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Abstract. We present a variant of Function Secret Sharing (FSS) schemes tailored for
point, comparison, and interval functions, featuring compact key sizes at the expense
of additional comparison. While existing FSS constructions are primarily geared
towards 2-party scenarios, exceptions such as the work by Boyle et al. (Eurocrypt 2015)
and Riposte (S&P 2015) have introduced FSS schemes for p-party scenarios (p ≥ 3).
This paper aims to achieve the most compact p-party FSS key size to date. We
achieve a noteworthy reduction in key size, a 2p-factor decrease compared to state-of-
the-art FSS constructions (including computationally efficient constructions using
symmetric-key primitives) of distributed point function (DPF). Compared to the
previous public-key-based FSS design for DPF, we also get a key size reduction
equal to a 2n/2-sized row vector, where 2n is the domain size of the point function.
This reduction in key size comes at the cost of a required comparison operation by
the decoder (hence called a non-linear decoder), a departure from prior schemes.
In p-party scenarios, our construction outperforms existing FSS constructions in
key size, remaining on par with Riposte in evaluation time and showing significant
improvement over Boyle et al.

In addition to constructing FSS for distributed point functions (DPF), we extend
our approach to distributed comparison and interval functions, achieving the most
efficient key size to date. Our distributed comparison function exhibits a key-size
reduction by a factor of qp−1, where q denotes the size of the algebraic group used
in the scheme’s construction. The reduced key size of the comparison function has
practical implications, particularly in applications like privacy-preserving machine
learning (PPML), where thousands of comparison functions are employed in each
neural network layer. To demonstrate the effectiveness of our improvements, we
design and prototype-implement a scalable privacy-preserving framework for neural
networks over distributed models. Specifically, we implement a distributed rectified
linear unit (ReLU) activation function using our distributed comparison function,
showcasing the efficacy of our proposed scheme.
Keywords: Function Secret Sharing · Distributed Comparison Function · ReLU

1 Introduction
Function secret sharing (FSS), introduced in [GI14, BGI15], is a natural extension of
additive secret-sharing to functions. For a class F of efficiently computable functions (with
succinct descriptions) f : {0, 1}n → G where G is an Abelian group, an FSS scheme for
F allows splitting each f ∈ F into p succinctly described functions fi : {0, 1}n → G for
1 ≤ i ≤ p such that: (i)

∑p
i=1 fi = f , and (ii) any (p − 1)-sized subset of the functions

E-mail: cchaudhary278@kgpian.iitkgp.ac.in (Chandan Kumar), sikhar.patranabis@ibm.com
(Sikhar Patranabis), debdeep@cse.iitkgp.ac.in (Debdeep Mukhopadhyay)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-04-02 Accepted: 2024-06-03

https://doi.org/10.62056/a3c3c3w9p
https://crossmark.crossref.org/dialog/?doi=10.62056/a3c3c3w9p&domain=pdf&date_stamp=2024-06-28
https://orcid.org/0000-0003-4379-9011
https://scholar.google.com/citations?user=OXVAX88AAAAJ&hl=en
https://orcid.org/0000-0002-2309-7939
https://orcid.org/0000-0002-6499-8346
mailto:cchaudhary278@kgpian.iitkgp.ac.in
mailto:sikhar.patranabis@ibm.com
mailto:debdeep@cse.iitkgp.ac.in
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


2 Compact Key Function Secret Sharing with Non-linear Decoder

fi hides f . In other words, an FSS for F enables succinct additive secret sharing of
functions from F . FSS has found wide use in various privacy-preserving techniques,
including anonymous communication [CGBM15, ECGZB21, NSSD22, VSH22], private set
intersection [TSS+20, DIL+20, DIL+22, GRS22, GRS23], secure computation of RAM
program [DS17, BKKO20, GKW18, GO96, VHG23], secure aggregation and statistical
analysis [BGI16, BBCG+21], encrypted search system [DFL+20], pseudorandom correlation
and oblivious linear evaluation [BCG+19], and many more.
Distributed Point Function (DPF). A distributed point function (DPF), introduced
in [GI14] and further studied in [BGI15, BGI16, BGIK22], is a specific instance of FSS. It
can be seen as an FSS for the class F of point functions f : {0, 1}n → G (G is an Abelian
group with identity element 1G) such that f evaluates to 1G on all but at most one input.
For α ∈ {0, 1}n and β ∈ G, we denote by fα,β the following point function:

fα,β(x) =
{

β, x = α,

1G, Otherwise

There are two variants of DPF in the state-of-the-art literature: the 2-party DPF and the
p-party DPF (with p ≥ 3). The original 2-party DPF schemes proposed in [BGI15, BGI16]
are based on pseudorandom generators (PRGs) or, more generally, one-way functions
(OWFs). The construction was later extended to a wide range of function families, such
as the family of interval functions, where f(x) evaluates to β for all inputs in the range
[a, b] (for some a and b in the domain of f) and 0 (identity element) for all other inputs.
2-party DPF construction is extensively studied in FSS literature due to its efficient key
sizes (asymptotically polynomial in O(n) for a function with domain size N = 2n). The
majority of applications primarily concentrate on 2-party DPF schemes. However, in
real-world scenarios, enhancing trustworthiness involves distributing trust across many
parties. Hence, the other variant of p-party DPF, built from symmetric-key primitives such
as PRG or a public-key primitive such as seed-homomorphic PRGs, becomes essential for
FSS literature. This study exclusively focuses on p-party DPF; henceforth, “DPF” refers
to p-party DPF.
Distributed Comparison Function (DCF). Another very popular class of function
in FSS literature is the distributed comparison function (DCF). FSS for the class F< of
comparison function f< : {0, 1}n → G such that f< evaluates to 1G (an identity element of
group G) for all inputs smaller than a threshold value else a particular element in G. For
a threshold value α ∈ {0, 1}n and a β ∈ G, a comparison function f<

α,β can be represented
as follows:

fα,β(x) =
{

β, x ≥ α,

1G, Otherwise

Similar to DPF, DCF also exists in two variants: the 2-party DCF and the p-party
DCF (with p ≥ 3). The 2-party DCF was introduced by Boyle et al. in [BGI15], and
subsequent improvements in key sizes were made in [BGI19, RPB20]. 2-party DCF has
been extensively studied in the literature such as [RPB20, JGB+24, HLC+23, Wag22,
YJG+23, GJM+23] for constructing distributed rectified liner units (ReLU) function to
enable secure computation in privacy-preserving machine learning. However, the p-party
variant has received less attention. The only existing construction based on pseudo random
generator (PRG) or more generally, one-way function, suffers from impractically large key
sizes, making it unsuitable for practical applications.
Key Sizes in DPF and DCF. The naïve solution for p-party DPF and DCF is to
additively secret share the evaluation table among p-parties, resulting in key sizes equal to
the evaluation table. For a point or comparison function of the form f : {0, 1}n → G (resp.
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Table 1: Key size of distributed point function (DPF) where p denotes number of parties,
2n function domain size, m = log2(|G|) for group G, λ denotes security parameter, rows
denotes a row-sized vector, and cols denotes a column-sized vector, PP denotes public
parameter.

Schemes Assumptions Key-Size
Share PP

Boyle et al.[BGI15] PRG 2p−1 · (rows) + 2p−1 · (cols)
2n/22(p−1)/2(λ + 2(p−1)m) -

Riposte [CGBM15] Seed-homomorphic PRG 2 · (rows) + (cols)
2n/2

2(p−1)/2 (2 · λ + 2(p−1)m) -

Proposed DPF Seed-homomorphic PRG (rows) + (cols)
2n/2

2(p−1)/2 (λ) + m 2n/22(p−1)/2(m)

f< : {0, 1}n → G), the key size in the naïve construction for each party is |G|∗2n-bits as
there are 2n entries in the table each of length |G|. The huge key size of trivial construction
renders it inefficient for large domains of the function. In the non-trivial construction, the
one-dimension evaluation table is split into 2 or more dimensions. The key size for such
non-trivial DPF and DCF schemes depends on how the corresponding evaluation table is
split into rows and columns. The key size reported in Table 1 and 2 for DPF and DCF
respectively is due to a 2-dimension evaluation table with column (µ = ⌈2n/2 · 2(p−1)/2⌉)
and row (ν = ⌈2n/µ⌉) reported in [BGI15]. To date, the best known (additive) p-party
DPF construction achieves a key size of (2n/22(p−1)/2(λ + 2p−1 log2|G|)1 (in the symmetric
key setting) and (2n/22−(p−1)/2(2 · λ + 2p−1 log2|G|)) (in the public-key setting), where λ
is the security parameter. Similarly, for a large number of parties, the DCF construction
by Boyle et al. has an inefficient key size of 2n/2 · q(p−1)/2 log2(q), where q denotes the
size of the algebraic group used in the construction. This raises a critical question: can
we build a p-party DPF/DCF scheme that achieves a smaller key size or, more generally,
a flexible trade-off between key size and computational efficiency without compromising
the succinctness of the overall DPF/DCF schemes? Motivated by the need for practical
efficiency of DPF and DCF schemes, we ask the following question:

Can we construct p-party FSS schemes (where p ≥ 3) with more compact key sizes for
point, comparison, and interval functions?

1.1 Our Contributions
In this paper, we answer the above questions in the affirmative. Our study of p-party FSS
yields the following main results:
DPF with Shorter Keys. For the p-party case, our DPF construction achieves a key
size of (2n/22−(p−1)/2(λ + 2(p−1) log2|G|) + |G|) (λ represents the security parameter),
which is asymptotically O(2p) times smaller than (2n/22(p−1)/2(λ + 2(p−1) log2|G|)) (in the
symmetric-key setting) and concretely 2n/22−(p−1)/2(λ)-bit smaller than (2n/22−(p−1)/2(2 ·
λ + 2(p−1) log2|G|)) (in the public-key setting) key size of the best (additive) DPF con-
struction to date (ref. Table 1). This reduction in key size is due to utilising a seed
homomorphic pseudorandom generator that allows using only one seed per row of the
evaluation table, as opposed to the approach in [BGI15], which required 2p−1 seeds per row
(see Figure 1). In the public key settings, we reduce the key size by a row-sized vector (a
vector with a length equal to the number of rows). This improvement is made possible by
introducing an additional comparison that the decoder must perform after DPF evaluation
by different parties.

1The key size reported in [BGI15] at page 15 seems to have some error. They report their key size as
(2n/22(p−1)/2(λ + m)) with m = log2|G|, however, if we follow their row and column splitting and perform
an addition of νλ · 2p−1 + µm · 2p−1, the key size comes out to be (2n/22(p−1)/2(λ + 2p−1m)).
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(a) Boyle et al.[BGI15] (b) Riposte [CGBM15] (c) Our Scheme

Figure 1: Pictorial representation of key size for different p-party DPF.

Though Table 1 provides key sizes for row and column splitting mentioned in [BGI15],
one can use any splitting for row and column, and our proposed scheme will always
show the improvement over the prior two schemes. For instance, let us consider a
particular scenario in which the rows and columns are equally split with the following
values: p = 5, n = 32, row = 216, column = 216, λ = 256, |G|= 256. According to Boyle et
al.[BGI15], the key size is 32MB, Riposte [CGBM15] reports a key size of 6MB, while our
proposed scheme has a key size of approximately 4MB.
Extension to Comparison and Interval Functions. We extend our DPF to achieve
the first p-party FSS scheme for a wider class of functions that are useful for practical
applications, including comparison and interval functions. Our construction of p-party
FSS for comparison functions achieves similarly small key sizes (and similarly flexible
tradeoffs between key size and computational overheads). The previous p-party comparison
function by Boyle et al.[BGI15] incurs a huge key size as they generate q(p−1) seeds per
row (ref. Table 2), restricting the construction from achieving practicality. We achieved a
substantial reduction in key size at the cost of two extra comparisons, which the decoder
must perform once all parties’ partial evaluations are available. As shown in Table 2, the
share size (secret part of the key) for the distributed comparison function (DCF) in our
scheme remains the same as for the DPF, while the public parameter size has increased by
a factor of 3×. For an interval function, we show a naïve solution where we utilize two
DCFs to build a distributed interval function (DIF). Consequently, the key size for DIF is
2× that of the DCF.
Practical Use Case. We consider a privacy-preserving machine learning (PPML) scenario
where a trained model is distributed (secretly shared) over a specific number of servers. For
a client, the objective is to perform inference on the distributed model while maintaining
data privacy. We eventually facilitate our compact key-size comparison function to develop
a distributed ReLU function. We build this application under the assumption that the client
is assisted by a trusted decoder, which is resourceful enough to execute small operations like
addition and comparison locally. The secure computation with preprocessing through FSS
construction as described in [BCG+21, BGI19] enables the implementation of distributed
ReLU functions employing offset functions. In such cases, a client or a specified party has
to perform the aggregation (decode) in all FSS-based schemes. However, in our proposed
schemes, they must also perform two comparisons besides the basic decoder’s operation.
We provide several evaluation results for distributed ReLU to demonstrate the effectiveness
of the distributed ReLU function.

