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Abstract. Pattern matching methods are essential in various applications where users
must disclose highly sensitive information. Among these applications are genomic
data analysis, financial records inspection, and intrusion detection processes, all of
which necessitate robust privacy protection mechanisms. Balancing the imperative
of protecting the confidentiality of analyzed data with the need for efficient pattern
matching presents a significant challenge.
In this paper, we propose an efficient post-quantum secure construction that enables
arbitrary pattern matching over encrypted data while ensuring the confidentiality of
the data to be analyzed. In addition, we address scenarios where a malicious data
sender, intended to send an encrypted content for pattern detection analysis, has the
ability to modify the encrypted content. We adapt the data fragmentation technique
to handle such a malicious sender. Our construction makes use of a well-suited
Homomorphic Encryption packing method in the context of fragmented streams and
combines homomorphic operations in a leveled mode (i.e. without bootstrapping) to
obtain a very efficient pattern matching detection process.
In contrast to the most efficient state-of-the-art scheme, our construction achieves
a significant reduction in the time required for encryption, decryption, and pattern
matching on encrypted data. Specifically, our approach decreases the time by factors
of 1850, 106, and 245, respectively, for matching a single pattern, and by factors of
115, 105, and 12, respectively, for matching 210 patterns.

Keywords: Pattern matching over encrypted strings · streamed encryption · data
fragmentation · multiple distance computation.

1 Introduction

While data encryption is undoubtedly a step forward in protecting users’ privacy and
confidentiality on the Internet, it raises significant security concerns. The continued
increase in the use of data encryption of network traffic provides cybercriminals with
new opportunities to hide malware from protection systems. This is because secure
communication protocols (e.g., TLS) are generally based on standard encryption algorithms
(e.g., RSA, AES) that do not allow partial processing of encrypted data, making it difficult
to detect intrusion on the network. Intrusion Detection on encrypted streams is not feasible.
To overcome the previous limitation, several encryption algorithms allowing a specific set
of functions to be performed on encrypted data have been proposed.
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1.1 Related Work

Pattern matching over encrypted data can be provided using versatile techniques such
as fully homomorphic encryption (FHE) [Gen09a, Gen09b] and functional encryption
(FE) [BSW11], which allow the evaluation of arbitrary functions over encrypted data.
Still, these techniques are often impractical because of their very high complexities.
To overcome the previous limitations, several searchable encryption techniques (e.g.,
[ABC+08, CS15, KMO18, SWP00]) allowing to perform specific functions have been
proposed. The main idea consists of (1) allowing authorized entities to search for specific
predefined (i.e., chosen before the data encryption) patterns within a given encrypted
data, and (2) preventing unauthorized entities from learning any information about the
encrypted data. Nevertheless, since the patterns to be searched should be pre-chosen before
data encryption, most existing searchable encryption techniques support only specific
types of searches such as database searches where records are already indexed by the
pattern to be searched, and are useless in case in which the set of patterns to be searched
are not known to the data encryptor before encryption. To circumvent the previous
limitation, the authors in [SLPR15] propose BlindBox, a tockenization-based approach
that divides the data to be encrypted into segments of the same size ℓ, encrypts each of
those segments using a searchable encryption scheme where each segment represents a
pattern that can be searched. Nonetheless, BlindBox is useful only when all patterns are
of the same length, which is clearly a very strong assumption. In addition, even if all
the patterns to be searched have the same length, BlindBox does not provide a correct
detection since it cannot detect a pattern that straddles two fragments. In [CDK+17],
BlindIDS, a public key variant of BlindBox has been proposed. It additionally ensures
pattern indistinguishability to the entity performing the pattern matching. Yet, BlindIDS
suffers from the same limitations of BlindBox.

To overcome the aforementioned limitations of BlindBox and BlindIDS, a new provably
correct (i.e., without false negatives or false positives) approach allowing patterns of
arbitrary length to be searched against encrypted data using constant-size trapdoor has
been proposed in [DFOS18]. However, the previous improvement comes at the cost of a
few weaknesses which heavily impact the practicability of the technique. First, the size of
the public key required by [DFOS18] significantly increases with the size of the data to be
analyzed and the considered alphabet. Second, the number of required pairings for testing
the presence of a pattern at some position depends linearly on the maximum occurrence
of a same symbol in the pattern which significantly increases the computational cost of
the matching algorithm. Third, the security of [DFOS18] relies on a quite strong, ad-hoc
interactive assumption.

In [BCC20], the authors successfully addressed some of the aforementioned limitations.
The work introduces a promising fragmentation approach (see Section 2.5 for more details)
that consists of splitting the data to be analyzed into two sets of non-overlapping fragments
F and F such that, ∀Fi ∈ F , F i ∈ F , Fi straddles F i. Intuitively, the fragmentation
is performed in such a way that, if a pattern is present in the data to be analyzed,
regardless its position, it will be entirely contained by a fragment in F or F . Thanks
to this fragmentation technique, [BCC20] reduces significantly the size of the required
public key by transforming the problem of searching on large data to the one of searching
on several small data fragments. In addition, compared to [DFOS18], the construction
proposed in [BCC20] reduces the pattern matching complexity, since regardless of the
length and the content of the pattern to be matched, it requires only two pairing operations
to test the presence of the pattern at one position of the data fragment. Recently, relying
on the aforementioned fragmentation technique, [BCS21] proposed a construction that
further reduces the size of the required public key and improved the security by considering
EXDH [CPST15], a static variant of the Decision Diffie-Hellman (DDH) assumption. Very
recently, it has been shown in [BCS23] that the proposed fragmentation technique can
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be used to build a generic transformation from Hidden Vector Encryption to Stream
Encryption supporting Pattern Matching leading to better features than existing ones.
Unfortunately, the constructions proposed in [BCC20, BCS21, BCS23] are still suffering
from the following two main limitations.

First, the data fragmentation technique used in these constructions is performed by the
data sender before encryption. Hence, the fragmentation should be honestly performed by
the data sender to allow the pattern matching service provider to correctly perform pattern
matching on the encrypted data. Nevertheless, the considered constructions are mainly
proposed to bring solutions allowing to perform deep packet inspection (DPI) on encrypted
traffic. Obviously, in the DPI scenario, the traffic sender should rather be considered as a
malicious entity as it may intentionally include malicious content in the traffic. As they are
defined, the constructions in [BCC20, BCS21, BCS23] do not allow the pattern matching
service provider to check whether the fragmentation is correctly performed by the data
sender. Hence, the latter can easily disable pattern detection by making the malicious
pattern straddling two fragments Fi and Fi+1 in F and replacing the data in fragment F i

by random content.
Decryption would enable detection of crafted streamed content, however decrypting

a malicious message without processing might be an issue, especially in scenarios where
the receiver outsources the detection process to a third party. In such a case, there’s a
significant risk associated with retaining decrypted malicious content in the receiver’s
memory. Without host-based malware detection capabilities, the decrypted content poses a
tangible threat in-memory execution. This could potentially exploit vulnerabilities within
the receiver’s operating system, leading to severe consequences. In this work, we address
this concern by avoiding decrypting the message in the case that it matches the pattern.

As such, the constructions proposed in [BCC20, BCS21, BCS23, DFOS18] did not
explicitly consider a decryption algorithm. The authors of these constructions argue
that decryption functionality can be straightforwardly added either (1) by encrypting the
exchanged data stream under a conventional encryption scheme, or (2) by issuing a trapdoor
for all characters in the alphabet used to encode the exchanged data. Unfortunately, as
explained above, when considering DPI scenario, the data sender should be considered as a
malicious entity which makes the solution (1) useless since it can allow the sender to easily
disable the detection by sending the malicious content only in the data encrypted using the
conventional encryption scheme. In addition, the usage of the solution (2) to decrypt data
requires a number of pairings that grows linearly with the size of the exchanged data and
the size of the considered alphabet, which quickly becomes cumbersome (See Section 5).

1.2 Our Contributions
Considering the aforementioned state of the art, in this paper, we propose a construction
that improves the correctness, the efficiency, and enhances the security model of the
existing pattern matching on encrypted data solutions.

