 ms latency 261 304 348 381 429 585
Overhead (with πMSEP) 0, 79% 1, 36% 0, 59% 0, 54% 0, 00% 0, 35%
Overhead (with πUMSEP) 3, 16% 3, 05% 3, 26% 2, 42% 1, 90% 2, 63%
πDOPRF, 100 ms latency 427 463 501 537 585 774
πDOPRF−A (with πMSEP), 100 ms latency 429 466 501 537 586 765
πDOPRF−A (with πUMSEP), 100 ms latency 446 479 514 550 595 773
Overhead (with πMSEP) 0, 47% 0, 65% 0, 00% 0, 00% 0, 17% −1, 16%
Overhead (with πUMSEP) 4, 45% 3, 46% 2, 59% 2, 42% 1, 71% −0, 13%

In our experiments, neither RAM nor network communication between parties was the
bottleneck. The overhead for active security with πMSEP is existent but within the noise of
measurement. For active security with πUMSEP there is a more pronounced overhead but
still it’s mostly within noise. Moreover, the overhead stays essentially the same as the
number of inputs is increased (see Table 1).

When running our protocols with different numbers of servers (Table 2) it can be seen,
as expected, that the overhead from active security against malicious servers is essentially
independent of the number of servers. Again, the overhead from πMSEP is within noise
while πUMSEP has noticable overhead, but consistently below 5%. It can also be seen that
network latency leads to a larger variation in the noise, but doesn’t have any impact on
the overhead itself. Again, this is to be expected from the protocols.

Baum et al. 19

6 Protecting other protocols that use oblivious expo-
nentiation

We now describe two other cryptographic protocols that use oblivious exponentiation.
These can also easily be upgraded to security against active attacks during exponentiation,
by following the same steps as in Section 3. Our examples are threshold blind signatures
for BLS [BLS04] and threshold decryption of El Gamal [ElG85] ciphertexts.

6.0.1 Threshold BLS signatures

In a threshold blind signature algorithm, a client C interacts with a set of n servers
K1, . . . ,Kn to obtain a signature on a message q. The client holds a verification key vk,
while the servers hold a secret sharing of the corresponding signing key sk. The client
learns the signature σ from t + 1 or more correct responses from the servers (and nothing
else), while the servers learn no information about q.

A popular threshold blind signature algorithm can be constructed from the so-called
BLS [BLS04] signature scheme. BLS uses two groups G,GT equipped with a bilinear
pairing e : G×G→ GT as well as a hash function H : {0, 1}∗ → G modeled as a random
oracle. We assume that |G| = p and g ∈ G is a generator.

To initialize the threshold signature scheme, a key generation algorithm KeyGen samples
a secret K ∈ Zp as well as a random degree-t polynomial f(X) subject to the constraint
that K = f(0). Each server Ki obtains k(i) = f(i) as its share of the key, while vk = gK

is the public verification key.
To sign a message q blindly, C samples a random r ∈ Zp and sends L = H(q)r to

all servers K1, . . . ,Kn. Each K then locally computes Yi = Lk(i) and sends Yi back to C.
From t + 1 responses (Yi)i∈S , C can reconstruct the signature as follows: it first computes
the Lagrange coefficients λS

i,0 for the set S. Then it outputs σ ← (
∏

i∈S Y
λS

i,0
i)1/r as the

signature. To then verify σ using q, vk, one can simply check that e(vk, H(q)) = e(g, σ).
The threshold signing algorithm is clearly incorrect if Ki ever returns Y ′

i ̸= Yi.

Adding protection against cheating servers. Protection against a cheating Ki can
be achieved in the aforementioned scheme by letting the KeyGen algorithm also output
n values vk1, . . . , vkn where vki := gk(i) . Then, C can always check if a response Yi from
Ki was correct or not by testing that e(vki, L) = e(g, Yi). However, this requires it to
compute a pairing. When computing a batch of m signatures, one would then have to
compute m pairings to verify the results.

We instead observe that the aforementioned blind signing algorithm is identical to
the HashedDH DOPRF algorithm from Fig. 6. Therefore, we can apply the exact same
approach that was described in Section 4.1 but instead with πUMSEP. This leads to a protocol
πBLS−A with active security against the corrupted Ki while only having to perform an
additional m small exponentiations (to values of size at most 2κ) instead of the mentioned
m pairings when checking for corruptions. Due to the unconditional security of πUMSEP the
security follows from Lemma 5 even though we are now in a setting with a bilinear pairing.
Following Lemma 6, the resulting algorithm does not leak any information about the key
shares k(i) to C. We describe the full protocol πBLS−A in Fig. 8.

