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Abstract. Decentralized Multi-Client Functional Encryption (DMCFE) extends the
basic functional encryption to multiple clients that do not trust each other. They can
independently encrypt the multiple plaintext-inputs to be given for evaluation to the
function embedded in the functional decryption key, defined by multiple parameter-
inputs. And they keep control on these functions as they all have to contribute to
the generation of the functional decryption keys. Tags can be used in the ciphertexts
and the keys to specify which inputs can be combined together. As any encryption
scheme, DMCFE provides privacy of the plaintexts. But the functions associated
to the functional decryption keys might be sensitive too (e.g. a model in machine
learning). The function-hiding property has thus been introduced to additionally
protect the function evaluated during the decryption process.
In this paper, we provide new proof techniques to analyze a new concrete construction
of function-hiding DMCFE for inner products, with strong security guarantees in
the random oracle model: the adversary can adaptively query multiple challenge
ciphertexts and multiple challenge keys, with unbounded repetitions of the same
message tags in the ciphertext-queries and a fixed polynomially-large number of
repetitions of the same key tags in the key-queries, allowing static corruption of the
secret encryption keys. Previous constructions were proven secure in the selective
setting only.
Keywords: Functional Encryption · Inner Product · Function-Hiding

1 Introduction
Functional Encryption. Public-Key Encryption (PKE) has become so indispensable
that without this building block, secure communication over the Internet would be un-
feasible nowadays. However, this concept of PKE limits the access to encrypted data in
an all-or-nothing fashion: once the recipients have the secret key, they will be able to
recover the original data; otherwise, no information is revealed. The concept of Functional
Encryption (FE), originally introduced by Boneh, Sahai and Waters [SW05, BSW11],
overcomes this limitation: a decryption key can be generated under some specific function
F , namely a functional decryption key, and enable the evaluation F (x) from an encryption
of a plaintext x in order to provide a finer control over the leakage of information about x.

Since its introduction, FE has provided a unified framework for prior advanced encryp-
tion notions, such as Identity-Based Encryption [Sha84, Coc01, BF01] or Attribute-Based
Encryption [SW05, GPSW06, OSW07, ALdP11, OT12b], and has become a very active
domain of research. Abdalla et al. [ABDP15] proposed the first FE scheme (in short-
hand as ABDP from this point) that allows computing the inner product between a
functional vector in the functional decryption key and a data vector in the ciphertext
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(IPFE). The interests in FE then increased, either in improving existing constructions
for concrete function classes, e.g. inner products [ALS16, BBL17, CLT18] and quadratic
functions [BCFG17, Gay20, AS17, Lin17], or in pushing the studies of new advanced
notions [GVW15] as well as the relationship to other notions in cryptography [AJ15, BV15].
While FE with a single encryptor, i.e. single-client FE, is of great theoretical interest,
there is also a motivation to investigate a multi-user setting, which might be applicable in
practical applications when the data is an aggregation of information coming from multiple
sources. Another important research question concentrates on the privacy of functions
under which functional keys are generated. We discuss these two lines of work below.

Extensions of FE in the Multi-User Setting. Goldwasser et al. [GGG+14, GKL+13]
initiated the study of Multi-Input Functional Encryption (MIFE) and Multi-Client Func-
tional Encryption (MCFE). In MCFE particularly, the encrypted data is broken into
a vector (x1, . . . , xn) and a client i among n clients uses their encryption key eki to
encrypt xi, under some (usually time-based) tag tag. Given a vector of ciphertexts
(ct1 ← Enc(ek1, tag, x1), . . . , ctn ← Enc(ekn, tag, xn)), a decryptor holding a functional
decryption key dkF can decrypt and obtain F (x1, . . . , xn) as long as all ct1, . . . , ctn are
generated under the same tag. No information beyond F (x1, . . . , xn) is leaked, especially
concerning the individual secret components xi, and combinations of ciphertexts under
different message tags provide no further information either. Furthermore, in practice
encrypting xi under different message tags tag′ 6= tag might bear a different meaning with
respect to a client i and thus controls the possibilities constituting ciphertext vectors1.
This also necessitates the encryption keys eki being private. The notion of MCFE can
be seen as an extension of FE where multiple clients can contribute into the ciphertext
vector independently and non-interactively, where encryption is done by private encryption
keys. After their introduction, MIFE/MCFE motivated a plethora of works on the subject,
notably for the concrete function class of inner products [DOT18, CDG+18a, CDG+18b,
ACF+18, ABKW19, ABG19, LT19, CDSG+20, ACGU20, NPP22].

Decentralized Multi-Client Functional Encryption. The setup of MCFE requires some au-
thority (a trusted third party) responsible for the setup and generation of functional
decryption keys. The authority possesses a master secret key msk that can be used
to handle the distribution of private encryption keys eki and deriving functional de-
cryption keys dkF . When clients do not trust each other, this centralized setting of
authority might be a disadvantage. The need for such a central authority is completely
eliminated in the so-called Decentralized Multi-Client Functional Encryption (DMCFE)
introduced by Chotard et al. [CDG+18a]. In DMCFE, only during the setup phase do
we need interaction for generating parameters that will be needed by the clients later.
The key generation is done independently by different senders, each has a secret key
ski. Agreeing on a function F , each sender generates their functional key dkF,i using
ski, the description of F , and a tag tag-f. Originally in [CDG+18a], the tag tag-f can
contain the description of F itself. Using DMCFE, the need of an authority for dis-
tributing functional keys is completely removed, with minimal interaction required during
setup. The seminal work of [CDG+18a] constructed the first DMCFE for computing inner
products (IP-DMCFE), where n clients can independently contribute to the ciphertext
vector (ct1 ← Enc(ek1, tag, x1), . . . , ctn ← Enc(ekn, tag, xn)) and n senders can indepen-
dently contribute to the functional keys dky,1 ← DKeyGen(sk1, tag-f, y1), . . . , dky,n ←
DKeyGen(skn, tag-f, yn) of some vector y = (y1, . . . , yn). For the function class to compute
inner products, many follow-up works improve upon the work of [CDG+18a] on both

1In contrast, MIFE involves no message tags and thus a large amount of information can be obtained
by arbitrarily combining ciphertexts to decrypt under some functional decryption key.
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aspects of efficiency as well as security, or by giving generic transformation to (D)MCFE
from single-client FE [LT19, ABKW19, ABG19].

Repetitions under One Tag. Involving tags at the time of encryption and key generation
restricts that only ciphertexts and functional keys having the same tag can be combined
in the notion of DMCFE. This raises a natural question: what security can we guarantee
when one client uses the same tag on multiple data ? We call such multiple usages of
the same tag in a DMCFE system repetitions. In the formal security model of (D)MCFE
in [CDG+18a] and subsequent works [LT19], once the adversary makes a query for (i, tag),
further queries for the same pair (i, tag) will be ignored. This means repetitions are not
taken into account. The authors of [CDG+18a] argued that it is the responsibility of the
users not to use the same tag twice. However, a security notion for DMCFE that captures a
sense of protection even when repetitions mistakenly/maliciously happen will be preferable,
e.g. this is indeed studied in some other works [ABKW19, ABG19]. In addition, when
repetitions are allowed for ciphertexts, the security model of MCFE strictly encompasses
MIFE by replacing tags with a constant value, as confirmed in recent works [ATY23].

Function Privacy in FE. Standard security notions of FE ensure that adversaries
do not learn anything about the content of ciphertexts beyond what is revealed by the
functions for which they possess decryption keys. However, it is not required that functional
decryption keys hide the function they decrypt. In practice, this can pose a serious problem
because the function itself could contain confidential data. For example, the evaluated
function may represent a neural network. Training such networks is often time-consuming
and expensive, which is why companies offer their use as a paid service. However, to ensure
that customers continue to pay for the use of the product, it is crucial that the concrete
parameters of the network (i.e. the computed function) remain secret. This additional
security requirement for functional encryption schemes is known as the function-hiding
property. As another example, suppose one wants to perform statistical analysis (e.g.
weighted averages) of private data from several companies to get a better understanding
of the dynamics of a sector. This can be implemented using a DMCFE for inner products.
Consulting firms conduct such analyses as a fee-based service. To ensure that clients
continue to pay for updated results in the future, the consulting firm may wish to hide the
concrete parameters of their calculations. This can be achieved by using a DMCFE with
function-hiding security.

Besides practical applications, function-hiding FE schemes for restricted function classes
(such as inner products) have also proven to be an important technical building block
for the construction of FE schemes for broader function classes: Lin [Lin17] employed a
function-hiding IPFE (FH-IPFE) to obtain an FE scheme for quadratic functions. A different
technique was also introduced by Gay in [Gay20] equally aiming at constructing FE for
quadratic functions. With several technical novelties, Agrawal et al. [AGT21a, AGT22]
were able to generalize the aforementioned constructions to obtain MIFE for quadratic
functions.

Existing Function-Hiding FE Schemes in the Literature. Bishop et al. [BJK15] presented
the first IPFE scheme that guaranteed a weak variant of the function-hiding property. This
construction was lifted to fully function-hiding security by Datta et al. [DDM16]. This
was further improved in terms of efficiency and/or computational hardness assumptions
by works of [TAO16, KKS19, KLM+18, Tom19, Tom20]. The constructions of [BJK15,
DDM16, TAO16] all leverage the power of dual pairing vector spaces (DPVSes) developed
by Okamoto and Takashima in [OT10, OT12a, OT12b]. Alternatively, Lin [Lin17] used a
different approach to get simpler constructions of FH-IPFE from the ABDP IPFE. Using
the same blueprint and exploiting the specific algebraic properties of the underlying inner-
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product MIFE scheme carefully, Abdalla et al. [ACF+18] were able to construct function-
hiding MIFE for inner products (FH-IP-MIFE). In [AGT21b], Agrawal et al. came up with
the first construction of function-hiding MCFE for inner products (FH-IP-MCFE) that is
inspired by the FH-IP-MIFE by Datta et al. [DOT18]. Very recently, Shi and Vanjani [SV23]
presented a generic transformation from single-client to multi-client functional encryption,
preserving the function-hiding property and leading to the first FH-IP-MCFE with adaptive
security. Remarkably, their security proof does not rely on random oracles. We are not
aware of any construction of function-hiding DMCFE for inner products (FH-IP-DMCFE)
whose security does not rely on the random oracle model (ROM).