Correctness in the presence of malicious data sender. As discussed in section 1.1,
the data fragmentation technique introduced in [BCC20] helps to reduce the size of the
public key as well as detection complexity, but it could make the proposed constructions
useless when a malicious sender is considered. In this work, we design a construction that
can operate the data fragmentation technique while allowing to correctly perform pattern
matching over encrypted data when the latter is fragmented and encrypted by a malicious
sender. More specifically, our construction requires the sender to fragment and encrypt
only the set of fragments F , then allows the pattern matching service provider to build
the encrypted data in the set of fragments F on the fly (at detection time) to check if
the pattern straddles two consecutive fragments in F . While our goal is not to detect
malicious behaviour per se, we aim to ensure detection correctness even in the presence of
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Table 1: Complexity and ensured properties comparison between related work and our
primitive. The scalars m, L, |S| denote respectively the length of the traffic to encrypt,
the length of the longest pattern to be queried, and number of characters in the plaintext
alphabet. As all the schemes we compare are based on the fragmentation paradigm, the
comparison is done using one fragment i.e. n = m where n is the length of one fragment.
The "PQ" row specifies whether the construction is post-quantum or pre-quantum, the
"MS" row specifies whether the construction can deal with malicious data sender, and the
"PI" row specifies whether the construction is pattern indistinguishable (i.e., the entity
performing the pattern matching can learn nothing about the matched patterns). In
addition, we used (✓) to denote that the property is provided under specific conditions.
For each scheme, we report the running time for the encryption, decryption, and pattern
matching (Test) operations where n = 1000, L = 100, and |S| = 256. All measurements
are taken on the same system (see Section 5 for the details of our experimental setup).
Scheme SEST [DFOS18] ∗ AS3E [BCC20] ∗ SEPM [BCS21] ∗ This work †
Structure Pairings Pairings Pairings Lattices
MS ✗ ✗ ✗ ✓

PI ✗ (✓) ✗ ✓

PQ ✗ ✗ ✗ ✓

Enc Complexity 2n 4n 4n + n/L n/(2L)
Time ‡ 184 ms 361 ms 370 ms 0.2 ms

Dec Complexity. n|S| n|S| n|S| N/(2L)
Time ‡ 7 · 104 ms 7 · 104 ms 7 · 104 ms 0.04 ms

Test Complexity. n(L + 2) 2n 2n n/L
Time ‡ 3129 ms 196 ms 196 ms 0.8 ms

* For pairing-based constructions, encryption operation complexity is expressed in number of group exponentiations,
while decryption and test operations complexities are expressed in number of pairings.

† For our construction, the encryption, decryption, and test operations complexities are expressed respectively in the
number of homomorphic encryption, number of homomorphic decryption, and number of homomorphic multiplication.

‡ For reported experiments, we use Barreto-Naehrig curve BN254 [PSJNB11] for instantiating SEST, AS3E, and SEPM,
and BFV [Bra12, FV12] with N = 2048 for our construction.

adversarial attempts to cause false negatives by modifying the contents. Thus, our threat
model addresses these misbehaviors to guarantee detection correctness, against active
senders trying to evade detection.

Performance and security improvement. In contrast to [BCC20, BCS21, DFOS18]
which are using pairing-based constructions, the construction we propose in Section 4 relies
on Ring-Learning With Error (R-LWE) based somewhat homomorphic encryption (SHE).
The benefits are threefold. First, compared to the most efficient state of the art scheme
[BCS21], our construction successfully manages to reduce the time needed for encryption,
decryption, and matching a pattern on encrypted data by a factors of 370, 7 · 104, and
200 respectively. Another appealing feature of our scheme is the ability to ensure pattern
indistinguishability to the entity performing the pattern matching operation. Finally, our
construction is secure against quantum attacks assuming that the ring LWE assumption is
post-quantum secure, i.e., hard to break in quantum polynomial-time.

The construction we propose in this paper enables the previous contributions while
providing all the advantages of [BCC20, BCS21], namely, arbitrary-length pattern matching
on arbitrary ciphertexts as well as data and pattern indistinguishability to the entity
performing pattern matching. To give a better understanding of the advantages of our
construction compared to [DFOS18, BCC20, BCS21], we provide in Table 1 a comparative
overview of their asymptotic complexities, their ability to deal with malicious data sender,
and their provided security properties. We provide in Section 5 a more detailed evaluation
of the efficiency of our proposed construction.
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Paper outline. The paper is organized as follows. Section 2 gives the preliminaries.
Section 3 introduces the system and the security model considered in this work. Section 4
details our construction and proves the security results. Section 5 details the performance
of our construction. Finally, Section 6 concludes the paper.

2 Preliminaries
2.1 Notation
We use the symbols Z and Q to denote the ring of integers and the field of rational numbers
respectively.

For a vector V = (v0, v1, · · · , vk−1) ∈ Qk, we denote by ∥V ∥∞ the ∞-norm defined
as maxk

i=0 |vi|. Moreover, for 0 ≤ i ≤ ℓ − k, we denote by V (i) = (vi, vi+1, · · · , vi+ℓ−1)
the i-th sub-vector of A of length ℓ ≤ k. Furthermore, we denote by ⟨V1, V2⟩, hw(V ) and
d(V1, V2) the inner product of two equal size vectors, the Hamming weight (number of
non-zero coefficients) of a vector and the Hamming distance between two binary vectors
respectively.

We use N to denote the polynomial degree which is a power-of-two integer and define
the base ring R := Z[X]/(XN + 1). For a polynomial a :=

∑N−1
i=0 aiX

i, the infinite
norm is defined as ∥a∥∞ := maxi ai and the expansion factor of a ring R is defined as
δ := sup{ ∥ab∥

∥a∥∥b∥ , a, b ∈ R⋆}. By taking R as the cyclotomic polynomial equals to XN + 1,
the worst-case bound for the polynomial multiplication expansion factor is δ = N1. In our
construction, the expansion factor will be used to characterize the worst-case noise growth.

2.2 Gaussian distributions
Let d ≥ 1 and σ ≥ 0. For all x ∈ Rd, we denote by ρσ(x) = exp(−∥x∥2

/σ2) the Gaussian
function centered at 0 over Rd. We will use χσ to denote a distribution on R statistically
close to a discrete centered Gaussian distribution of standard deviation σ. We suppose
that χσ is B-bounded, which means that if an integer vector u is sampled from χσ, then
∥u∥∞ ≤ B, and we have B ≈ σ

√
N (with high probability). In our construction, the secret

and noise often follow the same B-bounded distribution, though in practice, we often take
the ternary uniform distribution over {−1, 0, 1}.

2.3 FHE ciphertexts
In this section, we introduce the definitions of FHE ciphertexts encrypting either ring or
integer elements.

2.3.1 RLWE encryption.

We make use of the ring LWE encryption from [FV12, Bra12], called BFV. It is defined
using parameters N , q, t, and σ. In most of the BFV implementations, the modulus q is
taken as a prime number satisfying q ≡ 1 mod 2n, which defines the base ring Rq = R/qR
of the ciphertext space. The modulus t ≤ q is used to define a plaintext space Rt = R/tR.
We denote ∆ := ⌊ q

t ⌋ and the reminder on division of q by t as rt(q).

• rlwe.KeyGen: we take s ∈ R where each of its coefficients is drawn from χσ such
that s ∈ R, and sample p1 ∈ Rq at random and an error e ← χσ such that e ∈ R.
We set the public key pk = (p0, p1) with p0 = −(p1 · s + e) ∈ Rq and sk = s as

1We will take δ = N . However, in practice, it was shown that δ is much closer to C
√

N , with C not
higher than 2.
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the secret key. It additionally defines a relinearization key that is used to perform
homomorphic multiplication between polynomial ciphertexts. The public parameters
contains (N, t, q, pk, rlk).

• rlwe.Enc: given the public key pk = (p0, p1) and a plaintext m ∈ Rt, the encryption
procedure samples e0, e1 ∈ R with coefficients sampled from χσ. It then computes a
"fresh" ciphertext as: (c0, c1) = (p0 · u + e0 + ∆m, p1 · u + e1) ∈ R2

q . In the following,
a ring LWE (or RLWE) encryption of m under public key pk will be denoted as
rlwe.Encpk(m) or rlwe.Enc(m) when pk can be made implicit.

• rlwe.Dec: given a secret key sk = s and (c0, c1), it computes c0+s·c1 ∈ Rq which gives
∆·m−e·u+e1 ·s+e0. It outputs ⌊m⋆

∆ ⌉. The error associated to the ciphertext (c0, c1)
is denoted Err((c0, c1)) := ⌊ c0+s·c1−∆·m

∆ ⌋. In the following, a ring LWE decryption of
a ciphertext c under secret key sk will be denoted as rlwe.Decsk(m).

