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Abstract. In this work we first present an explicit forking lemma that distills the
information-theoretic essence of the high-moment technique introduced by Rotem
and Segev (CRYPTO ’21), who analyzed the security of identification protocols and
Fiat-Shamir signature schemes. Whereas the technique of Rotem and Segev was
particularly geared towards two specific cryptographic primitives, we present a stand-
alone probabilistic lower bound, which does not involve any underlying primitive or
idealized model. The key difference between our lemma and previous ones is that
instead of focusing on the tradeoff between the worst-case or expected running time of
the resulting forking algorithm and its success probability, we focus on the tradeoff
between higher moments of its running time and its success probability.
Equipped with our lemma, we then establish concrete security bounds for the BN
and BLS multi-signature schemes that are significantly tighter than the concrete
security bounds established by Bellare and Neven (CCS ’06) and Boneh, Drijvers
and Neven (ASIACRYPT ’18), respectively. Our analysis does not limit adversaries
to any idealized algebraic model, such as the algebraic group model in which all
algorithms are assumed to provide an algebraic justification for each group element
they produce. Our bounds are derived in the random-oracle model based on the
standard-model second-moment hardness of the discrete logarithm problem (for
the BN scheme) and the computational co-Diffie-Hellman problem (for the BLS
scheme). Such second-moment assumptions, asking that the success probability of
any algorithm in solving the underlying computational problems is dominated by
the second moment of the algorithm’s running time, are particularly plausible in any
group where no better-than-generic algorithms are currently known.
Keywords: Signature schemes · forking lemma · concrete security

1 Introduction
A multi-signature scheme [IN83, BN06] enables any set of signers, within a large and
decentralized system, to jointly produce a compact signature on a given message. Research
on the design and analysis of multi-signature schemes has recently gained significant renewed
interest, as such schemes were found particularly suitable for blockchain applications (e.g.,
[BDN18, MPSW19]). This high level of suitability dates back to the work of Bellare and
Neven [BN06], who showed that multi-signature schemes can be constructed in the plain
public-key model. In this model, each signer locally produces their signing and verification
keys, without engaging in an interactive key-generation process with other signers or with a

Supported by the Israel Science Foundation (Grant No. 1336/22) and by the European Union (ERC,
FTRC, 101043243). Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the European Research Council. Neither the European
Union nor the granting authority can be held responsible for them.

E-mail: segev@cs.huji.ac.il (Gil Segev), liat.shapira@mail.huji.ac.il (Liat Shapira)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-01-01 Accepted: 2024-06-04

https://doi.org/10.62056/a6qj89n4e
https://crossmark.crossref.org/dialog/?doi=10.62056/a6qj89n4e&domain=pdf&date_stamp=2024-06-11
https://orcid.org/0000-0002-8073-579X
mailto:segev@cs.huji.ac.il
mailto:liat.shapira@mail.huji.ac.il
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


2 An Explicit High-Moment Forking Lemma and its Applications to Multi-Signatures

registration authority, and without augmenting verification keys with proofs of knowledge
that need to be individually verified by all other signers.

Bellare and Neven constructed a multi-signature scheme (to which we refer as the
BN multi-signature scheme), and established its security in the random-oracle model
based on the hardness of the discrete logarithm (DL) problem in prime-order groups. A
potential drawback, however, in some scenarios of the BN scheme is that its signing process
requires interaction among the set of signers in the form of a three-round signing protocol.
Motivated by blockchain applications, Boneh, Drijvers and Neven [BDN18] then showed
that the BLS signature scheme [BLS01] can be extended to a multi-signature scheme (to
which we refer as the BLS multi-signature scheme), whose signing process is non-interactive.
Boneh, Drijvers and Neven established the security of the BLS multi-signature scheme in
the random-oracle model based on the hardness of the computational co-Diffie-Hellman
(co-CDH) problem in prime-order bilinear groups.

Following up on earlier constructions of multi-signature schemes in various different
models (see [OO93, LHL95, MOR01, Bol03, LOS+06, BGOY07, RY07] and the references
therein), the renewed interest in such schemes has led to a host of new and exciting
constructions in the plain public-key model, offering various trade-offs between their
efficiency and security (e.g., [MPSW19, DEF+19, NRSW20, AB21, BD21, NRS21, BTT22,
DOTT22, FSZ22, LK23, PW23, TZ23]).

The concrete security of multi-signatures. The security of a wide variety of cryp-
tographic schemes is established via the classic “forking lemma”. The lemma, origi-
nally introduced in the seminal work of Pointcheval and Stern [PS00], and then general-
ized to a stand-alone probabilistic lower bound by Bellare and Neven [BN06] (see also
[AABN02, BCC+16, KMP16] and the references therein), has become a fundamental and
extremely useful tool.

Specifically, for the BN scheme, the security proof presented by Bellare and Neven (see
also the more refined analysis by Bellare and Dai [BD21]) relies on the forking lemma
to transform any malicious forger that runs in time t, issues qH random-oracle queries
and breaks the security of the scheme with probability ϵ, into a DL algorithm that runs
in time roughly t and has success probability roughly ϵ2/qH (in Section 4 we provide a
formal statement of their result). Thus, in any group of order p in which Shoup’s generic
hardness result for computing discrete logarithms is believed to hold [Sho97]1, this leads to
the concrete bound ϵ ≤ (qH · t2/p)1/2 on the security of the BN scheme.2 However, there
are currently no known attacks on the BN scheme that are better than computing discrete
logarithms, for which the best-known algorithms offer a success probability of only t2/p.
This substantial “square-root” gap, especially for 256-bit groups, arises in the analysis of a
variety of cryptographic schemes that rely on the forking lemma (see [BD20, JT20, RS21]
for in-depth discussions). Moreover, more recent multi-signature schemes in the DL-setting
(e.g., [MPSW19, BD21]), whose known security proofs rely on nested applications of the
forking lemma, exhibit larger gaps.

For the BLS scheme, the security proof presented by Boneh, Drijvers and Neven
[BDN18] exhibits an even more significant gap. Specifically, Boneh, Drijvers and Neven
relied on the forking lemma to transform any malicious forger that runs in time t, issues
qH random-oracle queries, and breaks the security of the scheme with probability ϵ, into a
co-CDH algorithm that runs in time roughly q2

H · t/ϵ and has success probability roughly
ϵ/qH (in Section 5 we provide a formal statement of their result). Thus, in bilinear groups
of prime order p in which one assumes that the co-CDH problem is as hard as in the

1That is, that any algorithm running in time T solves the DL problem with probability at most T 2/p.
2Other formulations of the forking lemma (e.g., [PS00, AABN02, BCC+16, KMP16]) lead to various

similar trade-offs between the success probability and the running time of the resulting discrete-logarithm
algorithm. However, as discussed by Bellare and Dai [BD20] and by Jaeger and Tessaro [JT20], they all
face the same square-root loss.
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generic bilinear-group model3, this leads to the concrete bound ϵ ≤ (q5
H · t2/p)1/3 on the

security of the BLS multi-signature scheme. For various realistic ranges of the malicious
forger’s running time t and number of queries qH, this bound may fall somewhat short of
providing sufficient guarantees (once again, especially for 256-bit groups).

Tighter concrete security within the algebraic group model. The above-described
significant gaps in the concrete security of multi-signature schemes have so far been ad-
dressed mainly by proving security with respect to restricted classes of attackers. Specif-
ically, tighter concrete security bounds were established for multi-signature schemes
[AB21, BD21, NRS21, LK23] with respect to algebraic attackers within the idealized alge-
braic group model [FKL18]. In this idealized model, all algorithms are assumed to provide
an algebraic justification for each group element that they produce. Such an algebraic
justification typically enables to prove the security of schemes without relying on the forking
lemma and thus avoids the resulting security loss [AHK20, BFL20, FPS20, MTT19, RS20].4

This approach is significantly refined by the work of Bellare and Dai [BD20, BD21],
who introduced the following two-step modular analysis: (1) Given a (single-signer or
multi-signer) signature scheme, identify a (possibly interactive) computational problem
whose concrete hardness is tightly equivalent to the concrete security of the scheme,
but which can be described in a more direct and elegant manner, and then (2) derive
concrete security bounds by reducing this problem to the DL problem. However, using
the forking lemma for these reductions then leads to the above-discussed concrete security
gaps. Therefore, to avoid these gaps, the algebraic group model is nevertheless utilized.