In [CDSG+20], Chotard et al. generalized DMCFE and defined the notion of Dynamic
Decentralized Functional Encryption (DDFE) that allows users to join at various stages
during the lifetime of a system, while maintaining all decentralized features of DMCFE.
Notably, the setup of DDFE is non-interactive and decentralized, while that of DMCFE is
a priori interactive. In the end, a DDFE scheme allows aggregating data from different
sources by decrypting an independent list of ciphertexts using an independent list of
functional keys, both of which are fabricated in a completely decentralized manner by users
with their ski, while requiring no trusted third party. To these extents, DDFE is a primitive
strictly stronger than DMCFE, given that the function class of the former contains functions
that are well-defined relating to a given list of functional keys and those functions can be
expressed by the function class of the latter2. In [AGT21b], the authors revisits DDFE for
the class of inner products (IP-DDFE) and provide a transformation from FH-IP-MCFE to
FH-IP-DDFE, following the approach of Chotard et al. [CDSG+20] who presented a similar
transformation in the non-function-hiding setting. As a consequence, the FH-IP-DDFE
scheme of [AGT21b] entails the only FH-IP-DMCFE so far in the literature.

It is worth noting that all known constructions that guarantee function-hiding security
rely on pairings. A recent work by Ünal [Üna20] shows that in the manner of most
lattice-based approaches, there is little hope to achieve function privacy in IPFE schemes,
in the setting of multi-user or not.

Our Contributions
To the best of our knowledge, the only candidate of FH-IP-DMCFE comes from [AGT21b],
implicitly as a result of their function-hiding FH-IP-DDFE. The implied security of their
FH-IP-DMCFE is selectively indistinguishability-based in the ROM under static corruption,
where the adversary makes all encryption, key generation and corruption queries up front
in one shot, with repetitions w.r.t encryption tags and no repetitions w.r.t key generation
tags. This state-of-the-art leads us to the following question:

How far can we raise the security level of pairing-based function-hiding IP-DMCFE
in the ROM ?

In this paper, we strictly improve on various aspects of security compared with [AGT21b].
Below and in Table 1 are presented a summary of our contributions and a comparison
with existing works:

1. Function-Hiding IP-DMCFE. We construct the first FH-IP-DMCFE that tolerates
adaptive encryption queries (with unbounded repetitions) and adaptive key generation
queries with a fixed polynomially large number repetitions, under static corruption.
The bounded number of repetitions on key generation queries can be polynomially
large and is specified at setup time of the scheme. Our FH-DMCFE thus handles
up to an exponentially large number of mix-and-match of key repetitions under the
same tag tag-f, which is determined by the scheme’s parameters. It uses pairings

2With an appropriate formalization, all function classes in this work, including inner products, satisfy
this property.
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Table 1: We compare our constructions with existing works, in terms of the type of
primitives with function-hiding security (Type), whether the encryption oracle (OEnc) and
key generation oracle (OKeyGen) can be queried adaptively and with repetitions (Oracle
Queries), which assumptions are used for the security proof (Assumptions), and whether
the security is proven in the ROM (3) or not (7) (ROM). The shorthands (sel, adap)
denote selective or adaptive oracle queries. The shorthands (w-rep, bnd-rep, no-rep) indicates
whether the adversary can demand repetitive queries to the same slot and tag unboundedly,
under a fixed bound, or not, in that order. All schemes are defined for the inner-product
functionality of their respective type of primitive (see Def. 6) and consider only static
corruption. Preferred properties are underlined.

Scheme Type
Oracle Queries

Assumptions†† ROM
OEnc OKeyGen

[AGT21b, Section 6.2] FH-IP-MCFE sel,w-rep sel† SXDH 3

[SV23, Section B.3] FH-IP-MCFE adap,w-rep adap† D-Lin 7‡

[AGT21b, Section 6.3] FH-IP-DMCFE? sel,w-rep sel, no-rep SXDH 3

Corollary 1 FH-IP-DMCFE adap,w-rep adap, bnd-rep SXDH 3

† For MCFE, there is no notion of tags for key generation, hence no notion of repetitions.
‡ This is the only FH-MCFE that is provably secure without the ROM. To our knowledge, there is no

FH-DMCFE nor FH-DDFE in the literature that does not use ROs.
†† All mentioned constructions use pairing groups.
? This FH-IP-DMCFE is implied by the FH-IP-DDFE of [AGT21b, Section 6.3].

and is provably secure in the ROM. Details about our construction are explained in
Section 4.2.

2. Technical Contribution. Along the way, we push forward the study of DPVS tech-
niques. We state a novel lemma that shows the indistinguishability of two distributions
in a setting where not all input data is known up front. This lemma proves to be the
key ingredient for the security proof of our FH-IP-DMCFE scheme in the adaptive
setting. Due to its oracle-based general formulation, we believe that the lemma can
find other applications in the future. The formal statement (Lemma 1) and a proof
overview can be found in Section 4.1. Basic definitions for the DPVS framework are
provided in Section 3.2.

2 High-Level Overview in the Selective Setting
In this section, we first describe a straightforward construction of a selective FH-DMCFE for
inner products based on a blackbox FH-IPFE scheme in the spirit of existing FH-IP-MIFE
and FH-IP-MCFE constructions such as [DOT18, AGT21b]. Subsequently, we discuss
the main difficulties that need to be overcome towards adaptive security. Regarding the
notations of the following overview, we let Zq denote the ring of integers with addition and
multiplication modulo q ≥ 2. For a vector x of dimension n, the notation x[i] indicates
the i-th coordinate of x, for i ∈ [n]. We will follow the implicit notation in [EHK+13]
and use JaK to denote ga in a cyclic group G of prime order q generated by g, given
a ∈ Zq. This implicit notation extends to matrices and vectors having entries in Zq, e.g.
J(a, b)K = (ga, gb) ∈ G2.
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Recap: The Function-Hiding MCFE of [AGT21b]. An FH-IPFE scheme iFE =
(iSetup, iKeyGen, iEnc, iDec) based on a pairing group G = (G1,G2,Gt, g1, g2, gt, e, q) en-
ables the sampling of a master secret key imsk← iSetup(1λ) which can be used to generate
functional decryption keys idk ← iKeyGen(imsk, JyK2) for vectors y ∈ ZN

q encoded in G2

and ciphertexts ict← iEnc(imsk, JxK1) associated with vectors x ∈ ZN
q encoded in G1. The

decryption iDec(idk, ict) reveals only the inner product J〈x,y〉Kt of x and y encoded in
Gt and hides all other information about x and y. When we use several IPFE instances
with master secret keys imsk1, . . . , imskn in parallel, we use the shorthands icti(JxK1) and
idki(JyK2) for iEnc(imski, JxK1) and iKeyGen(imski, JyK2).

Recall that MCFE is a special case of DMCFE where a trusted authority is responsible
for the generation of the functional decryption keys as well as the encryption keys (eki)i∈[n]

for the n clients. The key held by the authority is called the master secret key msk. In the
scheme of [AGT21b], the encryption key eki of a client i ∈ [n] consists of a master secret
key imski of a FH-IPFE scheme. The key-generating authority holds msk = (imski)i∈[n].
Given a tuple (i, tag,xi), the encryption algorithm defines an extended vector of the form
Jx̂iK1 = J(xi, ω,0)K1, where ω = H(tag) is a hash of the tag, and returns cti = icti(Jx̂iK1).
The notation 0 in the extended vector x̂i represents additional coordinates that are only
used in the security proof and are 0 in the real scheme. A functional decryption key for a
vector y = (yi)i∈[n] is created by choosing t1, . . . , tn

$← Zq conditioned on
∑

i∈[n] ti = 0,
defining JŷiK2 = J(yi, ti,0)K2 and returning dk = {idki(JŷiK2)}i∈[n]. Decrypting icti(Jx̂iK1)
with idki(JŷiK2) gives 〈xi,yi〉+ωti encoded in Gt. Since the value ti is secret, the term ωti
serves as a mask that hides the partial inner product 〈xi,yi〉. On the other hand, if on has
a ciphertext cti for each client and all ciphertexts are generated w.r.t the same tag, then the
sum of the partial decryptions gives

∑
i∈[n](〈xi,yi〉+ωti) =

∑
i∈[n]〈xi,yi〉+ω ·

∑
i∈[n] ti =∑

i∈[n]〈xi,yi〉, as
∑

i∈[n] ti = 0. The scheme is proven to be secure against selective
adversaries that submit all oracle queries up front.

Our Selectively Function-Hiding DMCFE. In contrast to MCFE, decryption keys in
the DMCFE model are generated non-interactively by n different senders each holding a
secret key ski for i ∈ [n]. Given a tuple (tag-f,yi), sender i produces a partial decryption
key dki, and decryption is possible if all senders provide their partial key w.r.t the
same tag tag-f. Our selective FH-DMCFE is a straightforward extension of the FH-MCFE
of [AGT21b]. Looking at their scheme, we note that decryption keys already consist of n
IPFE keys {idki(JŷiK2)}i∈[n]. Therefore, it seems natural to let each sender generate one
IPFE decryption key. The vectors {ŷi}i∈[n] encode a secret sharing (ti)i∈[n] of 0 which must
now be sampled in a decentralized manner. To do so, we fix a secret sharing (t̃i)i

$← Zn
q of 0

during the (interactive) setup procedure and randomize it by setting (ti)i = (µt̃i)i, where
µ = H(tag-f). Roughly, under the DDH assumption in G2, such a multiple of (t̃i)i cannot
be distinguished from a fresh secret sharing of 0 if the adversary does not obtain several
keys for the same sender-tag pair (i, tag-f). Using this restriction, it is straightforward to
generalize the security proof of [AGT21b] to the case of FH-DMCFE.

Note that both the syntax and security of FH-DMCFE for inner products are symmetric
w.r.t key generation and encryption. Therefore, it is mostly irrelevant if the secret
sharing (t̃i)i is embedded into the decryption keys or the ciphertexts. For the sake of
consistency with our adaptive scheme presented in Section 4.2, we prefer to place it in the
ciphertexts. However, we emphasize that the proof of selective security works either way.
We summarize our construction in Figure 1.

Proof of Selective Security. As for our adaptive scheme, we only consider static
corruptions (see Item 1 of Definition 5). Additionally, we only discuss the proof of one-
challenge security against complete queries (see Items 3 and 4). This is sufficient as in
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Setup(1λ) : Sample (t̃i)i∈[n]
$← Zn

q such that
∑

i t̃i = 0; generate n
IPFE master secret keys {imski}i∈[n]; output ski = imski
and eki = (t̃i, imski) for i ∈ [n].

DKeyGen(ski, tag-f,yi) : Compute JµK2 = H2(tag-f); output dki = idki(JŷiK2) for
ŷi = (yi, µ,0).

Enc(eki, tag,xi) : Compute JωK1 = H1(tag); output cti = icti(Jx̂iK1) for
x̂i = (xi, ωt̃i,0).