2.3.2 Homomorphic Operations.

For sake of simplicity, we present the homomorphic operations in an abstract way and
develop the noise growth analysis later in our constructions sections. We let c and c′ be
two ciphertexts encrypting m and m′ respectively:

• Add(c, c′): given two ciphertexts c and c′ in input, encrypting m and m′ respectively,
it outputs c + c′ which is an encryption of m + m′ and we have: ∥Err(Add(c, c′))∥∞ ≤
∥Err(c)∥∞ + ∥Err(c′)∥∞.

• pMult(a, c): given polynomial a and an RLWE ciphertext c encrypting m, it outputs
a · c which is an RLWE encyption of a ·m such that ∥pMult(a, c)∥∞ ≤ δ ∥a∥ · Err(c).

• Mult(rlk, c, c′): it computes the product of c and c′, which gives a ciphertext of
m ·m′ under secret s2 which induces a first error; it then makes use of rlk to switch
back to an encryption of m · m′ under secret s, which adds an additional noise.
Relinearization can be optional or postponed later in the computation at the price
of having larger ciphertexts.

• Rotate(c, j): given a RLWE ciphertext c ∈ rlwe.Encpk(m(X)), m(X) =
∑N−1

i=0 miX
i

in Rt[X] and an index j ∈ [0, N −1], it outputs an RLWE encryption of m′(X), given
by:

Xj ·m(X) =
N−1−j∑

i=0
miX

i+j +
N−1∑

i=N−j

miX
i+j ·X−N

=
j−1∑
k=0
−mk+N−jXk +

N−1∑
k′=j

mk′−jXk′
,

taking k = i + j −N and k′ = i + j. In other words, it outputs a polynomial whose
coefficients are rotated by j positions. Note that if j < N , then Rotate(c, j) outputs
an RLWE encryption of

∑N−1−j
i=0 miX

i+j =
∑N−1

k=j mk−jXk.

If (c0, c1) is a fresh encryption of m, note that we have:

∥c0 + s · c1 −∆ ·m∥∞ ≤∥−e · u∥∞ + ∥e1 · s∥∞ + ∥e0∥∞
≤2δB2 + B = B(2δB + 1)

And if the norm of the noise of a fresh ciphertext is such that ∥Err((c0, c1))∥∞ ≤ ∆
2 ,

then rlwe.Dec outputs the correct message, which after calculation amounts to have
2δB2 + B = B(2δB + 1) ≤ ∆

2 .
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2.4 Multiple Hamming Distances computation
In [YSK+14], Yasuda et al. proposed an approach allowing to homomorphically and
simultaneously perform secure multiple Hamming distances computation on encrypted
data items. In this section, we recall how the computation is performed, it relies on
the data packing and the secure multiple inner products methods we first review in the
following.

Given a data string encoded as a vector A = (a0, a1, · · · , ak−1) ∈ Zk
t of length k ≤ N .

The data packing method from [YSK+14] produces two types of packed plaintext vectors
as follows:

pm1(A) =
k−1∑
i=0

ai ·Xi (type 1) and pm2(A) = −
k−1∑
i=0

ai ·XN−i (type 2)

A packed cipherext is then created as:

ct(i)
p (A) = rlwe.Encpk(pmi(A))

Based on the observation that the product pm1(A) · pm2(B) of a type 1 and a type 2
packed polynomials A and B of length k and ℓ ≤ k ≤ N respectively gives:

(
k−1∑
i=0

ai ·Xi

)
·

− ℓ−1∑
j=0

bj ·XN−j

 =
ℓ−1∑
j=0

k−1∑
i=0

aibj ·Xi−j

=
ℓ−1∑
j=0

k−1−j∑
h=−j

ah+jbj ·Xh taking h = i− j

=
k−ℓ∑
h=0

ℓ−1∑
j=0

ah+jbj ·Xh + term of degree ≥ k − ℓ + 1

The packed ciphertexts defined above can then be used to perform secure multiple
inner products "simultaneously". The homomorphic multiplication between ct(1)

p (A) and
ct(2)

p (B) gives a ciphertext whose decrypted polynomial m(X) =
∑N−1

i=0 mi ·Xi coefficients
verifies:

∀i ∈ [0, k − ℓ[, mi =
〈

A(i), B
〉

mod t

As observed in [YSK+14], the Hamming distance between two-equal size vectors A(h)

and B can be computed as:

d(A(i), B) = hw(A(i)) + hw(B)− 2
〈

A(i), B
〉

In the following, we will replace Add with + and Mult, pMult with ·. Applying
the method from [YSK+14], multiple Hamming distances can then be homomorphically
computed as:

ct = ct(1)
p (A) · C + ct(2)

p (B) · C ′ − 2ct(1)
p (A) · ct(2)

p (B), (1)

where C := −
∑ℓ−1

i=0 XN−i, C ′ :=
∑k−1

i=0 Xi.
Informally, the previous states that the homomorphic operations in Equation 1 over

packed ciphertexts allow to compute simultaneously k − ℓ Hamming distances at the
expanse of two homomorphic additions and three homomorphic multiplications. The
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2Φ′ 4Φ′0

Φ′ 3Φ′ 5Φ′ n − 2Φ′
m

n − 3Φ′ n − Φ′

F0

F 0

F1

F 1

Fη−1

F η−1

Figure 1: Fragmentation of a data string B of size n = m + 1

authors of [YSK+14] have further shown that the cost of secure multiple Hamming
distances computation can be reduced by rewriting Equation (1) as

ct = 1
2

[(
(2ct(1)

p (A) + C ′) · (2ct(2)
p (B) + C)

)
+ C ′ · C

]
(2)

Since C ′ · C can easily be pre-computed, compared to Equation 1, Equation 2 requires
only one homomorphic multiplication and 3 homomorphic additions.

2.5 Data Fragmentation

Recently, [BCC20] proposed an effective fragmentation approach that allows to reduce the
pattern matching over a large string to a fixed-length pattern matching method. It can be
applied on any pattern matching over encrypted data stream.

We detail below the fragmentation techniques on a string B to be encrypted, where
n the number of symbols in B and ℓm is an upper bound on the maximal length of the
pattern to be searched. A fragment can be a stumbling fragment or fragment, i.e. on the
top of Figure 1 or an overlined fragment, i.e. a fragment on the bottom of Figure 1, both
are of size 2Φ′. To simplify the presentation, we take the size of a pattern ℓ equals to ℓm.
We suppose that there exists η such that n = (η − 1) · 2Φ′ + Φ′ = (2η + 1)Φ′ i.e., B can be
split into η distinct pairs of fragments and overlined framgents, each one being of size 2Φ′.

As in [BCC20, BCS21], for each index i ∈ [0, η − 1], we call Fi = [2Φ′ · i, 2Φ′ · (i + 1)[
a stumbling fragment or fragment and F i = [2Φ′ · i + Φ′, 2Φ′ · (i + 1) + Φ′[ an overlined
fragment. Therefore, in the sequel, η will be the number of fragments and the number of
overlined fragments, and Φ′ is the offset between fragments and overlined ones.

This fragmentation approach has several remarkable properties. First, for any pattern
of size ℓ ≤ ℓm, if the pattern exists in the string B to be encrypted, then there exists an
(overlined) fragment that contains the pattern. The previous property allows to perform
pattern matching on a string of arbitrary length by processing each fragment independently,
which makes this fragmentation technique perfectly suited to stream encryption.

As we previously mentioned, when considering malicious pattern matching over en-
crypted data use-cases, the data sender should be considered as a malicious entity as he/she
may intentionally include malicious content inside the data to be sent to the receiver. The
aforementioned fragmentation technique cannot be used as such when the data sender is
considered as a malicious entity. In fact, as depicted in Figure 2, the malicious data sender
can then try to bypass the detection by making the malicious content (represented in red
in the figure) straddling two consecutive fragments Fi and Fi+1 and replacing the data in
fragment F i by random content.
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b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14

b5 b6 b7 b∗8 b∗9 b∗10 b11

Fi

F i

Fi+1

Figure 2: Bypassing the detection by making the malicious content straddling two fragments
Fi and Fi+1 and changing the content of F i.

Hence, if the pattern matching service provider does not have the ability to check
whether or not the data has been correctly fragmented by the sender, which unfortunately
is the case for the constructions proposed in [BCC20, BCS21], then the malicious data
sender can easily bypass the pattern matching.

In the construction we propose in this paper, we overcome the previous limitation by
requiring the data sender to build only the fragments Fi, i ∈ [0, η − 1] and allowing the
pattern matching service provider to construct the fragments F i, i ∈ [0, η − 1] on the fly,
at the detection time, without disclosing any information about the data to be analysed to
the sender.