As already noted, utilizing prior p-party DCF schemes to construct ReLU would result
in significant inefficiencies due to its huge key size. To practically implement ReLU in such
contexts, it is crucial for the DCF to have smaller key sizes, given that thousands of DCFs
are employed to evaluate a single layer of a privacy-preserving machine learning (PPML)
model. Before detailing our efficient DPF and DCF constructions, we discuss the challenges
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Table 2: Key size of distributed comparison function (DCF) and distributed interval
function (DIF) where (m = log2(q) = log2(|G|)), with q being the size of the group Zq

from where seeds for the PRG are randomly selected, PP represents public parameter
Schemes Assumptions Key-Size

Share-Size PP
Boyle et al.[BGI15] PRG 2n/2 · q(p−1)/2 log2(q) -

Proposed DCF Seed-homomorphic PRG 2n/2

2(p−1)/2 (λ) + m 2n/2

2(p−1)/2 (3 · 2(p−1)m)
Proposed DIF Seed-homomorphic PRG 2 · ( 2n/2

2(p−1)/2 (λ) + m) 2 · ( 2n/2

2(p−1)/2 (3 · 2(p−1)m))

of extending a prior p-party DPF directly to a p-party DCF. Along the way, we also justify
the choice of incorporating a non-linear decoder in our design.
Choice of Non-linear Decoder. The barrier to constructing DCF from prior DPF
constructions lies in the difference in their evaluation tables. DCF’s evaluation table
contains three types of rows (see Table 4), requiring three sets of correction words or
embedding all target rows as part of corrections. While Boyle’s OWF-based solution adopts
the latter, it leads to impractical key sizes. Natural approaches to extending Riposte’s DPF
construction to the construction of DCF with three correction words pose the following
challenges.

• In the p-party DPF scheme by Riposte [CGBM15], there is only one correction word
(referred to as “v” in their paper) to embed β of the target row, which enables
linear reconstruction in their scheme. Specifically, the partial computation on an
input x = (γ, δ), with γ row and δ column is g[δ] + b[γ]v[δ], where g represents the
seed-homomorphic PRG, b is a vector with all 0s except a 1 at index γ, and v denotes
correction words. This expression facilitates linear/additive reconstruction when v[δ]
is fixed, ensuring correct evaluation in DPF.

• Conversely, in DCF, the evaluation table includes three types of rows: all 0’s, all
β’s, and mixed rows (see Table 4). Embedding β here requires more than one
correction word since β appears in two different types of rows. Consequently, non-
linear reconstruction is necessary to ascertain which correction word contributed to
the correct evaluation.

• When extending Riposte’s DPF to DCF utilising the concept of more than one
correction word, the partial evaluation requires computation for all correction words
independently. However, only one of them results in the correct evaluation of DCF.
This mandates a comparison in the final evaluation, prompting the introduction of
a non-linear decoder. Despite incorporating a non-linear decoder, comparing three
independent partial computations remained challenging. Therefore, we adjusted the
partial computation expression and released correction words as public parameters
to assist in the comparison process.

In summary, extending Riposte-based DPF to DCF encounters several seemingly inherent
challenges, leading us to pursue an alternate approach for designing DCFs with non-linear
decoding/reconstruction.

1.2 Comparison with FSS from Public-Key Techniques
In this subsection, we present a comparison of our proposed approach with existing
approaches for designing FSS schemes from public-key techniques.
Comparison with Riposte [CGBM15]. Our scheme has two significant advancement
compared to Riposte [CGBM15]:
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• Our core techniques yield a DPF construction where the key size is smaller than
that of Riposte. Concretely, Riposte [CGBM15] uses two vectors of column length,
while our construction requires only one column vector (ref. Table 1 and Figure 1).
While this is a relatively simple and natural improvement on top of Riposte, it paves
the way for our main contributions, as explained below.

• We propose a novel distributed comparison function leveraging a seed-homomorphic
pseudorandom generator (PRG), paving the way for practical implementation of
the p-party DCF. The earlier proposed distributed comparison function by [BGI15]
incurs a key size overhead of O(qp), where q = |G|, for some group G (see Table 2).
Our DCF construction takes advantage of an observation to identify three distinct
types of rows present in the evaluation table of DCF (see Table 4). This approach
enables us to utilize three correction word vectors, resulting in the most compact
distributed comparison function to date. Reducing the key size of DCF enhances the
efficiency of applications such as distributed machine learning inference (concretely,
distributed ReLU computation), where servers have to potentially store an enormous
number of keys.

Comparison with Spooky Encryption [DHRW16]. Spooky encryption, introduced
in [DHRW16], yields an approach for realizing FSS for general functions. However, it
relies on computationally heavy public-key cryptographic tools such as multi-key fully
homomorphic encryption (FHE), for which practically efficient constructions are rare. Our
approach, which is based on seed-homomorphic PRGs, is significantly more lightweight and
is amenable to more practically efficient instantiations based on either discrete log-hard
cyclic groups or lattice-based assumptions.

1.3 Applications
Our proposed techniques yield better practical efficiency for all practical applications of
FSS where a client (assisted by a trusted decoder) engages in a protocol with multiple
servers to execute aggregate and comparison operations (where the function to be computed
is distributed across the servers). In this subsection, we discuss one such application.
Distributed Machine Learning Inference. The main practical application that we
focus on in this paper is machine learning inference, where the (pre-trained) model is
distributed across multiple servers, and inference is performed on the distributed model. We
first explain the system and security models and then describe the technique of performing
inference over a distributed (pre-trained) model.

A model owner trains a model, potentially employing a distributed approach, and
securely distributes the model parameters among a set of p servers. This distribution
ensures that no group of (p− 1) servers may converge to get the information about model
parameters. Consider M as the trained model, where M1, M2, · · · , Mp represent p shares
of model M that are distributed to the respective servers. Specifically, the shares of
the model basically represent the shares of model parameters such as weights. A client
seeking to provide an input, say x, to obtain an inference from the distributed model
desires to prevent any unauthorized disclosure of their data to the servers. Hence, the
client does not send its data in plain, rather it masks the input and transmits the masked
input to each server independently. The server partially computes the function over the
masked input and returns the intermediate partial inference to the client. The client finally
aggregates and decodes the result to prepare the input for the computation of subsequent
layers. The inference on the (distributed) model is divided into multiple layers, which
are categorised as linear layers and non-linear layers. For linear layers, we employ the
techniques of Beaver’s triples, which allows us to perform the multiplication of model
weights and masked input securely. For the non-linear layers, we utilize our proposed FSS
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technique of distributed comparison function to perform the computations of non-linear
layers such as ReLU. However, the distributed comparison function in plain does not
allow computation on masked input. Hence, we utilize the concept of offset comparison
function [BCG+21], which manipulates masked input and produces a masked output.
Below, we briefly explain the idea of secure computation of ReLU, first for the 2-party
computation and later extending it using our proposed distributed comparison function
for p-party scenario.
Secure Computation of ReLU. The FSS-based approach of secure computation com-
prises of computation in preprocessing mode, also called as online-offline mode. To securely
compute a gate g using two parties P0 and P1, it follows the following invariant: for
the input (xin) and output (xout) in g, both parties learn the masked values xin + rin

and xout + rout respectively where rin and rout are input and output masks generated as
correlated randomness. It is easy to achieve this invariant at the input level, as for any
input xin, owned by party Pσ (σ ∈ {0, 1}), this party can compute and send xin + rin to
the other party. For the invariant to hold for the output wire, a trusted dealer (which
can be emulated by a 2PC protocol; for a detailed description, refer to Appendix A of
[BCG+21]) uses an FSS scheme for the class of offset functions F that includes all functions
of the form grin,rout(xin) = g(xin − rin) + rout. The dealer splits the function grin,rout into
two functions with keys k0, k1, and delivers each key kσ to party Pσ. Now, each party
evaluates their FSS share on common masked input xin + rin and obtains additive shares
of xout + rout, which they can exchange among each other and maintain the invariant of
masked output values. Ultimately, the dealer discloses the mask (rout) of the output wire
to both parties to reconstruct the output. Now, considering the above gate as a comparison
function, one can compute ReLU securely as follows: Let ReLUrin(xin) = ReLU(xin − rin),
where rin is the input mask, be the offset function for ReLU. One can readily verify that
for a given input xin + rin, the offset function eventually evaluates ReLU(xin). We can
write ReLUrin

(xin) = xin − rin, if xin ≥ rin and 0 otherwise, as f<
α,β(x), representing it if

the form of spline polynomial with coefficients β = (β0, β1), where (β0, β1) = (1,−rin) if
xin > rin and (β0, β1) = (0, 0) otherwise. After computing shares of (β0, β1), parties can
locally compute shares of [β0](xin + rin) + [β1] which in fact are shares of the ReLUrin(xin)
function as [β0] is share of 1 and [β0] is share of −rin for the case xin ≥ rin.
Extending secure 2-party ReLU to p-parties. For our proposed application of
distributed machine learning inference, we extend the linear layer as well as non-linear
layer computation to p-parties. For the linear layer computation using Beavers triples, let
us suppose for two parties P0 and P1, we generated beavers triple as (a, [ab]0) for party P0
and (b, [ab]1) for party P1 then we keep the first triples as it is while we further generate
p shares of (b, [ab]1) as (b1, [ab]11), . . . , (bp, [ab]1p) and distribute the shares to p-parties
respectively. Similarly, for the non-linear layers like ReLU, we utilise our p-party DCF in
offset (shifted) mode, which enables distributed computation of ReLU with compact key
sizes. Additionally, the output mask rout is secret shared among p, which helps maintain
the secure computation invariant in our application. Unlike two-party FSS-based ReLU,
p-party also necessitates decoding after each computation of each ReLU layer. We provide
the detailed description of p-party ReLU in Section 4.

1.4 Technical Overview of Our Constructions
In this section, we present a high-level overview of our proposed DPF and DCF constructions
considering a toy example of a point function of the form fα,β : {0, 1}4 → G, for α = 1001
and some β ∈ G, where (G,⊗) is an Abelian group.
Notations. For any g ∈ G, we denote by Inv(g) the inverse of g. Also, we use 1G to denote
the identity element of G and similarly 0S denotes the identity element of group (S,⊕).
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Overloading the notations, for u = (g1, g2, g3, g4) ∈ (G)4 and v = (h1, h2, h3, h4) ∈ (G)4,
we write u⊗ v to denote the component-wise group operation as follows,

u⊗ v := (g1 ⊗ h1, g2 ⊗ h2, g3 ⊗ h3, g4 ⊗ h4).

Seed-Homomorphic PRG. We will consider an example of seed-homomorphic PRG of
the form G : S → (G)4 where (S,⊕) is also an Abelian group s.t.

G(s1 ⊕ s2) = G(s1)⊗ G(s2).

For example, suppose that G is a cyclic group of prime order q such that the DDH
assumption holds over G. Then for a given list of generators g1, g2, g3, g4 ← G, the
following is an example of such a seed-homomorphic PRG: G : S → (G)4 where

G(s ∈ S) = (gs
1, gs

2, gs
3, gs

4) .

The homomorphism of the above PRG can be expressed as follows:

G(s) = G(s1 ⊕ s2) = G(s1)⊗ G(s2)
= (gs1

1 , gs1
2 , gs1

3 , gs1
4 )⊗ (gs2

1 , gs2
2 , gs2

3 , gs2
4 )

The component-wise group operations gives
(
gs1⊕s2

1 , gs1⊕s2
2 , gs1⊕s2

3 , gs1⊕s2
4

)
= (gs

1, gs
2, gs

3, gs
4)

= G(s).
Overview of Our DPF Construction. For ease of exposition, we show our construction
for 3-parties (P1, P2, P3) where each party is provided with their individual key to partially
compute the function f1001,β on some given input x ∈ {0, 1}4. The 3-party DPF construc-
tion ensures that the partial computations of all the 3-parties, when reconstructed, produce
f1001,β(x), while the partial computations of 2 or fewer parties reveal no information
about the point function parameters α = 1001 and β. For the given function f1001,β , the
evaluation table can be given as Table 3, where β’s position can be located by splitting
α = 1001 into two parts (10, 01). The first part (γ = 10) denotes the row number, while
the second part (δ = 01) denotes the column number of β’s position in the evaluation
table.

Table 3: Two-dimensional evaluation table for f1001,β

f1001,β 00 01 10 11
00 1G 1G 1G 1G
01 1G 1G 1G 1G
10 1G βG 1G 1G
11 1G 1G 1G 1G

Key Generation. The key generation algorithm consists of two phases: 1) correction
word generation, and 2) secret share generation. We iterate each phase one by one.

• Correction Word Generation: In this phase, a trusted dealer randomly selects a seed
sγ ∈ S where γ = 10 corresponds to the target row of the evaluation table. We call
the row (resp. column) the target row (resp. column) if that row (resp. column)
corresponds to the position of β in the evaluation table. The dealer then computes the
accompanying errors with the target β for all the columns corresponding to the target
row γ, as correction words. Here, the correction words cwδ′ ,∀δ′ ∈ {00, 01, 10, 11} are
computed as follows;

cwδ′ =
{

βG ⊗ Inv(G(δ′)(sγ)), δ′ = 01 (target column)
1G ⊗ Inv(G(δ′)(sγ)), otherwise,
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(here, Inv(.) denotes the inverse of group element, G(δ′) denotes the δ′-th component
of the output of G, for example, if suppose G outputs (1G, βG, 1G, 1G), then 00-
th component is 1G, 01-th component is βG, 10-th component is 1G, and 11-th
component is 1G). Note that the correction words CW = (cw00, cw01, cw10, cw11)
have been computed only for the target row; however, it remains indistinguishable
for an adversary to guess which row it has been computed for.