Dec({(dki, cti)}i∈[n]) : Run IPFE decryption for all pairs (idki(JŷiK2), icti(Jx̂iK1))
to recover JziKt = J〈xi,yi〉+ µωt̃iKt and find discrete log
of JzKt = J

∑
i∈[n] ziKt.

Figure 1: Our selectively function-hiding DMCFE scheme

Section 5, we show how to remove both restrictions from the security model via a sequence
of generic conversions.

Recall that the one-challenge restriction allows only one tag tag∗ to the encryption oracle
OEnc(i, tag∗,x(0)

i ,x(1)

i ) having x(0)

i 6= x(1)

i . Other tags tag` 6= tag∗ and their corresponding
inputs (x(0)

`,i,x
(1)

`,i) to OEnc are indexed by ` and it holds that x(0)

`,i = x(1)

`,i, so we can omit
the superscript in this case. Furthermore, we add indices to denote repeated queries
to the same client-tag pair. That is, the j-th query to OEnc for client i and tag tag∗

(respectively tag`) is denoted by (x(0,j)

i ,x(1,j)

i ) (respectively x(j)

`,i). In the same manner, there
exists only one tag-f∗ queried to the key-generation oracle ODKeyGen(i, tag-f∗,y(0),y(1))
having y(0) 6= y(1), while for other tag-fk 6= tag-f∗ it holds that y(0) = y(1). We denote the
j̃-th query to ODKeyGen for client i and tag tag-f∗ (respectively tag-fk) by (y(0,j̃)

i ,y(1,j̃)

i )

(respectively y(j̃)

k,i). To summarize, in the one-challenge security game with challenge
bit b $← {0, 1}, the adversary obtains the following decryption keys and ciphertexts:

d(j̃)

i = idki(Jy(b,j̃)

i , µ, 0,0, 0, 0K2) c(j)

i = icti(Jx(b,j)

i , ti := ω · t̃i, 0,0, 0, 0K1)
d(j̃)

k,i = idki(Jy(j̃)

k,i, µk, 0,0, 0, 0K2) c(j)

`,i = icti(Jx(j)

`,i, t`,i := ω` · t̃i, 0,0, 0, 0K1)
(1)

During the entire security proof, we restrict all changes to honest slots i ∈ H because the
admissibility condition (Item 1 of Definition 5) gives that encryption and key generation
queries for corrupted slots i ∈ C are already independent of the challenge bit b, so there is
nothing to show. In the first step, the simulator randomizes the values ti and t`,i for honest
clients i ∈ H while relying on the DDH assumption in G1. Subsequently, the simulator
introduces the vectors x(1)

i and x`,i in the additional 0-coordinates of the ciphertexts of
honest clients i ∈ H.

d(j̃)

i = idki(Jy(b,j̃)

i , µ, 0,0, 0, 0K2) c(j)

i = icti(Jx(b,j)

i , ti, 0, x
(1,j)

i , 0, 0K1)

d(j̃)

k,i = idki(Jy(j̃)

k,i, µk, 0,0, 0, 0K2) c(j)

`,i = icti(Jx(j)

`,i, t`,i, 0, x
(j)

`,i , 0, 0K1)
(2)

This change cannot be noticed by the adversary assuming message-privacy of iFE. In the
next step, the simulator embeds fresh secret sharings (τi)i∈H and (τ`,i)i∈H of 0 in the
ciphertexts for i ∈ H as follows:

d(j̃)

i = idki(Jy(b,j̃)

i , µ, 1 ,0, 0, 0K2) c(j)

i = icti(Jx(b,j)

i , ti, τi ,x
(1,j)

i , 0, 0K1)

d(j̃)

k,i = idki(Jy(j̃)

k,i, µk, 0,0, 0, 0K2) c(j)

`,i = icti(Jx(j)

`,i, t`,i, τ`,i ,x
(j)

`,i, 0, 0K1)
(3)

This step is not complicated but requires some care. Roughly, we use a sequence of hybrids
over the secret sharings (ti)i and (t`,i)i for all `, where in each hybrid we first hardwire the
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product µ · ti (respectively µ · t`,i) in d(j)

i , then rely on the DDH in G2 to obtain random
values t′i (respectively t′`,i). These random values can in turn be split into the original
product µ · ti (respectively µ · t`,i) and a fresh random share τi (respectively τ`,i). To
isolate the values of the current hybrid, we use the additional two coordinates at the end
of the vectors3.

The admissibility conditions (Items 1 and 2 of Definition 5) state for all ji, j̃i that∑
i∈[n]

〈x(0,ji)

i ,y
(0,j̃i)

i 〉 =
∑
i∈[n]

〈x(1,ji)

i ,y
(1,j̃i)

i 〉 and
∑
i∈[n]

〈x(ji)

`,i ,y
(0,j̃i)

i 〉 =
∑
i∈[n]

〈x(ji)

`,i ,y
(1,j̃i)

i 〉

as well as x(0,j)

i = x(1,j)

i and y(0,j̃)

i = y(1,j̃)

i if i ∈ C. From this, it follows for b ∈ {0, 1}4 that

∆(b)

i := 〈x(b,j)

i ,y(b,j̃)

i 〉 − 〈x(1,j)

i ,y(1,j̃)

i 〉 and ∆(b)

`,i := 〈x
(j)

`,i,y
(b,j̃)

i − y(1,j̃)

i 〉

are constant for all repetitions j, j̃, and ∆(b)

i = ∆(b)

`,i = 0 if i ∈ C. Furthermore, we have
that

∑
i∈H ∆(b)

i =
∑

i∈H ∆(b)

`,i = 0. Together, these conditions imply that the distributions

D0 =

{
(τi)i∈H : (τi)i∈H

$← Z|H|
q s.t.

∑
i∈H

τi = 0

}

D1 =

{
(τi)i∈H : (τ ′i)i∈H

$← Z|H|
q s.t.

∑
i∈H

τi = 0, τi := τ ′i −∆(b)

i

}

are identical (and a similar result also holds for all (τ`,i)i∈H). Thus, it is an information-
theoretic change to provide the adversary with

d(j̃)

i = idki(Jy(b,j̃)

i , µ, 1,0, 0, 0K2) c(j)

i = icti(Jx(b,j)

i , ti, τi −∆(b)

i ,x(1,j)

i , 0, 0K1)

d(j̃)

k,i = idki(Jy(j̃)

k,i, µk, 0,0, 0, 0K2) c(j)

`,i = icti(Jx(j)

`,i, t`,i, τ`,i −∆(b)

`,i ,x
(j)

`,i, 0, 0K1)
(4)

Relying again on the function privacy of iFE, the simulator can change to:

d(j̃)

i = idki(J0 , µ, 1, y(1,j̃)

i , 0, 0K2) c(j)

i = icti(Jx(b,j)

i , ti, τi ,x
(1,j)

i , 0, 0K1)

d(j̃)

k,i = idki(Jy(j̃)

k,i, µk, 0,0, 0, 0K2) c(j)

`,i = icti(Jx(j)

`,i, t`,i, τ`,i −∆(b)

`,i,x
(j)

`,i, 0, 0K1)
(5)

When applying similar arguments as in the steps from (3) to (5) in a hybrid over d(j̃)

k,i for
all k, we finally arrive at:

d(j̃)

i = idki(J0, µ, 0,y(1,j̃)

i , 0, 0K2) c(j)

i = icti(Jx(b,j)

i , ti, τi,x
(1,j)

i , 0, 0K1)

d(j̃)

k,i = idki(J0 , µk, 0, y
(j̃)

k,i , 0, 0K2) c(j)

`,i = icti(Jx(j)

`,i, t`,i, τ`,i ,x
(j)

`,i, 0, 0K1)
(6)

At this point, we can remove the vectors x(b,j)

i in c(j)

i which gives us a game that is
independent of the bit b. So the adversary’s advantage is 0 and the proof is finished.

d(j̃)

i = idki(J0, µ, 0,y(1,j̃)

i , 0, 0K2) c(j)

i = icti(J0 , ti, τi,x(1,j)

i , 0, 0K1)

d(j̃)

k,i = idki(J0, µk, 0,y
(j̃)

k,i, 0, 0K2) c(j)

`,i = icti(Jx(j)

`,i, t`,i, τ`,i,x
(j)

`,i, 0, 0K1)
(7)

3Later in the proof for our FH-DMCFE based on DPVS, introducing the new random shares τi, τ`,i is
taken care by Lemma 1, using particularly the DPVS basis changes and DDH. We thus do not write the
random share introduction explicitly in the FH-DMCFE proof and refer to the transitions G0 → G1 in the
proof of Lemma 1 for more details.

4More precisely, the case b = 0 follows from the admissibility condition while for b = 1, we always
have ∆

(b)

i = ∆
(b)

`,i = 0
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Problems for Adaptive Security. In (4), the simulator embeds ∆(b)

i and ∆(b)

`,i into the
ciphertexts. Note that these values do not only depend on the respective encryption query
but also on key generation queries. In the selective setting where all queries are submitted
up front, this does not pose a problem. In the adaptive setting, however, this can lead to
the situation that the challenger needs to embed values into ciphertexts before they were
even input to an oracle query.

To overcome this problem, we provide a concrete instantiation of the underlying
FH-IPFE scheme based on DPVSes. If the simulator gets into a situation where it would
have to use inputs that have not yet been queried by the adversary, we make it guess
them. Even though this guess degrades the probability of a successful efficient simulation
by an exponential factor, it does not help the adversary because we design the games to
have perfectly identical views, thanks to information-theoretic properties of the DPVS
setting. Jumping ahead, dealing with repeated queries for the same tag will be more tricky
in this context. We therefore describe the main technical lemma in Section 4.1. It is worth
noting what is involved in the lemma and how it is used in the proof. The statement
of Lemma 1 considers the indistinguishability of an adversary’s views corresponding to
their interactions with multiple oracles, before and after swapping the indexed contents
of some oracle’s outputs and changing the contents’ indices from b = 1 to b = 0. The
aforementioned oracles in Lemma 1 correspond to the execution of key-generation and
ciphertext oracles of the FH-DMCFE security experiment (see Figure 2), for challenge and
non-challenge queries. Lemma 1 allows the adversary to adaptively query the oracles to
model the situation in the FH-DMCFE security proof, where key-generation and ciphertext
oracles can be queried adaptively. Later on, the oracles in Lemma 1 are relevant whenever
the lemma is applied in the FH-DMCFE security proof. we verify the hypothesis of the
lemma and list the FH-DMCFE security’s oracles outputs in the order of the lemma’s
oracles to affect the correct vectors. A discussion of our adaptively secure FH-DMCFE is
given in Section 4.2.

