
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 2, 21 pages.

https://doi.org/10.62056/an59qgxq
Check for updates

Quantum-Resistance Meets White-Box
Cryptography: How to Implement Hash-Based

Signatures against White-Box Attackers?
Kemal Bicakci1,3, Kemal Ulker2,3, Yusuf Uzunay3, Halis Taha Şahin1,4 and

Muhammed Said Gündoğan4

1 Informatics Institute, Istanbul Technical University, Istanbul, Türkiye
2 TOBB University of Economics and Technology, Department of Computer Engineering, Ankara,

Türkiye
3 Securify Information Tech. and Security Training Consulting Ltd., Ankara, Türkiye

4 TÜBİTAK, Informatics and Information Security Research Center (BİLGEM), Kocaeli, Türkiye

Abstract.
The adversary model of white-box cryptography includes an extreme case where
the adversary, sitting at the endpoint, has full access to a cryptographic scheme.
Motivating by the fact that most existing white-box implementations focus on
symmetric encryption, we present implementations for hash-based signatures so that
the security against white-box attackers (who have read-only access to data with
a size bounded by a space-hardness parameter M) depends on the availability of a
white-box secure cipher (in addition to a general one-way function). We also introduce
parameters and key-generation complexity results for white-box secure instantiation
of stateless hash-based signature scheme SPHINCS+, one of the NIST selections for
quantum-resistant digital signature algorithms, and its older version SPHINCS. We
also present a hash tree-based solution for one-time passwords secure in a white-box
attacker context. We implement the proposed solutions and share our performance
results.
Keywords: white-box cryptography · digital signature · white-box signature ·
quantum-safe signature · hash chain · one-time password · hash tree · SPHINCS+

1 Introduction
The standard cryptographic model (black-box model) assumes the endpoints are trusted
hence the secret keys in cryptographic implementations cannot be observed while they
are in use. The first work that challenged this assumption was by Chow et al. [CEJv03]
in 2002. The authors proposed an implementation of the AES algorithm to prevent
secret key extraction even when an attacker has full access to the execution environment.
Although their specific implementation was later broken, their core idea of building up
a key-dependent lookup table(s) from which the encryption (and decryption) could be
performed without a need for the cryptographic key remains highly relevant. Later, some
dedicated white-box ciphers were designed with the same philosophy, which is not broken
till now e.g., SPACE [BI15] and SPNbox [BIT16].

White-box implementations have the objective of preventing the extraction of crypto-
graphic keys useful on a different platform. Instead of using keys directly, an attacker may

E-mail: kemalbicakci@itu.edu.tr (Kemal Bicakci), kemal.lkr@gmail.com (Kemal Ulker), yu
suf.uzunay@securify.com.tr (Yusuf Uzunay), halis.sahin@tubitak.gov.tr (Halis Taha Şahin),
said.gundogan@tubitak.gov.tr (Muhammed Said Gündoğan)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-03-04 Accepted: 2024-06-03

https://doi.org/10.62056/an59qgxq
https://crossmark.crossref.org/dialog/?doi=10.62056/an59qgxq&domain=pdf&date_stamp=2024-07-03
mailto:kemalbicakci@itu.edu.tr
mailto:kemal.lkr@gmail.com
mailto:yusuf.uzunay@securify.com.tr
mailto:yusuf.uzunay@securify.com.tr
mailto:halis.sahin@tubitak.gov.tr
mailto:said.gundogan@tubitak.gov.tr
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 White-Box Implementations of Hash-Based Signatures and OTPs

attempt to isolate the complete implementation code from the environment, carry it to his
own device, and directly use it like a larger key. These so-called code-lifting attacks are
assumed to be mitigated by enlarging the amount of code that needs to be extracted from
the implementation. We also note that with additional software protection techniques such
as device binding and code obfuscation, the use of software in other hardware may not be
possible.

Up to now, white-box cryptography has mostly been studied in the symmetric encryption
context. Proposals for white-box implementation of digital signature algorithms are rare
and not sufficiently analyzed from a security point of view. In our work, we present
simple and elegant designs for white-box implementation of hash-based signatures and
cryptographic primitives desirable in authentication protocols. Although known for a long
time, hash-based signatures have received a new surge of interest due to their ability to
remain post-quantum safe [CAD+20].

We contribute to the literature by presenting parameters for white-box secure in-
stantiation of hash-based digital signatures including the SPHINCS+ algorithm, which
will become part of NIST’s post-quantum cryptographic standard [ACD+22] so that the
security against white-box attacker depends not more than the availability of a white-box
secure pseudo-random function implemented as a cipher (in addition to a general one-way
function). Our scheme uses a white-box cipher internally, but it does not require a specific
white-box secure cipher. This means that the availability of a white-box cipher implies the
availability of white-box signatures.

We also show a hash tree-based alternative to the hash chain primitive (useful for entity
authentication) to remain secure against white-box attackers in an untrusted environment.

1.1 A motivation example
Hash-based signatures serve as effective solutions for long-lived systems, particularly where
changing the signature algorithm within the cryptographic protocol is challenging. Because,
first, it is risky to trust classical signature algorithms in the long term due to quantum
attacks. Second, the trust in other (e.g., LWE-based) post-quantum signature algorithms
may be shaken in the long term by possible new attacks related to LWE.

White-box crypto, on the other hand, is motivated for personal computers or phones
where software threats are high. As a result, white-box SPHINCS+ can be a very good
solution for cryptographic protocols that require the use of the same signature algorithm
for a long time on a personal computer or mobile phone. Several examples support this
claim, with one notable instance being crypto wallets.

Using white-box signatures in software crypto wallets that we use on phones and
computers will improve security. In addition, blockchains are difficult to change structures,
and especially the personal signature algorithm is rarely changeable. Despite numerous
hard forks in Ethereum, transactions continue to be signed using the elliptic curve, which
was part of its initial version. With the introduction of the account abstraction feature to
Ethereum in March 2023 (see [ERC]), there is a possibility of utilizing different signatures
including hash-based signatures. However, adopting the standard account ERC4337 carries
a cost for users. In this respect, hash-based solutions come to the fore, ensuring that the
user does not risk having to change the algorithm again. This is one of the reasons why
hash-based solutions are more prominent in the crypto world than other post-quantum
solutions. Furthermore, the white-box SPHINCS+ stateless feature enables crypto wallets
to execute transactions across multiple platforms simultaneously and recover as needed.

1.2 Organization of the paper
The rest of our paper is organized as follows: Section 2 overviews Lamport’s one-time
signature scheme and section 3 presents its white-box secure implementation. Extensions

K. Bicakci et al. 3

to sign multiple messages are mostly based on the Merkle tree. Section 4 generalizes our
secure white-box implementation approach for signing multiple messages using the Merkle
tree. Section 5 presents an overview of the viability of new design ideas in hash-based
signature research in a white-box security context. Section 6 introduces WB-SPHINCS+
and WB-SPHINCS as stateless constructions with suggested parameters and performance
figures for a white-box setting. Section 7 and section 8 propose a white-box alternative to
hash chains and time-based OTPs, respectively. Section 9 is for the analysis of the security
and space-hardness of the proposed schemes. Section 10 provides implementation details1.
Section 11 summarizes the earlier work. Finally, section 12 concludes our paper.