Tighter concrete security without the algebraic group model? Rotem and Segev
[RS21] provided tighter concrete security bounds for Σ-protocols and their associated Fiat-
Shamir signature schemes [FS87, AABN02]. Instead of analyzing security in an idealized
algebraic model, they introduced a different forking technique, relying on the assumption
that the underlying computational problem is “d-th moment hard”: The success probability
of any algorithm in solving it is dominated by the d-th moment of the algorithm’s running
time. Equipped with such an underlying assumption, their forking technique transforms
a malicious attacker into an algorithm solving the underlying computational problem by
optimizing the trade-off between the algorithm’s success probability and the d-th moment
of their running time.

In the concrete context of the DL problem, the assumption that the problem is d-
moment hard states that any algorithm running in time T solves the DL problem with
probability at most E[T d]/p, where E[T d] denotes the d-th moment of the distribution
corresponding to the algorithm’s running time (see Section 2.1 for the formal definition
of d-moment hardness). Shoup’s original proof shows that the DL problem is 2-moment
hard in the generic-group model [Sho97], and thus the second-moment DL assumption
can be viewed as a highly plausible strengthening of the DL assumption in any group
where no better-than-generic algorithms are currently known. More generally, the recent
work of Segev, Sharabi and Yogev [SSY23] provided a generic framework for analyzing the
d-moment hardness of a wide range of computational problems (refining and extending
the work of Jeager and Tessaro [JT20] on expected-time hardness).

The forking technique introduced by Rotem and Segev, however, was particularly
geared towards analyzing the security of Σ-protocols and their associated Fiat-Shamir
(single-signer) signature schemes. In contrast to the work of Bellare and Neven [BN06],
they did not explicitly provide a stand-along probabilistic tool, or any other indication of

3That is, that any algorithm running in time T solves the co-CDH problem with probability at most
T 2/p [Sho97, Mau05, BB08].

4For security proofs that consist of nested applications of the forking lemma, the algebraic justification
assumed to be provided by algorithms in the idealized algebraic group model enables to reduce the nesting
depth, and thus to reduce the resulting security loss.



4 An Explicit High-Moment Forking Lemma and its Applications to Multi-Signatures

the extent to which their approach may be applicable for other cryptographic purposes –
such as obtaining tighter concrete security bounds for multi-signature schemes.

1.1 Our Contributions
In this work we first present an explicit high-moment forking lemma that distills the
information-theoretic essence of the technique introduced by Rotem and Segev [RS21].
Similarly to the general forking lemma of Bellare and Neven [BN06], our high-moment
generalization consists of a stand-alone probabilistic lower bound, which does not involve
any underlying cryptographic primitive (such as a signature scheme) or any idealized
model (such as the random-oracle model). At a very high level, the key difference between
our approach and that of Bellare and Neven is that whereas their forking lemma may be
viewed as optimizing the tradeoff between the worst-case running time of the resulting
forking algorithm and its success probability, our lemma focuses on optimizing the tradeoff
between the d-th moment of its running time and its success probability.

Then, equipped with our lemma, we establish concrete security bounds for the BN and
BLS multi-signature schemes that are tighter than the concrete security bounds established
by Bellare and Neven [BN06] and Boneh, Drijvers and Neven [BDN18], respectively. Our
tighter bounds are derived in the random-oracle model based on the standard-model
second-moment hardness of the discrete logarithm problem (for the BN scheme) and the
computational co-Diffie-Hellman problem (for the BLS scheme). We prove the following
theorems (which, for simplicity, are stated here rather informally5):

Theorem 1 (informal). Let G be a cyclic group of prime order p. Assuming that the DL
problem is second-moment hard in G, then for any adversary that runs in time t, issues
qH random oracle queries, and breaks the security of the BN multi-signature scheme with
probability ϵ, it holds that

ϵ ≤
(

qH ·
t2

p

)2/3

.

Theorem 2 (informal). Let G = (G1,G2,Gt) be a triplet of cyclic groups of prime order
p equipped with a bilinear map e : G1 × G2 → Gt. Assuming that co-CDH problem is
second-moment hard in G, then for any adversary that runs in time t, issues qH random
oracle queries, and breaks the security of the BLS multi-signature scheme with probability
ϵ, it holds that

ϵ ≤
(

q
5/2
H · t2

p

)2/3

.

Recall, as discussed above, that the analysis of Bellare and Neven provided the bound
ϵ ≤ (qH · t2/p)1/2, and the analysis of Boneh, Drijvers and Neven provided the bound
ϵ ≤ (q5

H · t2/p)1/3. Thus, compared to their bounds, our bounds are significantly tighter
as we increase the exponent from 1/2 to 2/3 for the BN scheme, and from 1/3 to 2/3
for the BLS scheme. For example, from the practical perspective of a 256-bit group, the
security bounds established by Bellare and Neven and by Boneh, Drijvers and Neven
show that any attacker that runs in time at most t = 264 and issues at most q = 230

random oracle queries breaks the BN multi-signature scheme with probability at most
2−49 and the BLS multi-signature scheme with probability at most 1. Our tighter bounds
improve these to 2−65 and 2−35, respectively. Although these bounds still do not match
the best-possible “generic group” bound, we believe they provide a significant step towards
better understanding these schemes without relying on idealized algebraic models. Tables
1 and 2 below provide additional such concrete examples.

5Most notably, these two statements do not include the number of signing queries issued by the
adversary and various other lower-order terms.
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Table 1: A comparison of the concrete security guarantees for the Bellare–Neven multi-
signature scheme in the standard model.

Attacker’s Security Oracle Previous Our
running time parameter Queries bound bound

t p q
(

q · t2

p

) 1
2

(
q · t2

p

) 2
3

264 2256 225 2−51.5 2−68.67

264 2256 230 2−49 2−65.33

280 2256 230 2−33 2−44

280 2512 230 2−161 2−214.67

2100 2512 240 2−136 2−181.33

Table 2: A comparison of the concrete security guarantees for the BLS multi-signature
scheme in the standard model.

Attacker’s Security Oracle Previous Our
running time parameter Queries bound bound

t p qH

(
q5

H · t2

p

) 1
3

(
q

5
2
H · t2

p

) 2
3

264 2256 225 2−1 2−43.67

264 2256 230 > 1 2−35.33

270 2512 225 2−82.33 2−206.33

280 2512 230 2−67.33 2−184.67

2100 2512 240 2−37.33 2−141.33

1.2 Paper Organization
The remainder of this paper is organized as follows. First, in Section 2 we present the
basic notions of d-th moment hardness and multi-signature schemes. In Section 3 we
formalize and prove an explicit high-moment forking lemma. In Sections 4 and 5 we then
rely on our lemma for establishing tighter concrete security bounds for the BN and BLS
multi-signature schemes, respectively.

2 Preliminaries
For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution X we denote
by x← X the process of sampling a value x from the distribution X. Similarly, for a set
X we denote by x← X the process of sampling a value x from the uniform distribution
over X . In the remainder of this section, we present the notion of d-th moment hardness
and the standard notion of security for multi-signature schemes.

2.1 d-th Moment Hardness
We consider relations R = {Rλ}λ∈N, where Rλ ⊆ Xλ×Wλ for any λ ∈ N, and distributions
D = {Dλ}λ∈N where each Dλ produces pairs (x, w) ∈ Rλ. For any probabilistic algorithm A
and for any input x ∈ {0, 1}∗ we denote by Time(A(x)) the random variable corresponding
to the running time of the computation A(x) over the internal randomness of A.