3 Preliminaries
For integers m and n with m < n, we write [m;n] to denote the set {z ∈ Z : m ≤ z ≤ n}
and set [n] := [1;n]. For a finite set S, we let 2S denote the power set of S, and U(S)
denote the uniform distribution over S. For any q ≥ 2, we let Zq denote the ring of
integers with addition and multiplication modulo q. Given a prime q and an integer N , we
denote by GLN (Zq) the general linear group of degree N over Zq, and use non-boldface
capital letters B,H, . . . for scalar matrices in GLN (Zq). We write vectors as row-vectors,
unless stated otherwise. For a vector x of dimension n, the notation x[i] indicates the i-th
coordinate of x, for i ∈ [n]. We will follow the implicit notation in [EHK+13] and use JaK to
denote ga in a cyclic group G of prime order q generated by g, given a ∈ Zq. This implicit
notation extends to matrices and vectors having entries in Zq, e.g. J(a, b)K = (ga, gb) ∈ G2.
We use boldface letters B,b, . . . for matrices and vectors of group elements, unless stated
otherwise. We use the shorthand ppt for “probabilistic polynomial time”. In the security
proofs, whenever we use an ordered sequence of games (G0,G1, . . . ,Gi, . . . ,GL) indexed by
i ∈ [0;L], we refer to the predecessor of Gj by Gj−1, for j ∈ [L].

3.1 Hardness Assumptions
We state the assumptions needed for our constructions.

Definition 1 (Decisional Diffie-Hellman). In a cyclic group G of prime order q, the
Decisional Diffie-Hellman (DDH) problem is to distinguish the distributions

D0 = {(J1K, JaK, JbK, JabK)} D1 = {(J1K, JaK, JbK, JcK)}.
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for a, b, c $← Zq. The DDH assumption in G assumes that no ppt adversary can solve the
DDH problem with non-negligible probability.

Definition 2 (Decisional Separation Diffie-Hellman). In a cyclic group G of prime order q,
the Decisional Separation Diffie-Hellman (DSDH) problem is to distinguish the distributions

D0 = {(x, y, J1K, JaK, JbK, Jab+ xK)} D1 = {(x, y, J1K, JaK, JbK, Jab+ yK)}

for any x, y ∈ Zq, and a, b $← Zq. The DSDH assumption in G assumes that no ppt
adversary can solve the DSDH problem with non-negligible probability.

It can be shown straightforwardly that AdvDSDH
G (1λ) ≤ 2 ·AdvDDH

G (1λ).

Definition 3 (Symmetric External Diffie-Hellman). In the bilinear setting G = (G1,G2,Gt,
g1, g2, gt, e, q), the Symmetric eXternal Diffie-Hellman (SXDH) assumption makes the DDH
assumption in both G1 and G2.

3.2 Dual Pairing Vector Spaces
We need the Decisional Diffie-Hellman (DDH) assumption in a cyclic group G of prime or-
der q, which assumes no ppt adversary can distinguish {(J1K, JaK, JbK, JabK)} from {(J1K, JaK,
JbK, JcK)} with non-negligible probablity, where the probability is taken over the choices
a, b, c $← Zq and the adversary’s coins. In the bilinear setting G = (G1,G2,Gt, g1, g2, gt, e, q),
the Symmetric eXternal Diffie-Hellman (SXDH) assumption makes the DDH assumption in
both G1 and G2. Formal definitions are given in the full version [NPS24]. Our constructions
rely on the Dual Pairing Vector Spaces (DPVS) framework in the prime-order bilinear group
setting (G1,G2,Gt, g1, g2, gt, e, q), and G1,G2,Gt are all written additively. The DPVS
technique dates back to the seminal work by Okamoto-Takashima [OT10, OT12a, OT12b]
aiming at adaptive security for ABE as well as IBE, together with the dual system
methodology introduced by Waters [Wat09]. In [LW10], the setting for dual systems is
composite-order bilinear groups. Continuing on this line of works, Chen et al. [CLL+13]
used prime-order bilinear groups under the SXDH assumption.

Formalization. Let us fix N ∈ N and consider GN
1 having N copies of G1. Viewing ZN

q

as a vector space of dimension N over Zq with the notions of bases, we can obtain naturally
a similar notion of bases for GN

1 . More specifically, any invertible matrix B ∈ GLN (Zq)
identifies a basis B of GN

1 , whose i-th row bi is JBiK1, where Bi is the i-th row of B. It is
straightforward that we can write B = JBK1 for any basis B of GN

1 corresponding to an
invertible matrix B ∈ GLN (Zq). We write x = (m1, . . . ,mN )B to indicate the representa-
tion of x in the basis B, i.e. x =

∑N
i=1 mi ·bi. At some point when we focus on the indices

in an ordered list L of length `, we write x = (mL[1], . . . ,mL[`])B[L]. Treating GN
2 similarly,

we can furthermore define a product of two vectors x = J(m1, . . . ,mN )K1 ∈ GN
1 ,y =

J(k1, . . . , kN )K2 ∈ GN
2 by x × y :=

∏N
i=1 e(x[i],y[i]) = J〈(m1, . . . ,mN ), (k1, . . . , kN )〉Kt.

Given a basis B = (bi)i∈[N ] of GN
1 , we define B∗ to be a basis of GN

2 by first defining
B∗ := (B−1)> and the i-th row b∗

i of B∗ is JB∗
i K2. It holds that B · (B∗)> = IN the

identity matrix and bi×b∗
j = Jδi,jKt for every i, j ∈ [N ], where δi,j = 1 if and only if i = j.

We call the pair (B,B∗) a pair of dual orthogonal bases of (GN
1 ,GN

2 ). If B is constructed
by a random invertible matrix B $← GLN (Zq), we call the resulting (B,B∗) a pair of
random dual bases. A DPVS is a bilinear group setting G = (G1,G2,Gt, g1, g2, gt, e, q)
with dual orthogonal bases. We denote by DPVSGen the algorithm that takes as inputs G,
a unary 1N , and some random coins r ∈ {0, 1}∗, then outputs a pair of random matrices
(B,B∗) that specify dual bases (B = JBK1,B∗ = JB∗K2) of (GN

1 ,GN
2 ). Further details on

DPVS-related techniques can be found in the full version [NPS24].
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3.3 Decentralized Multi-Client Functional Encryption
The notion of Decentralized Multi-Client Functional Encryption (DMCFE) is introduced
in [CDG+18a] where (1) the number of users is fixed in advanced by a (possibly interactive)
global setup and (2) the key of a user can be an encryption key to encrypt their private
individual data (a “client” in the terminology of [CDG+18a]) or a secret key to generate
a functional key component (a “sender” in the terminology of [CDG+18a]). Moreover,
for efficiency, prior papers (such as [CDG+18a, CDG+18b, ABKW19, ABG19, LT19,
CDSG+20]) considered an additional key combination algorithm that, given n functional key
components (dktag-f,i)i∈[n] generated for the same tag tag-f, outputs a succinct functional
key dktag-f which can be passed to decryption Dec(dktag-f , c). Without loss of generality,
the DMCFE notion in this paper implicitly includes the key combination algorithm in the
decryption algorithm and whenever we refer to other existing DMCFE schemes, they are
syntactically understood as such. The formal definition of DMCFE that is used in this
paper is given below.

Let {Tagλ}λ∈N, {Dλ}λ∈N, {Rλ}λ∈N and {Paramλ}λ∈N be sequences of tag, domain,
range and parameter spaces, respectively. We consider a function class F = {Fn,λ}n,λ∈N,
where each Fn,λ = {fn,λ,(y1,...,yn)}(y1,...,yn) contains functions fn,λ,(y1,...,yn) : Dn

λ → Rλ

described by their parameters (y1, . . . , yn) ∈ Paramn
λ.5

Definition 4 (Decentralized Multi-Client Functional Encryption). A DMCFE scheme E
for F between n senders (Si)i∈[n] and a functional decrypter FD consists of the four
algorithms defined below:

Setup(1λ, 1n): This is a protocol between the senders that eventually generate their own
secret keys ski and encryption keys eki, as well as some optional public parameters pp.
We will assume that all the secret and encryption keys implicitly contain pp.

DKeyGen(ski, tag-f, yi): On input a secret key ski, a tag tag-f ∈ Tag, and parameter
yi ∈ Paramλ, this algorithm outputs a partial decryption key dktag-f,i.

Enc(eki, tag, xi): On input an encryption key eki, a tag tag and a message xi ∈ Dλ, this
algorithm outputs a ciphertext cttag,i.

Dec(d, c): On input a list of functional decryption keys d := (dktag-f,i)
n
i=1 and a list of

ciphertexts c := (cttag,i)
n
i=1, this algorithm runs a key combination if necessary, then

outputs an element d ∈ Rλ or a symbol ⊥.

Correctness. E is correct if for all λ, n ∈ N, (x1, . . . , xn) ∈ Dn
λ , fn,λ,(y1,...,yn) ∈ Fn,λ

having parameters (y1, . . . , yn) ∈ Paramn
λ, and for any tag, tag-f ∈ Tagλ, we have

Pr

d = fn,λ,(y1,...,yn)(x1, . . . , xn)

∣∣∣∣∣∣∣∣∣
(pp, (ski)i∈[n], (eki)i∈[n])←Setup(1λ, 1n)

∀i ∈ [n] : dktag-f,i←DKeyGen(ski, tag-f, yi)

∀i ∈ [n] : cttag,i←Enc(eki, tag, xi)

d := Dec((dktag-f,i)i∈[n], (cttag,i)i∈[n])

 = 1

where the probability is taken over the random coins of the algorithms.

Security. We define function-hiding and standard security for DMCFE. In the seminal
work by Chotard et al. [CDG+18a] and its follow-up study [CDSG+20], the security notion
does not cover the function-hiding requirement for DMCFE or its more general sibling
DDFE. Until recently, the work by Agrawal et al. [AGT21b] abstracted out DMCFE into

5Implicitly, we use a deterministic encoding pλ : Fλ → Paramλ × · · · × Paramλ in order to associate
each function to its parameters.
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the notion of Multi-Party Functional Encryption (MPFE). The authors of [AGT21b] also
used MPFE to spell out the function-hiding security for MCFE as well as for DDFE. The
latter does capture DMCFE as a particular case but for convenience of the reader, we
introduce the detailed function-hiding security for DMCFE, without going through all
the abstraction of MPFE nor of DDFE. Our security definition follows the Game-Playing
Framework in [BR06]: Figure 2 defines the experiment Expfh

E,F,A(1
λ) with procedures

Initialize, ODKeyGen, OEnc, OCorrupt and Finalize; the adversary A runs Initialize, can call
the oracles in any order and any number of times, and finishes the run by calling Finalize
on input the guess b′.