2 Lamport’s Signature Scheme
Lamport’s construction of a one-time signature (OTS) is the first scheme that relies solely
on one-way (hash) functions for its security [Lam79]. Although the efficiency of this scheme
has been improved in subsequent studies, for pedagogical reasons, we prefer to use it to
explain our core idea for making hash-based signatures strong against white-box attackers.

As always, there are three algorithms defining Lamport’s one-time signature scheme:

Let f be a one-way hash function with an output length of N .

Key Generation:
Input: Parameters L, N

L: the length of random numbers
2N : total number of random numbers

Output:
For one-time private key, generate:
2N L-bit random numbers r1, r2, . . . , r2N

As one-time public key, compute:
pk = f(rk) for 1 ≤ k ≤ 2N (Distribute the public key securely as usual).
As another more useful notation, random numbers (pre-images) and

hash values (hash-images) could be indexed as follows, respectively:
ri,j(1 ≤ i ≤ N and 1 ≤ j ≤ 2) and pi,j(1 ≤ i ≤ N and 1 ≤ j ≤ 2)

Signing:
Input: M

M : message to be signed
h = f(M) (h has a length of N)

Output:
for 1 ≤ s ≤ N /* index value for bits of h */

if hs = 0 reveal rs,1
else reveal rs,2

as part of the signature

Verifying:
Input: Parameters M ′, r′

s,j , pi,j , h′

M ′: message received
r′

s,j : signature received (1 ≤ s ≤ N)
pi,j : public key (1 ≤ i ≤ N and 1 ≤ j ≤ 2)
h′ = f(M ′)

1A basic implementation for the white-box stateful hash-based signatures is provided in https:
//github.com/nothing-githb/quantum-resistant-white-box-crypto.

https://github.com/nothing-githb/quantum-resistant-white-box-crypto
https://github.com/nothing-githb/quantum-resistant-white-box-crypto

4 White-Box Implementations of Hash-Based Signatures and OTPs

Output:
Accept if for each 1 ≤ s ≤ N

if h′
s = 0 h(r′

s,1) = ps,1
else h(r′

s,2) = ps,2
Reject otherwise

3 White-Box Implementation of Lamport’s Scheme

Instead of storing all the random numbers constituting the one-time private key, one can
use a cryptographically secure pseudo-random function (PRF) to generate all the random
numbers using a single secret (private) key. Rather than using a general-purpose PRF
(practically implemented using standard block ciphers such as AES), we now introduce an
implementation of Lamport’s scheme secure in a white-box model [BI15] assuming that
there is a white-box attack-resistant (secure) block cipher which also behaves as a PRF.

Let f be a one-way hash function with an output length of N .
Let EK be a white-box secure block cipher (e.g., SPNbox [BIT16]). EK is represented

as one big key-dependent lookup table denoted as WBT -EK . We assume key K is securely
erased after WBT -EK is ready.

Key Generation:
Input: Parameters L, N, IP

L: the length of random numbers (as well as block length of EK)
2N : total number of random numbers
IP : (randomly generated and stored) initial plaintext for WBT -EK

Output:
For one-time private key, generate 2N L-bit pseudo-random numbers:
for 1 ≤ k ≤ 2N rk = WBT -EK (IP + k)
As the one-time public key, compute:
pk = f(rk) for 1 ≤ k ≤ 2N (distribute the public key securely as usual).
For a more useful notation, random numbers (pre-images)

and hash values (hash-images) could be indexed as follows, respectively:
ri,j(1 ≤ i ≤ N and 1 ≤ j ≤ 2) and pi,j(1 ≤ i ≤ N and 1 ≤ j ≤ 2)

After the public key is generated, rk values are securely erased.

Signing:
Input: M

M : message to be signed
h = f(M) (h has a length of N)

Output:
for 1 ≤ s ≤ N /* index value for bits of h */

if hs = 0 compute and reveal rs,1 = WBT -Ek(IP + 2s − 1)
else compute and reveal rs,2 = WBT -Ek(IP + 2s)

as part of the signature.

Verifying:
Same as the original case (nothing is changed).

K. Bicakci et al. 5

4 Signing Multiple Messages using Merkle Tree
Lamport’s OTS scheme is only useful for signing a single message per single public key
hence its utility is quite limited. The problem of extending Lamport’s OTS for multiple
messages has already been extensively studied in the literature. Most of the proposed
schemes are variations of the early work by Merkle [Mer88].

In Merkle’s original scheme, the tree is built in top-down for certification of additional
OTS public keys i.e., starting with the root node, every node has three public keys, one for
the message itself, one for the left child node, and one for the right child node. With this
scheme, an infinite number of messages could be signed using a single root one-time public
key. Another implementation choice for Merkle’s scheme is adopting a bottom-up approach
rather than a top-to-bottom one to sign multiple but finite pre-determined number of
messages. Here, first, the leaf N nodes (one-time private keys and corresponding public
keys) are prepared. Then, using hash values of public keys, a binary tree is built. The
final public key is the root of the node. See Fig. 1 for an example of a Merkle tree with 8
leaf nodes.

Figure 1: Merkle tree to sign 8 messages.

Below, we first describe an insecure implementation of Merkle’s scheme and then show
how to make it secure in a white-box model.

Key Generation:
Input: Parameters L, N, IP, T

L: the length of random numbers (as well as block length of EK)
2N : total number of random numbers
IP : (randomly generated and stored) initial plaintext for WBT -EK (representation

of EK as one big key-dependent lookup table)
T : number of messages to be signed (T = 2n) (n is the height of the tree)

6 White-Box Implementations of Hash-Based Signatures and OTPs

Output:
a. for 0 ≤ t ≤ T − 1

for 1 ≤ k ≤ 2N
generate 2N L-bit pseudo-random numbers:
rk,t = WBT -EK(IP + t × 2N + k)
compute pk,t = f(rk,t)

For a more useful notation, random numbers (pre-images)
and hash values (hash-images) could be indexed as follows, respectively:
ri,j,t(1 ≤ i ≤ N and 1 ≤ j ≤ 2 and 0 ≤ t ≤ T − 1)
pi,j,t(1 ≤ i ≤ N and 1 ≤ j ≤ 2 and 0 ≤ t ≤ T − 1)

b. Generate hashes of public keys as follows:
for 0 ≤ t ≤ T − 1

P [t] = p1,1,t||p1,2,t|| . . . ||pN,1,t||pN,2,t

a(0, t) = f(P [t])

c. Generate the root public key and distribute it securely (note that only
a single hash value constitutes the public key here):
As an example, consider the case given in Figure 1:

a(3, 0) = f(f(f(a(0, 0)||a(0, 1))||f(a(0, 2)||a(0, 3)))||

f(f(a(0, 4)||a(0, 5))||f(a(0, 6)||a(0, 7))))

We note that a naive implementation either requires the random numbers
to be stored for later use or erase all data (except IP) for later generation
once needed (soon, we will show why both of these are insecure options).