6.0.2 Threshold ElGamal decryption

In a threshold cryptosystem, a client C interacts with a set of n servers K1, . . . ,Kn to
decrypt a ciphertext c. The public key pk for the encryption scheme is known, while the
servers hold a secret sharing of the corresponding secret key sk. The client learns the

20 Efficient Maliciously Secure Oblivious Exponentiations

Protocol πBLS−A

The protocol runs between n servers K1, . . . ,Kn and a party C. It is defined in the
GRO−G,FKeyReg-hybrid model where parties communicate via authenticated channels.

Init: Upon first input (Init, sid) to a Server Ki:

1. Send (GenerateKey, sid) to FKeyReg.
2. If FKeyReg responds with (GenerateKeyOk, sid, k(i), vk, vk1, . . . , vkn) then store

k(i) locally and output Init.

Sign: Upon input (Sign, sid, ssid, {q1, . . . , qm}) to party C, where qj ∈ {0, 1}∗:

1. Send (GetVerKey, sid) to FKeyReg to obtain (VerKey, vk, vk1, . . . , vkn). Denote
the fixed generator of FKeyReg as g0.

2. For each j ∈ [m] send (Hash− Query, qj) to GRO−G to obtain
(Hash− Confirm, Xj). Also check (IsProgrammed, qj) and abort if GRO−G re-
turns (IsProgrammed, qj , 1).

3. C samples uniformly random d0, . . . , dm ∈ [1..2κ] and s ∈ Z∗
p and computes

(g, G) = (gs
0, (vk)s) as well as X0 = (g/(

m∏
j=1

X
dj

j))1/d0 .

4. For each j ∈ [0..m] sample rj
$← Z∗

p and compute Lj ← X
rj

j in G.
5. C sends (BlindBLS, sid, ssid, {L0, . . . , Lm}) to each Ki, i ∈ [n].
6. Upon receiving (BlindBLS, sid, ssid, {L0, . . . , Lm}) from C, Ki

computes Yi,j ← Lk(i)

j for each j ∈ [0..m] and sends
(BlindBLS, sid, ssid, {Yi,0, . . . , Yi,m}) back to C.

7. Upon having received (BlindBLS, sid, ssid, {Yi,0, . . . , Yi,m}) from t + 1 servers
denoted as the set S, C computes the Lagrange coefficients λS

i,0 for each i ∈ S.

8. Then for each j ∈ [0..m] it computes Yj =
∏

i∈S

Y
λS

i,0
i,j . Then she checks that

G =
m∏

j=0
Y

r−1
j

dj

j . If this holds then she outputs Y
r−1

j

j for j ∈ [m].

9. If the check did not hold, then for each i ∈ [n] that sent a response, C checks
that vks

i =
m∏

j=0
Y

r−1
j

dj

i,j . She then reconstructs the output as in the previous

step, based on the Lagrange coefficients for the correct responses.

Figure 8: Protocol for actively secure threshold BLS blind signatures.

message q from t + 1 or more correct responses from the servers, while the servers learn no
information about q.

We first consider a setting where we require the additional property that the servers
do not learn c either. This may be important so that an adversary cannot learn which
ciphertexts a client wishes to decrypt.

A popular threshold cryptosystem can be constructed from the so-called ElGamal [ElG85]
asymmetric encryption scheme. ElGamal requires the use of a finite Abelian group G of
prime order p together with a fixed generator g ∈ G. Messages will be elements from G.

To initialize the threshold ElGamal cryptosystem, a key generation algorithm KeyGen
samples a secret K ∈ Zp as well as a random degree-t polynomial f(X) subject to the

Baum et al. 21

constraint that K = f(0). Each server Ki obtains k(i) = f(i) as its share of the key, while
pk = gK is the public key. To encrypt a message q ∈ G, one samples x ∈ Zp uniformly at
random and outputs c = (gx, q · hx) as the ciphertext.

To decrypt a ciphertext c = (c0, c1) without leaking it to any Ki, C samples r ∈
Zp uniformly at random, computes L = cr

0 and sends it to each Ki. Each Ki then
returns Yi := Lk(i) to C. Using Lagrange interpolation, after having obtained responses
(Yi)i∈S where |S| = t + 1, the client computes the Lagrange coefficients λS

i,0 and outputs

c1 · (
∏

i∈S Y
λS

i,0
i)−1/r.

The protocol can easily shown to be passively secure against any attacker corrupting
at most t parties. It is also clear that the decryption is not correct as soon as a corrupt Ki

outputs a value Y ′
i ̸= Yi.