• Secret Share Generation: In this phase, the dealer generates seed share for the parties
corresponding to each row of the evaluation table. The key idea is that for all rows
except γ = 10, it generates shares of 0S while for row γ = 10, it generates shares of
sγ . If shi,j denotes the share for i-th party and j-th row, then {sh1,00, sh2,00, sh3,00},
{sh1,01, sh2,01, sh3,01}, and {sh1,11, sh2,11, sh3,11} are the shares of 0S independently
generated for all the 3-parties corresponding to rows 00, 01, and 11. These shares
adhere to the following relation,

sh1,j ⊕ sh2,j ⊕ sh3,j = 0S ,∀j ∈ {00, 01, 11}

For row γ = 10, {sh1,10, sh2,10, sh3,10} are the shares of sγ for all the 3-parties and
follow the relation,

sh1,j ⊕ sh2,j ⊕ sh3,j = sγ

The corresponding shares shi,j are sent to the corresponding party Pi for all j ∈
{00, 01, 10, 11} and CW = (cw00, cw01, cw10, cw11) is released as a public parameter.
Evaluation and Reconstruction. During evaluation, for a given input x = (γ∗, δ∗),
each party Pi uses shares corresponding to row γ∗ and perform partial computation as
follows,

PartCompi = G(δ∗)(shi,γ∗)

In the reconstruction phase, a decoder collects PartComp1, PartComp2, and PartComp3
from the parties and use public parameter cwδ∗ to obtain the evaluation of result as follows,

Res = cwδ∗ ⊗ PartComp1 ⊗ PartComp2 ⊗ PartComp3

Simplifying the above equation, Res = cwδ∗ ⊗G(δ∗)(sh1,γ∗)⊗G(δ∗)(sh2,γ∗)⊗G(δ∗)(sh3,γ∗) =
cwδ∗ ⊗ G(δ∗)(sh1,γ∗ ⊕ sh2,γ∗ ⊕ sh3,γ∗). Now, we exhaustibly proof the correctness of the
DPF by considering three different examples. In the first example, input x = 1101,
with γ∗ = 11 and δ∗ = 01 cover the case where neither γ∗ nor δ∗ matches the target
row/column. For this case, Res = cw01 ⊗ G(01)(0S) = cw01 (Note that the shares for row
11 were generated due to the formula sh1,j ⊕ sh2,j ⊕ sh3,j = 0S). Whenever Res equals to
cwδx or 1G, the decoder outputs 1G. In the second example, input x = 1001, with γ∗ = 10
and δ∗ = 01 cover the case where both γ∗ and δ∗ matches the target row/column. so
reconstructing sh1,10 ⊕ sh2,10 ⊕ sh3,10 will produce sγ . Hence, Res = cw01 ⊗ G(01)(s10) =
βG ⊗ Inv(G(01)(s10))⊗G(01)(s10) = βG. In the third example, input x = 1011 with γ∗ = 10
and δ11 cover the case where γ∗ matches the target row while δ∗ does not match the target
row. One can verify the evaluation for this example to be equal to 1G.

The security of DPF guarantees that no subset of size less than p parties can retrieve
any information about function parameter α and β. Note that the above guarantee
holds only if the discrete log problem is hard in the output group (G,⊗). This hardness
assumption is required to computationally hide the secret information stored in public
parameter (correction words).
Overview of Our DCF Construction. We adhere to the previous example of three
parties (P1, P2, P3) for constructing a distributed comparison function f<

1001,β to compute
any given input x ∈ {0, 1}4. Unlike DPF, DCF evaluation table (see Table 4) can have
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more than one target row. Like in Table 4, row 10 and 11 can contribute to the evaluation
of βG. To handle multiple target rows, we need more than one correction words. Our
construction takes advantage of an observation to identify three distinct types of rows
present in the evaluation table (see Table 4) which enables us to utilize three correction
words (CW1, CW2, CW3) for DCF construction. Correction word CW1 corresponds to rows
with all entries 1G. CW2 corresponds to row with mixed entries, and CW2 corresponds to
rows with only βG as entries. For the given function f<

1001,β with γ = 10 and δ = 01, γ
and δ denotes the position in evaluation table where entries for βG begins. Note that rows
(< γ) have only 1G as entries, and similarly, rows (> γ) have only βG as entries in the
evaluation table.

Table 4: Two dimensional evaluation table for comparison function f<
1001,β

f<
1001,β 00 01 10 11
00 1G 1G 1G 1G
01 1G 1G 1G 1G
10 1G βG βG βG
11 βG βG βG βG

Key Generation. Similar to DPF, the key generation algorithm in DCF also has two
phases: 1) correction word generation, 2) secret share generation. We will iterate through
both these phases one by one.

• Correction Word Generation: As noted above, we need 3 correction words for each
type of rows. The trusted dealer randomly selects 3-seeds, (sγ1 , sγ2 , sγ3) ∈ (S)3.
Seed sγ1 corresponds to rows that have only 1G’s i.e., rows 00 and 01. Seed
sγ2 corresponds to the row that has mixed 1G’s and βG’s, i.e., row 10. Simi-
larly, seed sγ3 corresponds to rows that have only β’s as their entry, i.e., row
11. We randomly select 3 correction words (see proof 3.3 for why we are select-
ing it randomly) and overwrite the correction words using a formula similar to
that of DPF. The first correction word CW1 = (cw1

00, cw1
01, cw1

10, cw1
11) is calcu-

lated as cw1
δ′ = 1G ⊗ Inv(Gδ′(sγ1)), ∀δ′ ∈ {00, 01, 10, 11}, the second correction

word CW2 = (cw2
00, cw2

01, cw2
10, cw2

11) is calculated as cw2
δ′ = βG ⊗ Inv(Gδ′(sγ2)),

∀δ′ ∈ {01, 10, 11} and cw2
δ′ = 1G⊗ Inv(Gδ′(sγ2)), ∀δ′ = 00. Similarly, the third correc-

tion word CW3 = (cw3
00, cw3

01, cw3
10, cw3

11) is calculated as cw3
δ′ = βG ⊗ Inv(Gδ′(sγ3)),

∀δ′ ∈ {00, 01, 10, 11}.

• Secret Share Generation: In this phase, the dealer generates seed shares for the
parties corresponding to each row of the evaluation table. The main idea is to
generate the secret shares of 0s for rows where all entries are 1G. For the mixed rows,
it generates the secret shares of sγ2 and for rows with all βG, it generates the secret
shares of sγ3 .

Evaluation and Reconstruction. The partial evaluation of DCF differs from DPF
in the sense that every party Pi calculates two partial computations, PartCompi,1 and
PartCompi,2. For a given input x = (γ∗, δ∗), PartCompi,1 is computed on column δ∗, and
PartCompi,2 is computed on column δ∗ ± 1 keeping the row as γ∗ in both computations.
The decoder uses different combinations of partial computations and correction words
CW1, CW2, CW3 to determine the correct final evaluation. It first computes the result as
Res1 = cw1

δ∗⊗PartComp1,1⊗PartComp2,1⊗PartComp3,1. If Res1 equals to cw1
δ∗ , it outputs

the result as 1G, otherwise it computes Res2 and Res3 as Res2 = cw3
δ∗ ⊗ PartComp1,1 ⊗

PartComp2,1⊗PartComp3,1 and Res3 = cw3
δ∗±1⊗PartComp1,2⊗PartComp2,2⊗PartComp3,2.

If Res2 equals Res3, it outputs the result as Res2, otherwise, it computes Res4 = cw2
δ∗ ⊗

PartComp1,1 ⊗ PartComp2,1 ⊗ PartComp3,1 as the final output.
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Now, we evaluate 4 different inputs to cover all the different possible cases of evaluations.
1) x = 0110 with γ∗ = 01 and δ∗ = 10 cover the case where input x is smaller than α and
γ∗ = 01 represents the rows with all entries as 1G. For this case, the shares of 0S were
generated, and hence the combination of partial computation will output 1G. Therefore,
Res3 will equal to cw1

δ∗ . In this case, the decoder will stop here and output the result as
1G. 2) x = 1101 with γ∗ = 11 and δ∗ = 01, covers the case when input x is bigger than α.
In this case, the combination of partial computations will reconstruct the seed sγ3 . The
decoder computes Res1, however this result will not be equal to cw1

δ∗
as cw1

δ∗
embeds seed

sγ1 inside it. So, decoder computes Res2 and Res3, and Res2 equals to Res3 as γ∗ > γ and
for such rows all columns have embedding of βG. The decoder will stop here and output
Res2 which should be equal to βG. 3) x = 1000 with γ∗ = 10 and δ∗ = 00, covers the case
when row γ∗ = γ, still the output should be 1G. In this case, neither Res1 == cw1

δ∗ nor
Res2 == Res3 as the correction word cw2

δ∗ can only evaluate it to 1G. 4) x = 1010 with
γ∗ = 10 and δ∗ = 10 works similar to the previous case, and one can verify the output to
be βG.

The security of DCF guarantees that no subset of size less than p parties can retrieve
any information about function parameters α and β. It is important to note that the above
guarantee holds only if the discrete log problem is hard in the output group (G,⊗). This
hardness assumption is required to computationally hide the secret information stored in
public parameter (correction words).
Regarding Function Privacy. In an FSS scheme, function privacy ensures that unless an
adversary has evaluated and decoded all possible values of input x, the function parameters
remains indistinguishable from any random element in the input set. In the above FSS
with non-linear decoding, an adversary who can see all parties’ partial computations
can leak function parameters by querying for 2n/2 values of x. The initial 2n/2 queries
correspond to all the rows of the evaluation table. Also, exactly one of the rows is the
target row, which can be leaked by looking at the aggregated values of partial computations.
Hence, we additionally ensure parameter hiding by requiring a trusted decoder which is
natural for our target application, but is not universally true, and we leave achieving
unconditional function privacy for FSS with non-linear decoding as an open question.
Our idea is to mask the partial output of each party with shares of output mask rout.
Specifically, the key generation algorithm, along with FSS keys also generates p shares
of rout as [rout]1, . . . , [rout]p. Then, it sends rout to the trusted decoder, while share
[rout]i to party Pi. Each party masks their partial computation PartCompi by computing
PartCompi = PartCompi ⊗ [rout]i. In this setup, a collective effort of p parties will not
divulge any information about function parameters, as the output mask rout is retained
with the decoder. Thus, an adversary must evaluate and aggregate the function over all
2n possible values of x to gain any information about function parameters.

2 Preliminaries and Background
In this section, we introduce the notations, cryptographic background, and definitions for
function secret sharing with the non-linear decoder.

2.1 Notations
We write x

R←− X to represent that an element x is sampled independently and uniformly
at random from a set or distribution X . The output x of a deterministic algorithm A is
denoted by x = A and the output x′ of a randomized algorithm A′ is denoted by x′ ← A′.
For a ∈ N such that a ≥ 1, we denote by [a] the set of integers lying between 1 and a (both
inclusive). We refer to λ ∈ N as the security parameter and denote by poly(λ) and negl(λ)
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any generic (unspecified) polynomial function and negligible function in λ, respectively.
Inv(·) represents the inverse function of the group element on which it is applied.

2.2 Cryptographic Definitions
Here, we define some important cryptographic primitives, which we will use later to build
the proposed scheme.

2.2.1 Function Secret Sharing.

FSS [BGI15] provides a method to split function f into separate keys, where each key
enables a party to efficiently generate a standard secret share of the evaluation f(x), and
yet each key individually does not reveal information about which function f has been
shared. The FSS schemes can have multiple variants as per the underlying procedure
of recovering f(x) from the parties’ computed share. In the seminal work [BGI15], they
defined decoder as a function that is employed to perform aggregation over the partial
outputs received from each party and produce f(x). Similarly, we define a non-linear
decoder for the FSS proposed in this paper as this decoder also perform a comparison (the
non-linear operation) after aggregating the partial computations from each party. Unlike
the decoder in [BGI15], our decoder uses some public parameters as input, which are
utilized after aggregation to determine the function output f(x). We define our non-linear
decoder as follows:

Definition 1 (Non-linear Output Decoder). A p-party non-linear output decoder DEC is
a tuple (Y1, . . . , Yp, PP, R, Dec) specifying: share space vectors Y1, . . . , Yp for all p parties;
public parameter PP; output space R; and a decoder function Dec : (Y1×· · ·×Yp, PP)→ R
taking p parties’ shares to an output.

Definition 2 (Function Secret Sharing (FSS)). For p ∈ N, let P = {P1, . . . , Pp} denote
the set of p-parties, and P ′ = {P1, . . . , Pp′}, 1 ≤ p′ < p, denotes the invalid set of parties
with cardinality less than p for an FSS scheme with respect to non-linear output decoder
DEC = (Y1, . . . , Yp, PP, R, Dec) and function class F (defined over domain D and range R)
is a pair of PPT algorithms (Gen, Eval) with the following syntax:

• Gen(1λ, f) : Taking input as security parameter 1λ and function description f ∈ F ,
the key generation algorithm outputs p keys, (k1, . . . , kp) and a public parameter
PP.

• Eval(i, ki, x) : Taking input as index i, key ki (each ki is assumed to encode input
and output domains D, R of the shared function), and input x ∈ D, the evaluation
algorithm outputs a value yi ∈ Yi, corresponding to ith party’s share of f(x).

satisfying the following correctness and security requirements:

• Correctness: For all f ∈ F , x ∈ D,

Pr
[
({k1, ...kp},PP) R←− Gen(1λ, f) :

Dec({Eval(1, k1, x), . . . , Eval(p, kp, x)}, PP) = f(x)
]

= 1.

• Security: Consider the following indistinguishability challenge experiment for
corrupted P ′:

1. The adversary outputs (f0, f1)← A(1λ), where f0, f1 ∈ F on domain D.
2. The challenger samples b← {0, 1} and ({k1, . . . , kp}, PP)← Gen(1λ, fb).
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3. The adversary outputs a guess b′ ← A({ki}Pi∈P ′ , PP), given the keys for
corrupted P ′.

Let Adv(1λ,A) := Pr[b = b′]−1/2 denotes the advantage of adversary A in guessing
b in the above experiment, where probability is taken over the randomness of the
challenger and of A. We say the FSS scheme defined above is (T, ϵ)-secure, if there
exist a negligible function negl such that for all non-uniform PPT adversary A, it
holds that Adv(1λ,A) ≤ ϵ where ϵ = negl(λ) and T = poly(λ) is the polynomial
running time.