Definition 1 ([RS21]). Let d = d(λ), ∆ = ∆(λ) and δ = δ(λ) be functions of the security
parameter λ ∈ N, and let R = {Rλ}λ∈N be a relation, where Rλ ⊆ Xλ×Wλ for any λ ∈ N.
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We say that R is d-moment (∆, δ)-hard with respect to a distribution D = {Dλ}λ∈N if for
every algorithm A it holds that

Pr
(x,w)←Dλ

[(x, A(x)) ∈ Rλ] ≤
∆ · E(x,w)←Dλ

[
(Time(A(x)))d

]
|Wλ|δ

,

for all sufficiently large λ ∈ N, where the probability is additionally taken over the internal
randomness of A.

For the computational problems considered in this work (as discussed in the remainder
of this section), the known generic-group hardness results show that it suffices to consider
the above definition when setting ∆(λ) = 1 and δ(λ) = 1 for all λ ∈ N. For this setting
of the parameters, we will simply say that a relation R is d-moment hard instead of
d-moment (1, 1)-hard. When stating our results, we thus consider the setting of ∆(λ) = 1
and δ(λ) = 1, and note that all of our results in fact hold for any setting of ∆ and δ.

The DL and co-CDH relations. In Section 4, for proving a tighter concrete security
bound for the BN scheme [BN06], we consider the above definition in the case of the
discrete logarithm problem. In this case, the underlying distribution D and relation R are
defined as follows:

• The distribution Dλ first invokes a group-generation algorithm GroupGen(1λ) for
producing the description (G, p, g) of a cyclic group of order q that is generated by g,
where p is a λ-bit prime. Then, it uniformly samples h← G and lets x = (G, p, g, h).

• The relation R consists of all such pairs ((G, p, g, h), w) where h = gw for w ∈ Zp.

As discussed by Rotem and Segev [RS21], given that the discrete logarithm problem is
second-moment hard in the generic-group model [Sho97, JT20, SSY23], the assumption
that the discrete logarithm (DL) problem is second-moment hard in the standard model
can be viewed as capturing the problem’s generic hardness in the form of a standard-model
assumption.

Similarly, for proving a tighter concrete security bound for the BLS multi-signature
scheme due to Boneh, Drijvers and Neven [BDN18], we consider the above definition
in the case of the computational co-Diffie-Hellman problem (co-CDH). In this case, the
underlying distribution D and relation R are defined as follows:

• The distribution D first invokes a group-generation algorithm GroupGen(1λ) for
producing the description (G1,G2,Gt, p, g1, g2, e) of three cyclic groups of order
p, where G1 is generated by g1, G2 is generated by g2, p is a λ-bit prime, and
e : G1 × G2 → Gt is an efficiently-computable non-degenerated bilinear map (in
fact, the group Gt and the bilinear map e are not essential in order to define the
distribution D and the relation R). Then, it uniformly samples α, β ← Zp and lets
x =

(
G1,G2, q, g1, g2, gα

1 , gα
2 , gβ

2
)
.

• The relation R consists of all pairs
((
G1,G2, p, g1, g2, gα

1 , gα
2 , gβ

2
)
, w
)

where w =
gαβ

1 ∈ G1 for α, β ∈ Zp.

The recent work of Segev, Sharabi and Yogev [SSY23] provided a generic framework for
analyzing the d-moment hardness of a wide range of computational problems (refining
and extending the work of Jeager and Tessaro [JT20] on expected-time hardness). Their
framework, together with the classic generic hardness results for the computational Diffie-
Hellman problem [Sho97], establish the second-moment hardness of the computational
co-Diffie-Hellman problem in the generic-group model.
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2.2 Multi-Signature Schemes
A multi-signature scheme [IN83, BN06] is a six-tuple Π = (Setup, KG, KeyAgg, Sign, SigAgg,
Verify) of polynomial-time algorithms. The setup algorithm Setup receives as input the
unary representation of the security parameter λ ∈ N and outputs public parameters
pp. The key-generation algorithm KG receives as input the public parameters pp, and
outputs a signing key sk and a verification key vk. The key-aggregation algorithm KeyAgg
is a deterministic algorithm that takes as input the public parameters pp and a vector
of verification keys v⃗k, and outputs an aggregated verification key aggvk.6 It should be
noted that not all multi-signature schemes offer a non-trivial key-aggregation algorithm.
In such cases (e.g., the BN scheme [BN06]), we can view its key-aggregation algorithm as
the identity function that takes as input a vector v⃗k of verification keys and outputs it as
the aggregated key aggvk.

For schemes with non-interactive signing, the signing algorithm Sign receives as input
the public parameters pp, a signing key sk, a vector v⃗k of verification keys, and a message
m that is taken from a message space M, and outputs a signature σ. For schemes with
interactive signing, the signing algorithm defines an interactive protocol by additionally
receiving as input at each round the relevant party’s internal state and the communication
produced by all other parties. The signature-aggregation algorithm SigAgg is a deterministic
algorithm that takes as input the public parameters pp, a vector of verification keys v⃗k, and
a vector of signatures σ⃗, and outputs an aggregated signature σ. Finally, the verification
algorithm Verify receives as input the public parameters pp, an aggregated verification key
aggvk, a message m and an aggregated signature σ, and outputs either 0 or 1.

In terms of correctness, we consider the following requirement, which we formalize for
simplicity for schemes with non-interactive signing and without random oracles. We then
discuss its standard extensions to consider interactive signing and random oracles.

Definition 2. A multi-signature scheme Π = (Setup, KG, KeyAgg, Sign, SigAgg, Verify)
with non-interactive signing over a message space M = {Mλ}λ∈N is correct if there exists
a negligible function ν = ν(·) such that for any polynomial number n = n(·) of signers,
security parameter λ ∈ N, and message m ∈Mλ it holds that

Pr
[
Verify

(
pp, KeyAgg

(
pp, v⃗k

)
, m, SigAgg

(
pp, v⃗k, σ⃗

))
= 1
]
≥ 1− ν(λ)

for v⃗k = (vk1, . . . , vkn) and σ⃗ = (σ1, . . . , σn), where the probability is taken over the
choice of pp ← Setup(1λ), and over the choices of (ski, vki) ← KG(pp) and σi ←
Sign

(
pp, ski, v⃗k, m

)
for every i ∈ [n].

As noted above, Definition 2 may be extended in various manners. These include, in
particular, the following two standard extensions:

• Interactive signing: Definition 2 extends to schemes with interactive signing by
letting (σ1, . . . , σn) denote the local output of each party in the interactive signing
protocol, where each party i ∈ [n] is provided with

(
pp, ski, v⃗k, m

)
as input. We

refer the reader to the work of Bellare and Dai [BD21] for a formal treatment of the
correctness requirement for schemes with interactive signing.

• Random-oracle model: Definition 2 extends to schemes whose security is analyzed in
the random-oracle model [BR93] by augmenting all algorithms with access to the
random oracle, and considering all probabilities also over the randomness of the
oracle.

6For concreteness, we view collections of verification keys as vectors and not sets, noting that any set can
be uniquely transformed into a vector by determining an ordering among its elements (e.g., lexicographic
order).
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In terms of security, the standard notion of security for multi-signature schemes [BN06]
considers adversaries that obtain a single honestly-generated verification key vk, and
can then adaptively issue any polynomial number of signing queries. Each such query
consists of a message m and a set of signers in the form of a vector v⃗k of verification keys
that contains the honestly-generated verification key vk. The goal of such an adversary
is to output a triplet

(
v⃗k∗, m∗, aggσ∗

)
, where: (1) v⃗k∗ contains the honestly-generated

verification key vk, (2) the adversary did not issue a signing query for
(
v⃗k∗, m∗

)
, and (3)

aggσ∗ is a valid aggregated signature on the message m∗ with respect to v⃗k∗. This is
captured by the following definition, which we again formalize for simplicity for schemes
with non-interactive signing and without random oracles, and then discuss its standard
extensions to consider interactive signing and random oracles.