Moreover, the size of the data to be analyzed n as well as the number of data fragments
η do not need to be known in practice in order to encrypt the data, they are only required
for the formal definition of the construction we propose.

3 System specification and security model
In this section, we introduce the system model, system definition, threats model and
security requirements of our construction.

3.1 System Model
The system we consider in this work is composed of four entities: a data sender S, a data
receiver R, a pattern provider PP, and a cloud service provider CSP. PP is the entity
that provides the detection pattern that will be searched. The CSP represents stakeholders
that provides computation infrastructures which will be used to perform pattern matching
operations on the data to be analyzed i.e., the data sent by S to R. The data sender S is
used to represent any entity that generates the data that will be processed by the receiver
R e.g., a server that provides web contents. The data receiver R represents the entity that
will receive and process the traffic sent by S. As in [BCC20, DFOS18], we emphasize that
the data receiver and sender roles are interchangeable as during the same secure network
connection session, each entity may play both the data sender and the receiver roles. Inline
with the deep packet inspection use-case we are considering, we suppose that R aims to
analyze (e.g., perform deep packet inspection to detect malicious content) the data that
are to be sent by S before processing it.

3.2 Adversarial model
We consider the entities PP, CSP as honest-but-curious. That is, PP is expected to
provide valid detection patterns allowing an effective analysis of the data exchanged
between S and R that we denote BS→R. This is a fairly reasonable assumption since the
issuance of misleading or incorrect patterns will result in many false positives which may



10 Efficient Post-Quantum Pattern Matching on Encrypted Data

considerably degrade the quality of the analyses that will be provided to the R and may
seriously affect PP’s reputation. However, we consider PP to be curious as it may try to
infer as much information about BS→R. In addition, we expect CSP to perform honestly
the pattern matching operations on BS→R using PP’s analysis patterns. Nevertheless,
we suppose that SP will try to derive information about either or both BS→R and PP’s
analysis patterns.

Moreover, we expect that PP and CSP will not collude to infer more information
about BS→R. As in [BCC20], we believe that this last assumption is fairly reasonable
since, in a free market environment, an open dishonest behavior will result in considerable
damages for involved entities.

Distinguishing itself from existing approaches, our work takes into account the sender S
as a potential malicious entity with the intention of incorporating harmful code within the
data intended for transmission to the receiver R. Consequently, S possesses the capability
to deviate from the prescribed protocol, thereby causing the pattern matching of the
malicious code to fail. Nevertheless, it is crucial to note that any deviation employed
by the sender must still enable the receiver to reconstruct the identical malicious code.
Otherwise, the malicious code would be rendered useless and incapable of being executed
by the receiver.

Finally, we require the approach we are proposing in this paper to provide correct
pattern matching. That is, if an analysis pattern plaintext matches (resp. does not match)
BS→R’s plaintext, then the analysis pattern should be matched (resp. should not be
matched) by our construction.

3.3 Syntax for Pattern Matching over Encrypted strings
Our pattern matching construction over encrypted data is defined using the following six
algorithms that we denote Setup, KeyGen, Issue, Encrypt, Match, and Decrypt. The
Setup, KeyGen, and Decrypt algorithms are run by the data receiver R. The Issue is run
by the detection pattern provider PP, the Encrypt algorithm is performed by the data
sender S, and the Match algorithm is performed by the cloud service provider CSP. In
the following, the four entities are assumed honest-but-curious and not allowed to collude
two at a time.

Definition 1. Pattern Matching over Encrypted strings

• Setup(1λ1λ1λ, ℓm) is a probabilistic algorithm that takes as input a security parameter λ
and a scalar ℓm denoting an upper bound of the length of the patterns that can be
searched. This algorithm returns the public parameter pp which will be implicitly
used by all the other algorithms.

• KeyGen(pp) is a probabilistic algorithm performed by R. It returns a pair of keys
(sk, pk); sk is the secret key known only to R, while pk is public.

• Encrypt(pk,B) is a probabilistic algorithm performed by S. It takes as input the
public key pk of the receiver and a data string B = (b0, · · · , bn) of any size n = m + 1
and returns a ciphertext ct.

• Issue(pk, w) is a probabilistic algorithm performed by PP. It takes as input a
pattern w = (w0, · · · , wℓ−1) of any size ℓ ≤ ℓm along with the public key pk and
returns a trapdoor tdw.

• Match(ct, tdw) is a deterministic algorithm performed by CSP. It takes as input
a ciphertext ct and a trapdoor tdw for the pattern w and outputs an encrypted
matching result ctr.
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• Decrypt(sk, ct, ctr) is a deterministic algorithm performed by R. It takes as input a
ciphertext ct, an encrypted matching result ctr, the receiver’s secret key sk and out-
puts the plaintext data string B if w is not in B, e.g., ∀i ∈ [0, n− ℓ] : bi, · · · , bi+ℓ−1 ̸=
w0, · · · , wℓ−1, and ⊥ otherwise.

We emphasize that recent pattern matching on encrypted data schemes [BCC20, BCS21,
DFOS18] do not consider a decryption algorithm and argue that this functionality can
easily be added by (1) encrypting the stream under a conventional encryption scheme, or
(2) issuing a trapdoor for all characters of the alphabet used to encode the data and running
the Match algorithm on the encrypted data for each of them. However, as aforementioned,
these two solutions cannot be used when a malicious data sender is considered. Our
construction defines a decryption algorithm that allows the data receiver to efficiently
decrypt both the encrypted pattern matching results and the ciphertext sent by a malicious
data sender. We emphasize also that the decryption algorithm returns ⊥ in case the
pattern w exists in the data string B since we believe that in the considered deep packet
inspection use-case, the ciphertext ct should not be decrypted and processed if an attack
pattern is matched in the data.

3.4 Correctness
The definition of correctness is associated to the notions of false positives and false negatives.
The first notion means that a pattern is detected in the stream while not being present in
it and the second notion means that the pattern is not detected while being present.

• Given (pk, sk) generated by KeyGen, a data content B encrypted as ct← Encrypt(pk,B)
and ctr := Match(pk, c, tdw):

w ̸⊆ B =⇒ ctr does not decrypt to 0

with negligible probability.

• Given (pk, sk)← KeyGen(pp), ct← Encrypt(pk,B) and ctr := Match(pk, c, tdw):

w ⊆ B =⇒ ctr does not decrypt to 1

with negligible probability.

These two first correctness rules target the matching algorithm; we introduce a third
correctness requirement targeting the decryption algorithm with respect to a malicious
data sender. The objective of such a sender is to transmit undetectable malicious content
to the receiver. To meet the security against malicious data sender requirement, it is crucial
to ensure that the occurrence of such events is not detected with a negligible probability.

Definition 2 (Correctness in presence of a malicious Sender). Given a malicious data
content Bm that contains the detection pattern w (provided by PP), a pair of keys (pk, sk)
where sk is used by the receiver R, a data item ctm sent by the malicious sender S, and
a trapdoor tdw for pattern w generated by PP, our construction is said to be correct in
presence of a malicious sender S if:

Bm ⊆ Decrypt(sk, ctm, Match(pk, ctm, tdw))

occurs with neglible probability.

In other words, a malicious sender should be able to exhibit a data content Bm such
that for any pattern w chosen by the pattern provider PP and contained in B, the data
set obtained by the receiver when decrypting does not match Bm ̸= ⊥ at any index.



12 Efficient Post-Quantum Pattern Matching on Encrypted Data

Lemma 1. If a pattern matching protocol constructed as in Definition 1 is correct, then it
verifies correctness as in Definition 2.

Proof. If a pattern w is present in the data content Bm, then by the correctness property,
ctr := Match(ctm, tdw) outputs 1 with high probability. In that case, Decrypt(sk, ctm, ctr)
outputs ⊥ by construction.

3.5 Trace Indistinguishability Property
In addition to being correct, our construction must fulfill trace indistinguishability with
respect to both CSP and PP and pattern indistinguishability with respect to CSP.

In the following definition, we formalize the data indistinguishably requirement as a
security game between an adversary playing the role of a curious CSP or a curious PP for
example and a challenger playing the role of an honest sender. The adversary’s goal is to
infer information about the content encrypted by the sender S.
Note that the adversary is not given access to an oracle to Issue as the adversary can
derive a trapdoor for a pattern of its choice. Also, as the answer output by Match is
encrypted and the adversary does not know the secret key, an oracle access to Match would
provide an encrypted output to the adversary. So we do not take into account such oracle
access.