Adding protection against cheating servers. To protect batch ElGamal decryption
against active corruptions, we again observe that the passively secure decryption algorithm
is essentially the same as πDOPRF. We can therefore modify it as described in Section 4.1:

• We extend the public key to pk = (h, G1, . . . , Gn) where Gi = gk(i) .

• To decrypt m ciphertexts c(1) = (c(1)
0 , c

(1)
1), . . . , c(m) = (c(m)

0 , c
(m)
1), the decrypting

party runs the protocol πMSEP on inputs Xi = c
(i)
1 and (g0, gE

0) := (g, G) with each
server Kj . After obtaining t + 1 accepting instances, it decrypts as before.

Using Lemmas 1 and 2 one can trivially show that this protocol modification does not leak
any additionaly information about the secret key shares k(i) to C, while the output must
be correct assuming hardness of the CDH problem in the group G.

Finally, we consider the case where it is not required that the ciphertext to decrypt
is hidden from the servers. Here, we can instead use πUMSEP. This does introduce an
computational overhead for the client compared to the obvious semi-honest solution, in
that it needs do an exponentiation with a small exponent for each ciphertext to decrypt.
However, all other overheads are o(1), and compared to the naive actively secure protocol
using standard zero-knowledge proofs, the client does much less work in πUMSEP. This is
because verification of each zero-knowledge proof requires a full-scale exponentiation.

Acknowledgements
Financial support was obtained from the Open Philanthropy Project (to MIT and Aarhus
University), an anonymous philanthropist from mainland China (to Tsinghua University),
the Aphorism Foundation (to MIT), and Effective Giving (to MIT). The funders had no
role in the writing of this work.

References
[AC20] Thomas Attema and Ronald Cramer. Compressed Σ-protocol theory and

practical application to plug & play secure algorithmics. In Daniele Micciancio
and Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020,
Part III, volume 12172 of Lecture Notes in Computer Science, pages 513–543.
Springer, Cham, August 2020. doi:10.1007/978-3-030-56877-1_18.

[AMMM18] Shashank Agrawal, Peihan Miao, Payman Mohassel, and Pratyay Mukherjee.
PASTA: PASsword-based threshold authentication. In David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th

https://doi.org/10.1007/978-3-030-56877-1_18

22 Efficient Maliciously Secure Oblivious Exponentiations

Conference on Computer and Communications Security, pages 2042–2059.
ACM Press, October 2018. doi:10.1145/3243734.3243839.

[AP05] Michel Abdalla and David Pointcheval. Simple password-based encrypted
key exchange protocols. In Alfred Menezes, editor, Topics in Cryptology –
CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages
191–208. Springer, Berlin, Heidelberg, February 2005. doi:10.1007/978-3
-540-30574-3_14.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Greg Maxwell. Bulletproofs: Short proofs for confidential transactions
and more. In 2018 IEEE Symposium on Security and Privacy, pages 315–334.
IEEE Computer Society Press, May 2018. doi:10.1109/SP.2018.00020.

[BBC+24] Carsten Baum, Jens Berlips, Walther Chen, Hongrui Cui, Ivan Damgard,
Jiangbin Dong, Kevin M. Esvelt, Leonard Foner, Mingyu Gao, Dana Gret-
ton, Martin Kysel, Juanru Li, Xiang Li, Omer Paneth, Ronald L. Rivest,
Francesca Sage-Ling, Adi Shamir, Yue Shen, Meicen Sun, Vinod Vaikun-
tanathan, Lynn Van Hauwe, Theia Vogel, Benjamin Weinstein-Raun, Yun
Wang, Daniel Wichs, Stephen Wooster, Andrew C. Yao, Yu Yu, Haoling
Zhang, and Kaiyi Zhang. A system capable of verifiably and privately screen-
ing global dna synthesis, 2024. URL: https://arxiv.org/abs/2403.14023,
arXiv:2403.14023.

[BFF+19] Gilles Barthe, Edvard Fagerholm, Dario Fiore, John C. Mitchell, Andre
Scedrov, and Benedikt Schmidt. Automated analysis of cryptographic as-
sumptions in generic group models. Journal of Cryptology, 32(2):324–360,
April 2019. doi:10.1007/s00145-018-9302-3.

[BFH+20] Carsten Baum, Tore Frederiksen, Julia Hesse, Anja Lehmann, and Avishay
Yanai. Pesto: proactively secure distributed single sign-on, or how to trust a
hacked server. In 2020 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 587–606. IEEE, 2020. doi:10.1109/EuroSP48549.2020
.00044.