Definition 5 (Function-Hiding Security). Let λ ∈ N be a security parameter. For a
DMCFE scheme E , a function class F = {Fn,λ}n,λ and a ppt adversary A we define the
experiment Expfh

E,F,A(1
λ) as shown in Figure 2 and set H := [n] \ C. The oracles OEnc,

ODKeyGen and OCorrupt can be called in any order and any number of times. The
adversary A is NOT admissible with respect to C,QEnc,QKGen, denoted by adm(A) = 0, if
either one of the following holds:

1. There exists a tuple (i, tag, x(0)

i , x(1)

i ) ∈ QEnc or (i, tag-f, y(0)

i , y(1)

i ) ∈ QKGen such
that i ∈ C and x(0)

i 6= x(1)

i
6 or y(0)

i 6= y(1)

i .

2. There exist tag, tag-f ∈ Tag, two vectors (x(0)

i )i∈[n], (x
(1)

i )i∈[n] ∈ D1 × · · · × Dn and
functions f (0)

n,λ,(y
(0)
1 ,...,y

(0)
n )

, f (1)

n,λ,(y
(1)
1 ,...,y

(1)
n )
∈ F having parameters (y(0)

i , y(1)

i )i∈[n] such
that

• (i, tag, x(0)

i , x(1)

i ) ∈ QEnc and (i, tag-f, y(0)

i , y(1)

i ) ∈ QKGen for all i ∈ H,
• x(0)

i = x(1)

i and y(0)

i = y(1)

i for all i ∈ C, and
• f (0)

n,λ,y
(0)
1 ,...,y

(0)
n

(x(0)

1 , . . . , x(0)
n ) 6= f (1)

n,λ,y
(1)
1 ,...,y

(1)
n

(x(1)

1 , . . . , x(1)
n ).

Otherwise, we say that A is admissible w.r.t C, QEnc and QKGen and write adm(A) = 1.
We call E function-hiding if for all ppt adversaries A,

Advfh
E,F,A(1

λ) :=

∣∣∣∣Pr [Expfh
E,F,A(1

λ) = 1
]
− 1

2

∣∣∣∣
is negligible in λ.

Weaker Notions. We define weaker variants of indistinguishability by restricting the
access to the oracles and imposing stronger admissibility conditions. In this paper we first
present our main technical scheme under some weaker notions, then our final scheme under
stronger notions is obtained following some general lemmas (see Section 5).

1. Security against Static Corruption: The experiment Expstat-fh
E,F,A(1

λ) is the same as
Expfh

E,F,A(1
λ) except that all queries to the oracle OCorrupt must be submitted

before Initialize is called.

2. Security against Selective Challenges: The experiment Expsel-fh
E,F,A(1

λ) is the same
as Expfh

E,F,A(1
λ) except that all queries to the oracles OKeyGen and OEnc must be

submitted before Initialize is called.
6This admissibility condition on x

(0)

i = x
(1)

i for all i ∈ C was introduced in [CDG+18a] then used in all
other works on (D)MCFE [CDG+18a, LT19, ABKW19, ABG19] and later on DDFE [CDSG+20, AGT21b].
A recent work [NPP23] studies the relaxation that removes this condition for (D)MCFE, i.e. allowing
x
(0)

i 6= x
(1)

i for i ∈ C and more attacks are considered admissible, and gives a provably secure DMCFE
candidate computing inner products. We are not aware of any DMCFE scheme in the literature which is
proven secure under the stronger notion from [NPP23].
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Initialize(1λ, 1n):
C,QEnc,QKGen←∅; b $← {0, 1}
(pp, (ski)i∈[n], (eki)i∈[n])←Setup(1λ, 1n)
Return pp

ODKeyGen(i, tag-f, y(0)

i , y(1)

i ):
QKGen←QKGen ∪ {(i, tag-f, y(0)

i , y(1)

i )}
Return dkf,i←DKeyGen(ski, tag-f, y

(b)

i )

OEnc(i, tag, x(0)

i , x(1)

i ):
QEnc←QEnc ∪ {(i, tag, x(0)

i , x(1)

i )}
Return ct←Enc(eki, tag, x

(b)

i )

OCorrupt(i):
C←C ∪ {i}; return (ski, eki)

Finalize(b′):
If adm(A) = 1, return β←(b′

?
= b)

Else, return 0

Figure 2: Security game Expfh
E,F,A(1

λ) for Definition 5

3. One-time Security: The experiment Exp1chal-fh
E,F,A (1λ) is the same as Expfh

E,F,A(1
λ)

except that the adversary must declare up front to Initialize two additional “challenge”
tags tag∗, tag-f∗ ∈ Tag such that for all tag, tag-f ∈ Tag:

• if (i, tag, x(0)

i , x(1)

i ) ∈ QEnc and tag 6= tag∗, then x(0)

i = x(1)

i ,
• if (i, tag-f, y(0)

i , y(1)

i ) ∈ QKGen and tag-f 6= tag-f∗, then y(0)

i = y(1)

i .

4. Security against Complete Challenges: The experiment Exppos-fh
E,F,A(1

λ) is the same as
Expfh

E,F,A(1
λ) except that we add the following condition 3 for adm(A) = 0 that we

call the complete-query constraint:

3. There exists tag ∈ Tag so that a query OEnc(i, tag, x(0)

i , x(1)

i ) has been asked
for some but not all i ∈ H, or there exists tag-f ∈ Tag such that a query
OKeyGen(i, tag-f, y(0)

i , y(1)

i ) has been asked for some but not all i ∈ H.

In other words, we require for an adversary A to be admissible that, for any tag,
either A makes no encryption (resp. key) query or makes at least one encryption
(resp. key) query for each slot i ∈ H.

5. Weak Function-Hiding: We can weaken the function-hiding property by changing
condition 2 for adm(A) = 0. More specifically, we replace it by the following
condition 2’:

2’. There exist tag, tag-f ∈ Tag, (x(0)

i )i∈[n] and (x(1)

i )i∈[n] in D1 × · · · ×Dn and two
functions f (0)

n,λ,(y
(0)
1 ,...,y

(0)
n )

, f (1)

n,λ,(y
(1)
1 ,...,y

(1)
n )
∈ F having parameters (y(0)

i , y(1)

i )ni=1

such that
• (i, tag, x(0)

i , x(1)

i ) ∈ QEnc and (i, tag-f, y(0)

i , y(1)

i ) ∈ QKGen for all i ∈ H,
• x(0)

i = x(1)

i and y(0)

i = y(1)

i for all i ∈ C, and
• f (0)

n,λ,(y
(0)
1 ,...,y

(0)
n )

(x(0)

1 , . . . , x(0)
n ) 6= f (1)

n,λ,(y
(1)
1 ,...,y

(1)
n )

(x(1)

1 , . . . , x(1)
n ) OR

f (0)

n,λ,(y
(0)
1 ,...,y

(0)
n )

(x(0)

1 , . . . , x(0)
n ) 6= f (1)

n,λ,(y
(1)
1 ,...,y

(1)
n )

(x(0)

1 , . . . , x(0)
n ) OR

f (1)

n,λ,(y
(1)
1 ,...,y

(1)
n )

(x(0)

1 , . . . , x(0)
n ) 6= f (1)

n,λ,(y
(1)
1 ,...,y

(1)
n )

(x(1)

1 , . . . , x(1)
n ).

The experiment in this weak function-hiding model is denoted by Expwfh
E,F,A(1

λ).

In this paper we focus on the concrete class of inner products. The function family F ip
n of

bounded-norm inner-product functionalities with n inputs is defined as follows.
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Definition 6 (Inner Product Functionality). For n, λ ∈ N, let Dλ = Paramλ = [−B;B]N

and Rλ = [−nNB2;nNB2], where B = B(λ) and N = N(λ) : N→ N are polynomials. We
define the inner-product functionality F ip = {F ip

n,λ}n,λ∈N for F ip
n,λ = {fn,λ,(y1,...,yn)

: Dn
λ →

Rλ}(y1,...,yn)∈Paramn
λ

as the family of functions

fn,λ,(y1,...,yn)
(x1, . . . ,xn) =

∑n
i=1〈xi,yi〉 .

4 A FH-DMCFE for Inner Products

4.1 Swapping Lemma
In this section we state a technical lemma that will be the basis of the security analysis
of our function-hiding IP-DMCFE. This lemma plays an important role in the proof of
Theorem 1 and is revisited in Section 4.2. As a reminder, we refer to the paragraph
Problems for Adaptive Security in the technical overview of Section 2 for a discussion
on why the oracles in the following statement of Lemma 1 are relevant afterwards in the
FH-DMCFE proof.

Lemma 1 (Swapping). Let λ ∈ N and H = H(λ),K = K(λ), L = L(λ), Ji = Ji(λ), J̃i =

J̃i(λ), N = N(λ) ∈ N where i ∈ [H] and H,K,L, Ji, J̃i, N : N → N are polynomials. Let
J̃ := maxi∈[H]{J̃i}, where the maximum is over polynomial evaluations J̃i(λ) ∈ N. Let
(Bi,B

∗
i ), for each i ∈ [H], be a pair of random dual bases of dimension 2N + 2N · J̃ + 4

in (G1,G2,Gt, g1, g2, gt, e, q). All basis vectors are kept secret. Let R,R1, . . . , RK ∈ Zq

be some public scalars. For i ∈ [H], ` ∈ [L] and k ∈ [K], sample σi, σi,k, r, r`
$← Zq

conditioned on
∑

i∈[H] σi = R and
∑

i∈[H] σk,i = Rk.
We consider the following oracles:

Õd: On input (`, i,y(rep)

`,i ,y
(rep)

′

`,i ) ∈ [L]× [H]× ZN
q × ZN

q , where rep ∈ [Ji] is a counter for
the number of queries of the form (`, i, ?, ?), sample ρ(rep)

`,i
$← Zq and output

d(rep)

`,i = (y(rep)

`,i , y(rep)
′

`,i , r`, 0, ρ(rep)

`,i , 02N ·J̃+1)Bi
.

Ob
d : For b ∈ {0, 1}, on input (i,y(1,j̃i)

i ,y
(0,j̃i)

i ) ∈ [H]× ZN
q , where j̃i ∈ [J̃i] is a counter for

the number of queries of the form (i, ?, ?), sample ρ
(j̃i)

i
$← Zq and output

If b = 0 : d
(j̃i)

i = (y
(1,j̃i)

i , 0N , r, 0, ρ
(j̃i)

i , 02N ·J̃+1)Bi

If b = 1 : d
(j̃i)

i = (0N , y
(0,j̃i)

i , r, 0, ρ
(j̃i)

i , 02N ·J̃+1)Bi .