Definition 3 (Data Indistinguishability). Let λ be the security parameter. We define the
experiment Expind-cpa-trace

A,β parametrized by a bit β which is run between an adversary A
and the challenger C simulating the view of A:

Experiment Expind-cpa-trace
A,β

(1λ, L):

1. pp← Setup(1λ, L)

2. (pk, sk)← KeyGen(pp)

3. (T0, T1)← A(pk)

4. ct← Encrypt(pk, Tβ)

5. β′ ← A(state, pk, ct)

6. return (β == β′)

Figure 3: Security game for data indistinguishability with respect to CSP the cloud service
provider and to PP, the pattern provider.

We define A’s advantage of winning the previous game by:

Advind-cpa-trace
A,β (1λ) = |Pr[β = β′]− 1/2|

Our construction has trace indistinguishability if Advind-cpa-trace
A,β (1λ) is negligible in λ.

4 RLWE-based Pattern matching protocol with frag-
mented substrings

4.1 Our Data Fragmentation
Recall that n is the number of symbols (e.g., bits or bytes) that composes the data string
BS→R, ℓm ≥ 2 is the upper bound on the number of symbols in a pattern, and Φ′ is
the offset between fragments and overlined fragments. In the following, we suppose that
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there exists η such that n = 2η · Φ′. We emphasize that the previous assumption is not
mandatory and that the construction we are proposing provides correct pattern matching
even when n is not a multiple of the offset Φ′. In contrast to the data fragmentation
technique introduced in [BCC20] (see Section 2.5), the data string BS→R is fragmented
into a set of η data segments F = {F0, F1, · · · , Fη−1}, each Fi ∈ F is composed of 2Φ′
symbols.

2Φ′ 4Φ′0 m − 2Φ′ m

F0 F1 Fη−1

Figure 4: Fragmentation of a data string B of size n = m + 1

Compared to the fragmentation technique proposed in [BCC20], we do not need
to construct the overlined fragments during the data encryption step as they will be
constructed by the CSP on the fly during the pattern matching process, as described
in Section 2.5. Hence, a malicious data sender will not have the ability to bypass the
detection by making the malicious content straddling two consecutive fragments Fi and
Fi+1 and replacing the data in the overlined fragments by random contents.

4.2 The intuition
As mentioned in Section 1.2, the objective of this work is threefold. First, we aim to design
a construction that can enable pattern matching on encrypted data when the latter is
encrypted by a malicious sender as in the deep packet inspection use-case and tries to
bypass detection while incorporating malicious content. Second, we want a more efficient
construction that the one proposed in [BCC20, BCS21]. Our third goal consists of defining
a construction that improves the security guarantees provided in [BCC20, BCS21] by
incorporating quantum-resistant features. To meet the aforementioned three goals, the
construction we present combines the homomorphic RLWE scheme from Section 2.3, the
secure multiple Hamming distance computation technique from [YSK+15] and recalled
in Section 2.4, and the data fragmentation technique we present in Section 4.1. First,
our data fragmentation technique will allow us processing data of arbitrary size without
impacting the efficiency of our construction. That is, processing each (relatively small
size) couple of fragments independently allows us using FHE parameters of relatively small
sizes. Second, the CSP will be able to detect the patterns that straddle two fragments by
homomorphically concatenating each two consecutive fragments.

4.3 Description of the RLWE-based Pattern matching protocol
Let be given an RLWE scheme with a specification for rlwe.KeyGen, rlwe.Enc and rlwe.Dec.
We formally describe a first protocol that satisfies all the requirements we defined in
Section 3.2.

• Setup(1λ, Φ) selects a RLWE parameters set (N, q, t, σ) such that N = 4Φ′ + 1,
t > 2Φ′, where 2Φ′ is the size of a fragment. The construction works for N ≥ 4Φ′+ 1
but to simplify, we assume both are equals. We will see in Section 5 the requirements
on the sizes to ensure correctness and the indistinguishability property. The Setup
algorithm returns pp← (N, q, t, σ, Φ′) which will be implicitly used by all the other
algorithms and will be omitted as input.

• KeyGen performs the rlwe.KeyGen algorithm of the RLWE scheme defined in Section
2.3. It returns the public key pk = (p0, p1) and the secret key sk = s.
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• Encrypt(pk,B) starts by fragmenting B = (b0, · · · , bn−1) into a set of stumbling
segment F = {F0, · · · , Fη−1} with Fi = bi·2Φ′ , · · · , b(i+1)·2Φ′−1 as described in
Section 4.1. Then, it packs and encrypts each Fi ∈ F as described in Section 2.4.
This algorithm returns the ciphertext ct = {ci}i∈[0,η−1] generated as described in
Algorithm 1.

Algorithm 1 Description of the Fragment-by-Fragment encryption procedure
Input: B = (b0, · · · , bn−1) and pk
Output: ct = {c0, · · · , cη−1}
for each: Fi ∈ F
1: pm1(Fi) :=

∑2Φ′−1
j=0 bi·2Φ′+j ·Xj

2: cti = rlwe.Encpk (pm1(Fi))

• Issue(pk, w): This algorithm issues a trapdoor tdw for a pattern w of size ℓ ≤ ℓm as
follow: tdw = RLWE.Enc(pk, pm2(w)).

• Match(pk, ct = {c0, · · · , cη−1}, tdw): starts by computing the data fragments:

{ct{0,1}, ct{1,2}, · · · , ct{η−2,η−1}}

representing the encrypted concatenation of each of two consecutive encrypted
fragments in ct for 0 ≤ i < η − 1 as follow:

ct{i,i+1} = ci ∔ Rotate(ci+1, 2Φ′),

Then, it computes the encrypted multiple Hamming distances (see Section 2.4)
between each ct{i,i+1} for 0 ≤ i < η − 1 and tdw as follow:

ctr,{i,i+1} = ct{i,i+1} · C ∔ tdw · C ′ +
(
−2ct{i,i+1} · tdw

)
to get ctr = {ctr,{i,i+1}|0 ≤ i < η − 1}.

• Decrypt(sk, ct, ctr) starts by decrypting ctr using sk and parses the plaintext as∑N
i=0 diX

i. If the correctness of the ciphertext is satisfied, then it gets the multiple
Hamming distances di = hw(B(i), w), i ∈ [0, N − ℓ] between w and B. Then if w
does not occur in B, i.e., ∀i ∈ [0, N − ℓ], d(B(i), w) ̸= 0, the data receiver performs
RLWE.Dec(sk, ct) to get B; it outputs ⊥ otherwise.

Remark 1. The implementation of our decryption algorithm is specifically designed for
the DPI use-case. Nonetheless, it can be readily adapted for more general scenarios by
adjusting the output to indicate the presence (1) or absence (0) of the pattern. This
adjustment is guided by the results of the underlying FHE decryption algorithm, a detail
that could be explicitly stated within the Decrypt algorithm itself.

4.4 Correctness
To prove that the protocol from Section 4.3 proposes a correct pattern matching over
encrypted data, we rely on the correctness of the underlying RLWE packing method
reviewed in Section 2.4 and the definition of the Encrypt, Issue and Match algorithms.
The proof of the following lemma can be found in Appendix 8.1.

Lemma 2. If
∥∥∥Err(ct(r)

i,i+1)
∥∥∥
∞

< q
2t , the protocol proposed in Section 4.3 provides a correct

pattern matching over encrypted data.
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To prove the correctness of our pattern matching protocol over encrypted data, we
show that the following two conditions hold:

• (False negative) If the pattern w exists in the data string B at the index i, then
hw(B(i), w) = 0 with high probability.

• (False positive) If the pattern w does not exist in the string B, then ∀i ∈ [0, n −
ℓ], hw(B(i), w) ̸= 0 with high probability.

The previous two conditions by our construction is demonstrated in the following
lemma, the proof of which can be found in Appendix 8.2.

Lemma 3. Given B = b0, b1, · · · , bn−1 and w = w0, w1, · · · , wℓm−1. The following two
conditions holds:

(a) If ∃i ∈ [0, n− ℓ] such that ∀j ∈ [0, ℓ− 1], bi+j = wj then, Pr[hw(B(i), w) ̸= 0] = 0

(b) If ∀i ∈ [0, n− ℓ], ∃t′ ∈ [0, ℓ− 1] such that bi+t′ ̸= wt′ then, Pr[hw(B(i), w) = 0] = 0.