In the above definition of FSS with a non-linear decoder, the function parameter α
for a point function Fα,β might be leaked as an attacker can retrieve some bits of α
after aggregating the partial computations of parties. To avoid any function parameter
leakage, we assume the existence of a trusted decoder in our construction, which can
perform minimal aggregation and comparison operation. In this setting, besides partial
computation, each party is also provided with the shares of the output mask. More formally,
we represent the offset (shifted) version of function f as grin,rout

(x) = g(x− rin) + rout,
where rin is input mask and rout is output mask. The decoder keeps rout with itself while
all p parties are given the shares of rout to mask their partial outputs. We provide the
formal definition of decoder and FSS in the shifted version below.

Definition 3 (Non-linear Output Decoder (shifted version)). A p-party non-linear output
decoder DEC is a tuple (Y1, . . . , Yp, PP,R, R, Dec) specifying: share space vectors Y1, . . . , Yp

for all p parties; public parameter PP; share space of output mask R, output space of
offset function as R; and a decoder function Dec : (Y1 × · · · × Yp, PP,R) → R taking p
parties’ partial computation to an output of the offset function.

Definition 4 (Function Secret Sharing (shifted version)). Let P = {P1, . . . , Pp}, p ∈ N
denotes the set of p-parties, and P ′ = {P1, . . . , Pp′}, 1 ≤ p′ < p, denotes an invalid
set of parties. An FSS scheme with respect to a trusted non-linear output decoder
DEC = (Y1, . . . , Yp, PP,R, R, Dec) and offset function class F (defined over domain D and
range R) with input mask rin ∈ D and output mask rout ∈ R is a pair of PPT algorithms
(Gen, Eval) with the following syntax:

• Gen(1λ, grin,rout) : Taking input as security parameter 1λ and function description
grin,rout

∈ F , the key generation algorithm outputs p keys, (k1, . . . , kp), a public
parameter PP and p additive shares of rout.

• Eval(i, ki, xm, [rout]i) : Taking input as index i, key ki, and masked input string
xm = x+rin, the output mask share [rout]i corresponding to party Pi , the evaluation
algorithm outputs a value yi ∈ Yi, corresponding to ith party’s share of grin,rout(xm).

This definition should satisfy the following correctness and security:

• Correctness: For all grin,rout ∈ F , xm ∈ D,

Pr
[
({k1, . . . , kp},PP, [rout]i∈[p])

R←− Gen(1λ, grin,rout) :

Dec({Eval(1, k1, xm, [rout]i)}i∈[p], PP, rout) = grin,rout(xm)
]

= 1.

• Security: Consider the following indistinguishability challenge experiment for
corrupted P ′:

1. The adversary outputs (g0, g1)← A(1λ), where g0, g1 ∈ F on domain D.
2. The challenger samples b← {0, 1} and ({k1, . . . , kp}, PP, [rout]i∈[p])← Gen(1λ, gb).
3. The adversary outputs a guess b′ ← A({ki}Pi∈P ′ , PP, [rout]i∈[p′]), given the keys

for corrupted P ′.
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Let Adv(1λ,A) := Pr[b = b′]−1/2 denotes the advantage of adversary A in guessing
b in the above experiment, where probability is taken over the randomness of the
challenger and of A. We say the FSS scheme defined above is (T, ϵ)-secure, if there
exists a negligible function negl such that for all non-uniform PPT adversary A, it
holds that Adv(1λ,A) ≤ ϵ where ϵ = negl(λ) and T = poly(λ) is the polynomial
running time.

Remark 1. The above FSS definition with a trusted decoder does not leak any information
about function parameters in the sense that the bare aggregation of partial computation
does not leak any information about function parameters. Since a dedicated trusted
decoder retains rout with it, the final aggregation without decoder output does not result
in the evaluation of the function grin,rout

(xm) and an adversary cannot exploit partial
computations of parties to leak information about function parameter.

2.2.2 Seed Homomorphic Pseudorandom Generator.

We stem the seed homomorphic pseudorandom generator concept from [BLMR13] as
follows.

Definition 5 (Seed Homomorphic PRGs). An efficiently computable function G : X → Y ,
where (X ,⊕) and (Y,⊗) are groups, is said to be seed homomorphic PRG if the following
two properties hold:

• G is a secure PRG.

• For every s1, s2 ∈ X , we have G(s1)⊗ G(s2) = G(s1 ⊕ s2)

Example 1. Let G be an elliptic curve group of order q in which ECDH assumptions
hold. For a group (S,⊕), consider a PRG GSHPRG : S → G × G with group generators
gg = (g, h) where g and h are uniformly chosen generators of G during the setup phase.
The output of GSHPRG with parameter gg and seed s is defined as, GSHPRG(s) = (gs, hs).
Security of GSHPRG follows immediately from the ECDH assumptions: when s is uniformly
taken from S, then GSHPRG(s) is indistinguishable from a random sample in G×G. The
homomorphic properties hold as follows.

GSHPRG(s1 ⊕ s2) = GSHPRG(s1)⊗ GSHPRG(s2)

Definition 6. (µ-stretchable Seed Homomorphic PRGs). An efficiently computable seed
homomorphic PRG G, is said to be µ-stretchable seed homomorphic when the output of G
is stretched by µ generators from G.

In example 1, the given seed homomorphic PRG is µ = 2 stretchable as it uses 2
generators g and h to scale the output.

3 FSS with Compact Key-Size
In this section, we present a novel p-party FSS construction for different classes of functions
like point function, comparison function, interval function, correctness proof, and security
proof, followed by a comparison with state-of-the-art literature.
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3.1 Proposed Distributed Point Function
We present a p-party distributed point function scheme using seed-homomorphic PRGs
and additive secret sharing as the building blocks for our construction. A p-party DPF
construction can be given as follows:

Construction 1 (p-party Distributed Point Function). A p-party distributed point function
DPF is a tuple of two probabilistic polynomial time algorithms (DPF.Gen, DPF.Eval) with
set of parties P = {P1, . . . , Pp} and a trusted output decoder DEC to combine the partial
evaluation from parties and decode the final output.

A dealer takes a security parameter λ as input. It randomly chooses input mask, rin and
output mask, rout of the point function Fα,β : {0, 1}n → G with n-bit inputs and produces
output in group G (output group) of order 2m, for some integer m. It also establishes a
seed homomorphic pseudorandom generator (SHPRG) and sets various parameters such
as gg, q, p, n, and m, which we will explain below. Let us consider a seed homomorphic
pseudorandom generator GSHPRG : S → Gµ, which takes an input seed from group S and
outputs a µ-sized vector with elements in group G where

• G is an output group defined on the range of function Fα,β .
• (S,⊕) is a group over integers modulo prime q.
• λ ≈ log(q)
• gg is a randomly chosen set of µ generators from G represented as gg = (g1, g2, · · · , gµ)

with µ as a scaling factor of SHPRG.
• p is the number of parties,
• n and m = log2(|G|) denote the domain and range size in bits for the class of point

function Fα,β .

1. DPF.Gen(λ,Fα,β): This algorithm takes a function with parameters α, β, and a
security parameter λ as inputs and generates keys for all parties. The input α is
written down as a pair (γ, δ), where γ ∈ [ν], δ ∈ [µ] with µ ← ⌈2n/2 · 2(p−1)/2⌉
and ν ← ⌈2n/µ⌉ (we follow the splitting of ν and µ from [BGI15]). Here, ν and
µ represent the evaluation table’s rows and columns. Note that (γ, δ) locate the
position of β in the evaluation table.

(a) Generation of Correction Word: Let us write the function output β as βG.
Randomly select a seed sγ ∈ S corresponding to row γ. For γ′ ∈ [ν] whenever
γ′ = γ, generate correction word such that ∀δ′ ∈ [µ],

cwδ′ =
{

βG ⊗ Inv(G(δ)
SHPRG(sγ)), δ′ = δ

1G ⊗ Inv(G(δ′)
SHPRG(sγ)), δ′ ̸= δ

where CW = (cw1, cw2, · · · , cwµ), 1G is the identity element of the output group
(G,⊗). In our current definition of FSS, we consider CW as a public parameter
PP and make it public.

(b) Generation of Shares: To generate the shares of the function for parties,
the main idea is to generate the shares of 0S for all rows not belonging to
the target row and to generate the shares of sγ corresponding to the target
row γ. Note that sγ is a randomly chosen seed that has been used for the
formation of CW. To generate the secret shares of 0S (for all non-target rows,
i.e γ′ ̸= γ) one can pick p − 1 random shares shi,γ′ ∈ S, i ∈ [1, p − 1], and
set shp,γ′ = Inv(

⊕p−1
i=1 shi,γ′),∀γ′ ∈ [ν]. For target row γ, one can randomly

generate shares of p− 1 parties as shi,γ ∈ S, ∀i ∈ [1, p− 1] and use seed sγ to
compute the share of p-th party as follows,
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shp,γ = sγ ⊕ Inv(
p−1⊕
i=1

shi,γ)

(c) The dealer also generates p additive shares of output mask rout ∈ G for all the
parties as ([rout]1, . . . , [rout]p). It sends rout to the trusted decoder while [rout]i
to party Pi as a part of their FSS key.

(d) Send key Ki =
(
[rout]i,{shi,γ′}∀γ′∈[ν]

)
to party Pi and release PP = CW in

public domain.

2. DPF.Eval(i, Ki, x): A party Pi uses this algorithm to evaluate the partial computation
of the function using Ki and x. The input x is written down as a pair (γ∗, δ∗),
where γ∗ ∈ [ν], δ∗ ∈ [µ] with µ ← ⌈2n/2 · 2(p−1)/2⌉ and ν ← ⌈2n/µ⌉. Parse
Ki =

(
[rout]i,{shi,γ′}∀γ′∈[ν]

)
. Then, party Pi will use its seed share corresponding to

row γ∗ and use the following equation to calculate the partial computation.

PartCompi = G(δ∗)
SHPRG(shi,γ∗)⊗[rout]i

Note that µ is the scaling factor of GSHPRG(.) and hence it outputs µ-sized vector
with each element in group (G,⊗) . Here, we use the notation G(δ∗)

SHPRG(.) to represent
the δ∗-th element of the vector. Each party computes Yi = PartCompi ∈ G which the
decoder can use for revealing the function output as given in the following description.

Theorem 1. Suppose G : S −→ Gµ is a seed homomorphic pseudorandom generator.
Our scheme DPF = (DPF.Gen, DPF.Eval) is a correct and secure p-party distributed point
function for the family of point function Fα,β with shared secret size 2(n−p+1)/2(λ) + m
bit, and public parameter of size 2(n+p−1)/2(m) bit where p is the total number of parties.

Proof. We prove this theorem by proving correctness (Claim 3.1) and security (Claim 3.1)
of the proposed DPF scheme below.

Claim (Correctness). Our p-party DPF scheme is correct for point function Fα,β, for
a masked input x and for party Pi ∈ P for a specific output decoder (ref. Definition 1)
function Dec⊗ : (Y1 ⊗ . . .⊗ Yp, PP,R)→ R, with Yi ∈ G and R ∈ G, it follows,

Pr
[
({k1, ...kp},PP, [rout]i∈[p]))

R←− DPF.Gen(1λ,Fα,β) :

Dec⊗({DPF.Eval(i, ki, x, [rout]i)}i∈[p], PP, rout) = Fα,β(x)
]

= 1.

Proof 1. Each party Pi ∈ P has the key of the form, Ki = {shi,γ′}∀γ′∈[ν], using which it
partially computes the function and outputs Yi = PartCompi. A decoder Dec⊗ takes all
parties’ public parameters PP = CW and PartCompi as inputs. It then picks cwδ∗ from
CW and finally produces Res after performing output group operation as follows,

Res = Dec⊗({Y1, . . . , Yp}, CW, rout) = Inv(rout)⊗ cwδ∗ ⊗
p⊗

i=1
Yi

= Inv(rout)⊗ cwδ∗ ⊗ rout ⊗
p⊗

i=1
G(δ∗)

SHPRG(shi,γ∗) = cwδ∗ ⊗ G(δ∗)
SHPRG(

p⊕
i=1

shi,γ∗)

The decoder has nullified the effect of rout from the result Res by operating with the
inverse of rout and processes the decoding of the DPF scheme for the following cases.
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Case 1. (x ̸= α). As x = (γ∗, δ∗) and α = (γ, δ), it covers the case when atleast the row or
column is not a target row/column. For x ̸= α raises two different possibilities mentioned
below:

1. When γ∗ ̸= γ, the reconstruction operation
⊕p

i=1 shi,γ∗ yields 0 (recall that during
DPF.Gen, for γ∗ ̸= γ, the shares for parties are generated such that it adds to 0).
Hence, Res = cwδ∗ ⊗ G(δ∗)

SHPRG(0) = cwδ∗ . The decoder interprets the result as 1G
whenever Res = cwδ∗ .

2. When γ∗ = γ but δ∗ ̸= δ, the reconstruction operation
⊕p

i=1 shi,γ∗ yields sγ (recall
that during DPF.Gen, for γ = γ∗, the additive shares of sγ were generated). Hence,
Res = cwδ∗ ⊗ G(δ∗)

SHPRG(sγ) = 1G ⊗ Inv(G(δ∗)
SHPRG(sγ))⊗ G(δ∗)

SHPRG(sγ) = 1G.

Case 2. (x = α). As we have x = α so we have γ∗ = γ and δ∗ = δ and this covers the case
when the row γ∗ is a target row and column δ∗ is also a target column. So, the reconstruction
operation

⊕p
i=1 shi,γ∗ yields sγ (recall from DPF.Gen, for γ = γ∗, the shares of sγ were

generated). Hence, Res = cwδ ⊗ G(δ)
SHPRG(sγ) = βG ⊗ Inv(G(δ)

SHPRG(sγ))⊗ G(δ)
SHPRG(sγ) = βG.