[BGR98] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for
modular exponentiation and digital signatures. In Kaisa Nyberg, editor,
Advances in Cryptology – EUROCRYPT’98, volume 1403 of Lecture Notes in
Computer Science, pages 236–250. Springer, Berlin, Heidelberg, May / June
1998. doi:10.1007/BFb0054130.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
Weil pairing. Journal of Cryptology, 17(4):297–319, September 2004. doi:
10.1007/s00145-004-0314-9.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In 42nd Annual Symposium on Foundations of Com-
puter Science, pages 136–145. IEEE Computer Society Press, October 2001.
doi:10.1109/SFCS.2001.959888.

[CDG+18] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann,
and Gregory Neven. The wonderful world of global random oracles. In
Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptol-
ogy – EUROCRYPT 2018, Part I, volume 10820 of Lecture Notes in
Computer Science, pages 280–312. Springer, Cham, April / May 2018.
doi:10.1007/978-3-319-78381-9_11.

https://doi.org/10.1145/3243734.3243839
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1109/SP.2018.00020
https://arxiv.org/abs/2403.14023
https://arxiv.org/abs/2403.14023
https://doi.org/10.1007/s00145-018-9302-3
https://doi.org/10.1109/EuroSP48549.2020.00044
https://doi.org/10.1109/EuroSP48549.2020.00044
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-319-78381-9_11

Baum et al. 23

[Cha91] David Chaum. Zero-knowledge undeniable signatures. In Ivan Damgård,
editor, Advances in Cryptology – EUROCRYPT’90, volume 473 of Lecture
Notes in Computer Science, pages 458–464. Springer, Berlin, Heidelberg, May
1991. doi:10.1007/3-540-46877-3_41.

[CHL22] Sílvia Casacuberta, Julia Hesse, and Anja Lehmann. Sok: Oblivious pseudo-
random functions. In 2022 IEEE 7th European Symposium on Security and
Privacy (EuroS&P), pages 625–646. IEEE, 2022. doi:10.1109/EuroSP5384
4.2022.00045.

[CLN15] Jan Camenisch, Anja Lehmann, and Gregory Neven. Optimal distributed
password verification. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, ACM CCS 2015: 22nd Conference on Computer and Communications
Security, pages 182–194. ACM Press, October 2015. doi:10.1145/2810103.
2813722.

[DGS+18] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Fil-
ippo Valsorda. Privacy pass: Bypassing internet challenges anonymously.
Proceedings on Privacy Enhancing Technologies, 2018(3):164–180, July 2018.
doi:10.1515/popets-2018-0026.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function
with short proofs and keys. In Serge Vaudenay, editor, PKC 2005: 8th
International Workshop on Theory and Practice in Public Key Cryptography,
volume 3386 of Lecture Notes in Computer Science, pages 416–431. Springer,
Berlin, Heidelberg, January 2005. doi:10.1007/978-3-540-30580-4_28.

[ECS+15] Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, and Thomas
Ristenpart. The pythia PRF service. In Jaeyeon Jung and Thorsten Holz,
editors, USENIX Security 2015: 24th USENIX Security Symposium, pages
547–562. USENIX Association, August 2015.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE transactions on information theory, 31(4):469–472,
1985. doi:10.1109/TIT.1985.1057074.

[GLSY04] Rosario Gennaro, Darren Leigh, R. Sundaram, and William S. Yerazunis.
Batching Schnorr identification scheme with applications to privacy-preserving
authorization and low-bandwidth communication devices. In Pil Joong Lee,
editor, Advances in Cryptology – ASIACRYPT 2004, volume 3329 of Lecture
Notes in Computer Science, pages 276–292. Springer, Berlin, Heidelberg,
December 2004. doi:10.1007/978-3-540-30539-2_20.

[GWE+24] Dana Gretton, Brian Wang, Rey Edison, Leonard Foner, Jens Berlips, Theia
Vogel, Martin Kysel, Walther Chen, Francesca Sage-Ling, Lynn Van Hauwe,
Stephen Wooster, Benjamin Weinstein-Raun, Erika A. DeBenedictis, An-
drew B. Liu, Emma Chory, Hongrui Cui, Xiang Li, Jiangbin Dong, Andres
Fabrega, Christianne Dennison, Otilia Don, Cassandra Tong Ye, Kaveri
Uberoy, Ronald L. Rivest, Mingyu Gao, Yu Yu, Carsten Baum, Ivan
Damgard, Andrew C. Yao, and Kevin M. Esvelt. Random adversarial
threshold search enables automated dna screening, 2024. URL: https:
//www.biorxiv.org/content/early/2024/04/02/2024.03.20.585782,
arXiv:https://www.biorxiv.org/content/early/2024/04/02/2024.03
.20.585782.full.pdf, doi:10.1101/2024.03.20.585782.