Oc: On input (i,x(1,ji)

i ,x
(0,ji)

i ) ∈ [H]×ZN
q ×ZN

q , where ji ∈ [Ji] is a counter for the number
of queries of the form (i, ?, ?), sample π

(ji)

i
$← Zq and output

c
(ji)

i = (x
(1,ji)

i , x
(0,ji)

i , σi, π
(ji)

i , 0, 02N ·J̃+1)B∗
i
.

Õc: On inputs (k, i,x(rep)

k,i ) ∈ [K]× [H]× Zq, where rep ∈ [Ji] is a counter for the number
of queries of the form (k, i, ?), sample π(rep)

k,i
$← Zq and output

c(rep)

k,i = (x(rep)

k,i , x(rep)

k,i , σk,i, π(rep)

k,i , 0, 02N ·J̃+1)B∗
i
.
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If
∑H

i=1〈y
(1,j̃i)

i ,x
(1,ji)

i 〉 − 〈y(0,j̃i)

i ,x
(0,ji)

i 〉 = 0 and
∑H

i=1〈y
(1,j̃i)

i − y
(0,j̃i)

i ,x(rep)

i 〉 = 0 for all j̃i ∈
[J̃i], rep, ji ∈ [Ji], then the following advantage is negligible under the SXDH assumption:∣∣∣∣∣Pr[AÕd,O0

d

Õc,Oc

(
1λ, N,H,K,L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
→ 1]

− Pr[A
Õd,O1

d

Õc,Oc

(
1λ, N,H,K,L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
→ 1]

∣∣∣∣∣
≤ (4nJ̃N + 4) ·AdvSXDH

G1,G2
(1λ)

where A can query the oracles Õd,Ob
d ,Oc,Õc adaptively, i.e. the queries can be made in any

order and any number of times respecting the (polynomial) upper bounds K,L, (Ji, J̃i)i∈[H].

We give an informal proof sketch of the main ideas. The full proof is presented in the full
version [NPS24].

Outline of the Proof for Lemma 1. We explain the main steps in our proof as
follows, where details about formal and computational basis changes can be revised from
the examples in Basis Changes of the full version [NPS24]. The proof is done so that
for all the repetitions j̃i ∈ [J̃i], we perform the change from the repetition y

(0,j̃i)

i into
y

(1,j̃i)

i by the j̃i-th block of isolated coordinates in the vectors d
(j̃i)

i . It is crucial that the
polynomially large bound J̃ ≥ maxi∈[n],tag-f∈Tag J̃i,tag-f is known in advance, so as to well
define the dimension of DPVS bases.

We start from the game where the sample given to the adversary A follows D0 and
the changes on vectors throughout the games are put in boxes. We use the notation
0 := 0N and write 0J̃ := 0 ‖ . . . ‖ 0, for J̃ times. Our first step is to exploit the fact
that r $← Zq is a uniformly random value and for each ji ∈ [Ji] all the secret shares σi in
c

(ji)

i sum to a known constant R. This helps us perform a computational basis change on
(Bi,B

∗
i ) and introduce a value r′ $← Z∗

q in di[2N + 2N · J̃ + 4] as well as random secret
sharings of 0, common for ji ∈ [Ji], namely (τi)

H
i=1, (τ

′
k,i)

H
i=1, in (c

(ji)

i [2N +2N · j̃i +4])Hi=1,
(c(rep)

k,i [2N + 2N · j̃i + 4])Hi=1. We use the hypothesis that all basis vectors are kept secret
so that the computational basis change using DDH cannot be detected by the adversary.
More details can be found in the transition G0 → G1.

After G1, we perform a formal duplication to go to G2 in which we duplicate coordinates
[1, N ], [N+1, 2N ] to the J̃ blocks [2N · j̃+4, N+2N · j̃+3], [N+2N · j̃+4, 2N+2N · j̃+3],
where j̃ runs in [J̃ ], in vectors c

(ji)

i , c(rep)

k,i for all i ∈ [H], k ∈ [K], ji ∈ [Ji].

d
(rep)

`,i = ( y
(rep)

`,i y
(rep)′

`,i r` 0 ρ
(rep)

`,i

(
0 0

)J̃
0 )Bi

d
(j̃i)

i = ( y
(1,j̃i)

i 0 r 0 ρ
(j̃i)

i

(
0 0

)J̃
r′ )Bi

c
(ji)

i = ( x
(1,ji)

i x
(0,ji)

i σi π
(ji)

i 0
(
x

(1,ji)

i x
(0,ji)

i

)J̃
τi )B∗

i

c
(rep)

k,i = ( x
(rep)

k,i x
(rep)

k,i σk,i π
(rep)

k,i 0
(
x

(rep)

k,i x
(rep)

k,i

)J̃
τ ′k,i )B∗

i

The duplication is done for all vectors c
(ji)

i , c(rep)

k,i also across all repetitions rep ∈ [J ]. On a
more technical level, this formal basis change will affect all vectors d(rep)

`,i ,di as well, also
across all repetitions j̃i, rep ∈ [J̃i]. Roughly speaking, by the duality of (Bi,B

∗
i ), this basis

change will incur “moving” coordinates [2N · j̃i +4, N +2N · J̃ +3], [N +2N · J̃ +4, 2N +
2N · J̃ +3], for each j̃i ∈ [J̃ ] to [1, N ], [N +1, 2N ] in the d-vectors. In this simple G1 → G2,
the moved coordinates contain 0, so they do not pose any problems.

After G2, in all c-vectors, each of the J̃ blocks [2N · j̃+4, N +2N · j̃+3], [N +2N · j̃+
4, 2N + 2N · J̃ + 3] contains a copy of the coordinates [1, N ], [N + 1, 2N ]. This allows us
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to perform a computational basis change under SXDH in order to swap between [1, N ] and
[2N · j̃i + 4, N + 2N · j̃i + 3] in d

(j̃i)

i , for each j̃i ∈ [J̃i] and J̃i ≤ J̃ by definition. We stress
that for different j̃i, the swap will move contents of [1, N ] to separated coordinates in
different d

(j̃i)

i . In other words, for every j̃i, j̃
′
i, the coordinates [2N · j̃′i + 4, N + 2N · j̃′i + 3]

is well defined for d
(j̃i)

i because j̃i ≤ J̃i ≤ J̃ and we have

d
(j̃i)

i [2N · j̃′i + 4, N + 2N · j̃′i + 3] =

{
y

(1,j̃′i)
i if j̃i = j̃′i

0 if j̃i 6= j̃′i
. (8)

The randomness is taken from ρi at coordinate 2N + 3 in d
(j̃i)

i .

d
(rep)

`,i = ( y
(rep)

`,i y
(rep)′

`,i r` 0 ρ
(rep)

`,i · · · 0 0 · · · 0 )Bi

d
(j̃i)

i = ( 0 0 r 0 ρ
(j̃i)

i · · · y
(1,j̃i)

i 0 · · · r′ )Bi

c
(ji)

i = ( x
(1,ji)

i x
(0,ji)

i σi π
(ji)

i 0 · · · x
(1,ji)

i x
(0,ji)

i · · · τi )B∗
i

c
(rep)

k,i = ( x
(rep)

k,i x
(rep)

k,i σk,i π
(rep)

k,i 0 · · · x
(rep)

k,i x
(rep)

k,i · · · τ ′k,i )B∗
i

As a sanity check, we observe that this change preserves the products d
(j̃i)

i × c
(ji)

i and
d

(j̃i)

i × c(rep)

k,i for all k ∈ [K], j̃i ∈ [J̃i]. Moreover, the computational basis change allows us
to target only the vectors (d

(j̃i)

i )i∈[H] while letting d(rep)

`,i for ` ∈ [L], i ∈ [H] unchanged.
Upon reaching G3, we are ready to approach the centerpiece of our proof. A formal

basis change maintains perfectly identical views for the adversary in two games, resulting
in a 0 difference in winning advantages under efficient simulation. We combine such formal
basis changes with a complexity leveraging argument. In general, these kinds of arguments
degrade the probability of a succesful simulation by an exponential factor. In our case,
however, an exponential multiple of 0 is still 0. This implies that, as long as we restrict
ourselves to formal bases changes that do not rely on any computational assumption, the
simulator can initially guess all queries submitted by the adversary throughout the game,
thus considering the selective game.

Formal basis changes highlight the information-theoretic properties of DPVS. However,
they are often much harder to use than computational changes. The reason is that a
formal basis change affects all vectors, including all repetitions, in the same manner. In
contrast to computational changes, it is not possible to apply changes only to some vectors.
Intuitively, this is why in G2 and G3 we had to move all repetitions d

(j̃i)

i into separate
coordinates to prepare for the formal basis changes.

We now explain the sequence of games on which the complexity leveraging is applied.
We want to perform some sort of swapping between coordinates [2N · j̃i+4, N +2N · j̃i+3]

and [N + 2N · j̃i + 4, 2N + 2N · j̃i + 3] of d(j̃i)

i and reach G6 whose vectors are:

d
(rep)

`,i = ( y
(rep)

`,i y
(rep)′

`,i r` 0 ρ
(rep)

`,i · · · 0 0 · · · 0 )Bi

d
(j̃i)

i = ( 0 0 r 0 ρ
(j̃i)

i · · · 0 y
(0,j̃i)

i · · · r′ )Bi

c
(ji)

i = ( x
(1,ji)

i x
(0,ji)

i σi π
(ji)

i 0 · · · x
(1,ji)

i x
(0,ji)

i · · · τ̃i )B∗
i

c
(rep)

k,i = ( x
(rep)

k,i x
(rep)

k,i σk,i π
(rep)

k,i 0 · · · x
(rep)

k,i x
(rep)

k,i · · · τ̃ ′k,i )B∗
i

The complexity leveraging will be applied to the selective versions G∗
3 → G∗

4 → G∗
5 → G∗

6

and only formal basis changes will be used in between. In these selective versions the
simulator guesses the values (y

(1,j̃i)

i ,y
(0,j̃i)

i ,x
(1,ji)

i ,x
(0,ji)

i )
j̃i∈[J̃i],ji∈[Ji]
i∈[H] and the hybrids are

conditioned on a “good” event that these guesses are correct. The “good” event happens
with fixed probability. This leads to an identical adversary’s view:

Pr[G∗
3 = 1] = Pr[G∗

4 = 1] = Pr[G∗
5 = 1] = Pr[G∗

6 = 1] . (9)

We briefly highlight the selective games’ ideas below:
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• In G∗
3 → G∗

4 a formal basis change is applied to do a quotient by y
(1,j̃i)

i [z] for z ∈ [N ]
over all J̃ blocks [2N · j̃i+4, N +2N · j̃i+3], [N +2N · j̃i+4, 2N +2N · j̃i+3], where
j̃i runs in [J̃i], of c-vectors. We note that thanks to (8), for j̃i 6= j̃′i ∈ [J̃ ], this change
makes d(j̃i)

i [2N · j̃i+4, N +2N · j̃i+3] = 1 while d
(j̃i)

i [2N · j̃′i+4, N +2N · j̃′i+3] = 0
for j̃′i 6= j̃i.