Signing:
Input: Parameters M, t

M : message to be signed
t = index of the leaf node for signing (0 ≤ t ≤ T − 1)

Output:
for 1 ≤ s ≤ N /* index value for bits of h */

compute (assuming not already stored):
rs,1,t = WBT -EK(IP + t × 2N + 2s − 1)
rs,2,t = WBT -EK(IP + t × 2N + 2s)

if hs = 0
reveal rs,1,t and compute and reveal f(rs,2,t)

else
reveal f(rs,1,t) and compute and reveal rs,2,t

as part of the signature.
Also additional nodes (hash values) up to the root node should be sent

as auxiliary information to make it possible to compute and verify the
root public key) (for instance a(0, 1), a(1, 1) and a(2, 1) should be sent
for t = 0 in the example shown in Figure 1).

Verifying:
Input:

M ′: message received
Signature received: r′

s,j,t or f ′(rs,j,t)(1 ≤ s ≤ N)(0 ≤ t ≤ T − 1) and
auxiliary information received e.g., a′(0, 1), a′(1, 1), a′(2, 1)

K. Bicakci et al. 7

Public key: e.g., a(3, 0)
h′ = f(M ′)

Output:
for each 1 ≤ s ≤ N

if h′
s = 0
compute f ′(r′

s,1,t) = ps,1,t

else
compute f ′(r′

s,2,t) = ps,2,t

compute a′(0, t) = f(p1,1,t||p1,2,t|| . . . ||pN,1,t||pN,2,t)
Accept if a(3, 0) = f(f(f(a′(0, t)||a′(0, 1))||a′(1, 1))||a′(2, 1)) (for t=0)
Reject otherwise

Now, we show that the above scheme is not secure in a white-box model. The underlying
reason is that all the random numbers are computed (or already stored) during signature
generation although not revealed as part of the signature. This is required in order to
compute the hash values for the random numbers not revealed. Hash values are sent as
part of the signature to let the verifier to compute the value of a′(0, t) and verify the
signature. However, a white-box attacker having the ability to observe the internal state
information could identify and extract all the random numbers and use them to forge a
signature for any message he wants. Below, we show a slight change in the implementation
to make it secure against white-box attackers.

The change we require is to prepare all the hash values required to build the signature
once the message is ready, without a need to generate the random numbers not required
as part of the signature itself 2. For this purpose, after all the components of the one-time
public key are computed by pk,t = f(rk,t) for 1 ≤ k ≤ 2N and 0 ≤ t ≤ T − 1, the values of
pk,t are stored on the signer side. Once a signature is required, the signing algorithm is
changed slightly as follows:

for 1 ≤ s ≤ N /* index value for bits of h */
if h′

s = 0
compute rs,1,t = WBT -EK(IP + t ∗ 2N + 2s − 1)
reveal rs,1,t and f(rs,2,t) /* f(rs,2,t) has been previously stored */

else
compute rs,2,t = WBT -EK(IP + t ∗ 2N + 2s)
reveal f(rs,1,t) and rs,2,t /* f(rs,1,t) has been previously stored */

With this change, a white-box attacker could not observe a random number required to
forge a signature for any message different than the message the user has already signed.

To summarize, an implementation of hash-based signatures is not secure in a white-box
model if any pre-image(s) not used in the signature itself are generated during signature
generation or it is already stored after key generation is completed. While this might be
just an implementation choice in some of the schemes (e.g., the above Merkle’s scheme)
(without any white-box security concern, one might still prefer different variations of the
basic scheme for leveraging different storage-computation tradeoffs), in some others, secure
implementations are not possible at all (e.g., Winternitz scheme with hash chaining [Mer90]).
The next section analyzes prominent design ideas in the rich literature on hash-based
signatures in this context.

2We also note that auxiliary information could also be pre-computed to improve the computational
efficiency of signature generation.

8 White-Box Implementations of Hash-Based Signatures and OTPs

5 Research Progress in Hash-based Signatures and its
White-Box Implications

In this section, we put a lens through which we analyze the research progress in hash-based
signatures in a white-box security context. Instead of studying each proposal one by one,
our focus will be on underlying design ideas. For the sake of brevity, we do not discuss
these ideas in detail, which was already done elsewhere (e.g., [LLW22]), and only give an
assessment of their viability in a secure white-box implementation.

5.1 WOTS and its derivatives
One problem in Lamport’s one-time signature construction described in section 2 is the
large size of signatures. For a message of size N , it requires a signature composed of
2N random numbers. Later work (e.g., [BTT03]) achieved a reduction of almost half
in size by optimizing the mapping between the message to be signed and the random
numbers to be revealed. The Winternitz One-Time Signatures (WOTS) could lead to even
shorter signatures by providing a trade-off between the signature time and the signature
size [Mer90]. The underlying idea is to apply a hash function to the random numbers
not only once but iteratively w times, thus forming hash chains of length w (each chain
is used to sign not only one bit but multiple bits, for instance, a byte). A computed
checksum is added to the message for security reasons. The message is signed together
with the checksum. The checksum is added so that it becomes voided if a forged signature
is generated by computing the later elements of hash chains once the signature composed
of selected elements of chains is revealed. On the other hand, in a white-box context, the
attacker has an additional capability since he could go in either direction in hash chains
(by reading the intermediate elements during hash computations). As a result, he could
generate a forged signature without voiding the checksum (e.g., an increment in one byte
of the message could be canceled out by a decrement in another byte).

In our work, our focus is on white-box secure constructions. As discussed in short,
WOTS and its derivatives are not useful in a white-box setting, therefore we do not further
discuss them here.

5.2 Few-time Signatures: HORS and others
So far, we have seen some constructions useful to sign only one message per one public-key.
We remind that Merkle tree allows signing more than one message by increasing the number
of public keys. How could we sign multiple messages securely with a truly single public
key? One such early construction allowing to generate not one but several signatures using
a single public key is named as HORS (Hash to Obtain Random Subset) [RR02].

Here, we provide only an informal overview of HORS construction and first revisit
Lamport’s scheme to remember why it is not secure to sign a second message with the
same public key. Signing the first message means we reveal a random subset of N elements
out of 2N random numbers. Similarly, signing a second message means we reveal another
random subset of N elements out of 2N random numbers. We expect half of the N
elements revealed for the second message are among those not revealed for the first one.
As a result, 3N/2 out of 2N random numbers are available to forge a third message (which
has a non-negligible probability), therefore it is not secure to sign a second message.

In the HORS construction, the aforementioned security problem is solved by having t
random numbers (t > 2N) and revealing k of these (k < N) as part of a signature. In this
way, unlike Lamport’s scheme, we could have probabilistic guarantees with a notion called
subset resilience so that forging a signature for a new message is not feasible even though
the same public key is used for more than one signature. Although security degrades with

K. Bicakci et al. 9

Table 1: Suitability of hash based signature variants for a white-box (WB) secure imple-
mentation.

Scheme Idea Purpose
Secure in

WB setting?

Lamport [Lam79] Hash-based signature The first scheme √

Optimal OTS [BTT03]
Encode message to random

numbers optimally Efficiency improvements √

Merkle tree [Mer88]
Combine one-time key pairs
into a single tree structure Signing more than once √

Winternitz [Mer90] Use hash chains Sign many bits at once No

HORS(T) & FORS [RR02] Subset resilience Few-time signatures √

Hyper-tree [BHH+15] Many layers of trees Efficiency improvements No

each additional signature, it could still be used to sign more than once. The exact number
of signatures depends on selected parameters.