Claim (Security). For any polynomial p(n) ∈ poly(n) such that, given an additive Secret
Sharing Scheme (SSS) defined over group (S,⊕) and a seed homomorphic PRG compatible
with SSS, the scheme (DPF.Gen, DPF.Eval) is a (T ′, ϵ′)-secure DPF scheme for T ′ =
T(SHPRG+SSS) − p(n) and ϵ′ = ϵSSS + 2ϵSHPRG where ϵSSS and ϵSHPRG are the winning
advantage of an adversary in SSS and SHPRG respectively.

Proof 2 (Proof overview). Recall from Section 3.1, the key Ki = ([rout]i, {shi,γ′}∀γ′∈[ν]) is
privately shared with party Pi and public parameter CW is generated using SHPRG. At a
high level, we will show that the correction word CW = (cw1, cw2, · · · , cwµ) are pseudoran-
dom given the remaining view of every party. Thus, we will have the indistinguishability
of keys generated for two different functions for some corrupted set of parties P ′ with
|P ′|< p. Formally, for any pair of functions Fα,β and Fα̂,β̂ , we consider a sequence of
hybrid distributions that begin with an honestly generated DPF key for Fα,β and end with
an honestly generated DPF key for Fα̂,β̂ . Note that the adversary has access to the keys
for two functions Fα,β and Fα̂,β̂ , generated only for a corrupted set of parties P ′. We aim
to show that an adversary who wins in the DPF security game with an advantage greater
than ϵ′ must succeed in distinguishing between the key distributions of Fα,β and Fα̂,β̂ ,
and thus distinguishes between the adjacent hybrids with the advantage that contradicts
the security of one of the underlying tools. The underlying tool is the SHPRG and secret
sharing scheme to construct DPF. We formally prove the security by defining four sets of
hybrids in Appendix A.

Now, we describe the size of public parameter (correction word) and secret shares as
mentioned in Theorem 1. The correction word CW is a column (µ) length vector with
each element in G. Considering m = log2(|G|) and µ = ⌈2n/2 · 2(p−1)/2⌉, one can calculate
mµ = 2(n+p−1)/2(m) bit. Similarly, the size of secret shares is due to the share size for
each row of the evaluation table and the size of rout share. Considering ν = ⌈2n/µ⌉ rows
in our evaluation table, the length of each seed share as λ-bit, and the length of rout share
as m-bit, the total secret shares size is λν + m which is equal to 2(n−p+1)/2(λ) + m bits.

3.2 Comparing p-party DPF with state-of-the-art
The p-party variant of our proposed DPF overlaps with the p-party version of [BGI15]
and [CGBM15] yet keeping a direct improvement in key-size by a factor of O(2p) in
[BGI15] and has reduced the key-size by 2n/22−p(λ)-bits in [CGBM15]. To achieve p-party
DPF, we used additive secret sharing, which satisfies the reconstruction by all the involved
parties.
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(a) Boyle et al. vs Our Scheme (y-axis in log scale) (b) Riposte vs Our Scheme

Figure 2: Key size comparison with other schemes

Besides improvement in key size, we also reduce the number of PRG invocations during
DPF.Eval with respect to PRG invocations in [BGI15]. Each party in [BGI15] performs
2p−1 PRG invocation, which in our construction has been reduced to only one invocation by
each party. Although we use seed homomorphic PRG (public-key setting) whose invocation
is a bit more expensive than the (symmetric-key setting) PRG, the 2p−1 number of PRG
invocations by each party proves to be computationally more expensive than our use of
seed-homomorphic PRG when the number of parties crosses 12 (refer to Figure 3). Figure
3 shows the comparative evaluation time of our scheme and [BGI15].

We choose NIST P-256 elliptic curve with modulo p = 2256 − 2224 + 2192 + 296 − 1
satisfying y2 = x3 − 3x + 410583637251521421293261297800472684091144410159937
25554835256314039467401291, for our prototype implementation but other elliptic curves
also perform well in this setting. We used Montgomery ladder-based scalar multiplication
and point addition to perform operations during Gen and Eval. We employ seed homomor-
phic PRG based on the ECDH assumption for the above curve to support 128-bit security
for our proposed implementation. The implementation results have been recorded on the
system equipped with an Intel® Core™ i5-9500 CPU and 3.00GHz clock frequency, with
20GB of RAM. We use the standard double precision IEEE 754 floating point conversion
for the floating point numbers to convert all the floating point numbers to 64bit binary
numbers. However, our implementation is not limited to 64-bit inputs subjected to the
availability of appropriate floating point standard representation.

We show some comparative experimental results in Figure 2a, 2b, and Figure 3 to
justify the use of seed homomorphic PRG when the number of parties increases linearly.
Figure 2a shows a key-size comparison between Boyle et al.[BGI15] and our proposed
scheme in logarithmic scale. Figure 2b shows the key-size comparison between Riposte
and our proposed scheme. Figure 3 shows the plot between the evaluation time of Boyle
et al.[BGI15] and our scheme on a logarithmic scale. The exponential blow-up in the
evaluation time of Boyle et al.[BGI15] is due to exponential PRG invocations with a
linear increase in the number of parties. When comparing our evaluation time with
Riposte[CGBM15], we have improvements with one multiplication time. However, the
seed-homomorphic PRG computation dominates the evaluation time; as a result, the seed-
homomorphic PRG computation largely suppresses our improvement of one multiplication
time as compared to Riposte. Figure 2a plot shows a very similar trend as Figure 3 stating
that the key corresponding to each row of Boyle et al.[BGI15] has 2p−1 seeds leading to
an exponential blow up in key-size for Boyle et al.[BGI15]. The key size in our scheme has
drastically reduced as each party’s seed share to be stored per row is only λ-bits. Deviating
from the row and column split used in [BGI15], we keep the row and column size the same,
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(a) Boyle et al. vs Our Scheme(y-axis in log
scale)

(b) Riposte vs Our Scheme

Figure 3: Evaluation time comparison with other schemes

i.e., 2n/2. Also we use n = 32, m = 32, and λ = 256 for all the measurements.

Extension to other classes of function. In the following section, we extend our
compact p-party DPF construction to other functions, specifically distributed comparison
and interval functions. To our knowledge, the proposed distributed comparison and interval
functions for p-parties have the most efficient key size to date.

3.3 Distributed Comparison Function (DCF)
On a high level, the comparison function can be considered a particular multi-point function
that outputs β at more than one point (instead, it outputs β continuously after a specific
point). To recall, the evaluation table of the comparison function f<

1001,β (ref. Table 4) has
three types of rows: 1) all entries 1G; 2) mixed 1G and βG entries; and 3) all entries as βG.
The idea is to use only three seeds repeatedly, like sγ1 for the first type of rows, sγ2 for the
second type, and sγ3 for the third type of rows, and secret share these seeds independently
with all the parties. Since there are three different seed values, we need to generate 3
CW here and release them as public parameters. Note that 3 CW produced during key
generation remains indistinguishable from any randomly generated binary string of length
3mµ.

Construction 2 (p-party Distributed Comparison Function). A p-party distributed com-
parison function DCF is a tuple of two PPT algorithms (DCF.Gen, DCF.Eval) with a set of
parties P = {P1, . . . , Pp} and an output decoder DEC to combine the partial evaluations of
the parties and decode the final output.

Taking security parameter λ as input, a dealer chooses q ∈ N, n ∈ N, m ∈ N, PP ∈ Gµ

(µ being the number of columns in the evaluation table), decides on the description of
the comparison function F<

α,β and seed homomorphic pseudorandom generator SHPRG. It
randomly chooses input mask, rin and output mask, rout of the comparison function F<

α,β :
{0, 1}n → G where G is an output group. Consider a µ-stretchable seed homomorphic
pseudorandom generator as GSHPRG : S → Gµ, where symbols have their usual meaning as
defined in Section 3.1.

1. DCF.Gen(λ,F<
α,β): In this algorithm, the input α to the comparison function F<

α,β is
written down as a pair (γ, δ), where γ ∈ [ν], δ ∈ [µ] with µ← ⌈2n/2 · 2(p−1)/2⌉ and
ν ← ⌈2n/µ⌉.
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(a) Write the function output β as βG randomly choose 3 seeds sγ1 , sγ2 and sγ3

and randomly initialize {cw1
δ′ , cw2

δ′ , cw3
δ′}δ′∈[µ] with group G elements and then

overwrite the correction word cw1
δ′ , cw2

δ′ and cw3
δ′ as follows,

Generate 3 correction words for following 3 cases as, for any γ′ ∈ [ν],
If γ′ < γ,

cw1
δ′ = 1G ⊗ Inv(Gδ′

SHPRG(sγ1)),∀δ′ ∈ [µ]

If γ′ = γ,

cw2
δ′ =

{
βG ⊗ Inv(Gδ′

SHPRG(sγ2)), δ′ ≥ δ ∈ [µ]
1G ⊗ Inv(Gδ′

SHPRG(sγ2)), δ′ < δ ∈ [µ]

If γ′ > γ,

cw3
δ′ = βG ⊗ Inv(Gδ′

SHPRG(sγ3)),∀δ′ ∈ [µ]

where CW1 = (cw1
1, cw1

2, · · · , cw1
µ), CW2 = (cw2

1, cw2
2, · · · , cw2

µ), and CW3 =
(cw3

1, cw3
2, · · · , cw3

µ). It is important to note that random initialization of
(CW1, CW2, CW3) is required in the beginning.

(b) In the previous step, the 3-seeds sγ1 , sγ2 , and sγ3 were randomly chosen that
need to be distributed across the rows of evaluation table as follows.

sγ′ =


sγ1 , γ′ < γ

sγ2 , γ′ = γ

sγ3 , γ′ > γ

For all rows γ′ < γ we use the seed sγ1 , for row γ′ = γ we use sγ2 and
similarly for all rows having γ′ > γ we use the seed sγ3 . Following a similar
strategy of seed-sharing, we either generate the shares of sγ′ or 0S depending
on the row for which secret shares are generated. One can generate the secret
shares of 0S by picking p − 1 random shares shi,γ′ ∈ S, i ∈ [1, p − 1], and
shp,γ′ = Inv(

⊕p−1
i=1 shi,γ′),∀γ′ < γ. For all γ′ ≥ γ, we can randomly generate

shares of p− 1 parties as shi,γ′ ∈ S, ∀i ∈ [1, p− 1] and use seed sγ′ to compute
share of p-th party as follows,

shp,γ′ = sγ′ ⊕ Inv(
p−1⊕
i=1

shi,γ′)

Concretely, for rows (< γ) we generate shares of 0S , for row (= γ), we generate
shares of sγ2 , and for rows (> γ) we generate shares of sγ3 independently.

(c) The dealer also generates p additive shares of output mask rout ∈ G for all the
parties as ([rout]1, . . . , [rout]p). The output mask rout is kept with the decoder
while [rout]i is sent to party Pi.

(d) Send key Ki =
(
[rout]i,{shi,γ′}∀γ′∈[ν]

)
to party Pi and PP = {CW1||CW2||CW3}

is released in public domain.

2. DCF.Eval(i, Ki, x): Each party Pi evaluate the partial functions using Ki and x.
The input x is written down as a pair (γ∗, δ∗), where γ∗ ∈ [ν], δ∗ ∈ [µ] with
µ ← ⌈2n/2 · 2(p−1)/2⌉ and ν ← ⌈2n/µ⌉. Parse Ki =

(
[rout]i,{shi,γ′}∀γ′∈[ν]

)
and

PP = {CW1||CW2||CW3}. Then, use the following equation to calculate two partial
computations PartCompi,1 and PartCompi,2 corresponding to δ∗ and δ∗ ± 1.

PartCompi,1 = G(δ∗)
SHPRG(shi,γ∗)⊗[rout]i, PartCompi,2 = G(δ∗±1)

SHPRG (shi,γ∗)⊗[rout]i
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The selection of δ∗+ 1 or δ∗− 1 depends on the availability of valid δ∗± 1 for the row
γ∗. Suppose the given δ∗ is 0, so δ∗ + 1 will be selected. Similarly in another case,
if δ∗ is equal to µ− 1, then δ∗ − 1 will be chosen. For case, when 0 < δ∗ < µ− 1,
use δ∗ + 1 though one can also choose δ∗ − 1 through out the construction. Recall
GSHPRG(.) outputs a µ-sized vector for each element belonging to G group, and we
used the notation G(δ∗)

SHPRG(.) to represent the δ∗-th element of the vector. Each party
assigns Yi,1 = PartCompi,1 and Yi,2 = PartCompi,2, and then sends Yi,1, Yi,2 to the
decoder for the final computation of the comparison function.

Remark 2. Unlike DPF, two PartComps are required for DCF to correctly compute the
row that embeds β in it. The δ∗ ± 1 is considered for cases where β might be embedded at
the first or the last column in row γ∗.

Theorem 2. Suppose G : S −→ Gµ is a seed homomorphic pseudorandom generator. Our
scheme DCF = (DCF.Gen, DCF.Eval) is a correct and secure p-party distributed comparison
function for the family of comparison function F<

α,β with shared secret size 2(n−p+1)/2(λ)+m

bit, and public parameter of size 3 · 2(n+p−1)/2(m) bit where p is the total number of parties.

Proof. We prove this theorem by proving correctness (Claim 3.3) and security (Claim 3.3)
of the proposed DCF scheme below.

Claim (Correctness). The resulting scheme DCF (Section 3.3) is correct i.e., for any
p-party distributed comparison function F<

α,β, on masked input x and for a specific output
decoder function Dec< : ({Yi,1, Yi,2}i∈[p], PP,R)→ R, with (Yi,1, Yi,2) ∈ G2, R ∈ G R ∈ G,
it follows,

Pr
[
({Ki}i∈[p], PP,rout)

R←− DCF.Gen(1λ,F<
α,β) :

Dec<({DCF.Eval(i, Ki, x, [rout]i))}i∈[p], PP, rout) = F<
α,β(x)

]
= 1.