• In G∗
4 → G∗

5, we define a formal basis change that uses the fixed randomness
r′ ∈ Z∗

q in d
(j̃i)

i [2N +2N · j̃i+4] (introduced from G1) to switch 1 to 0 at coordinates
[2N ·j̃i+4, N+2N ·j̃i+4] while marking 1 at coordinates [N+2N ·j̃i+4, 2N+2N ·j̃i+3]

of d(j̃i)

i , for all j̃i. Thanks to the observation at the end of G∗
3, for each repetition

d
(j̃i)

i only the j̃i-th blocks [2N · j̃i+4, N+2N · j̃i+3], [N+2N · j̃i+4, 2N+2N · j̃i+3]

is affected, while other blocks stay 0. We note that unlike d
(j̃i)

i , the vectors d(rep)

`,i stay
invariant because d(rep)

`,i [2N + 2N · J̃ + 4] = 0.

Dually, because of the formal duplication in G2 to all J̃ ≥ J̃i blocks, all c-vectors
will be altered such that the accumulated differences∑
j̃i∈[J̃i]
z∈[N ]

c
(ji)

i [2N ·j̃i+3+z]−c(ji)

i [N+2N ·j̃i+3+z] =
1

r′

∑
j̃i∈[J̃i]

〈y(1,j̃i)

i ,x
(1,ji)

i 〉−〈y(0,j̃i)

i ,x
(0,ji)

i 〉

will be added to τi in c
(ji)

i [2N + 2N · J̃ + 4]. For c(rep)

k,i , similarly, we have the
accumulated differences added to τ ′k,i is∑
j̃i∈[J̃i]
z∈[N ]

c(rep)

k,i [2N · j̃i+3+z]−c(rep)

k,i [N +2N · j̃i+3+z] =
1

r′

∑
j̃i∈[J̃i]

〈y(1,j̃i)

i −y
(0,j̃i)

i ,x(rep)

k,i 〉 .

To show that this compensation for the accumulated differences in the τi and τ ′k,i
cannot be noticed by the adversary, we exploit the conditions on the oracle queries
in the statement of the lemma. Specifically, the condition

∑H
i=1〈y

(1,j̃i)

i ,x
(1,ji)

i 〉 −
〈y(0,j̃i)

i ,x
(0,ji)

i 〉 = 0 implies that 1
r′ (〈y

(1,j̃i)

i ,x
(1,ji)

i 〉 − 〈y(0,j̃i)

i ,x
(0,ji)

i 〉) is constant for
all j̃i ∈ [J̃ ], ji ∈ [Ji] and

∑
i∈[H]

1
r′ (〈y

(1,j̃i)

i ,x
(1,ji)

i 〉 − 〈y(0,j̃i)

i ,x
(0,ji)

i 〉) = 0. From this
observation, it follows that after adding the value 1/r′ · 〈y(1,j̃i)

i ,x
(1,ji)

i 〉−〈y(0,j̃i)

i ,x
(0,ji)

i 〉
to τi for all i ∈ [H], (τi)i∈[H] is still a secret sharing of 0. The same reasoning applies
for 1/r′ · 〈y(1,j̃i)

i − y
(0,j̃i)

i ,x(rep)

k,i 〉 which is added to the secret sharing (τ ′k,i)
H
i=1 in

(c(rep)

k,i [2N + 2N · J̃ + 4])Hi=1.
• In G∗

5 → G∗
6 we redo the quotient, still being in the selective variants conditioned on

the “good” event.
• Finally, we also emphasize that all above DPVS formal basis changes do not depend

on the exponentially large number of combinations (d
(j̃i)

i )i∈[H], up to repetitions
j̃i ∈ [J̃i]. We use the fact that each i ∈ [H] has its vectors written in an independent
pair of bases (Bi,B

∗
i ), along with the crucial property (8) that allows treating each

j̃i-th repetition in an isolated block of the d
(j̃i)

i vector, all (d(j̃i)

i )j̃i∈[J̃i] at the same
time. To summarize, the specific information theoretic property of DPVS formal
basis changes makes sure that all vectors in (Bi,B

∗
i ) will be modified according to

the basis matrices. For different j̃i 6= j̃′i property (8) makes sure those matrices’
change are trivial, i.e. 0 stays 0, in j̃′i-th block of d(j̃i)

i . Furthermore, even though
all J̃i ≤ J̃ blocks of c(ji)

i are changed consistently by the matrices, in terms of the
contents of all d(j̃i)

i , different c
(ji)

i from different i cannot be combined because they
are in different bases. The only constraint is a fixed polynomially large upper bound
J̃ ≥ maxi∈[n],tag-f∈Tag J̃i,tag-f so that the dimensions are well defined.
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The probability calculation of the complexity leveraging makes use of the fact that
the “good” event happens with a fixed probability in conjunction with property (9),
leading to Pr[G3 = 1] = Pr[G4 = 1] = Pr[G5 = 1] = Pr[G6 = 1]. Coming out of
the complexity-leveraging argument, the very last step consists in swapping xi from
coordinates [N + 2N · j̃i + 3, 2N + 2N · j̃i + 3] back to [1, N ] (see G6 → G7) and some
cleaning in order to make the vectors follow D1 (see G7 → G8).

4.2 Basic Construction
This section presents our basic adaptively secure FH-DMCFE construction E = (Setup,
DKeyGen,Enc,Dec) for the function class F ip, where each client encrypts a vector of
length N ∈ N. We obtain the adaptive scheme by giving a concrete instantiation for
the FH-IPFE scheme iFE used in our selectively secure FH-DMCFE from Figure 1. As a
reminder, we refer to the beginning of Section 3.3 for the notations, inlcuding those of
implicit represention for group elements and the bilinear group setting. The notations
of DPVS and the writing of their vectors with respect to the dual bases are recalled in
Section 3.2.

Our FH-IPFE instantiation is extremely simple. The master secret key is a pair of
random dual bases (B,B∗). To generate a key for some vector y ∈ ZN

q , we sample π $← Zq

and return d = (y, π, 0,0)B∗ as decryption key. Similarly, to encrypt a vector x ∈ ZN
q , we

sample ρ $← Zq and output c = (x, 0, π,0)B as ciphertext. Decryption computes JzKt =
c×d, then finds and outputs the discrete log z. When plugging this FH-IPFE into Figure 1,
we obtain our adaptively secure scheme whose details are given in Figure 3.

Correctness. The correctness property is demonstrated as follows:

JoutKt =
n∑

i=1

ci × di =

n∑
i=1

J〈xi,yi〉+ µω · t̃iKt

=

t
n∑

i=1

〈xi,yi〉+ µω ·
n∑

i=1

t̃i

|

t

=

t
n∑

i=1

〈xi,yi〉

|

t

,

and we are using the fact that
∑n

i=1 t̃i = 0. Theorem 1 states that the scheme given
in Fig. 3 is function-hiding, one-challenge secure against complete queries under static
corruption. An unbounded number of ciphertext repetitions is allowed, while the number
of key repetitions is fixed as a parameter of the scheme. In Section 5, we argue that
most restrictions on the security model can be removed by applying a sequence of generic
lemmas.

Theorem 1. The DMCFE scheme E = (Setup,DKeyGen,Enc,Dec) in Fig. 3 for the
function class F ip is one-challenge, function-hiding secure against complete queries under
static corruption in the ROM, if the SXDH assumption holds for (G1,G2).

More specifically, we let qe and qk denote the maximum number of distinct tags queried
to OEnc and OKeyGen, respectively. Furthermore, for i ∈ [n] and tag, tag-f ∈ Tag, we
define J̃i,tag-f to be the numbers of queries of the form OKeyGen(i, tag-f, ?, ?). We require
that maxi∈[n],tag-f∈Tag J̃i,tag-f ≤ J̃ , where J̃ is specified by the DMCFE scheme at Setup time.
Then, for any ppt adversary A against E, we have the following bound:

Adv1chal-pos-stat-fh
E,F ip,A (1λ) ≤

(
(qk + 1) · (4nJ̃N + 4) + 4N + qe + 1

)
·AdvSXDH

G1,G2
(1λ)

The proof of Theorem 1 follows exactly the proof sketch of the selective scheme in Section 2.
As explained in the paragraph Problems for Adaptive Security, the main difficulty
towards adaptive security lies in enabling the steps (3) to (5) in a sequence of hybrids



Ky Nguyen, David Pointcheval, Robert Schädlich 19

Setup(1λ, 1n): Sample matrices (Bi, B
∗
i )← DPVSGen(G, 12N·(J̃+1)+4), for i ∈ [n], of dimen-

sions 2N · (J̃ + 1) + 4 that specify dual orthogonal bases (Bi,B
∗
i )

a. Sample (t̃i)i
$← Zn

q

conditioned on
∑n

i=1 t̃i = 0. Output the public parameters pp := G, secret keys ski and
the encryption keys eki for all i ∈ [n] as follows:

ski := (b∗
i,1, . . . ,b

∗
i,N , B∗

i,N+1, b∗
i,N+2), eki :=

(
t̃i, (bi,1, . . . ,bi,N , Bi,N+1, bi,N+3)

)
DKeyGen(ski, tag-f,yi): Parse ski = (b∗

i,1, . . . ,b
∗
i,N , B∗

i,N+1, b∗
i,N+2), compute H2(tag-f)→

JµK2 and sample πi
$← Zq. Then outputb

di =

N∑
k=1

yi[k]b
∗
i,k + JµK2 ·B∗

i,N+1 + πib
∗
i,N+2 = (yi, µ, πi, 0, 0N+2N·J̃+1)B∗

i
.

Enc(eki, tag,xi): Parse eki = (t̃i, (bi,1, . . . ,bi,N , Bi,N+1, bi,N+3)), compute H1(tag)→ JωK1
and sample a random scalar ρi

$← Zq. Then outputc

ci =

N∑
k=1

xi[k]bi,1 + t̃iJωK1 ·Bi,N+1 + ρibi,N+3 = (xi, t̃iω, 0, ρi, 0N+2N·J̃+1)Bi .