There are many extensions of the HORS scheme including HORST (HORS with Trees)
[BHH+15] and FORS (Forest Of Random Subsets) [BHK+19]. The underlying idea in
HORST is to add a Merkle tree to HORS to reduce the public key size. In FORS, the
key pair does not consist of a single monolithic tree but of k trees of height log t. HORS
and its extensions could be used without any security concerns in a white-box setting
because a white-box attacker cannot have access to any additional secret values if they
are preferred. We will discuss further details with suitable parameters while we introduce
white-box versions of SPHINCS and SPHINCS+.

5.3 Hyper-tree / Tree Chaining
As mentioned in section 4, a secure implementation of the Merkle tree is possible in a
white-box setting with a bottom-up approach where all elements of public keys are made
available during the key generation time, and only the random numbers constituting the
signatures are computed once the message becomes ready and nothing more.

On the other hand, implementing the Merkle tree with a top-down approach (also
known as certification tree) where the generation of one-time public keys could be deferred
to the signature generation time is not secure in a white-box context. This is because of
the attacker’s ability during key generation to obtain random number(s) useful to forge
signatures.

Hyper-tree or Tree chaining is a way of combining two approaches (bottom-up and
top-down) sketched above by using many layers of one-time keys. Keys on higher layers
are used to sign the root values of lower layers prepared at any time. At the final layer, the
keys are used to sign the messages. Although these variants bring significant advantages
and flexibility over the basic Merkle tree construction, since they cannot be used securely
in a white-box setting, we do not explore them here any further.

Table 1 summarizes our discussion on the suitability of hash-based signature variants
for a white-box secure implementation.

6 Stateless Constructions
Stateful hash-based signatures such as those we present in section 4 require that OTS at
each state must be used at most once. So, our signing algorithm starts from an initial state

10 White-Box Implementations of Hash-Based Signatures and OTPs

Table 2: SPHINCS+ parameters for white-box implementations.

Number of
Maximum Signatures

Security
Level

Parameters Signature
Size

Key Generation Complexity
(Number of WB-cipher calls)h t k

210
128 0 11 96 18448 196608
192 0 11 143 41208 292864
256 0 11 191 73376 391168

220
128 8 12 197 41120 206569472
192 8 13 145 48936 304087040
256 8 13 194 87200 406847488

and increments it at each signature. This hinders multi-threading, load-balancing, and
backup of the keys and brings additional complexities. Stateless hash-based signatures do
not need to store any state while signing. However, stateless signatures are not as good as
stateful signatures in performance. As we will see, especially in the white-box setting, due
to WB cipher calls for key generation, stateless white-box signatures require significantly
longer key generation times.

In this paper, we consider SPHINCS and SPHINCS+ for stateless white-box signatures.
SPHINCS+ is chosen as a post-quantum signature standard by NIST [ACD+22]. SPHINCS,
the ancestor of SPHINCS+, was published in 2015 [BHH+15]. In section 6.1 and 6.2, we
investigate suitable parameters of SPHINCS+ and SPHINCS in the white-box model,
respectively.

The multiple layers of trees require key generation calls for bottom layers. As we have
already discussed, this is not secure in a white-box setting, therefore we need to work
only with one layer (i.e., we set d = 1 for both SPHINCS and SPHINCS+). For a similar
reason, signing with WOTS+ with w > 1 is not an option for us. As a result, we have few
time signatures and a hash tree of their public keys. So our schemes are composed of the
following building blocks:

• few time signatures (HORST for SPHINCS and FORS for SPHINCS+)

• hash tree of public keys of few time signatures

• WB ciphers with masked inputs

6.1 White-box SPHINCS+
As mentioned earlier, we have d = 1 and no WOTS+ in the scheme. Our scheme consists
of 2h few time signatures with FORS having parameters k and t. We get help from the
parameter search code of SPHINCS+ [sph]. For PRF, we use WB-cipher which is much
slower than hash functions. Hence, our complexity function counts only WB-cipher calls.
In the key generation phase of the scheme, we have 2h · 2t · k WB-cipher calls. The signing
algorithm has k WB-cipher calls. The verification algorithm has no WB-cipher calls. So
signing and verification operations are as fast as in the stateful settings. However, the
performance of key generation must be considered for practical applications. Consequently,
we limit the maximum number of signatures to 210 and 220 because for larger values the
schemes could be considered impractical. Table 2 shows suitable parameters for different
security levels.

6.2 White-box SPHINCS
Similar to the WB-SPHINCS+, for white-box applications, we set d = 1 and we use only
few time signatures removing all WOTS options. We search parameters for 128, 192 and
256-bit security limited to 210 and 220 signatures. Table 3 shows suitable parameters.

K. Bicakci et al. 11

Table 3: SPHINCS parameters for white-box implementations.

Number of
maximum signatures

Security
Level

Parameters Signature
Size(Byte)

Key Generation Complexity
(Number of WB-cipher calls)h t k

210
128 0 18 64 17792 262144
192 0 19 64 28128 524288
256 0 19 128 76416 524288

220
128 9 19 67 19808 268435456
192 11 18 68 28680 536870912
256 8 21 134 88640 536870912

6.3 Comparison of WB-SPHINCS+ and WB-SPHINCS
We opt to use WB-ciphers with 128-bit security level, therefore we compare the perfor-
mance of white-box stateless hash-based signature schemes for 128-bit security using our
implementation of WB cipher which will be discussed in section 10. For the maximum
210 number of signatures, WB-SPHINCS and WB-SPHINCS+ have key generation times
around 0.14 and 0.1 seconds, respectively. These schemes have signature sizes of around
18KB.

For the maximum 220 number of signatures, WB-SPHINCS and WB-SPHINCS+ have
key generation times around 146 and 112 seconds, respectively. These schemes have
signature sizes of 20KB and 41 KB, respectively. All these schemes take less than a
microsecond to sign and verify.

7 A White-Box Alternative to Hash Chains
A hash chain (proposed also by Lamport [Lam81]) is a useful cryptographic primitive
where a single shared (public) value is sufficient to verify securely the authenticity of
a finite (but potentially large) number of different values. Besides a number of other
applications, elements of hash chains could simply be used as one-time passwords (OTPs)
for user authentication.

For a better grasp of the advantage of using a hash chain, let us first consider the case
where a number of independent one-time passwords are generated on the user (client) side
and the hash value of each is sent to the server as part of the initialization. Each OTP is
sent one by one during normal operation to be verified by the server using hash values.
The disadvantage here is that the storage requirement both on the server and client side
increases linearly with the number of OTPs. (Besides, the risk is evident on the client
side, any (white-box) attacker having access to the untrusted client machine could easily
intercept all the OTPs to be used for later impersonation.)