Proof 3. Each party Pi possesses key Ki. Using this key, it partially computes the
function and assigns Yi,1 = PartCompi,1 and Yi,2 = PartCompi,2. The decoder Dec< takes
input as {Yi,1, Yi,2}i∈p, and PP = {CW1||CW2||CW3} and outputs result as follows:

Res1 = Inv(rout)⊗ cw1
δ∗ ⊗

p⊗
i=1

Yi,1

The decoder first nullifies the effect of rout by taking its inverse and operating it with
the aggregated value of partial decryption to obtain Res1 and checks if Res1 == cw1

δ∗ , it
outputs 1G; otherwise it computes,

Res2 = Inv(rout)⊗ cw3
δ∗ ⊗

p⊗
i=1

Yi,1, Res3 = Inv(rout)⊗ cw3
δ∗±1 ⊗

p⊗
i=1

Yi,2

The decoder nullifies rout and computes Res2 and Res3. If Res2 == Res3, it outputs Res2

as the final evaluation which is equal to βG, else it computes

Res4 = Inv(rout)⊗ cw2
δ∗ ⊗

p⊗
i=1

Yi,1

The decoder outputs Res4 as the final output.
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Claim (Security). For any polynomial p(n) ∈ poly(n) such that, given an additive Secret
Sharing Scheme (SSS) defined over group (S,⊕) and a seed homomorphic PRG compatible
with SSS, the scheme (DCF.Gen, DCF.Eval) is a (T ′, ϵ′)-secure DCF scheme for T ′ =
T(SHPRG+SSS) − p(n) and ϵ′ = ϵSSS + 2ϵSHPRG where ϵSSS and ϵSHPRG are the winning
advantage of an adversary in SSS and SHPRG respectively.

Proof 4. The security proof for the proposed DCF is implied by the security of the DPF.
Hence, we skip the formal proof for DCF and discuss certain corner cases to argue that
our scheme leaks no information about the function.

For the corner cases like when γ is 0 or ν−1 if CW1 or CW3 remains uninitialized, it might
leak information about α. To handle such cases, we initially assign the random values to
CW1, CW2, and CW3, which will get overwritten depending on the value of α. Suppose
we have α with 1) γ = 0 and 2) γ = ν − 1, then,
when γ = 0, we can have input x = (γ′, δ′) with γ′ always greater than equal to 0. Let us
see how our decode algorithm works in this case.

• Case 1: The decoder will compute Res1. However, Res1 will equal to cw1
δ′ only with

probability 1/(|G|) which is negligible as cw1
δ′ was randomly initialised. So, the

decoder will go for computing Res2 and Res3.

• Case 2: If Res2 == Res3 and it will return Res2 as the evaluation result as γ′ > 0 is
true in this situation.

• Case 3: Finally, the decoder computes Res4 using Yi,1 and cw2
γ′ . This is the case for

γ′ == 0, which will be evaluated correctly.

When γ = ν − 1, we can only have input x = (γ′, δ′) with γ′ <= ν − 1. In this setting, our
decoder works as follows:

• Case 1: cw1
δ′ == Res1 is true only if γ′ < ν − 1, and outputs 1G.

• Case 2: Res2 == Res3 will never be true because cw3
δ′ will have random initialization.

It is highly unlikely that cw3
δ′ == cw3

δ′+1 (in fact, this condition is true only with
probability 1/(|G|)), and also in case if cw3

δ′ == cw3
δ , another term associated with

Res2 is Gδ′(sγ2) and with Res3 is Gδ′+1(sγ2) and again Gδ′(sγ2) equals to Gδ′+1(sγ2)
with probability 1/(|G|)). Hence, the overall probability of getting Res1 == Res2

for this particular case is (1/(|G)|))2 which is negligible.

• Case 3: Res4 will always output the correct answer for γ′ = ν − 1.

Hence, randomized initialization of CW1, CW2, and CW3 will never allow any leak about
α, including the corner cases mentioned above.

3.3.1 Distributed Interval Function (DIF).

An interval function F<>
α1,α2β outputs β if the input falls in the range of [α1, α2]. On a

high level, the interval function combines two comparison functions. The first comparison
function indicates the start of the interval function, while the second indicates the end of the
interval. Let f<

α1,β−β′ be the first comparison function, which means that for any input x if
x is greater than equal to α1, then it will output β − β′, otherwise 0. Similarly, the second
comparison function is f>

α2,β′ , which means that for any input x, if x is lesser than equal to
α2, it will return β′, otherwise 0. Adding outputs of these two comparison functions yields
the output of the interval function. To extend our distributed function secret sharing to
the interval function, we rely on the compact construction of the comparison function
discussed in Section 3.3.



Chandan Kumar, Sikhar Patranabis, Debdeep Mukhopadhyay 23

4 Application: Secure and Distributed Neural Network
Inference

This section delves into a well-explored application where our DCF play a pivotal role
in ensuring secure non-linearity within the system. This application pertains to privacy-
preserving machine learning (PPML), enabling secure inferences between the model and
data owners. Many PPML approaches, like [JVC18, RRK+20, MLS+20] have relied on
secure multi-party computation (MPC) based on secret sharing, Garbled Circuits and
oblivious transfer. However, MPC-based secure inference has high communication costs
and requires multiple communication rounds. More specifically, in terms of communica-
tion overhead, fully homomorphic encryption (FHE) based machine learning inference
frameworks typically incur the lowest costs. Conversely, techniques based on multi-party
computations (MPC), such as Garbled Circuits, Secret Sharing, and Oblivious Trans-
fers, tend to impose the highest communication overhead. Privacy-preserving machine
learning (PPML) inference systems built on FSS-based secure computation lie between
these extremes. This observation stems from various FSS-based prior work, including
AriaNN [RPB20], FSSNN [YJG+23], and Fastsecnet [HLC+23], particularly in the eval-
uation of ReLU functions. Notably, in Garbled Circuit-based implementations, ReLU
evaluation typically requires at least four rounds of online communication, whereas the
most efficient FSS-based ReLU evaluation entails only one round. This demonstrates that
MPC-based secure inference generally necessitates more online communication rounds
than FSS-based secure inference. FSS has been used in PPML research, such as the work
in [RPB20, JGB+24, HLC+23, Wag22, YJG+23, GJM+23], which shows how easy it is to
use for secure two-party computation protocols in the dealer model. However, they do
not support inferences when the model is distributed among more than two parties. In
general, extending schemes beyond two parties distributes trust among multiple entities,
thereby decentralizing the system and increasing its resilience against adversarial attacks.
In machine learning, models can be owned/shared by multiple parties rather than solely
owned by one party. This distributed ownership enhances the realism of machine learning
inference and significantly bolsters resistance against model theft. To compromise the
model, an adversary would need to compromise all participating servers, thus necessitating
the need for more than two-party ML inference. Hence, we pose the following question:

Can we leverage our proposed FSS schemes for comparison functions to enable secure
neural network inference when the trained model is distributed among multiple servers?

In the following section, we answer the above question in the affirmative by demonstrating
the construction of distributed ReLU from a distributed comparison function. It is worth
noting that the non-linear layers, such as the ReLU operation, tend to be more resource-
intensive, requiring substantial communication and involving a high round complexity. For
instance, the ReLU operation accounts for a significant 93% of the ResNET32’s online
runtime in Delphi [MLS+20]. The above state-of-the-art literature on PPML deals with
two-party secure protocols. However, in our specific application, we assume that the trained
model is distributed (secret shared) among p-servers, with each server holding the necessary
keys for distributed ReLU to carry out inference across the distributed model. MPC-based
inference protocols, such as [MZ17], typically rely on trusted dealers to generate Beaver’s
triples in the offline phase. In our protocol, similar to conventional MPC approaches, we
utilize a trusted dealer solely for Beaver’s triple generation in the offline phase. Additionally,
we introduce a trusted decoder to minimize computation and communication. Our FSS-
based techniques significantly reduce communication overhead between the client and server.
While the most efficient MPC-based inference protocol requires at least 4 online rounds
of communication to evaluate ReLU, our protocol accomplishes this in just one round.
Moreover, our protocol addresses the limitation of existing protocols, which are often
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Figure 4: Machine learning Inference Framework.

restricted to 2 or 3 parties and lack generalization for arbitrary numbers of parties Table 6
demonstrates the computationally lightweight nature of a decode function. It is important
to note that, similar to other FSS-based machine learning inference frameworks, our
framework also requires interaction and aggregation after executing each non-linear layer.
This results in layer-wise communication, which is still better than the communication
overhead of any MPC-based inference. Moreover, it appears that the computational
efficiency of FSS-based applications offers an additional benefit on top of communication
efficiency. More concretely, among existing 3-party MPC-based PPML frameworks, such
as [MZ17, SCS+20, WGC19], each has distinct characteristics. [MZ17] shares the ML
model between two servers only, [SCS+20] retains the model with one server, and [WGC19],
although sharing the model among 3 servers, lacks scalability to more servers. Despite
differences in our model-sharing approach compared to existing literature, we provide an
approximate comparison with [SCS+20] and [WGC19], taking ReLU evaluation times from
Table 3 of [SCS+20]. For an input size of 64×16, [SCS+20] takes 1.65s, and [WGC19] takes
15.71s, whereas our ReLU evaluation takes 0.138s for 3-servers and 0.220s for 5-servers
(see Table 5). Note that [SCS+20] and [WGC19] lack scalability to any arbitrary number
of servers.

Building distributed ReLU from DCF. We employ similar techniques in [BCG+21,
RPB20, HLC+23] to construct distributed ReLU from DCF. They rely on offset ReLUr(x) =
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ReLU(x − r), where r is randomly sampled from {0, 1}n. One can readily verify that for
a given input x + r, the offset function eventually evaluates ReLU(x). We can write
ReLUr(x) = x − r, if x ≥ r and 0 otherwise, as f<

α,β(x), representing it if the form of
spline polynomial with coefficients β = (β0, β1), where (β0, β1) = (1,−r) if x > r and
(β0, β1) = (0, 0) otherwise. After computing shares of (β0, β1), parties can locally compute
shares of [β0](x + r) + [β1] which in fact are shares of the ReLUr(x) function as [β0] is share
of 1 and [β0] is share of −r for the case x ≥ r. It is worth noting that the key size for
distributed ReLU is twice that of the distributed comparison function. Additionally, the
evaluation time of the distributed ReLU and the distributed comparison function differ by
just one group operation.

4.1 Distributed Machine Learning (ML) Inference from Proposed
FSS

This section describes our application framework, which utilizes our proposed FSS scheme
for secure distributed machine learning inference. By distributed keyword, we mean a
particular model is secretly shared among multiple servers. By secretly sharing a model,
we mean secret sharing weights and biases among servers. Such a distributed model would
either have been trained in a distributed way or could have been distributed among servers
after training. Please note that the trusted dealer shares the model among p-servers only
once at the outset; after that, each server independently evaluates input x∗ using its
corresponding model shares. Also, the trusted decoder only interacts during nonlinear
layers, like ReLU. The frequency of interactions varies based on the chosen network
architecture. For instance, in an AlexNet CNN model with 5 convolution layers, each
followed by ReLU, the decoder interacts only 5 times. We employ secure, online-offline-
based FSS and secret sharing techniques to achieve secure inference from the distributed
model. The system has three entities (see Figure 4): servers, a client, and a trusted dealer.
A client is a data owner who wants to make inferences on the distributed model without
revealing its data to the servers. The model is distributed among p-servers (S1, · · · , Sp)
such that if all p-servers combine their model shares, they can reconstruct the original
model. A dealer is a trusted third party that generates keys for the FSS scheme, prepares
correlated randomness and sends them to respective servers and the client. Similar to
the inference technique in [MLS+20] and [HLC+23], we split the inference pipeline into
an offline and an online phase. We mainly target achieving distributed model inference
while maintaining the online overhead, the same as the prior secure inference techniques,
especially when evaluating non-linear layers. For the non-linear layer, we use FSS-based
techniques for ReLU and Maxpool, where p-party FSS keys are generated in the offline
phase. Figure 5 and 6 depict the computation for online and offline phases of linear and
non-linear layers. We formally define the cryptographic protocol below, followed by a
description of the protocol and its security analysis.

Definition 7 (Distributed ML Inference Protocol). A protocol Π involving a set of
p-servers with model parameters secret shared among them as M = (M1, . . . , Mp) and
a client with input x is considered a distributed ML inference protocol if there exists
a trusted decoder capable of securely aggregating and decoding the p-servers’ output.
Additionally, the protocol must satisfy the following guarantees.

• Correctness. For every set of model parameters M secret shared by the servers
and for every input x provided by the client, the output produced by the client with
the assistance of the trusted decoder, at the end of the protocol corresponds to the
correct inference M(x).

• Security:
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Figure 5: Offline linear and non-linear layer calculation

– When at least one of the servers is honest. A corrupted, semi-honest
client should not learn anything about servers’ model parameters M . Formally,
this entails the existence of an efficient simulator SimC which simulates the
honest computation such that ViewΠ

C ≈c SimC(x, Res), where ViewΠ
C denotes the

view of the client in the execution of Π (the view includes the client’s input,
randomness, and the transcript of the protocol), and Res denotes the output of
the inference.

– When only the client is honest. The corruption of p semi-honest servers
altogether does not learn anything about the private input x of the client.
Formally, this necessitates the existence of an efficient simulator SimS such
that ViewΠ

S ≈c SimS(M), where ViewΠ
S denotes the view of the servers in the

execution of Π protocol.

The above inference protocol is structured into two phases: the offline phase and the online
phase. We provide a detailed description of both these phases below.