Definition 3. Let t = t(λ), qsign = qsign(λ), and ϵ = ϵ(λ) be functions of the security
parameter λ ∈ N. A multi-signature scheme Π = (Setup, KG, KeyAgg, Sign, SigAgg, Verify)
with non-interactive signing is (t, qsign, ϵ)-unforgeable if for any algorithm A that runs in
time at most t and issues at most qsign signing queries, it holds that

AdvMultiSig
Π (A, λ) def= Pr

[
ExpMultiSig

Π (A, λ) = 1
]
≤ ϵ(λ)

for all sufficiently large λ ∈ N, where the experiment ExpMultiSig
Π (A, λ) is defined as follows:

1. pp← Setup(1λ).
2. (sk, vk)← KG(pp).
3.
(
v⃗k∗, m∗, aggσ∗

)
← ASign(pp,sk,·,·)(1λ, pp, vk).

4. If the following conditions are satisfied then output 1 and otherwise output 0:
(a) vk ∈ v⃗k∗.
(b) A did not query the oracle Sign(pp, sk, ·, ·) with

(
v⃗k∗, m∗

)
.

(c) Verify
(
pp, KeyAgg

(
v⃗k∗
)
, m∗, aggσ∗

)
= 1.

As discussed above, Definition 3 naturally extends to consider interactive signing and
random oracles:

• Interactive signing: Definition 3 extends to schemes with an interactive signing
protocol by providing adversaries with access to a stateful signing oracle [BN06, BD21].
This stateful oracle enables the initiation of new signing sessions and the execution
of previously initiated ones in an adversarial manner. For our work, for the case of
the BN scheme (whose signing is interactive), we do not directly analyze the security
of the scheme and, therefore, do not require a formal extension of Definition 3 to
schemes with interactive signing. Instead, we analyze the hardness of an interactive
computational problem, which Bellare and Dai [BD21] proved to imply the security
of their scheme. For the case of the BLS multi-signature scheme [BDN18], which we
do analyze directly, Definition 3 suffices as the scheme has non-interactive signing.

• Random-oracle model: Definition 3 extends to schemes whose security is analyzed
in the random-oracle model [BR93] by augmenting all algorithms (including the
adversary) with access to the random oracle, introducing an additional parameter
qH that upper bounds the number of direct random-oracle queries issued by the
adversary, and considering all probabilities also over the randomness of the oracle.

A relaxed notion of unforgeability. The goal of the adversary in the experiment
ExpMultiSig

Π described in Definition 3 is to output a valid forgery
(
v⃗k∗, m∗, aggσ∗

)
where:

(1) v⃗k∗ contains the honestly-generated verification key vk, and (2) the adversary did not
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issue a signing query for
(
v⃗k∗, m∗

)
. However, Boneh and Drijvers and Neven [BDN18]

proved the security of the BLS multi-signature scheme with respect to a more relaxed
notion, in which the adversary is not allowed to issue any signing query involving the
message m∗. Formally, we denote by ExprMultiSig

Π the experiment corresponding to this
relaxed notion, which is obtained from the experiment ExpMultiSig

Π by replacing Item 4b
with the requirement that A did not query the oracle Sign(pp, sk, ·, ·) with

(
v⃗k, m∗

)
for any

vector v⃗k of verification keys.
On the one hand, it should be noted that the BLS scheme is, in fact, insecure with

respect to the more standard notion. However, on the other hand, it can be easily modified
into one that satisfies the more standard notion: Instead of signing a message m with
respect to v⃗k, sign the message (v⃗k, m) with respect to v⃗k. This simple modification does
not introduce a significant overhead since the signed message is anyway first hashed via
a random oracle, and essentially the exact same proof of Boneh and Drijvers and Neven
goes through. However, to enable a direct-as-possible comparison to the concrete security
bound proved by Boneh and Drijvers and Neven [BDN18], we analyze the concrete security
of the BLS scheme with respect to this relaxed notion.

Asymptotic vs. fixed-group analysis. The above discussion of the security of multi-
signature schemes, as well as the discussion of the DL and co-CDH problems in Section 2.1,
are of an asymptotic flavor. Specifically, they consider an explicit security parameter λ ∈ N
which is given as input to a setup algorithm Setup(1λ) or group-generation algorithm
GroupGen(1λ) (and thus indirectly also to all other algorithms), and provide guarantees
for all sufficiently large λ ∈ N.

When analyzing the security of the BN and BLS multi-signature schemes in Sections
4 and 5, respectively, we follow a more concrete approach, in which a description of an
underlying group is fixed in advance (its prime order p can essentially be viewed as a
concrete analogous security parameter). It is important to note that we do not rely on
any assumed properties related to the structure of the group (beyond its prime order)
or to the representation of its elements. This standard approach enables to provide
concrete security guarantees for any fixed-size candidate group in which the underlying
cryptographic problems (e.g., DL or co-CDH) are assumed to be computationally hard (in
our case, d-moment hard).

3 An Explicit High-Moment Forking Lemma
In this section we present an explicit high-moment forking lemma that distills the
information-theoretic essence of the technique introduced by Rotem and Segev [RS21] in
the form of a stand-alone probabilistic lower bound. As in the stand-alone forking lemma
of Bellare and Neven [BN06], our lemma considers a randomized algorithm A that is
provided with q +1 inputs, where q ≥ 1 may be any integer. Its first input is a value x ∈ X ,
and its additional q inputs are values h1, . . . , hq ∈ C, for finite sets X and C. Given such
input, the algorithm then outputs a pair (I, σ) ∈ {0, . . . , q} × {0, 1}∗. We are interested
in the distribution of the output pair (I, σ), where the value x is sampled from a given
distribution X over the set X , and the values h1, . . . , hq are sampled independently and
uniformly from the set C. We let X × Cq denote the corresponding product distribution.

For any such algorithm A, and for any integer B ≥ 1, we define the following “forking”
algorithm FA,B that is given as input a value x ∈ X (note that the case B = 1 corresponds
to the forking algorithm of Bellare and Neven [BN06]):
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The Algorithm FA,B(x)
1. Sample h1, . . . , hq ← C and ρ← {0, 1}∗ independently and uniformly.
2. Compute (I0, σ) = A(x, h1, . . . , hq; ρ).
3. If I0 /∈ {1, . . . , q} then output ⊥ and terminate.

4. For any j ∈ [B] sample h
(j)
I0

, . . . , h
(j)
q ← C independently and uniformly, and compute

(Ij , σj) = A
(
x, h1, . . . , hI0−1, h

(j)
I0

, . . . , h(j)
q ; ρ

)
.

5. If there exists an index j ∈ [B] for which Ij = I0 and h
(j)
Ij
̸= hI0 , then output(

I0, σ, σj , h1, . . . , hq, h
(j)
I0

, . . . , h(j)
q

)
for the minimal such j, and otherwise output ⊥.

Recall that, as defined in Section 2.1, for any x ∈ X we denote by Time(FA,B(x)) the ran-
dom variable corresponding to the running time of the computation FA,B(x; h1, . . . , hq, ρ)
over the uniform choice of the randomness (h1, . . . , hq, ρ)← Cq × {0, 1}∗. Equipped with
our forking algorithm FA,B , we prove the following lemma:

Lemma 1. Let q ≥ 1 and let A be a randomized algorithm that obtains q + 1 inputs with
associated finite sets X and C as described above. In addition, let t be an upper bound on
the worst-case running time of A, let X be a distribution over X , and let

ϵ = Pr
(x,h1,...,hq)←X×Cq

[A(x, h1, . . . , hq) = (I, σ) s.t. I ∈ {1, . . . , q}] .