Could we eliminate some of these problems with hash chains? A hash chain of length
m is simply obtained by iteratively applying a one-way (hash) function to a randomly
generated seed value for m times:

fm(s) = (f ◦ f ◦ · · · ◦ f)︸ ︷︷ ︸
m times

(s)

The final value fm(s) is sent to the server for initialization(registration). The first
OTP used for authentication is the element just before the final value: fm−1(s). In this
reverse order, in total m − 1 OTPs could be generated and used while requiring only a
single value on the server side for verification. On the client side, there are two options for
the storage:

• The client could choose to generate and store all the elements in the hash chain.

12 White-Box Implementations of Hash-Based Signatures and OTPs

Later, once one of them is to be used, there will not be any need to do computation.

• The client chooses to store only the seed value and generates the required OTP by
iteratively doing the required number of hash computations 3.

It is evident that the first option is not secure against a white-box attacker. It is also
easy to see that the second option is similarly insecure simply because on the untrusted
machine either the seed value itself (while one of the elements of the hash chain is generated)
or other elements prior to a particular element could be intercepted by the white-box
attacker for later use. We require a solution where OTPs could be generated independently
so that the white-box attacker cannot gain any advantage even when he can fully observe
the internal state of the client-side software. Below, we illustrate a solution for achieving
this. In fact, the white-box implementation of Merkle’s tree discussed in the previous
section could be tailored to serve our purposes so that each leaf node corresponds to the
hash of a single random number rather than 2N random numbers.

Below, we only show the initialization phase (generation and verification of OTPs are
skipped for the sake of brevity).

Initialization Phase:
Input: Parameters L, IP, T

L: the length of random numbers (as well as block length of EK)
IP : (randomly generated and stored) initial plaintext for WBT -EK

T : number of OTPs (T = 2n) (n is the height of the tree)
Output:

a. for 0 ≤ t ≤ T − 1
rt = WBT -EK(IP + t) /*generate L-bit pseudo-random numbers*/
pt = f(rt) /* compute hash of the random numbers */

The values of pt also correspond to the leaf nodes of the tree (no need to
compute the hash of pt values) i.e., pt = a(0, t)

b. Generate the root node and distribute it securely.
To summarize, a Merkle’s tree in which the leaf nodes are the hash values of a single

random number could be a viable alternative to hash chains if white-box attackers are
also of concern. In other words, no alternative provides this feature. Table 4 compares our
proposed scheme with hash chain-based OTPs and independent OTPs.

8 White-Box Resistant Time-based OTPs
The idea of using a hash chain for one-time passwords was developed and implemented
under the name of S/KEY [Hal95]. As noted in [KMB17], S/KEY has a number of
undesirable properties. In particular, the scheme is vulnerable to an attack where the client
reveals OTP(s) to attackers for future abuses by various means such as social engineering
or by impersonating the server. The need and difficulty for synchronization of the chain
between server and client is another concern (i.e., determining which element is the next
one).

A widely used solution for OTPs is implemented in the TOTP standard [MMPR11].
Here, the server and the client share a secret key. Using the current time (usually increments
in time steps of 30 seconds) as an implicit challenge of the server, this standard actually
implements a simple challenge-response protocol. The client computes the MAC of the
challenge and transmits the output (actually part of it) as the OTP response. The same

3An amortization technique could also be used to reduce memory-times-computation complexity [Jak02].

K. Bicakci et al. 13

Table 4: Comparison of OTP schemes (for use of T times).

Proposed Scheme w/ Hash Chains
Independent

OTPs

White-box resistant √ No No

Client-side
computation per OTP

O(1) WBT -EK

+O(log T) hash
None

(if elements are stored) None

Storage on client O(T)
O(T)

(if elements are stored) O(T)

Storage on server O(1) O(1) O(T)

Communication cost
per authentication O(log T) O(1) O(1)

Initialization cost
O(T) WBT -EK

+O(T) hash O(T) hash O(T) hash

computation could be done on the server side if a loose time synchronization is present.
On the downside, TOTP depends on a secret stored both on the client and server, hence
it is open to attacks on both sides.

To solve this problem for the server side, Kogan et al. proposed T/Key, a time-based
OTP scheme [KMB17]. The key idea in T/Key is to map each element of a hash chain
to a specific time period so that OTPs are now time-dependent 4. However, although no
secret is stored on the server side, T/Key is vulnerable to a white-box attacker having
access to the client-side implementation. Below, we will show that the scheme we proposed
in the previous section could easily be made time-dependent just like TOTP and T/Key.

In fact, making our proposed scheme time-dependent requires no more than a mapping
of each OTP (leaf node of the tree) to a pre-determined specific time period. For instance,
we could prefer a simple mapping starting from the leftmost and ending at the rightmost
leaf node. Suppose we choose such a mapping for a Merkle tree exemplified with eight leaf
nodes in Fig. 1. Suppose also the tree is already built and the root node is shared with
the server. Then, the time-dependent OTP is generated as follows:

Time-dependent OTP Generation:
Input: Parameters I, tinit, t

I: time step (e.g., 30 seconds)
tinit: setup time t (measured in I) (it has to be shared with the server side during

registration)
t: current time (measured in I)

Output:
rt = WBT -EK(IP + t − tinit) /* generate time-based OTP */

(In addition, nodes (hash values) up to the root node should be computed
and sent as auxiliary information to make it possible to compute and
verify the root public key) (for instance a(0, 1), a(1, 1) and a(2, 1)
should be sent for t = tinit in the example shown in Figure 1).

4Additionally, in order to make the chain birthday-attack resistant, to generate each of its element,
independent hash functions could be obtained from a single hash function using the idea of so-called
domain separation.

14 White-Box Implementations of Hash-Based Signatures and OTPs

On the downside, as compared to T/Key, one major efficiency drawback of the proposed
scheme is that for a binary tree with 1 × 106 leaf nodes (valid approximately for one year),
initialization (set up) requires 1 × 106 white-box encryption operations besides the hash
operations. This drawback might be addressed by using a lightweight white-box encryption
primitive (as further discussed in section 10).

Another concern is the increase in OTP sizes. On the other hand, we argue that
additional communication cost for OTP transmissions in our proposed scheme is less of
a concern, especially in a use case where OTPs are sent to the online server without a
manual entry (with only a simple confirmation tap in a mobile authenticator application).
Note that the use of a traditional digital signature scheme in this use case might not be
preferable due to a white-box attacker threat.

If manual entry of OTPs is performed using QR-codes (the phone displays a QR code
containing OTP and the user scans it using his laptop camera) as proposed by T/Key
inventors [KMB17], our proposed scheme still seems a viable approach. It requires an
OTP length of less than 1 KB for 128-bit security and 32 years of authentication period,
which does not exceed the maximum capacity of QR codes [qrc20] (also see Table 9 in
section 10).

9 Security Analysis and Space-Hardness of the Schemes
In this section, we first provide a brief informal security analysis of the proposed schemes
and then analyze their space-hardness properties.

9.1 Sketch of Security Analysis
A specific attacker’s goal against a white-box implementation of a hash-based digital
signature is to obtain the private key (or part of it) to generate a signature for a message
not intended to be signed by the legitimate user. This corresponds to any rk values not
revealed as part of the signature. The attacker has two options for achieving this:

• He could try to invert at least one of the hash images (the hash values in the public
key).

• He could try to generate at least one of the unrevealed pseudo-random numbers
(possibly using the stored IP value).