4.5 Security properties
Theorem 1. Assuming the RLWE scheme from Section 2.3 is IND-CPA secure, an adversary
will have negligible advantage in the data-indistinguishability game for the construction
presented in Section 4.3.

The proof of Theorem 1 can be found in Appendix 8.3.

4.6 Complexity
The computation of all positions where a pattern exists in a given data fragment requires
3 homomorphic multiplications and 3 homomorphic additions. However, in malicious
pattern matching solutions, such as intrusion detection or phishing detection systems,
it is frequently required to examine the presence of numerous malicious patterns for
each data item. Hence, when considering a collection of m patterns to be matched,
transmitting the detection results of each individual pattern to the data receiver would
result in multiplying the size of the data to be analyzed by m times. To address this
issue, a potential solution would involve consolidating the detection results of the various
patterns prior to transmitting them to the data receiver. To address this issue, a direct
method involves performing homomorphic multiplication on the matching results of the
given patterns. Let W represent the set of patterns to be matched, and let ct(r,w)

i,i+1 denote
the matching result for each pattern w ∈ W. We can compute the consolidated result as
follows:

prodw∈Wct(r,w)
i,i+1

By applying the multiplication operation, the coefficients associated with a Hamming
distance of zero will be preserved, enabling the receiver to infer the presence of a partic-
ular malicious pattern or patterns in the received data. This approach requires m − 1
homomorphic multiplications of the results of each pattern detection, i.e., our construction
needs to adhere to a multiplication depth of log(m). Overall, matching m patterns in a
single data fragment and consolidating the matching results in single ciphertext requires
4m− 1 homomorphic multiplications and 3m homomorphic additions.

4.7 Handling Wildcards
The scheme presented in Section 4.3 enables us to conduct approximate pattern matching
by providing the number of bits differentiating the pattern from the analyzed byte stream.
This information empowers the data receiver to employ a threshold for obtaining an
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approximate pattern matching result. Nevertheless, this approach does not support the
processing of patterns containing wildcards, typically denoted by ⋆ and designed to match
all characters (or bits in our case). Wildcards are crucial for detecting more intricate
patterns like 01⋆⋆⋆11, frequently encountered in practical scenarios such as signature-based
intrusion detection (e.g., SNORT [SNO98]) and spam detection.

4.7.1 Issue and Match for Wildcards Detection

To facilitate the detection of patterns containing wildcards, we introduce a variant of our
primary protocol. In this variation, only the Issue and Match algorithms deviate slightly
from their original definitions.

• Issue(pk, w): Let I denote the set of indices corresponding to wildcards in the
pattern w = (w0, · · · , wℓ−1). The Issue algorithm returns tdw = (td(1)

w , td(2)
w ) such

that:

td(1)
w = rlwe.Encpk

− ℓ−1∑
i=0,i/∈I

wi ·XN−i


td(2)

w = rlwe.Encpk

− ℓ−1∑
i=0,i/∈I

XN−i

 (3)

The previous Issue algorithm differs from the original Issue algorithm in two
primary aspects. Firstly, it includes the additional encrypted element td(2)

w which
will be used to perform the Match, and secondly, it introduces the supplementary
condition i /∈ I to ensure that the encrypted polynomials in td(1)

w and td(2)
w will not

contain any monomial of degree i for i ∈ I.

• Match(ct = {c0, c1, · · · , cη−1}, td(1)
w , td(2)

w ): it computes the data fragments

{ct{0,1}, ct{1,2}, · · · , ct{η−2,η−1}}

representing the encrypted concatenation each of two consecutive encrypted fragments
in ct for 0 ≤ i < η − 1 as follow:

ct{i,i+1} = ci ∔ Rotate(ci+1, 2Φ′),

Then, it computes the encrypted multiple Hamming distances (see Section 2.4)
between each ct{i,i+1} (0 ≤ i < η − 1) and tdw as follow:

ct(r)
{i,i+1} = ct{i,i+1} · td(2)

w ∔ td(1)
w · C

′ +
(
−2ct{i,i+1} · td(1)

w

)
to get ctr = {ct(r)

{i,i+1}|0 ≤ i < η − 1}.

4.7.2 Correctness

To validate the accuracy of our wildcard-supporting construction, it is imperative to
demonstrate that the probability of generating false positives or false negatives is negligible.
This assertion is established through the subsequent lemma whose proof is deferred to
Appendix 8.4.
Lemma 4. Given B = b0, b1, · · · , bn − 1 and w = w′0, w′1, ·, w′ℓ−1. Let us denote by I the
set of indices in w that contains wildcards. The following conditions hold:

(a) if ∃i ∈ [0, n− ℓ] such that ∀j ∈ [0, ℓ− 1]\I, bi+j = w′j then Pr[hw(B(i), w) ̸= 0] = 0

(b) if ∀i ∈ [0, n− ℓ] such that ∃j ∈ [0, ℓ− 1]\I, bi+j ̸= w′j then Pr[hw(B(i), w) = 0] = 0
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Table 2: Performance of our construction for encrypting, detecting and decrypting detection
result of a pattern of size 27 bits on a data of size 215 bits as function of the considered
Polynomial Modulus. All time measurements are denoted in milliseconds (ms).

Polynomial 2048 4096 8192 16384 32768Degree (N)
log(q) 54 109 218 438 881

t 1024 2048 4096 8192 16384
Largest Pattern 1024 2048 4096 8192 16384

Size Φ = ℓm (32 fragments) (16 fragments) (8 fragments) (4 fragments) (2 fragments)

Enc. Time Dataset 7.6 12.2 17.8 28.3 69.1
Fragment 0.2 0.7 2.2 7 34.5

Match Time Dataset 26 43.4 87 161.8 259.3
Fragment 0.8 2.7 10.8 40.4 129.6

Dec. Time Dataset 2.5 4 6.8 13.2 20.5
Fragment 0.08 0.2 0.8 3.3 10.2

Enc. Size per fragment 32.8 KB 131.1 KB 524.4 KB 2 MB 7.8 MB
# of consolidated results 1 22 24 28 215

5 Parameters and Implementation
In this section we discuss the bounds that must be verified by the parameters to ensure
correctness and the security requirements. Subsequently, we evaluate the robustness of the
underlying RLWE assumption by employing the Lattice Estimator method as presented in
[APS15]. Finally, we conduct a comprehensive experimental analysis to gauge the efficacy
of our proposed construction in comparison to existing similar solutions.

Correctness and Security
The correctness bound gives that the parameters must fulfill the following bound from
condition (6) from Lemma 2 i.e.

5σN3/2(N + 1)2 + σN3/2(N + 1) + 32N2 ≤ q

2t

For all the set of parameters for N, t and q listed in Table 2 and for σ = 3.19, inequation
(6) holds except with negligible probability. In our construction, we use a secure set of
parameters according to [ACC+18], which provide more than 90 bits of security according
to the Lattice Estimator [APS15].

Experimental Setup
We leverage the SEAL FHE Library [SEA22] as the foundation for our construction,
employing the BFV scheme for its RLWE-based FHE capabilities. Our implementation is
public and can be found on the github repository https://github.com/nserser/fhe-p
attern-matching. Our experiments are conducted on a Linux machine (Ubuntu 20.04)
equipped with a 13th Gen Intel(R) Core(TM) i7-1355U processor and 16 GB of RAM.
Remark 2. The SEAL library is no longer actively maintained. Given that the pack-
ing method from [YSK+14] was historically implemented in SEAL and considering the
simplicity of the homomorphic circuit under study, we opted not to change the library.
Nonetheless, our solution is adaptable to any library that implements the BFV scheme.

https://github.com/nserser/fhe-pattern-matching
https://github.com/nserser/fhe-pattern-matching
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Experimental Results
We conduct an empirical evaluation of our construction’s performance concerning the
parameters outlined in the BFV scheme, notably, the polynomial degree N , across various
metrics, including:

• The maximum size of the pattern that can be matched on the data;
• The time required for encryption, matching, and decryption of both matching results

and encrypted data;
• The quantity of detection results that can be consolidated in a single encrypted

ciphertext;
• The provided security level.
Obtained results are depicted in Table 2. The observations derived from the results

in Table 2 reveal the following insights. Elevating the degree of the polynomial N is
found to enable the alignment of larger patterns, with a maximum size of N/2. This
augmentation facilitates the consolidation of multiple pattern-matching outcomes within
a single ciphertext, thereby reducing the communication overhead of our construction
notably. However, this advantageous enhancement is counterbalanced by an increase in
computational demands. It is evident that the temporal requirements for encryption,
decryption, and matching operations exhibit a notable escalation with ascending values of
N . Based on Table 2, we observe that the choice of the parameter N impacts the number
of patterns to be matched and consolidated into a single ciphertext. Seeking to reduce to
the best the matching results that will be forwarded to the receiver, we use the following
value of N .