If ϵ > 2 · q2/|C| then for any d ≥ 1 it holds that

Pr
x←X

[FA,B(x) ̸= ⊥] ≥ B

8q
· ϵ2,

and
Ex←X

[
(Time(FA,B(x)))d

]
≤ 2 · (1 + B)d · td · ϵ,

where B =
⌈

(1/ϵ)1/d − 1
⌉
.

Proof of Lemma 1. We first prove the above lower bound on the success probability of
FA,B(x) as a function of ϵ, B and q. For every i ∈ {1, . . . , q} and h1, . . . , hq ∈ C we let
h⃗i = (h1, . . . , hi), and we let h⃗0 = ⊥. Based on the description of the algorithm FA,B, it
holds that FA,B(x) ̸= ⊥ if and only if I0 ∈ {1, . . . , q} and there exists an index j ∈ [B] for
which Ij = I0 and h

(j)
Ij
̸= hI0 . Thus,

Pr [FA,B(x) ̸= ⊥]

= Pr

(I0 ∈ {1, . . . , q}) ∧

 B∨
j=1

(Ij = I0) ∧
(

h
(j)
Ij
̸= hI0

)
=

q∑
i=1

Pr

(I0 = i) ∧

 B∨
j=1

(
Ij = i ∧ h

(j)
i ̸= hi

)

=
q∑

i=1

∑
(x,ρ)∈X×{0,1}∗

h⃗i−1∈Ci−1

Pr
[
x ∧ ρ ∧ h⃗i−1

]
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×Pr

I0 = i ∧

 B∨
j=1

(
Ij = i ∧ h

(j)
i ̸= hi

)


≥
q∑

i=1

∑
(x,ρ)∈X×{0,1}∗

h⃗i−1∈Ci−1

Pr
[
x ∧ ρ ∧ ⃗hi−1

]

×Pr

I0 = i ∧

 B∨
j=1

(
Ij = i ∧ h

(j)
ℓ ̸= hℓ∀ℓ ∈ {i, . . . , q}

)
.

For every i ∈ {1, . . . , q}, x ∈ X , ρ ∈ {0, 1}∗ and h⃗i−1 ∈ Ci−1 we let h∗i (i, x, ρ, h⃗i−1), . . . ,

h∗q(i, x, ρ, h⃗i−1) denote the lexicographically first q − i + 1 elements of C such that the
output of A on input

(
x, h⃗i−1, h∗i (i, x, ρ, h⃗i−1), . . . , h∗q(i, x, ρ, h⃗i−1); ρ

)
is a pair (I, σ) for

which I > 0. At this point, since each value h
(j)
ℓ for ℓ ∈ {i, . . . , q} is uniformly sampled

conditioned on x, ρ and h⃗i−1, then instead of comparing it to the actual value hℓ we can
compare it to the lexicographically first such h∗ℓ that produces I > 0. Then,

Pr [FA,B(x) ̸= ⊥]

≥
q∑

i=1

∑
(x,ρ)∈X×{0,1}∗

h⃗i−1∈Ci−1

Pr
[
x ∧ ρ ∧ h⃗i−1

]

×Pr

I0 = i ∧

 B∨
j=1

(
Ij = i ∧ h

(j)
ℓ ̸= h∗ℓ (i, x, ρ, h⃗i−1)∀ℓ ∈ {i, . . . , q}

)
=

q∑
i=1

∑
(x,ρ)∈X×{0,1}∗

h⃗i−1∈Ci−1

Pr
[
x ∧ ρ ∧ h⃗i−1

]
· Pr [I0 = i]

×Pr

 B∨
j=1

(
Ij = i ∧ h

(j)
ℓ ̸= h∗ℓ (i, x, ρ, h⃗i−1)∀ℓ ∈ {i, . . . , q}

) (1)

=
q∑

i=1

∑
(x,ρ)∈X×{0,1}∗

h⃗i−1∈Ci−1

Pr
[
x ∧ ρ ∧ h⃗i−1

]
· Pr [I0 = i])

×

1− Pr

 B∧
j=1

(Ij ̸= i) ∨
(
∃ℓ ∈ {i, . . . , q} s.t. h

(j)
ℓ = h∗ℓ (i, x, ρ, h⃗i−1

)
=

q∑
i=1

∑
(x,ρ)∈X×{0,1}∗

h⃗i−1∈Ci−1

Pr
[
x ∧ ρ ∧ h⃗i−1

]
· Pr [I0 = i]

×

1−
B∏

j=1
Pr
[
Ij ̸= i ∨ ∃ℓ ∈ {i, . . . , q} s.t. h

(j)
ℓ = h∗ℓ (i, x, ρ, h⃗i−1)

] (2)
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where Eq. (1) follows from the fact that the events I0 = i and

B∨
j=1

(Ij = i) ∧ h
(j)
ℓ ̸= h∗ℓ (i, x, ρ, h⃗i−1)∀ℓ ∈ {i, .., q}

are independent conditioned on x, ρ and h⃗i−1, and Eq. (2) follows from the fact that for
any 1 ≤ j1 ≠ j2 ≤ B the corresponding executions of A are independent. Now, via a union
bound we obtain

Pr
[
Ij ̸= i ∨ ∃ℓ ∈ {i, . . . , q} s.t. h

(j)
ℓ = h∗ℓ (i, x, ρ, h⃗i−1)

]
≤ min

{
1, Pr [Ij ̸= i] + Pr

[
∃ℓ ∈ {i, . . . , q} s.t. h

(j)
ℓ = h∗ℓ (i, x, ρ, h⃗i−1)

]}
≤ min

{
1, 1− Pr [Ij = i] + q

|C|

}
.

For every i, x, ρ, and h1, . . . , hi−1 we let

ϵ̃i(x, ρ, h⃗i−1) = max
{

0, Pr [I0 = i]− q

|C|

}
,

then Pr [I0 = i] ≥ ϵ̃i(x, ρ, h⃗i−1) and Pr [I0 = i] = Pr [Ij = i] for every j ∈ [B]. Thus,

1−
B∏

j=1
Pr
[
Ij ̸= i ∨ ∃ℓ ∈ {i, . . . , q} s.t. h

(j)
ℓ = h∗ℓ (i, x, ρ, h⃗i−1)

]
≥ 1−

(
1− ϵ̃i(x, ρ, h⃗i−1)

)B

and therefore

Pr [FA,B(x) ̸= ⊥] ≥
q∑

i=1

∑
(x,ρ)∈X×{0,1}∗

h⃗i−1∈Ci−1

Pr
[
x ∧ ρ ∧ ⃗hi−1

]

×ϵ̃i(x, ρ, h⃗i−1) ·
(

1−
(

1− ϵ̃i(x, ρ, h⃗i−1)
)B
)

=
q∑

i=1
E
[
ϵ̃i(x, ρ, h⃗i−1) ·

(
1−

(
1− ϵ̃i(x, ρ, h⃗i−1)

)B
)]

≥ 1
2 ·B ·

q∑
i=1

ϵ̃i
2, (3)

where we let ϵ̃i = E
[
ϵ̃i(x, ρ, h⃗i−1)

]
for every i ∈ [q], and Eq. (3) follows from the following

claim which is proved in Appendix A.1:

Claim 3. For each i ∈ [q] it holds that

E
[
ϵ̃i(x, ρ, h⃗i−1) ·

(
1−

(
1− ϵ̃i(x, ρ, h⃗i−1)

)B
)]
≥ 1

2 ·B · ϵ̃i
2
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Letting ϵi = Pr [I0 = i] for every i ∈ [q], and using Jensen’s inequality, we obtain:

Pr [FA,B(x) ̸= ⊥] ≥ 1
2 ·B ·

q∑
i=1

ϵ̃i
2

≥ 1
2q
·B ·

(
q∑

i=1
ϵ̃i

)2

≥ 1
2q
·B ·

(
q∑

i=1

(
ϵi −

q

|C|

))2

(4)

= 1
2q
·B ·

(
Pr [I0 ∈ {1, . . . , q}]− q2

|C|

)2

where Eq. (4) follows from the following claim which is proved in Appendix A.2:

Claim 4. For every i ∈ [q] it holds that ϵ̃i ≥ ϵi − q
|C| .