The first option is not possible due to the one-way property of the hash function used.
Similarly, the second option is out of reach if a secure white-box block cipher is available
which prevents to extract of the key K from the lookup table. (the concern of code lifting
will be addressed by the space-hardness analysis of the proposed schemes, given below.)

What if the attacker accesses the implementation environment before or while the
key-dependent look-up table is built? Since the encryption key K is available in memory
at that time, access to this key brings the ability to generate the whole one-time private
key itself. We remind that this is also a legitimate concern for the symmetric encryption
case but with a subtle difference. For encryption, the cryptographic key (therefore the key-
dependent lookup table) is prepared to encrypt a potentially infinite amount of plaintext
messages. Hence the time window of vulnerability against a white-box attacker is short
and acceptable (other precautions such as building the tables while the untrusted device
is offline could be considered). On the other hand, if the lookup table is only used for
signing a single message and building a second table is required thereafter, the risk against
white-box attackers is significantly increased. In previous sections, we have already shown
that a single look-up table could be used to sign multiple (potentially infinite) messages
but there are some caveats that implementations should take into account.

K. Bicakci et al. 15

9.2 Space-Hardness
For symmetric ciphers, the notion of space-hardness is introduced and a white-box model
is defined in [BI15]:
Definition 1. A cipher is said to be (M, Z)-space hard if it is infeasible for an adversary
to encrypt (decrypt) a randomly chosen plaintext with probability more than 2−Z given
code (table) size less than M .

Similarly, we define the space-hardness for signatures as follows:
Definition 2. A signature scheme is said to be (M, Z)-space hard if it is infeasible for an
adversary to forge a (signed) message with a probability more than 2−Z given code (table)
size less than M .

According to the alternative and stronger White-Box Attack Context definition by
Chow et al. [CEJv03], it is assumed that ”internal details of cryptographic algorithms
are both completely visible and alterable at will". This model is not applicable to the
signature schemes as the attacker can change the message to be signed. That means all
signature schemes are forgeable accordingly. As a result, we think Definition 2 makes more
sense for signature schemes. Here, the adversary has read-only access where the size of
data accessed is bounded by M .
Claim 1. Let S be the signing scheme described above with T = 2n number of messages
to be signed, N is the message length, and one-way hash function f with an output length
of N . If the S uses (M, Z)-space hard cipher WBT -EK , then the scheme (M, W)-space
hard where

W = Z − log2(N) − n − 1
provided that N is not too small.

In the signature scheme, to forge a message, an adversary needs to find at least one
of the preimages f(rs,i,t) where 1 ≤ s ≤ N , 1 ≤ i ≤ 2 and 0 ≤ t ≤ T − 1. So there is
2N · 2n preimages which are encrypted by WBT -Ek. By the assumption, each value can
be obtained by the adversary with probability less than 2−Z . Then the probability that at
least one of them can be obtained by the adversary is

2N · 2n · 2−Z = 2−W .

Here, an adversary can also try to find an inverse of the hash function f by directly taking
random hashes or using some weakness in the hash function. Because of this, we assume
the scheme uses a secure hash function with enough output length. For example, if SHA256
is used, then the adversary needs to take about 2256

2N ·2n to find at least one of preimages
f(rs,i,t). For the white-box ciphers such as SPACE or SPNbox, the space hardness level is
generally taken as Z = 64 or Z = 128. So, the security bottleneck of this scheme is an
explosion of the white box cipher.

For our white-box resistant OTP scheme, a similar calculation can be done.
Claim 2. A white-box resistant OTP scheme using T = 2n number of passwords is
(M, Z − n)-space hard if an (M, Z)-space hard cipher WBT -Ek is used, provided that the
scheme is using a secure hash function with enough output length.

We know that SPNbox is (M, −10 · t · log2(M/I))-space hard for any given M where I
is the size of the input-output table of the inner cipher and t = 16, 8, 5, 4 for SPNbox-8, -16,
-24, -32 respectively [BIT16]. Using the statements above we can calculate space-hardness
of the signature and OTP schemes. We assume the signature scheme with T = 220 number
of messages to be signed and OTP with T = 220 number of passwords. For Z = 64 and
Z = 128, (M, Z)-space hardness of the schemes with SPNbox instantiations is calculated
in Table 2.

16 White-Box Implementations of Hash-Based Signatures and OTPs

Table 5: (M, Z)-space hardness of the proposed schemes with SPNbox instantiations.

WBT -EK
Table Size

U

Signature Space-hardness OTP Space-hardness
Z = 64 Z = 128 Z = 64 Z = 128

SPNbox-8 256 B U/20.58 U/20.98 U/20.53 U/20.93

SPNbox-16 132 KB U/21.16 U/21.96 U/21.05 U/21.85

SPNbox-24 50.3 MB U/21.86 U/23.14 U/21.68 U/22.96

SPNbox-32 17.2 GB U/22.33 U/23.93 U/22.10 U/23.70

Table 6: Software performance of the SPNbox cipher family on the Apple M1(ARM)
processor in a white-box setting. Numbers are given in cycles per byte (cpb).

Algorithm Rounds
(outer) Table Size Performance

[cpb]
SPNbox-24 10 50.3 MB 782
SPNbox-16 10 132 KB 109
SPNbox-8 10 256 B 1187

10 Implementation
We implement the SPNbox algorithm [BIT16] and the schemes introduced in section 4 and
section 8. We also provide performance figures of white-box implementations of SPHINCS+
and SPHINCS schemes with our SPNbox implementation.

SPNbox algorithm is considered secure when evaluated in terms of various adversary
models such as cache timing, key extraction, and space-hardness. We have implemented
the SPNbox algorithm for different configurations, the results are shown in Table 3 and
Table 4 below (The results of SPNbox-32 are omitted due to high memory requirements).

While implementing the SPNbox algorithm, we aimed to increase the performance by
creating ready-made tables for matrix multiplications in the nonlinear and linear layers.
We have 4,5,8 and 16 independent table lookups in SPNbox-32, 24, 16 and 8, respectively.
As a result, we achieved 15% performance improvement compared to other available
implementations [LRH+22] (parallel instruction sets were not used).

While implementing the Merkle tree signature scheme, instead of producing 2N pre-
images and hash-images for N-bit hash length, we preferred an optimized message mapping
algorithm [BTT03], thereby we achieved almost 50% of improvement in time and memory.
Considering the time and memory usage performance, we decided to use the SPNbox-16
configuration in our signature and OTP implementations. Performance results of our
signature and OTP implementations are given in Table 5 and Table 6, respectively.

As a future work, we intend to further improve our performance results using AVX
(Intel) and NEON (ARMv8) instructions.

Table 7: Software performance of the SPNbox cipher family in a black-box setting on the
Apple M1(ARM) processor. Numbers are given in cycles per byte (cpb).