https://doi.org/10.1007/3-540-46877-3_41
https://doi.org/10.1109/EuroSP53844.2022.00045
https://doi.org/10.1109/EuroSP53844.2022.00045
https://doi.org/10.1145/2810103.2813722
https://doi.org/10.1145/2810103.2813722
https://doi.org/10.1515/popets-2018-0026
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1007/978-3-540-30539-2_20
https://www.biorxiv.org/content/early/2024/04/02/2024.03.20.585782
https://www.biorxiv.org/content/early/2024/04/02/2024.03.20.585782
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2024/04/02/2024.03.20.585782.full.pdf
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2024/04/02/2024.03.20.585782.full.pdf
https://doi.org/10.1101/2024.03.20.585782

24 Efficient Maliciously Secure Oblivious Exponentiations

[HL08] Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection
and pattern matching with security against malicious and covert adversaries.
In Ran Canetti, editor, TCC 2008: 5th Theory of Cryptography Conference,
volume 4948 of Lecture Notes in Computer Science, pages 155–175. Springer,
Berlin, Heidelberg, March 2008. doi:10.1007/978-3-540-78524-8_10.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending
oblivious transfers efficiently. In Dan Boneh, editor, Advances in Cryp-
tology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer Sci-
ence, pages 145–161. Springer, Berlin, Heidelberg, August 2003. doi:
10.1007/978-3-540-45146-4_9.

[JKK14] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal
password-protected secret sharing and T-PAKE in the password-only model.
In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASI-
ACRYPT 2014, Part II, volume 8874 of Lecture Notes in Computer Sci-
ence, pages 233–253. Springer, Berlin, Heidelberg, December 2014. doi:
10.1007/978-3-662-45608-8_13.

[JKKX17] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. TOPPSS:
Cost-minimal password-protected secret sharing based on threshold OPRF.
In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors, ACNS 17:
15th International Conference on Applied Cryptography and Network Security,
volume 10355 of Lecture Notes in Computer Science, pages 39–58. Springer,
Cham, July 2017. doi:10.1007/978-3-319-61204-1_3.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious PRF with applications to private set intersection. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and
Communications Security, pages 818–829. ACM Press, October 2016. doi:
10.1145/2976749.2978381.

[MPR+20] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung.
Two-sided malicious security for private intersection-sum with cardinality. In
Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology –
CRYPTO 2020, Part III, volume 12172 of Lecture Notes in Computer Science,
pages 3–33. Springer, Cham, August 2020. doi:10.1007/978-3-030-56877
-1_1.

[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random
functions and KDCs. In Jacques Stern, editor, Advances in Cryptology –
EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages
327–346. Springer, Berlin, Heidelberg, May 1999. doi:10.1007/3-540-489
10-X_23.

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient
pseudo-random functions. Journal of the ACM (JACM), 51(2):231–262, 2004.
doi:10.1145/972639.972643.

[Pei06] Chris Peikert. On error correction in the exponent. In Shai Halevi and Tal
Rabin, editors, TCC 2006: 3rd Theory of Cryptography Conference, volume
3876 of Lecture Notes in Computer Science, pages 167–183. Springer, Berlin,
Heidelberg, March 2006. doi:10.1007/11681878_9.

https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1007/978-3-030-56877-1_1
https://doi.org/10.1007/978-3-030-56877-1_1
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1145/972639.972643
https://doi.org/10.1007/11681878_9

Baum et al. 25

[Szy06] Michael Szydlo. A note on chosen-basis decisional Diffie-Hellman assumptions.
In Giovanni Di Crescenzo and Avi Rubin, editors, FC 2006: 10th International
Conference on Financial Cryptography and Data Security, volume 4107 of Lec-
ture Notes in Computer Science, pages 166–170. Springer, Berlin, Heidelberg,
February / March 2006. doi:10.1007/11889663_14.

https://doi.org/10.1007/11889663_14

	Introduction
	Our contributions
	Technical Overview
	Related Work

	Preliminaries
	Shamir Sharing & Lagrange Interpolation
	Universal Composability
	Setup Functionalities

	Oblivious Exponentiation with actively corrupted servers
	A computationally sound protocol
	An unconditionally sound protocol

	Hashed-DH secure against active attackers
	Using MSEP in DOPRF

	Implementation & Experiments
	Protecting other protocols that use oblivious exponentiation
	References