Now, we obtain

Pr [FA,B(x) ̸= ⊥] ≥ 1
2q
·B ·

(
Pr [I0 ∈ {1, . . . , q}]− q2

|C|

)2

≥ 1
2q
·B ·

(
ϵ− q2

|C|

)2

≥ 1
2q
·B ·

( ϵ

2

)2
(5)

= 1
8q
·B · ϵ2,

as required, where Eq. (5) follows from the assumption ϵ > 2 · q2/|C|.
We now turn to upper bounding the d-th moment of the running time of the algorithm

FA,B. Note that, when x ← X, then with probability 1− ϵ the algorithm FA,B runs in
time at most t, and with probability ϵ it runs in time at most (1 + B) · t. Therefore,

Ex←X

[
(Time(FA,B(x)))d

]
≤ (1− ϵ) · td + ϵ · ((1 + B) · t)d

≤ td · ϵ · (1 + B)d + ϵ · (1 + B)d · td

= 2 · (1 + B)d · td · ϵ, (6)

where Eq. (6) following from our choice of B ≥ (1/ϵ)
1
d−1, which implies that 1 ≤ ϵ·(1+B)d.

This concludes the proof of Lemma 1.

4 Tighter Concrete Security for BN Multi-Signatures
In this section we show that our high-moment forking lemma can be used for establishing
a concrete security bound for the Bellare-Neven (BN) multi-signature scheme [BN06].
Our starting point is the recent work of Bellare and Dai [BD21], who showed that the
security of the Bellare-Neven multi-signature scheme is equivalent to the hardness of the
identification discrete-logarithm (IDL) problem, introduced by Kiltz, Masny, and Pan
[KMP16]. Bellare and Dai showed that in the algebraic-group model [FKL18] the hardness
of the IDL problem is equivalent to that of the DL problem. As previously discussed, the
algebraic group model, however, is an idealized model which considers a rather restricted
class of attackers (attackers which are assumed to provide an algebraic justification of each
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group element that they produce). In fact, in this model, the hardness of an extremely
wide class of strong computational and decisional problems is known to be equivalent to
that of the DL problem [FKL18, AHK20, BFL20, FPS20, MTT19, RS20]).

In the standard model, Kiltz, Masny, and Pan [KMP16] showed that the hardness of
the IDL problem can be based on that of the DL problem using the forking lemma, once
again leading to the square-root loss for the BN multi-signature scheme. By applying our
high-moment forking lemma, assuming the second-moment hardness of the DL problem,
we prove a tighter concrete hardness bound for the IDL problem in the standard model
and, therefore, also for the Bellare-Neven multi-signature scheme.

For stating our theorem, recall that the BN scheme relies on a cyclic group G of prime
order p that is generated by a given element g ∈ G, as well as on an integer ℓ. We let
G = (G, p, g) denote the description of the group, and we let ΠBN[G,ℓ] denote the BN scheme.
The scheme relies on two hash functions, H0 and H1, that are modeled as random oracles
for the scheme’s security analysis. These two hash functions are used to map arbitrary
strings to the sets {0, 1}ℓ and Zp. That is, H0 : {0, 1}∗ → {0, 1}ℓ and H1 : {0, 1}∗ → Zp.
We prove the following theorem:

Theorem 5. Let G = (G, p, g), where G be a cyclic group of prime order p that is
generated by an element g ∈ G, and let ℓ be an integer. Assuming that the DL problem is
second-moment hard in the group G, then for any adversary A it holds that

AdvMultiSig
ΠBN[G,ℓ]

(A) ≤
(

32 · q1 · t2

p

)2/3

+ qS · (4q0 + 2q1 + qS)
p

+ q0 · (q0 + n)
2ℓ

,

where:

• t is an upper bound on the running time of the experiment ExpMultiSig
ΠBN[G,ℓ]

(A).
• q0, q1 and qS are upper bounds on the number of H0-queries, H1-queries and signing

queries issued during the experiment ExpMultiSig
ΠBN[G,ℓ]

(A), respectively.
• n is an upper bound on the largest signer set involved in a single multi-signature

during the experiment ExpMultiSig
ΠBN[G,ℓ]

(A).

Compared to the bound proved by Bellare and Dai [BD21], our bound is tighter by
replacing their exponent 1/2 with our exponent 2/3. All other terms in our bound are
exactly the same as in their bound (up to the multiplicative constant 32), as we explain in
Section 4.2. In addition, note that as with the bound of Bellare and Dai, our bound is
stated in terms of the parameters t, q0, q1 and qS of the entire experiment ExpMultiSig

ΠBN[G,ℓ]
(A)

and not those of the adversary only (e.g., the number of H0 and H1 queries issued during
the experiment consists of the number of such queries issued directly by the adversary and
the number of such queries issued by the signing oracle).

In what follows we first describe the BN scheme ΠBN[G,ℓ]. Then, in Section 4.1 we prove
a tighter concrete hardness bound for the IDL problem in the standard model, which we
use in Section 4.2 for deriving Theorem 5. For simplicity, in the following description
of the scheme ΠBN[G,ℓ], we assume that all algorithms receive G = (G, p, g) and ℓ ∈ N as
inputs, and we explicitly include them only for the key-generation algorithm.
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The BN Multi-Signature Scheme ΠBN[G,ℓ]

KG(G, ℓ). On input G = (G, p, g) and ℓ ∈ N, the key-generation algorithm samples x← Zp,
and outputs

(sk, vk) = (x, gx) ∈ Zp ×G.

Sign
(
sk, vk, v⃗k, m

)
. On input sk and vk as above, v⃗k = (vk1, . . . , vkn) for some n ∈ N, and

m ∈ {0, 1}∗, the signing process is defined as the following 3-round protocol:

1. If there is no index i ∈ [n] for which vk = vki or if there is more than one such
index, then abort. Otherwise, denote by i∗ ∈ [n] the unique such index.

2. Sample ri∗ ← Zp, let Ri∗ = gri∗ , and send ti∗ = H0 (i∗, Ri∗) ∈ {0, 1}ℓ to all
other parties.

3. Upon receiving {ti}i∈[n]\{i∗} from all other parties, send Ri∗ to all other parties.
4. Upon receiving {Ri}i∈[n]\{i∗} from all other parties, if for some i ∈ [n] \ {i∗} it

holds that ti ̸= H0 (i, ti) then abort. Otherwise, compute

R =
∏

i∈[n]

Ri ∈ G

ci∗ = H1
(
vk, v⃗k, R, m

)
∈ Zp

si∗ = ri∗ + sk · ci∗ mod p,

and locally output (R, si∗).

SigAgg ((R1, s1), . . . , (Rn, sn)). On input (R1, s1), . . . , (Rn, sn) ∈ G×Zp for some n ∈ N,
if R1 = · · · = Rn then compute s =

∑
i∈[n] si mod p and output σ = (R, s). Otherwise

output ⊥.
Verify

(
v⃗k, m, σ

)
. On input v⃗k = (vk1, . . . , vkn) for some n ∈ N, m ∈ {0, 1}∗ and σ =

(R, s) ∈ G× Zp, for every i ∈ [n] compute

ci = H1
(
vki, v⃗k, R, m

)
∈ Zp,

and output 1 if and only if gs = R ·
∏

i∈[n] (vki)ci .