N =



2048 if # patterns ≤ 2
4096 if 2 < # patterns ≤ 22

8192 if 22 < # patterns ≤ 24

16384 if 24 < # patterns ≤ 28

32768 otherwise

(4)

Then, we use the previous instantiation of N to evaluate the efficiency of our construction
in performing the match operation on a 15K bits string relative to SEST [DFOS18], AS3E
[BCC20], and SEPM [BCS21], with respect to varying numbers of patterns to be matched.
The comparison results are presented in Table 3, revealing significant improvements
achieved by our construction. In scenarios involving a small number of patterns, our
method drastically reduces matching time, with speeds up to 119 times faster compared
to the most efficient existing construction, particularly evident when considering only two
patterns. However, as the number of patterns increases, the speedup ratio diminishes,
reaching 12 times faster when matching 210 patterns. This variation is primarily attributed
to the adjustment of the value of N in accordance with the number of patterns to be
matched.

Note that Yasuda et al. [YSK+15] proposed a construction proposed in based on
the same packing method utilized in our approach [YSK+14]. However, we did not
include this existing construction in our comparison table (Table 3) because, unlike all
the considered constructions, it does not support pattern matching on strings of arbitrary
length. Nevertheless, for the sake of comparison, when the size of the considered string is
fixed at 215 bits, our approach still outperforms the one proposed in [YSK+15] by a factor
of 10. Specifically, our construction performs the test procedure in 24 ms, whereas the
method in [YSK+15] requires 255 ms.

Table 4 compares the time needed for our construction to decrypt the matching results
as well as the exchanged data compared to SEST [DFOS18], AS3E [BCC20], and SEPM
[BCS21], according to the numbers of patterns to be matched on 32K bits string.
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Table 3: Performance comparison of our construction for performing the matching patterns
on a 15K bits string compared to most relevant existing solutions.

# patterns Match Time Speedup Ratio
SEST † AS3E † SEPM † This work ‡

2 95,6 s 5,41 s 5,38 s 45,2 ms × 119
24 781,5 s 48,21 s 48,18 s 736,5 ms × 65
26 2535 s 183,4 s 182,7 s 4,4 s × 41
28 12019,5 s 738 s 730,5 s 12,3 s × 59
210 48315 s 3226,5 s 3216 s 262,1 s × 12

† We use Barreto-Naehrig curve BN254 [PSJNB11] for instantiating SEST, AS3E,
and SEPM.

‡ We use BFV [FV12] with N determined by Equation 4.

Table 4: Performance comparison of our construction for performing decryption operation
of a 32K bits encrypted string as well the pattern matching results compared to most
relevant existing solutions.

# patterns Decryption Time Speedup Ratio
SEST † / AS3E † / SEPM † This work ‡

2 2240 s 6,2 ms ×3 · 106

24 2240 s 15,2 ms ×1, 4 · 106

26 2240 s 32,4 ms ×6, 9 · 105

210 2240 s 72,9 ms ×3 · 105

† We use Barreto-Naehrig curve BN254 [PSJNB11] for instantiating SEST, AS3E,
and SEPM.

‡ We use BFV [FV12] with N determined by Equation 4.

The table presents a comparative analysis of decryption time for pattern matching
operations on a 32K-bit encrypted string, contrasting the performance of existing solutions
with a proposed method. The decryption time, measured in seconds for SEST, AS3E, and
SEPM, alongside our proposed construction, showcases a significant disparity in efficiency.
For instance, with only 2 patterns, the decryption time for the proposed method drops
to a mere 6, 2 milliseconds, yielding a remarkable speedup ratio of 3 × 106 compared
to existing methods. Even with a substantial increase in the number of patterns, the
proposed method maintains a notable advantage, demonstrating decryption times of 15, 2
milliseconds for 24 patterns, 32, 4 milliseconds for 26 patterns, and 72, 9 milliseconds for
210 patterns. Moreover, we compare the quantity of data that will be exchange between
the different entities when our construction is used compared to SEST [DFOS18], AS3E
[BCC20], and SEPM [BCS21], with respect to varying numbers of patterns to be matched
on 32K bits string. The comparison results are reported in Table 5.

The results reveal notable performance differences among the evaluated pattern match-
ing methods on a 32K-bit string. While the size of exchanged data remains constant at
2 MB for SEST, and 4 MB for AS3E and SEPM, our construction exhibits increasing
data exchange sizes with the number of patterns, reaching 22, 4 MB for 210 patterns.
Consequently, the ratio of exchanged data size for our construction compared to the
other methods escalates significantly with more patterns, reaching 11 times larger for 210

patterns.



20 Efficient Post-Quantum Pattern Matching on Encrypted Data

Table 5: Communication cost comparison of our construction for performing the matching
patterns on a 32K bits string compared to most relevant existing solutions.

# patterns Size of Exchanged ata Ratio
SEST AS3E SEPM This work

2 2 MB 4 MB 4 MB 1,57 MB ×0, 78
24 2 MB 4 MB 4 MB 3,14 MB ×1, 57
26 2 MB 4 MB 4 MB 6,2 MB ×3, 1
210 2 MB 4 MB 4 MB 22,4 MB ×11

† We use Barreto-Naehrig curve BN254 [PSJNB11] for
instantiating SEST, AS3E, and SEPM.

‡ We use BFV [FV12] with N determined by Equation 4.

6 Conclusion

In conclusion, this paper presents a novel and efficient post-quantum secure construction for
pattern matching over encrypted data, addressing the critical challenge of balancing privacy
protection with pattern matching efficiency. Our contributions significantly advance the
state of the art in this field in several key aspects. Firstly, we tackle the issue of correctness
in the presence of a malicious data sender, adapting the data fragmentation technique
previously proposed in [BCC20] to ensure accurate pattern matching even when the
encrypted data is tampered with by the sender. This allows for reliable pattern detection
even in scenarios, e.g., intrusion detection, where malicious actors attempt to disrupt
the pattern matching process. Secondly, our construction leverages Ring-Learning With
Error based homomorphic encryption, providing notable improvements in performance and
security compared to existing pairing-based schemes. Our approach achieves substantial
reductions in encryption, decryption, and pattern matching times, making it significantly
more efficient than the state-of-the-art alternatives. The comparison of our construction’s
performance across various metrics illustrates its significant advancements in pattern
matching operations. Our construction demonstrates substantial reductions in matching
time, particularly evident in scenarios involving a small number of patterns, where our
method achieves speeds up to 119 times faster than existing constructions. However, as
the number of patterns increases, the speedup ratio diminishes, albeit remaining notably
advantageous, even when matching 210 patterns. This variability in efficiency is primarily
attributed to the careful adjustment of the parameter N to accommodate the number
of patterns to be matched. Additionally, the comparative analysis of decryption time
highlights the remarkable efficiency of our proposed method, showcasing significantly
faster decryption times across different pattern counts compared to existing solutions.
Importantly, our construction provides post-quantum security and is secure against a
malicious sender, unlike other existing constructions. Nevertheless, upon examining the
sizes of exchanged data, it becomes noticeable that with a higher number of patterns, the
data size increases substantially. Nonetheless, we believe this to be a reasonable trade-off
for attaining all the aforementioned benefits.
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8 Appendix
8.1 Proof of Lemma 2
Proof. According to our construction, the ciphertext ct(r)

i,i+1 result of the Match algorithm
is equal to:

ct(r)
i,i+1 = cti,i+1 · C ∔ tdw · C

′ +
(
−2ct{i,i+1} · tdw

)
, 0 ≤ i < η − 1

where
ct{i,i+1} = cti +

(
X2Φ′

· cti+1

)
, 0 ≤ i < η − 1

Let V denote the upper bound of the noise of fresh ciphertexts, we get the following
inequality

∥Err(cti,i+1)∥∞ ≤ V (N + 1)

From [FV12, Lemma 2], the ciphertext noise of the product of two fresh ciphertexts c
and c′ is bounded by:

2NtV (N ∥s∥∞ + 1) + 2t2N2(∥s∥∞ + 1)2

Thus, we have:∥∥∥Err(ct(r)
i,i+1)

∥∥∥
∞
≤ V (N + 1)N + NV + 4NV (N + 1) + 32N2

≤ 5NV (N + 1) + NV + 32N2

where V = B(N + 1), which gives:∥∥∥Err(ct(r)
i,i+1)