Offline Phase. In this phase, the client and servers conduct pre-computations to prepare
for the online phase of the protocol. Importantly, this phase remains independent of the
client’s input x. In the context of this protocol, distributing a model among p servers
means additively distributing the model’s weights. The linear layer computation can be
formalised as the multiplication operation y = Wx = W (x − r) + Wr. Specifically, we
focus on securely computing Wr (see Figure 5) in the offline phase as follows;

1. The dealer generates Beaver’s multiplication triples as (a, b, ab), where a, b ∈ Zq. It
then generates p + 1 additive shares of ab as [ab]0, [ab]11, . . . , [ab]1p. Note that in the
original Beaver triples for two parties, we generate the shares of ab as [ab]0 and [ab]1.
While in our setting, we further distribute [ab]1 among p servers as ([ab]11, . . . , [ab]1p).
Similarly, p shares of b are [b]1, . . . , [b]p. It also randomly samples r′ ∈ Zq and then
sends (a, r′, [ab]0) to the client and (([b]i, r′, [ab]1i) to server i.

2. Each server computes (Wi − bi) and sends the result to the client. Additionally, each
server locally computes [Wr]11, . . . , [Wr]1p where [Wr]1i = r′bi − [ab]1i, i ∈ [p].

3. The client on the other side computes [Wr]0 = (
∑p

i=1(Wi − bi)r − [ab]0).
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4. For the non-linear layer, the dealer generates FSS keys for the ReLU function. As the
ReLU function comprises of two distributed comparison functions, it generates keys
for two DCFs with β = (β0, β1) where (β0, β1) = (1,−r) if x > r and (β0, β1) = (0, 0)
otherwise. The client receives the corresponding input and output masks as rin and
rout for each comparison function. The dealer also generates p shares of rout such
that share [rout]i is sent to server Si as a part of its FSS keys.

Online Phase. In the online phase, the client and servers use their pre-processed shares
of Wr, DCFs keys, and output mask to evaluate linear and non-linear layers of the neural
network. Figure 6 shows the online phase of the protocol. The computation goes as follows:

1. The client masks the input with r, and send (x− r) to all servers.

2. Each server uses its weight Wi and pre-computed results to compute [y]1i = (x −
r)Wi + [Wr]1i which eventually becomes the share of Wx. All servers collectively
combine their individual share [y]1i and aggregate them to obtain the aggregated
value [y]1 =

∑p
i=1[y]1i.

3. The client holds the share of Wx in the form of [y]0 = [Wr]0. One can readily verify
that [y]0 + [y]1 = Wx.

4. In the non-linear layer computation, the input shares are indeed the output shares of
the previous layer like [x]0 = [y]0 and [x]1 = [y]1 with [y]0 and [y]1 The client masks
[x]0 with rin and sends the masked input [x]0 + rin to servers.

5. Each server calculates x + rin and uses it as the input for the ReLU function. After
computing ReLU, each server masks its partial computation with shares of rout

received during the offline phase. Let us elaborate a bit more on the evaluation of
ReLU. As mentioned before, ReLU uses two DCFs with β = (β1, β2), so all servers
evaluate two DCFs on input x + rin and return the corresponding partial evaluation
to the decoder.

After the online phase, a decoder aggregates the partial computations for each of the
DCFs. The decoder uses its own rout value corresponding to each DCF to output the final
evaluation for both DCFs. Then, it multiplies the output of the first DCF with x + rin and
adds it with the evaluation result of the second DCF to compute the distributed ReLU
function.

Note that, for each input x that needs evaluation during the online phase, the dealer
randomly selects an input mask (rin) and generates the corresponding correlated FSS
keys during the offline phase. The dealer then sends these keys to the servers and the
mask (rin) to the client. For each new input, the client receives a different mask, say
r′in , and the corresponding FSS keys are distributed among the servers. This technique
of using a different mask for each input is analogous to using Beaver triples, where
each evaluation utilizes a unique set of triples. In fact, our approach of using a freshly
sampled mask for each input is along the lines of prior works on FSS in the online-offline
paradigm [BGI19, BCG+21, YJG+23].

The Maxpool function computes the maximum value over d elements x1, x2, · · · , xd.
We can split the inputs into tree reduction architectures, which recursively partition the
input into two halves and then compare the elements of each half. For each two-element
xi and xj , the client and server compute max([xi], [xj]) = ReLU([xi]− [xj]) + [xj]. Hence, the
evaluation complexity of maxpool comes from the d− 1 evaluation of ReLU.
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Figure 6: Online linear and non-linear layer calculation

4.2 Security
Theorem 3. Assuming the existence of a secure p-party distributed point function (DCF)
and a secure protocol for Beaver’s triple generation and multiplication procedure, the
protocol Π described above is a cryptographic inference protocol (see Definition 7).

Proof. Following the security notion of cryptographic inference protocol from [MLS+20],
we provide the description of simulators for two exhaustive and mutually exclusive cases:
1) when at least one of the servers is honest, 2) when only the client is honest. For
each case, we argue that given the existence of a corresponding simulator, we prove the
protocol’s security using hybrid-based arguments and show that two consecutive hybrids
are computationally indistinguishable from each other. Hence, the real-world view of the
client (server) and the simulated view of the client (server) remains indistinguishable.

At least one of the servers is honest. Without loss of generality, let us assume server
Si to be a honest server, and rest p− 1 servers and the client is passively corrupted. We
consider the case of maximal corruption here, and hence, it automatically incorporates the
other cases where more than one server is honest. We denote the simulator as SimC(x, Res).
The simulator takes in the client’s input x and proceeds as follows to output Res:

1. Offline Phase.

(a) SimC receives tuple (bi, r′, [ab]1i) from the dealer as a share of Beaver’s triple.
It selects a random weight share as Ŵi (in place of the honest weight share Wi)
and returns Ŵi − bi to the client.

(b) SimC also computes shares [Wr]1i = r′bi − [ab]1i. Note that it relies on the
simulator for Beaver’s triple generator for simulated values of bi and [ab]1i.

(c) For the non-linear layer, it receives the DCF key ki (corresponding to the ReLU
function) and uses it for partial computation of ReLU.

2. Online Phase. In the online phase, SimC receives x− r from client and computes
[y]1i = [Wr]1i − Ŵi(x − r). It then broadcasts its [y]1i to other servers. After
receiving [y]1i from rest of the servers, it aggregates it as [y]1 =

∑p
i=1[y]1i. For the

non-linear layer, the SimC receives [x]0 + rin (here [x]0 is the output shares from the
previous linear layer) from the client and uses its previous linear layer computation
as [x]1 = [y]1. The simulator then computes x + rin = ([x]0 + rin) + [x]1. For DCF
evaluation, it uses the DCF keys and masks the output with [rout]i. Finally, it sends
[y]1i = F<

α,β(x + rin) + [rout]i.
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Using the above simulator, we have three hybrids starting from the real-world distribution
of the protocol and going to the ideal-world distribution. In the final simulated distribution,
the simulator does not use the weight shares of the honest server.

• Hybrid0 : This hybrid corresponds to the transcripts of real-world distribution where
the ith server (honest) also participates in the protocol and uses its original weight
shares Wi.

• Hybrid1 : In this hybrid, the simulator SimC starts by replacing the real Beaver’s
triples with simulated ones. Specifically, instead of using the real (a, b, ab) from
Beaver’s triples generator, the simulator uses simulated values (â, b̂, âb).

Indistinguishability argument for Hybrid0 and Hybrid1. By the security of Beaver’s
triple generation protocol, the real triples (a, b, ab) are indistinguishable from the simulated
triples (â, b̂, âb). Since SimC uses these indistinguishable triples, the view of any corrupted
party cannot distinguish whether the triples were real or simulated. Thus, Hybrid1 is
computationally indistinguishable from Hybrid0.

• Hybrid2 : This hybrid modifies Hybrid1 by using random weight shares Ŵi in place of
the honest server’s original weight shares Wi.

Indistinguishability argument for Hybrid1 and Hybrid2. Since the original weight
Wi of the honest server is not known to any corrupted party and is uniformly random,
replacing it with another uniformly random weight Ŵi will not alter the distribution
observable by the corrupted parties. Thus, the transition from Hybrid1 to Hybrid2 remains
computationally indistinguishable.

Hence, Hybrid2 is indistinguishable from Hybrid0 by the above two arguments of indisn-
tiguishability. This proves the weights are secure even if the client and p− 1 servers are
corrupted.

Only client is honest. In this scenario, the corrupted servers altogether should not
learn any information about the client’s input x. Let us denote the simulation for the
client in view of corrupted servers as SimS. Given the servers weight W1, . . . , Wp as inputs
to SimS, it proceeds as follows:

1. Offline Phase.

(a) SimS receives tuple (a, r′, [ab]0) from the Beaver’s triple generator and computes
r = r′ − a.

(b) For the linear layer, SimS receives Wi − bi from all the servers and locally
compute [Wr]0 =

∑p
i=1(Wi − bi)r − [ab]0.

(c) For the non-linear layer, SimS, it samples rin and rout and generate DCFs keys
for the offset function grin,rout

. Note that SimS invokes the simulator for DCF
to generate DCF keys corresponding to ReLU. The simulation-based definition
of FSS can be derived from the indistinguishability-based definition of FSS,
where instead of sending two functions g0, g1, it randomly chooses one function
and generates the FSS keys.

2. Online Phase.

(a) In this phase, the simulator sends a random input x̂ to the servers instead of the
client’s original input x. SimS sends x̂− r, which comprises of the values x̂ and
r. Since term r = r′ − a contains a from Beaver triple, the simulator invokes
Beaver’s triple protocol simulator to generate r. For the non-linear layer, it
masks the previous layer input shares using rin and sends them to the servers.
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Using simulator SimS, we provide the security of the protocol Π using hybrid-based
arguments to show the indistinguishability of two consecutive hybrids, eventually leading
to the indistinguishability of the real and ideal world distribution.

• Hybrid0 : This corresponds to the real-world distribution where the client uses its
original input x and the servers use their real weights shares W1, . . . , Wp.

• Hybrid1 : In this hybrid, the simulator SimS invokes the Beaver’s triple generating
simulator and uses corresponding â and [âb]0 in the protocol.

Indistinguishability arguments for Hybrid0 and Hybrid1. By the security of the
Beaver’s triples generation protocol, the real triples (a, b, ab) are indistinguishable from
the simulated triples (â, b̂, âb). As SimS uses these indistinguishable triples, the view of
corrupted servers cannot distinguish if the triples are real or simulated. Thus, Hybrid1 is
computationally indistinguishable from Hybrid0.

• Hybrid2 : This hybrid modifies Hybrid1 by replacing the client’s original input x with
a random input x̂. The simulator sends x̂− r instead of x− r to the servers. Here, r
is generated based on simulated Beaver’s triples (â, b̂, âb) using formula r = r′ − â.

Indistinguishability arguments for Hybrid1 and Hybrid2. Since r is a random value
and the input x is masked by this randomness, replacing x with another random input x̂
results in x̂− r, which remains indistinguishable from x− r. Given the randomness of r,
both x− r and x̂− r appear as random value to the corrupted servers. Thus, Hybrid2 is
computationally indistinguishable from Hybrid1.

Hence, through the series of the above hybrid arguments, we prove that the client’s
input remains secure when all servers are corrupted.

4.3 Experimental Results.
None of the prior work implements ReLU and distributed ML inference in multi-server
client model. We are the first to comprehensively analyze the computation time for the
distributed ReLU activation function and implement it based on additive secret sharing
and the DDH-based SHPRG assumptions. This instantiation relies on the distributed
comparison function. The results are presented in Table 5, and Table 6, which showcases
the total evaluation and decoding times, respectively, for the instantiated ReLU function.
The tables use the number of parties as columns and various domain sizes for the ReLU
function as rows. In this analysis, we primarily focus on online phase evaluation time and
decoding time, though one can also infer offline phase evaluation, like key generation for
ReLU, as follows: With the increase in the number of parties, there should be a relatively
small impact compared to the growth in the number of bits for function inputs. The key
generation algorithm generates a key for each row, which scales with the order of 2n/2.
Consequently, variations in the value of n have a more significant effect than changes in
the number of parties. This trend becomes evident as we move down the column, showing
minimal change in key generation time.
In Table 5, it is clear that the domain size of the function has minimal impact on the
evaluation time of the parties. This phenomenon occurs because, unlike the key generation
process, the evaluation algorithm is independent of the function’s domain size (the number
of invocations to SHPRG remains consistent). In the evaluation algorithm, we already
possess the values γ′x and δ′x to select the share value directly, which means that even with
a larger domain size, the evaluation time is not significantly affected. However, an increase
in the value of p leads to an almost linear increase in total evaluation time, as a higher p
implies more parties needing to evaluate, resulting in a longer aggregated time. Each party
takes approximately 45 milliseconds to evaluate the distributed ReLU for all domain sizes.
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Table 5: Total evaluation time for ReLU (in seconds)
bits/parties (3) (5) (7) (9) (11) (13) (15)

4 0.138 0.229 0.319 0.405 0.501 0.588 0.662
8 0.139 0.237 0.318 0.401 0.497 0.587 0.674
12 0.138 0.224 0.313 0.405 0.495 0.573 0.669
16 0.137 0.225 0.317 0.401 0.491 0.573 0.670
20 0.136 0.220 0.307 0.394 0.485 0.564 0.654

Table 6: Decode time for ReLU (in milliseconds)
bits/parties (3) (5) (7) (9) (11) (13) (15)

4 0.072 0.101 0.125 0.150 0.177 0.203 0.229
8 0.070 0.098 0.130 0.155 0.170 0.196 0.230
12 0.069 0.105 0.127 0.153 0.168 0.195 0.228
16 0.076 0.105 0.118 0.158 0.177 0.193 0.222
20 0.075 0.105 0.131 0.151 0.314 0.196 0.224

Finally, Table 6 provides insights into the decoding (aggregation) time for all the partial
computations from different parties. Increasing the number of parties results in more
output group operations on PartComp from different parties, leading to a linear increase in
decoding time. Yet again, the decoding time remains independent of the domain size of
the ReLU function because we already have the values γ′x and δ′x determined based on
the input x. Although in Table 5 and 6, we provide results for 20-bit and 15 parties, the
trends remain similar when scaled to bigger values.
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A Proof of Theorem 1
Proof. We define the hybrid experiments with distribution description as follows by marking
the modifications with a gray rectangle in each step.
Hybrid0 : This hybrid is the real key distribution for a function Fα,β . In H0(P ′, α,Fα,β),
P ′ denotes the set of corrupted parties with |P ′|< p. The function SSS(·) takes input as
a seed and generates additive shares for all parties in P = {P1, . . . , Pp}. However, the
hybrids have the key distribution only for corrupted parties in P ′.