Algorithm Rounds
(outer)

Rounds
(inner)

Performance
[cpb]

SPNbox-24 10 20 8216
SPNbox-16 10 32 11643
SPNbox-8 10 64 12394

K. Bicakci et al. 17

Table 8: Performance results of white-box signature scheme for different number of leaf
nodes. Results obtained with the Apple M1(ARM) processor.(L-bit = 128, N-bit = 128,
EK = SPNbox-16)

Number of
Leaf Node

Root Hash
Generation Memory Signing Verifying Signature

Size (B)
210 0.129 sec 2 MB 191 µs 153 µs 2272
215 4.14 sec 67 MB 258 µs 155 µs 2352
220 129.05 sec 2147 MB 262 µs 155 µs 2432

Table 9: Performance results of white-box one-time password scheme for different number
of leaf nodes. Results obtained with the Apple M1(ARM) processor. (L-bit = 128, N-bit
= 256, EK = SPNbox-16)

Number of
Leaf Node

Root Hash
Generation Memory Generation Verification Size of OTP

215 0.041 sec 656 KB 4 µs 6 µs 496 byte
220 1.308 sec 17 MB 12 µs 9 µs 656 byte
225 44.11 sec 536 MB 91 µs 11 µs 816 byte

Finally, we calculate the performance of white-box implementations of SPHINCS+
and SPHINCS schemes for different numbers of maximum signatures using our white-box
SPNbox cipher implementation and present the results in Table 10.

Table 10: Calculated performance results of white-box implementations of SPHINCS+
and SPHINCS schemes for different number of max signatures.

Number of
max signautes

Key
Generation

Memory
(signer) Signing Verifying Signature

Size

SPHINCS+ 210 25 sec 6 MB <1 ms <1 ms 18448
220 7 hour 6 GB <1 ms <1 ms 41120

SPHINCS 210 33 sec 8 MB <1 ms <1 ms 17792
220 9 hour 8 GB <1 ms <1 ms 19808

11 Related Work
Joye pointed out that one of the potential applications of white-box cryptography is to
transform a MAC into a digital signature [Joy08]. Here, the “MAC verification” algorithm
is assumed to have a "certified" white-box implementation. Since the cryptographic key
cannot be extracted and cannot be used for the generation of a MAC, the implementation
is only useful for the verification of (supposedly) a digital signature. However, this
implementation choice is restricted in the sense that only those who have obtained a
certified white-box implementation could perform the signature verification.

Zhang et. al. presented a white-box implementation of the identity-based signature
scheme in the IEEE P1363 standard [ZHH+20]. Feng et. al. proposed white-box im-
plementation for the classical Shamir’s identity-based signature scheme [FHW+20]. In
recent work, Dottax et. al provided a deeper comprehension of the challenges of white-box
ECDSA implementations [DGH21]. Ma introduced a white-box Schnorr signature scheme
[Ma20] but provided only a limited security analysis.

18 White-Box Implementations of Hash-Based Signatures and OTPs

Up to our best knowledge, our paper is the first study presenting a general-purpose
quantum-safe digital signature algorithm in a white-box security model 5.

12 Concluding Remarks
To motivate our research, we consider a mobile authenticator application supporting
multifactor user authentication. In this scenario, digital signatures and hash chains
are preferable constructions since no secret information is required to be stored on the
verification (server) side. On the other hand, a typical mobile authenticator application is
installed on an untrusted client device vulnerable to attacks and therefore these client-side
attacks should also be considered in a more sophisticated yet realistic threat model. To
protect software implementations in such an environment, in this paper, we presented white-
box-resistant solutions for hash-based signatures and one-time passwords. We implemented
these schemes and showed that these schemes are feasible in practice. Since they can be
implemented using only symmetric crypto primitives, the proposed simple and elegant
schemes are quantum-resistant and provide an important step in white-box cryptography.

Acknowledgments
This research (patent pending) is funded by TUBITAK (The Scientific and Technological
Research Council of Turkey) under the grant No: 3191520. We thank Assoc. Prof. Dr.
Murat CENK for helpful comments and discussion.

References
[ACD+22] Gorjan Alagic, David Cooper, Quynh Dang, Thinh Dang, John M. Kelsey,

Jacob Lichtinger, Yi-Kai Liu, Carl A. Miller, Dustin Moody, Rene Peralta, Ray
Perlner, Angela Robinson, Daniel Smith-Tone, and Daniel Apon. Status Report
on the Third Round of the NIST Post-Quantum Cryptography Standardization
Process, 2022-07-05 04:07:00 2022. URL: https://tsapps.nist.gov/publ
ication/get_pdf.cfm?pub_id=934458, doi:10.6028/NIST.IR.8413.

[BHH+15] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben
Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe,
and Zooko Wilcox-O’Hearn. SPHINCS: Practical stateless hash-based signa-
tures. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology
– EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes in Computer Sci-
ence, pages 368–397, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg,
Germany. doi:10.1007/978-3-662-46800-5_15.

[BHK+19] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost
Rijneveld, and Peter Schwabe. The SPHINCS+ signature framework. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019: 26th Conference on Computer and Communications
Security, pages 2129–2146, London, UK, November 11–15, 2019. ACM Press.
doi:10.1145/3319535.3363229.

5After the first version of our paper appeared in IACR ePrint in 2021, a white-box signature scheme
based on multivariate polynomials was published [GG22]. We note that this new scheme requires 256
GB memory and 62 MB public keys for 80-bit security. We believe our scheme is more practical since it
requires 16 B for the public key and the memory requirement is 2, 67, and 2147 megabytes for the schemes
that can sign up to 210, 215 and 220 times, respectively.

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=934458
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=934458
https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1145/3319535.3363229

K. Bicakci et al. 19

[BI15] Andrey Bogdanov and Takanori Isobe. White-box cryptography revisited:
Space-hard ciphers. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, ACM CCS 2015: 22nd Conference on Computer and Communications
Security, pages 1058–1069, Denver, CO, USA, October 12–16, 2015. ACM
Press. doi:10.1145/2810103.2813699.

[BIT16] Andrey Bogdanov, Takanori Isobe, and Elmar Tischhauser. Towards prac-
tical whitebox cryptography: Optimizing efficiency and space hardness. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology – ASI-
ACRYPT 2016, Part I, volume 10031 of Lecture Notes in Computer Science,
pages 126–158, Hanoi, Vietnam, December 4–8, 2016. Springer, Heidelberg,
Germany. doi:10.1007/978-3-662-53887-6_5.

[BTT03] Kemal Bicakci, Gene Tsudik, and Brian Tung. How to construct optimal
one-time signatures. Comput. Netw., 43(3):339–349, 2003. doi:10.1016/S1
389-1286(03)00285-8.

[CAD+20] D. A. Cooper, D. C. Apon, Q. H. Dang, M. S. Davidson, M. J. Dworkin,
and C. A. Miller. Recommendation for stateful hash-based signature schemes.
NIST Special Publication, 800:208, 2020. doi:10.6028/NIST.SP.800-208.

[CEJv03] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
White-box cryptography and an AES implementation. In Kaisa Nyberg and
Howard M. Heys, editors, SAC 2002: 9th Annual International Workshop on
Selected Areas in Cryptography, volume 2595 of Lecture Notes in Computer
Science, pages 250–270, St. John’s, Newfoundland, Canada, August 15–16,
2003. Springer, Heidelberg, Germany. doi:10.1007/3-540-36492-7_17.