4.1 IDL Hardness Based on Second-Moment DL Hardness
The identification discrete logarithm (IDL) problem, introduced by Kiltz, Masny, and Pan
[KMP16] and further studied by Bellare and Dai [BD21], is parameterized by an integer q
and a description (G, p, g) of a cyclic group as above. It considers an algorithm A that is
provided with a uniformly distributed group element X ∈ G as input and may issue up
to q queries to the following oracle OIDL: On input as query a group element R ∈ G, it
samples and returns a challenge c, which is distributed uniformly and independently of all
previous queries. Denoting by R1, . . . , Rq the queries issued by A, and by c1, . . . , cq the
corresponding challenges returned by the oracle, the goal of the algorithm A is to output
a pair (I, z) for which I ∈ [q] and gz = RI ·XcI . The advantage of such an algorithm A is
formally captured by the following definition:

Definition 4. Let G = (G, p, g), where G be a cyclic group of prime order p that is
generated by an element g ∈ G, and let q be an integer. For any algorithm A that issues
at most q oracle queries, we define

AdvIDL
G,q(A) def= Pr

[
ExpIDL
G,q(A) = 1

]
,

where the experiment ExpIDL
G,q(A) is defined as follows:

1. X ← G.
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2. (I, z)← AOIDL(·)(X).
3. Denote by R1, . . . , Rq ∈ G the oracle queries issued by A, and by c1, . . . , cq ∈ Zp the

corresponding responses.
4. If I ∈ [q] and gz = RI ·XcI then output 1 and otherwise output 0.

The following lemma shows that our high-moment forking lemma can be applied to
derive a concrete hardness result for the IDL problem which improved upon the above-
discussed square-root loss without relying on idealized models [KMP16, BD21].

Lemma 2. Let G = (G, p, g), where G be a cyclic group of prime order p that is generated
by an element g ∈ G, let AIDL be an algorithm that runs in time at most t and issues at
most q oracle queries, and let

ϵ = AdvIDL
G,q(AIDL).

Then, either ϵ < 2·q2

p , or there exists an algorithm ADL such that

Pr
x←Zp

[ADL (G, gx) = x] ≥ B

8q
· ϵ2

and
Ex←Zp

[
(Time(ADL (G, gx)))2

]
≤ 2 · (1 + B)2 · t2 · ϵ,

for B =
⌈
(1/ϵ)1/2 − 1

⌉
.

Equipped with Lemma 2, we directly obtain the following corollary based on the
second-moment hardness of the DL problem:

Corollary 1. Let G = (G, p, g), where G be a cyclic group of prime order p that is
generated by an element g ∈ G, and let A be an algorithm that runs in time at most t and
issues at most q oracle queries. Then, assuming that the DL problem is second-moment
hard in the group G, it holds that

AdvIDL
G,q(A) ≤

(
32 · q · t2

p

)2/3

.

In what follows we prove Lemma 2 and Corollary 1.

Proof of Lemma 2. Let G = (G, p, g), where G be a cyclic group of prime order p that is
generated by an element g ∈ G, and let AIDL be an algorithm that runs in time at most t and
issues at most q oracle queries. First, we transform the algorithm AIDL into an algorithm
A′IDL which is compatible with the Lemma 1. The algorithm A′IDL receives as input the
group description G = (G, p, g), a group element X ∈ G and values c1, . . . , cq ∈ Zp, as well
as randomness r ∈ {0, 1}∗ of the appropriate length for running AIDL, and is defined as
follows:

The Algorithm A′
IDL(G, X, c1, ...., cq; r)

1. Invoke AIDL(G, X; r).
2. For every i ∈ [q], when AIDL issues its ith oracle query Ri, respond with ci.
3. If AIDL outputs (I, z) such that I ∈ [q] and gz = RI ·XcI then output (I, (z, cI)), and

otherwise output (0,⊥).

That is, the algorithm A′IDL emulates the experiment ExpIDL
G,q(AIDL) while using the

values c1, . . . , cq as the responses of the oracle. Therefore, the running time of A′IDL is
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identical to the running time t of AIDL (for simplicity we ignore an additional minor additive
term due to the verification of the equation gz = RI ·XcI ), and it holds that

Pr
(X,c1,...,cq)←G×(Zp)q

[A′IDL(G, X, c1, ..., cq) = (I, (z, cI)) s.t. I > 0] = AdvIDL
G,q(AIDL) = ϵ.

Now, assuming that ϵ ≥ 2·q2

p , we apply Lemma 1 with the algorithm A′IDL, the parameters
q and d = 2, and with the sets X = G and C = Zp. This yields an algorithm F such that

Pr
X←G

[F (G, X) ̸= ⊥] ≥ B

8q
· ϵ2,

and
EX←G

[(
TimeF (G,X)

)2
]
≤ 2 · (1 + B)2 · t2 · ϵ,

where B =
⌈
(1/ϵ)1/2 − 1

⌉
. Equipped with the algorithm F , we can now define the following

DL algorithm ADL:

The Algorithm ADL(G, X)
1. Invoke F (G, X) and output ⊥ if F returned ⊥.
2. Otherwise, denote by (I, (z, cI), (z′, c′

I)) the output of F , and output

x = (cI − c′
I)−1 · (z − z′) mod p.

Note that the distribution of ADL’s running time is identical to that of F (for simplicity
we are ignoring an additional minor additive term due to the computation of x). In
addition, note that whenever F returns (I, (z, cI), (z′, c′I)) then cI ̸= c′I (thus cI − c′I can
indeed be inverted modulo p), and it holds that gz = RI ·XcI and gz′ = RI ·Xc′I for some
RI ∈ G. Therefore, it holds that X = gx for x = (cI − c′I)−1 · (z − z′) mod p, and

Pr
x←Zp

[ADL (G, gx) = x] ≥ Pr
X←G

[F (G, X) ̸= ⊥]

≥ B

8q
· ϵ2.

Proof of Corollary 1. Let G = (G, p, g), where G be a cyclic group of prime order p
that is generated by an element g ∈ G, let AIDL be an algorithm that runs in time at most
t and issues at most q oracle queries, and let

ϵ = AdvIDL
G,q(AIDL).

Lemma 2 stated that either ϵ < 2·q2

p , or that there exists an algorithm ADL such that

Pr
x←Zp

[ADL (G, gx) = x] ≥ B

8q
· ϵ2

and
Ex←Zp

[
(Time(ADL (G, gx)))2

]
≤ 2 · (1 + B)2 · t2 · ϵ,

for B =
⌈
(1/ϵ)1/2 − 1

⌉
. Assuming that the DL problem is second moment hard in the

group G guarantees that

Pr
x←Zp

[ADL (G, gx) = x] ≤
Ex←Zp

[
(Time(ADL (G, gx)))2

]
p

,
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and thus
B

8q
· ϵ2 ≤ 2 · (1 + B)2 · t2 · ϵ

p
.

This implies that

ϵ ≤
(

32 · q · t2

p

)2/3

.

Taking into account also the case in which ϵ < 2·q2

p , and the fact that q ≤ t, we obtain that

ϵ ≤ max
{(

32 · q · t2

p

)2/3

,
2 · q2

p

}
=
(

32 · q · t2

p

)2/3

,

which settles the proof of Corollary 1.

4.2 Proof of Theorem 5
For deriving Theorem 5 we rely on the following theorem due to Bellare and Dai [BD21]
(refining the original analysis of Bellare and Neven [BN06]):

Theorem 6 ([BD21]). Let G = (G, p, g), where G be a cyclic group of prime order p that
is generated by an element g ∈ G, and let ℓ be an integer. For any adversary A that exists
an adversary A′ that such

AdvMultiSig
ΠBN[G,ℓ]

(A) ≤ AdvIDL
G,q1

(A′) + qS · (4q0 + 2q1 + qS)
p

+ q0 · (q0 + n)
2ℓ

,

for all sufficiently large λ ∈ N, where:

• The running time of A′ is that of the experiment ExpMultiSig
ΠBN[G,ℓ]

(A).
• q0, q1 and qS are upper bounds on the number of H0-queries, H1-queries and signing

queries issued during the experiment ExpMultiSig
ΠBN[G,ℓ]

(A), respectively.
• n is an upper bound on the largest signer set involved in a single multi-signature

during the experiment ExpMultiSig
ΠBN[G,ℓ]

(A).