Dec(d, c): Parse d := (di)i∈[n] and c := (ci)i. Compute JoutKt =
∑n

i=1 ci ×di, then find and
output the discrete log out.

aFor each i ∈ [n], we denote j-th row of Bi (resp. B∗
i ) by bi,j (resp. b∗

i,j). Similarly, Bi,k

(respectively B∗
i,k) denotes the k-th row of the basis changing matrix Bi (respectively B∗

i ).
bThroughout the computation of di, only the hash value JµK2 ∈ G2 is used, never µ in the clear.
cThroughout the computation of ci, only the hash value JωK1 ∈ G1 is used, never ω in the clear.

Figure 3: FH-DMCFE scheme E = (Setup,DKeyGen,Enc,Dec) for inner products. We
work in the prime-order bilinear group setting G = (G1,G2,Gt, g1, g2, gt, e, q) and use two
full-domain hash functions H1 : Tag→ G1 and H2 : Tag→ G2. Let J̃ = poly(λ).

without knowing ∆(b)

i and ∆(b)

`,i in advance. In the DPVS setting, the transition from one
hybrid to the next corresponds exactly to an application of Lemma 1. Even though J̃ is
fixed, it can be polynomially large leading to an exponentially number of combinations of
key repetitions, this is also handled by Lemma 1. We refer to the high level in section 4.1.
The full proof of theorem 1 can be found in the full version [NPS24].

5 Upgrading Security
In this section, we give a sequence of generic lemmas that can be used to strengthen the
security model of our basic FH-DMCFE construction from Section 4.2. Specifically, we show
how to remove the complete-query constraint and the restriction to one-challenge security.
In this way, we obtain an FH-DMCFE for inner products whose only restrictions on the
security model are static corruptions and a polynomially bounded number of repetitions for
decryption keys.

Security against Incomplete Queries. To remove the complete-queries constraint,
previous works [CDSG+20, AGT21b] make use of a technique called all-or-nothing encap-
sulation (AoNE). Roughly, AoNE allows all parties of a group to encapsulate individual
messages, that can all be extracted by everyone if and only if all parties of the group
have sent their contribution. Otherwise, no message is revealed. In the constructions
of [CDSG+20, AGT21b], such an AoNE layer is added on top of both ciphertexts and
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keys. Intuitively, this approach allows the following reasoning: if an adversary makes
encryption queries for all (honest) clients under some tag tag (i.e. the global query is
“complete”), then the AoNE scheme allows to obtain all ciphertexts, and we can rely on the
security of the DMCFE scheme that is secure against complete challenges. On the other
hand, if the adversary queries only some but not all honest clients (i.e. the global query
is “incomplete”), then the security of the AoNE scheme guarantees that the adversary
does not learn anything about the encapsulated messages. While this construction is well
known, previous constructions prove only selective security, even if the employed AoNE
scheme is adaptively secure. Therefore, we think it is important to show that this AoNE
layer indeed preserves adaptive security if the underlying scheme, which is only secure
against complete queries, has this property.

More specifically, the notion of AoNE is a particular functionality of DDFE introduced
by Chotard et al. [CDSG+20]. In [AGT21b], AoNE also serves as a building block for their
FH-DDFE scheme, and it is pointed out that function-hiding and standard security are the
same for AoNE, as there is no concept of keys. Since we are focusing on the less general
notion DMCFE, we define AoNE in a less general context as a functionality for DMCFE.

Definition 7 (All-or-Nothing Encapsulation). For n, λ ∈ N, let Tagλ = Rλ = {0, 1}poly(λ),
Kλ = ∅, Mn,λ,pub = [n]×Tagλ andMλ,pri = {0, 1}L for a polynomial L = L(λ) : N→ N.
The all-or-nothing encapsulation functionality f aone = {f aone

n,λ : {[n]} × ({[n]} ×Mλ)
n →

Rλ}n,λ∈N is defined via

f aone
n,λ ([n], (i,mi)i∈[n]) =

{
(xi)i∈[n] if condition (∗) holds
⊥ otherwise

for all n, λ ∈ N, where {[n]} is a singleton consisting of [n] as its only member, and
condition (∗) holds if there exists tag ∈ Tagλ such that for each i ∈ [n], mi is of the form
(mi,pri := xi ∈ {0, 1}L,mi,pub := ([n], tag) ∈Mn,λ,pub).

This means in particular that DKeyGen is unnecessary and Dec works without taking secret
keys as input. The DDFE constructions from [CDSG+20] yield two constructions of DMCFE
for the function class AoNE as per Definition 7. A first generic construction [CDSG+20,
Section 4] from identity-based encryption is secure in the standard model. Another
concrete construction [CDSG+20, Section 5] from bilinear maps under the Decisional
Bilinear Diffie-Hellman (DBDH) assumption is proven secure in the ROM.

We present our result in form of a generic conversion that turns any one-challenge
DMCFE scheme secure against complete queries into one that is also secure against
incomplete queries.

Lemma 2. Assume there exist (1) a one-challenge (weakly function-hiding) DMCFE
scheme Epos for a function class F that is secure against complete queries, and (2) an
AoNE scheme Eaone whose message space contains the ciphertext space of Epos. Then
there exists a one-challenge (weakly function-hiding) DMCFE scheme E for F that is even
secure against incomplete queries. More precisely, for any ppt adversary A, there exist ppt
algorithms B1 and B2 such that

Adv1chal-xxx-wfh
E,F,A (1λ) ≤ 12 ·Adv1chal-pos-xxx-wfh

Epos,F,B1
(1λ) + 12 ·Adv1chal-xxx-wfh

Eaone,f aone,B2
(1λ) ,

where xxx ⊆ {stat, sel}.

Our conversion simply adds a layer of DMCFE for AoNE on top of both ciphertexts and
keys. On an intuitive level, our simulator initially guesses whether or not the oracle queries
for the challenge tag tag-f∗ (or tag∗) will be complete. If the guess was “complete” and
this guess turns out to be correct at the end of the game, then the simulator attacks the
underlying DMCFE scheme that is assumed to be secure against complete queries. If the
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guess was “incomplete” and the guess is correct, then the simulator attacks the security of
the AoNE scheme. If the guess was incorrect (which happens with probability 1/2), then
the simulator aborts with a random bit. In this way, we can upper bound the advantage
of a distinguisher between two successive hybrids in terms of the advantages that efficient
adversaries can achieve against the underlying AoNE and DMCFE schemes. We point
out that this argument crucially relies on the one-challenge setting. Due to the guess
on the (in)completeness of the oracle queries, we lose a factor 1/2 in the security proof.
Thus, a hybrid argument over a polynomial number of incomplete queries would incur an
exponential security loss. Therefore, it is important to add security against incomplete
queries in the one-challenge model.

Details about the conversion as well as the proof are given in the full version [NPS24].
We mention that a concurrent work by Shi and Vanjani [SV23] presents a similar conversion
in the MCFE setting.

Security against Multiple Challenges. It remains to discuss how a one-challenge
FH-DMCFE scheme for inner products can be made resistant against multiple challenge
queries. First, observe that the equivalence of one-challenge and multi-challenge security
in the standard setting (without function privacy) is trivial. Indeed, the proof can be
done by a sequence of hybrids over the different tags queried to the encryption oracle.
This approach, however, does not directly generalize to the function-hiding setting. The
problem is that now both encryption and key-generation queries depend on the challenge
bit b ∈ {0, 1}. Since ciphertexts and keys can be arbitrarily combined in general, such
a sequence of hybrids leads to a situation where an adversary is able to mix ciphertexts
that encrypt the left message with keys generated for the right function or vice versa.
However, the function-hiding admissibility does not provide any security guarantees in
the case of such a mixed decryption. Therefore, we cannot change ciphertexts and keys
one by one anymore. We solve this problem by first proving security against multiple
challenges in the weakly function-hiding setting. This model provides us exactly with
the necessary guarantee for mixed decryptions, which allows a hybrid argument over all
function and message tags to subsequently swap keys and ciphertexts. Afterwards, we
apply another standard transformation that turns weakly function-hiding DMCFE schemes
for inner products back into full-fledged function-hiding DMCFE (see Lemma 4). Previous
works [LV16, ACF+18] presented that transformation for single-input and multi-input FE
schemes.

We state the formal lemmas below. The proofs are standard and the latter is very
similar to [LV16, ACF+18], but we give them in the full version [NPS24] for completeness.

Lemma 3. Let E = (Setup,DKeyGen,Enc,Dec) be a DMCFE scheme for the function class
F . If E is one-challenge weakly function-hiding, then it is also weakly function-hiding.
More specifically, for any ppt adversary A, there exists a ppt algorithm B such that

Advxxx-wfh
E,F,A (1λ) ≤ (qe + qk) ·Adv1chal-xxx-wfh

E,F,B (1λ) ,

where qe and qk denote the maximum numbers of different tags tag and tag-f that A can
query to OEnc and ODKeyGen respectively, and xxx ⊆ {stat, sel, pos}.

Lemma 4. If there exists a weakly function-hiding DMCFE scheme E for F ip, then there
exists a (fully) function-hiding DMCFE scheme E ′ for F ip. More precisely, for any ppt
adversary A, there exists a ppt algorithm B such that

Advxxx-fh
E′,F ip,A(1

λ) ≤ 3 ·Advxxx-wfh
E,F ip,B(1

λ) ,

where xxx ⊆ {stat, sel, 1chal, pos}.



22 Decentralized Multi-Client Functional Encryption with Strong Security

Concrete Instantiation. Given Lemmas 2, 3, and 4, we now generically transform our
FH-DMCFE from Section 4.2 to upgrade its security. Specifically, we first apply Lemma 2
and follow the generic IBE-based AoNE from [CDSG+20, Section 4]. We use any adaptively
secure pairing-based IBE [CLL+13, JR17] under SXDH7 to obtain generically a DMCFE
for AoNE, in order to allow incomplete queries. We then use Lemma 3 to allow multiple
challenges, while downgrading from function-hiding to weak function-hiding. Finally, we
apply Lemma 4 to re-establish full-fledged function-hiding. The final scheme is summarized
in the below corollary, with newly accomplished properties being underlined.

Corollary 1. There exists an FH-DMCFE scheme for the function class F ip that is adap-
tively function-hiding secure against static corruption, while allowing unbounded repetitions
for ciphertext queries and a fixed polynomially large number of repetitions for key-generation
queries, under the SXDH assumption in the ROM.
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