[DGH21] Emmanuelle Dottax, Christophe Giraud, and Agathe Houzelot. White-box
ECDSA: Challenges and existing solutions. In Shivam Bhasin and Fabrizio De
Santis, editors, COSADE 2021: 12th International Workshop on Constructive
Side-Channel Analysis and Secure Design, volume 12910 of Lecture Notes in
Computer Science, pages 184–201, Lugano, Switzerland, October 25–27, 2021.
Springer, Heidelberg, Germany. doi:10.1007/978-3-030-89915-8_9.

[ERC] ERC-4337. ERC-4337. https://www.erc4337.io. Accessed 07-06-2024.

[FHW+20] Qi Feng, Debiao He, Huaqun Wang, Neeraj Kumar, and Kim-Kwang Raymond
Choo. White-box implementation of Shamir’s identity-based signature scheme.
IEEE Systems Journal, 14(2):1820–1829, 2020. doi:10.1109/JSYST.2019.2
910934.

[GG22] Pierre Galissant and Louis Goubin. Resisting key-extraction and code-
compression: a secure implementation of the HFE signature scheme in
the white-box model. Cryptology ePrint Archive, Report 2022/138, 2022.
https://eprint.iacr.org/2022/138.

[Hal95] N. Haller. The S/KEY One-Time Password System. RFC 1760, pages 1–12,
1995. URL: https://doi.org/10.17487/RFC1760.

[Jak02] M. Jakobsson. Fractal hash sequence representation and traversal. In Proceed-
ings IEEE International Symposium on Information Theory, page 437. IEEE,
June 2002. doi:10.1109/ISIT.2002.1023709.

[Joy08] Marc Joye. On white-box cryptography. Security of Information and Networks,
1:7–12, 2008.

https://doi.org/10.1145/2810103.2813699
https://doi.org/10.1007/978-3-662-53887-6_5
https://doi.org/10.1016/S1389-1286(03)00285-8
https://doi.org/10.1016/S1389-1286(03)00285-8
https://doi.org/10.6028/NIST.SP.800-208
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-030-89915-8_9
https://www.erc4337.io
https://doi.org/10.1109/JSYST.2019.2910934
https://doi.org/10.1109/JSYST.2019.2910934
https://eprint.iacr.org/2022/138
https://doi.org/10.17487/RFC1760
https://doi.org/10.1109/ISIT.2002.1023709

20 White-Box Implementations of Hash-Based Signatures and OTPs

[KMB17] Dmitry Kogan, Nathan Manohar, and Dan Boneh. T/key: Second-factor
authentication from secure hash chains. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Conference
on Computer and Communications Security, pages 983–999, Dallas, TX, USA,
October 31 – November 2, 2017. ACM Press. doi:10.1145/3133956.3133989.

[Lam79] Leslie Lamport. Constructing digital signatures from a one-way function.
Technical Report SRI-CSL-98, SRI International Computer Science Laboratory,
October 1979.

[Lam81] L. Lamport. Password authentication with insecure communication. Commu-
nications of the ACM, 24(11):770–772, 1981. doi:10.1145/358790.358797.

[LLW22] Lingyun Li, Xianhui Lu, and Kunpeng Wang. Hash-based signature revisited.
Cybersecurity, 5(1):1–26, 2022. doi:10.1186/s42400-022-00117-w.

[LRH+22] Jun Liu, Vincent Rijmen, Yupu Hu, Jie Chen, and Baocang Wang. WARX:
efficient white-box block cipher based on ARX primitives and random MDS
matrix. Sci. China Inf. Sci., 65(132302), 2022. doi:10.1007/s11432-020-3
105-1.

[Ma20] Tianchen Ma. White-box schnorr signature for internet of things security.
In 2020 5th International Conference on Mechanical, Control and Computer
Engineering (ICMCCE). IEEE, 2020. doi:10.1109/ICMCCE51767.2020.004
25.

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption
function. In Carl Pomerance, editor, Advances in Cryptology – CRYPTO’87,
volume 293 of Lecture Notes in Computer Science, pages 369–378, Santa
Barbara, CA, USA, August 16–20, 1988. Springer, Heidelberg, Germany.
doi:10.1007/3-540-48184-2_32.

[Mer90] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor,
Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Com-
puter Science, pages 218–238, Santa Barbara, CA, USA, August 20–24, 1990.
Springer, Heidelberg, Germany. doi:10.1007/0-387-34805-0_21.

[MMPR11] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. TOTP: Time-Based One-Time
Password Algorithm. RFC 6238, Internet Engineering Task Force (IETF),
May 2011. doi:10.17487/RFC6238.

[qrc20] QR codes. https://github.com/ricmoo/QRCode/blob/master/README.md,
2020. Last accessed on 2/28/2022.

[RR02] Leonid Reyzin and Natan Reyzin. Better than BiBa: Short one-time signatures
with fast signing and verifying. In Lynn Margaret Batten and Jennifer Seberry,
editors, ACISP 02: 7th Australasian Conference on Information Security and
Privacy, volume 2384 of Lecture Notes in Computer Science, pages 144–153,
Melbourne, Victoria, Australia, July 3–5, 2002. Springer, Heidelberg, Germany.
doi:10.1007/3-540-45450-0_11.

[sph] SPHINCS+ parameter exploration. https://sphincs.org/data/spx_param
eter_exploration.sage.

[ZHH+20] Yudi Zhang, Debiao He, Xinyi Huang, Ding Wang, Kim-Kwang Raymond
Choo, and Jing WANG. White-box implementation of the identity-based
signature scheme in the IEEE P1363 standard for public key cryptography.

https://doi.org/10.1145/3133956.3133989
https://doi.org/10.1145/358790.358797
https://doi.org/10.1186/s42400-022-00117-w
https://doi.org/10.1007/s11432-020-3105-1
https://doi.org/10.1007/s11432-020-3105-1
https://doi.org/10.1109/ICMCCE51767.2020.00425
https://doi.org/10.1109/ICMCCE51767.2020.00425
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.17487/RFC6238
https://github.com/ricmoo/QRCode/blob/master/README.md
https://doi.org/10.1007/3-540-45450-0_11
https://sphincs.org/data/spx_parameter_exploration.sage
https://sphincs.org/data/spx_parameter_exploration.sage

K. Bicakci et al. 21

IEICE TRANSACTIONS on Information and Systems, 103(2):188–195, 2020.
doi:10.1587/transinf.2019INP0004.

https://doi.org/10.1587/transinf.2019INP0004

	Introduction
	A motivation example
	Organization of the paper

	Lamport’s Signature Scheme
	White-Box Implementation of Lamport’s Scheme
	Signing Multiple Messages using Merkle Tree
	Research Progress in Hash-based Signatures and its White-Box Implications
	WOTS and its derivatives
	Few-time Signatures: HORS and others
	Hyper-tree / Tree Chaining

	Stateless Constructions
	White-box SPHINCS+
	White-box SPHINCS
	Comparison of WB-SPHINCS+ and WB-SPHINCS

	A White-Box Alternative to Hash Chains
	White-Box Resistant Time-based OTPs
	Security Analysis and Space-Hardness of the Schemes
	Sketch of Security Analysis
	Space-Hardness

	Implementation
	Related Work
	Concluding Remarks
	References