∥∥∥
∞
≤5σN3/2(N + 1)2 + σN3/2(N + 1) + 32N2 (5)

To ensure the correctness of the computed ciphertexts, we need to make sure that∥∥∥Err(ct(r)
i,i+1)

∥∥∥
∞

<
q

2t
(6)
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8.2 Proof of Lemma 3
Proof. To prove the lemma, we perform the different steps of our constructions and show
that the two conditions (a) and (b) holds. First, B will be encrypted fragment-by-fragment
to get

{ci = rlwe.Encpk

2Φ′−1∑
j=0

bi2Φ′+jXj

 | i ∈ [0, η − 1]}

A trapdoor for w, tdw is generated such that tdw = rlwe.Encpk(−
∑ℓ−1

j=0 wjX2Φ′−j).
Now, performing the Match algorithm between the encryption of the ith section of B

and the encryption of tdw gives:
ct{i,i+1} =ci ∔ Rotate(ci+1, 2Φ′)

=rlwe.Encpk(
2Φ′−1∑

j=0
bi2Φ′+jXj) + rlwe.Encpk(

N−1∑
j=2Φ′

b(i+1)2Φ′+j−2Φ′Xj)

=rlwe.Encpk(
N−1∑
j=0

bi2Φ′+jXj)

For each 0 ≤ i < η − 1:

ct
(r)
{i,i+1} = −ct{i,i+1} ·

ℓ−1∑
j=0

XN−j + (tdw ·
N−1∑
t=0

Xt) + (−2ct{i,i+1} · tdw)

which under the correctness conditions from Lemma 2 gives an RLWE encryption of:

−
N−1∑
t=0

bi2Φ′+tX
t ·

ℓ−1∑
j=0

XN−j −
ℓ−1∑
j=0

wjXN−j ·
N−1∑
t=0

Xt

+ 2
N−1∑
t=0

bi2Φ′+tX
t ·

ℓ−1∑
j=0

wjXN−j

=
N−1∑
t=0

ℓ∑
j=0

XN+t−j(−bi2Φ′+t − wj + 2bi2Φ′+twj)

Then under the condition of Lemma 2, we have

rlwe.Decsk(ctr
i,i+1) =

N−1∑
t=0

ℓ−1∑
j=0

X2Φ′+t−j(−bi2Φ′+t − wj + 2bi2Φ′+twj)

Now, if we suppose that ∃i ∈ [0, η − 1[ such that ∀j ∈ [0, ℓ − 1], bi2Φ′+j = wj , then
∀j ∈ [0, ℓ− 1], −bi2Φ′+j − wj + 2biΦ+jb′j = −2wj + 2wj

2 = 0 as wj is a bit, which gives

hw(B(i), w) = 0
which gives that under the condition of Lemma 2,

Pr[hw(B(i), w) ̸= 0] = 0
and proves that condition (a) holds.

Now, if we suppose that ∀i ∈ [0, η − 1[, ∃j ∈ [0, ℓ − 1] such that bi2Φ′+j ̸= wj , and
considering that −bi2Φ′+j−wj ̸= 0, 2bi2Φ′+jwj = 0, and we can deduce that hw(B(i), w) ̸= 0
which gives:

Pr[hw(B(i), w) = 0] = 0
and proves that condition (b) holds. This concludes the proof.
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8.3 Proof of Theorem 1
.

Proof. The proof follows the blueprint of the proof of [BCS23, Theorem 1]. We will
proceed by contradiction assuming an adversary A breaks the data-indistinguishability of
our construction.
We set T0 := (F (0)

0 , . . . , F
(0)
η−1) and T1 := (F (1)

0 , . . . , F
(1)
η−1) the fragments of T0 and T1

submitted by A. We define a sequence of games where the initial game is the experiment
defined by Expind-cpa-trace

A (). For i = 0, · · · , η − 1, we define Gi the game such that the
encryption of Tβ is denoted ct = (c0, . . . , cη−1) and computed as:

cj =

 rlwe.Encpk

(
pm1(F (1))

j )
)

if j ≤ i

rlwe.Encpk

(
pm1(F (0))

j )
)

else

Thus, there exists an index i⋆ ≥ 1 such that A can distinguish G⋆
i from Gi⋆−1.

We thus construct an adversary B against the IND-CPA security of the RLWE scheme.
B submits F

(0)
i⋆ and F

(1)
i⋆ and receives a ciphertext Ci⋆ . B then sends ct⋆ to A, where

ct⋆ := (c0, . . . , ci⋆−1, Ci⋆ , ci⋆+1, . . . , cη−1) such that:

cj =

 rlwe.Encpk

(
pm1(F (1))

j )
)

if 0 ≤ j < i⋆

rlwe.Encpk

(
pm1(F (0))

j )
)

if i⋆ < j < η

Note that if Ci⋆ encrypts pm1(F (1)
i⋆ ), A plays in game Gi⋆ and if Ci⋆ encrypts pm1(F (0)

i⋆ ),
A plays in game Gi⋆−1. Then B forwards the same output as A for the IND-CPA game
of the RLWEƒ scheme. Let denote Ei be the event that A outputs 0 in game Gi and let
ϵ := |Pr[Ei⋆ ] − Pr[Ei⋆−1]| be the advantage of A of distinguishing both games, then B
wins the IND-CPA game with the same advantage.

8.4 Proof of Lemma 4
Proof. We follow the same steps as in the proof of Lemma 3. First B will be encrypted
fragment-by-fragment under an pk honestly generated from KeyGen to get:

{ci = rlwe.Encpk

2Φ′−1∑
j=0

bi2Φ′+jXj

 | i ∈ [0, η − 1]}

In addition, the generation of a trapdoor for w gives the following two elements td1
w

and td1
w (Equation 3). Let us define b′i and bi, i ∈ [0, ℓ− 1] to

b′i =
{

0 if i ∈ I
wi otherwise

bi =
{

0 if i ∈ I
1 otherwise

Then, we can write td(1)
w and td(2)

w as following

td(1)
w = rlwe.Encpk

(
−

ℓ−1∑
i=0

b′i ·XN−i

)

td(2)
w = rlwe.Encpk

(
−

ℓ−1∑
i=0

bi ·XN−i

) (7)

Now, performing the Match algorithm between the encryption of the ith section of B
and td(1)

w and td(2)
w gives: ct{i,i+1} = rlwe.Encpk(

∑N−1
j=0 bi2Φ′+jXj).
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For each 0 ≤ i < η − 1: ct(r)
{i,i+1} = ct{i,i+1} · td(2)

w + (td(1)
w · C ′ + (−2ct{i,i+1} · td(1)

w )
which under the correctness conditions from Lemma 2 gives an encryption of:

rlwe.Decsk(ct(r)
{i,i+1}) = −

N−1∑
t=0

bi2Φ′+tX
t ·

ℓ−1∑
j=0

bjXN−j −
ℓ−1∑
j=0

b′jXN−j ·
N−1∑
t=0

Xt

+ 2
N−1∑
t=0

bi2Φ′+tX
t ·

ℓ−1∑
j=0

b′jXN−j

=
N−1∑
t=0

ℓ−1∑
j=0

XN+t−j(−bi2Φ′+t · bj − b′j + 2bi2Φ′+tb
′
j)

(8)

Since ∀j ∈ I : b′j = bj = 0, we get:

rlwe.Decsk(ct(r)
{i,i+1}) =

N−1∑
t=0

ℓ−1∑
j=0,j /∈I

XN+t−j(−bi2Φ′+t − b′j + 2bi2Φ′+tb
′
j)

Now, if we suppose that ∃i ∈ [0, η − 1[ such that ∀j ∈ [0, ℓ − 1], bi2Φ′+j = wj , then
∀j ∈ [0, ℓ − 1], −biΦ+j − b′j + 2biΦ+jb′j = −2b′j + 2b′j

2 = 0 as b′j ∈ {0, 1}, which gives
hw(B(i), w) = 0 which gives that under the condition of Lemma 2, Pr[hw(B(i), w) ̸= 0] = 0
and proves that condition (a) holds. In the other hand, if we suppose that ∀i ∈ [0, η − 1[,
∃j ∈ [0, ℓ − 1] such that biΦ+j ̸= wj , we can deduce that hw(B(i), w) ̸= 0 which gives:
Pr[hw(B(i), w) = 0] = 0 and proves that condition (b) holds. This concludes the proof.
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