H0(P ′, α,Fα,β) :=



sγ ←− {0, 1}λ,

shp,γ′ ←

{
SSS(sγ), γ′ = γ

SSS(0), γ′ ̸= γ

(CW, {shi,γ′}Pi∈P ′) : {shi,γ′}Pi∈P ←− DPF.Gen(λ,Fα,β)

cwδ′ =
{

βG ⊗ Inv(G(δ′)
SHPRG(sγ)), δ′ = δ

1G ⊗ Inv(G(δ′)
SHPRG(sγ)), δ′ ̸= δ



H1(P ′, α,Fα,β) :=



R←− {0, 1}mµ ,

sγ ←− {0, 1}λ,

shp,γ′ ←

{
SSS(sγ), γ′ = γ

SSS(0), γ′ ̸= γ

(CW, {shi,γ′}Pi∈P ′) : {shi,γ′}Pi∈P ←− DPF.Gen(λ,Fα,β)

cwδ′ =

 βG ⊗Rδ′
, δ′ = δ

1G ⊗Rδ′
, δ′ ̸= δ


Hybrid1 : Replace GSHPRG(sγ) with R, where R is randomly sampled from {0, 1}mµ (see
grayed boxes). Note that all remaining steps are still performed with respect to Fα,β as
given in Hybrid0.

Claim. For any polynomial p1(n), and (T, ϵSHPRG)-secure SHPRG, given a corrupted set
of parties P ′, α ∈ {0, 1}n, Fα,β and auxiliary input z, no adversary running in time
T − p1(n) can distinguish the distributions (H0(P ′, α,Fα,β), z) and (H1(P ′, α,Fα,β), z)
with advantage greater than ϵSHPRG.

Proof 5. Suppose there exists a set of corrupted parties P ∗, α∗,F∗α,β , auxiliary input z∗ ,
and an adversary A∗ that runs in the time T ′′ for which,
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∣∣∣∣P r[KP ∗ ←− H0(P ∗, α∗,F∗
α,β) :A∗(KP ∗ , z∗) = 1]

− P r[KP ∗ ←− H1(P ∗, α∗,F∗
α,β) : A∗(KP ∗ , z∗) = 1]

∣∣∣∣ > ϵSHPRG

We will use this adversary A∗ to construct an adversary B for the underlying SHPRG.
Define auxiliary input zB := {P ∗, α∗,F∗α,β , z∗}. In the SHPRG challenge, B receives a
correction word CW, which could either have been generated using random R ∈ {0, 1}mµ

or using SHPRG like R = GSHPRG(sγ) : sγ ←− {0, 1}λ.

Adversary B(1λ, R, zB):

1. Parse zB := {P ∗, α∗,F∗α,β , z∗}.

2. Sample s∗γ∗ ∈ {0, 1}λ.

3. Generate additive shares of s∗γ∗ if γ′ = γ∗, and of 0 otherwise for all γ′ ∈ ν.

4. Consolidate shares of each party as {shi,γ′}Pi∈P ∗ using a key generation algorithm.

5. Compute cwδ′ as follows,

cwδ′ =
{

βG ⊗Rδ′
, δ′ = δ∗

1G ⊗Rδ′
, δ′ ̸= δ∗

6. Define KP ∗ = {CW = cw1, · · · , cwµ}||{shi,γ′}Pi∈P∗

7. Let guess←− A∗(KP ∗ , z∗). Output the guess.

The running time of B is equal to time(A∗) + time(DPF.Gen) + time(SHPRG) =
time(A∗) + p1(n) for some polynomial p1(n). By construction, if R is pseudorandom,
then KP ∗ is distributed precisely as H0(P ∗, α∗,F∗α,β), whereas if it is sampled randomly
from {0, 1}mµ then KP ∗ is distributed precisely as H1(P ∗, α∗,F∗α,β). Thus, the advantage
of B in the SHPRG security game is equal to the advantage of A∗ in distinguishing distri-
butions, which is greater than ϵSHPRG. If A∗ runs in time T ′′ ≤ T − p1(n), then B runs in
time less than T and distinguishes SHPRG output from a truly random string of length
mµ, which would contradict the (T, ϵSHPRG)-security of the underlying SHPRG tool.

Hybrid2 : Randomly generate ŝγ̂ ∈ {0, 1}λ. Use ŝγ̂ to calculate shares and embed β̂G in the
generation of cwδ′ for the function Fα̂,β̂ , keeping R still randomly sampled from {0, 1}mµ

same as in Hybrid1.

H2(P ′, α, α̂,Fα̂,β̂) :=



R←− {0, 1}mµ,
sγ ←− {0, 1}λ,

(ŝγ̂)←− {0, 1}λ ,

(CW, {shi,γ′}Pi∈P ′) : shp,γ′ ←

{
SSS(ŝγ̂), γ′ = γ̂

SSS(0), γ′ ̸= γ̂

{shi,γ′}Pi∈P ←− DPF.Gen(λ,Fα̂,β̂)

cwδ′ =
{

βG ⊗Rδ′
, δ′ = δ̂

1G ⊗Rδ′
, δ′ ̸= δ̂


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Claim. For any polynomial p2(n), and (T, ϵSSS)-secure SSS, given a corrupted set of
parties P ′, α ∈ {0, 1}n, α̂ ∈ {0, 1}n, Fα,β, Fα̂,β̂ and auxiliary input z, no adver-
sary running in time T − p2(n) can distinguish the distributions (H1(P ′, α,Fα,β), z) and
(H2(P ′, α, α̂,Fα,β ,Fα̂,β̂), z) with advantage greater than ϵSSS.

Proof 6. Suppose there exists a set of corrupted parties P ∗, α∗, α̂∗,F∗α,βF∗α̂,β̂
, auxiliary

input z∗ , and an adversary A∗ that runs in time T ′′ for which,

∣∣∣∣∣P r[KP ∗ ←− H1(P ∗, α∗,F∗
α,β) : A∗(KP ∗ , z∗) = 1]

− P r[KP ∗ ←− H2(P ∗, α∗, α̂∗,F∗
α,β ,F∗

α̂,β̂
) : A∗(KP ∗ , z∗) = 1]

∣∣∣∣∣ > ϵSSS

We will use this adversary A∗ to construct an adversary B for the underlying SSS
scheme. Define auxiliary input zB := {P ∗, α∗,F∗α,β , z∗}. In the SSS based challenge, B
receives seeds S = s∗γ∗ which could either have been sγ ∈ {0, 1}λ or ŝγ̂ ∈ {0, 1}λ.

Adversary B(1λ, S, zB):

1. Parse zB := {P ∗, α∗,F∗α,β , z∗}.

2. Write S = s∗γ∗ ∈ {0, 1}λ.

3. Generate additive shares of s∗γ∗ if γ′ = γ∗, and of 0 otherwise for all γ′ ∈ ν.

4. Consolidate shares of each party as {shi,γ′}Pi∈P ∗ using a key generation algorithm.

5. Sample R ∈ {0, 1}mµ and compute cwδ′ as follows,

cwδ′ =
{

βG ⊗Rδ′
, δ′ = δ∗

1G ⊗Rδ′
, δ′ ̸= δ∗

6. Define KP ∗ = {CW = cw1, · · · , cwµ}||{shi,γ′}Pi∈P ∗

7. Let guess←− A∗(KP ∗ , z∗). Output the guess.

The running time of B is equal to time(A∗)+ time(DPF.Gen)+ time(SSS) = time(A∗)+
p2(n) for some fixed polynomial p2(n). By construction, if S is sγ ∈ {0, 1}λ then KP ∗

is distributed precisely as H1(P ∗, α,Fα,β), whereas if it is ŝγ̂ ∈ {0, 1}λ then KP ∗ is
distributed precisely as H2(P ∗, α∗, α̂∗,F∗α,β ,F∗

α̂,β̂
). Thus the advantage of B in the SSS

security game is equal to the advantage of A∗ in distinguishing distributions, which is
greater than ϵSSS. If A∗ runs in time T ′′ ≤ T − p2(n), then B runs in time lesser than T
and distinguishes between two shares generated for a corrupted number of parties, which
would contradict the (T, ϵSSS)-security of the underlying SSS.

Hybrid3 : Replace R used during cwδ′ with Gδ
SHPRG(ŝγ̂) keeping rest of the steps same as

Hybrid2.
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H3(P ′, α̂,Fα̂,β̂) :=



R←− {0, 1}mµ,
sγ ←− {0, 1}λ,

(ŝγ̂)←− {0, 1}λ,

(CW, {shi,γ′}Pi∈P ′) : shp,γ′ ←

{
SSS(ŝγ̂), γ′ = γ̂

SSS(0), γ′ ̸= γ̂

{shi,γ′}Pi∈P ←− DPF.Gen(λ,Fα̂,β̂)

cwδ′ =
{

β̂G ⊗ Inv(G(δ′)
SHPRG(ŝγ̂)), δ′ = δ̂

1G ⊗ Inv(G(δ′)
SHPRG(ŝγ̂)), δ′ ̸= δ̂


Claim. For any polynomial p3(n), and (T, ϵSHPRG)-secure SHPRG, given a corrupted set of
parties P ′, α ∈ {0, 1}n, Fα̂,β̂ and auxiliary input z, no adversary running in time T −p3(n)
can distinguish the distributions (H2(P ′, α, α′,Fα,β ,Fα̂,β̂), z) and (H3(P ′, α′,Fα̂,β̂), z) with
advantage greater than ϵSHPRG.

Proof 7. The proof to the above claim has the same argument as for claim A except for
α and Fα,β replaced with α′ and Fα̂,β̂ respectively.

Note that this distribution H3(P ′, α, α̂,Fα̂,β̂) is now precisely the distribution of
honestly generated keys for the function Fα̂,β̂ i.e, H3(P ′, α̂,Fα̂,β̂) = H0(P ′, α,Fα,β).

We now combine claims A, A and A to complete the security proof of the proposed
construction.

Claim. For any polynomial p(n) ∈ poly(n) such that our proposed scheme (DPF.Gen, DPF.Eval)
is (T ′, ϵ′)-secure DPF scheme for T ′ = T − p(n) and ϵ′ = 2ϵSHPRG + ϵSSS.

Proof 8. Suppose there exists an adversary A∗ which in time T ′′ succeeds in the DPF
security game for a set of corrupted parties P ′ with advantage greater than ϵ′, i.e.,∣∣∣∣∣Pr

[
(f0, f1, state)←− A(1λ)

{Ki}Pi∈P ←− DPF.Gen(1λ, f1) : guess = 1
guess←− A(KP ∗ , state)

]
−Pr

[
(f0, f1, state)←− A(1λ)

{Ki}Pi∈P ←− DPF.Gen(1λ, f0) : guess = 1
guess←− A(kP ∗ , state)

] ∣∣∣∣∣ > ϵ′

In particular, there exist a pair of function f0 = fα,β and f1 = fα̂,β̂ and the value of
state for which,

∣∣∣∣∣Pr
[
{Ki}Pi∈P ←− DPF.Gen(1λ, f1) : guess = 1

guess←− A(KP ∗ , state)

]
−Pr

[
{Ki}Pi∈P ←− DPF.Gen(1λ, f0) : guess = 1

guess←− A(KP ∗ , state)

] ∣∣∣∣∣ > ϵ′

Note that the distribution of KP ∗ received by A∗ corresponds exactly to the distribution
of KP ∗ ←− H0(P ∗, αc,Fαc,βc

) for the corresponding function fαc,βc
(indeed, H0 was defined

to be the honest key distribution). That is, for this (f0, f1, state), it holds that

∣∣∣∣∣P r[KP ∗ ←− H0(P ∗, α,Fα,β) :A∗(KP ∗ , state) = 1]

− P r[KP ∗ ←− H0(P ∗, α̂,Fα̂,β̂) : A∗(KP ∗ , state) = 1]

∣∣∣∣∣ > ϵ′

Now, since ϵ′ = ϵSSS + 2ϵSHPRG, then atleast one of the following must hold:

1. |Pr[KP ∗ ←− H0(P ∗, α,Fα,β) : A∗(KP ∗ , z∗) = 1] − Pr[KP ∗ ←− H1(P ∗, α,Fα,β) :
A∗(KP ∗ , z∗) = 1]| > ϵSHPRG
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2. |Pr[KP ∗ ←− H1(P ∗, α,Fα,β) : A∗(KP ∗ , z∗) = 1]−Pr[KP ∗ ←− H2(P ∗, α, α̂,Fα,β ,Fα̂,β̂) :
A∗(KP ∗ , z∗) = 1]| > ϵSSS

3. |Pr[KP ∗ ←− H2(P ∗, α, α̂,Fα,β ,Fα̂,β̂) : A∗(KP ∗ , z∗) = 1]−Pr[KP ∗ ←− H3(P ∗, α̂,Fα̂,β̂) :
A∗(KP ∗ , z∗) = 1]| > ϵSHPRG

But, by Claims A, A, and A, this cannot happen if A∗ runs in time T < T −max3
i=1pi(n),

where each pi(n) is from different corresponding claims. Therefore, security of DPF holds
for the polynomial p(n) = max3

i=1pi(n).

Claim A, Claim A, Claim A, and Claim A proves Theorem 1.
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