Theorem 5 now easily follows by replacing the term AdvIDL
G,q1

(A′) in the statement of
Theorem 6 with the term

(
32 · q1·t2

p

)2/3 provided by Corollary 1.

5 Tighter Concrete Security for BLS Multi-Signatures
In this section we show that our high-moment forking lemma can be used for establishing
a concrete security bound for the BLS multi-signature scheme, introduced and analyzed
by Boneh and Drijvers and Neven [BDN18]. For stating our theorem, recall that the
BLS multi-signature scheme (which is described below) relies on an efficiently-computable
non-degenerated bilinear map e : G1×G2 → Gt, where G1, G2 and Gt are cyclic groups of
prime order p. We let G = (G1,G2,Gt, p, g1, g2, e) denote the description of the groups and
of the bilinear map, where g1 and g2 are generators of the groups G1 and G2, respectively,
and we let ΠBLS[G] denote the BLS multi-signature scheme. Additionally, the scheme relies
on two hash functions, H0 and H1, that are modeled as random oracles for the scheme’s
security analysis. These two hash functions are used to map arbitrary strings to G1 and
Zp. That is, H0 : {0, 1}∗ → G1 and H1 : {0, 1}∗ → Zp. We prove the following theorem:



Gil Segev, Liat Shapira 19

Theorem 7. Let G = (G1,G2,Gt, p, g1, g2, e) as above. Assuming that the co-CDH problem
is second-moment hard in G, then for any adversary A it holds that

AdvrMultiSig
ΠBLS[G]

(A) ≤
(

16q
3/2
0 · q1 ·

(
t + q0 · τexp1 + qS · τexp1 + τexpn

2

)2

p

)2/3

,

where:

• t is an upper bound on the running time of the adversary A.
• q0, q1 and qS are upper bounds on the number of H0-queries, H1-queries and signing

queries issued by the adversary A, respectively.
• n is an upper bound on the largest signer set involved in a single multi-signature

during the experiment ExprMultiSig
ΠBLS[G]

(A).
• τexp1 is the time required to compute an exponentiation in G1, and τexpn

2
is the time

required to compute an n-multi-exponentiation in G2.

Note that in the statement of the above theorem, unlike in the statement of Theorem
5 for the BN scheme, we have explicitly included the exponentiation times in G1 and G2.
This is due to the fact that the exponentiation times in these two groups may be rather
different, whereas for the BN scheme there is only one group.

Additionally, as discussed in Section 2, to enable a direct-as-possible comparison to the
concrete security bound proved by Boneh and Drijvers and Neven [BDN18], we analyze
the concrete security of the BLS scheme with respect to the relaxed security experiment
ExprMultiSig

Π . This security experiment is obtained from the standard security experiment
ExpMultiSig

Π for multi-signature schemes (see Definition 3) by asking that an adversary
outputting

(
v⃗k∗, m∗, aggσ∗

)
does not issue a signing query

(
v⃗k, m∗

)
for any vector v⃗k of

verification keys. As discussed in Section 2, the BLS scheme can be easily transformed
into one that satisfies the standard notion.

For comparing our bound to the one proved by Boneh and Drijvers and Neven (see
[BDN18, Thm. 1]), note that Boneh and Drijvers and Neven transformed any malicious
forger that runs in time t, issues qH = q0 + q1 random oracle queries and qS signing queries,
and breaks the security of the scheme with probability ϵ into a co-CDH algorithm that
runs in time (

t + qH · τexp1 + qS · (τexp1 + τexpn
2
)
)
· 8q2

H
ϵ
· ln
(

8qH
ϵ

)
and has success probability ϵ/(8qH). Thus, in bilinear groups of prime order p in which
one assumes that the co-CDH problem is as hard as in the generic bilinear-group model
[Sho97, Mau05, BB08] (i.e., that any algorithm running in time T solves the co-CDH
problem with probability at most T 2/p), we obtain (when ignoring for simplicity the
lower-order logarithmic term as well as multiplicative constants) the bound

ϵ ≤ q
5/3
H ·

((
t + qH · τexp1 + qS · (τexp1 + τexpn

2
)
)2

p

)1/3

on the success probability of any such malicious forger. In contrast, Theorem 7 (when
replacing q0 and q1 with qH that upper bounds them, and ignoring the multiplicative
constant 22/3), provides the bound

ϵ ≤ q
5/3
H ·

((
t + qH · τexp1 + qS · τexp1 + τexpn

2

)2

p

)2/3
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Thus, our bound is tighter by replacing their exponent 1/2 with our exponent 2/3 (with
additional, although rather minor, improved dependence on the number of signing queries
qS and multi-exponentiation time τexpn

2
in G2).

In what follows we first describe the ΠBLS[G] scheme. Then, we show that our forking
lemma enables to transform any forger that attacks the scheme into a co-CDH algorithm
designed in order to optimize the trade-off between second-moment of their running time
and their success probability. Finally, we show that Theorem 7 then follows by combining
the resulting trade-off with the assumption that the co-CDH problem is second-moment
hard. For simplicity, in the following description of the scheme ΠBLS[G], we assume that all
algorithms receive G = (G1,G2,Gt, p, g1, g2, e) as input, and we explicitly include it only
for the key-generation algorithm.

The BLS Multi-Signature Scheme ΠBLS[G]

KG(G). On input G = (G1,G2,Gt, p, g1, g2, e), the key-generation algorithm samples x← Zp,
and outputs

(sk, vk) = (x, gx
2 ) ∈ Zp ×G2.

KeyAgg
(
v⃗k
)
. On input v⃗k = (vk1, . . . , vkn) ∈ Gn

2 for some n ∈ N, for every i ∈ [n] compute
ti = H1

(
vki, v⃗k

)
∈ Zp, and output

aggvk =
∏

i∈[n]

vkti
i ∈ G2.

Sign
(
sk, vk, v⃗k, m

)
. On input sk and vk as above, v⃗k = (vk1, . . . , vkn) for some n ∈ N, and

m ∈ {0, 1}∗, compute t = H1
(
vk, v⃗k

)
∈ Zp and output

s = H0 (m)t·sk ∈ G1.

SigAgg (s1, . . . , sn). On input s1, . . . , sn ∈ G1 for some n ∈ N, output

σ =
∏

i∈[n]

si ∈ G1.

Verify (aggvk, m, σ). On input aggvk ∈ G2, m ∈ {0, 1}∗ and σ ∈ G1, if

e (σ, g2) = e (H0(m), aggvk) ,

then output 1 and otherwise output 0.

Lemma 3. Let G = (G1,G2,Gt, p, g1, g2, e) as above, let A be an adversary, and let

ϵ = AdvrMultiSig
ΠBLS[G]

(A).

Then, either ϵ <
2q0·q2

1
p , or there exists a co-CDH algorithm Aco-CDH such that

Pr
α,β←Zp

[
Aco-CDH (G, X) = gαβ

1

]
≥ B

8q1
·
(

ϵ

q0

)2

and

Eα,β←Zp

[
(Time (Aco-CDH (G, X)))2

]
≤ 2 · (1 + B)2 ·

(
t + q0 · τexp1 + qS · τexp1 + τexpn

2

)2 · ϵ

q0
,

for B =
⌈
(q0/ϵ)1/2 − 1

⌉
, where:

• X =
(
gα

1 , gα
2 , gβ

2
)
.
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• t is an upper bound on the running time of the adversary A.
• q0, q1 and qS are upper bounds on the number of H0-queries, H1-queries and signing

queries issued by the adversary A, respectively.
• n is an upper bound on the largest signer set involved in a single multi-signature

during the experiment ExprMultiSig
ΠBLS[G]

(A).
• τexp1 is the time required to compute an exponentiation in G1, and τexpn

2
is the time

required to compute an n-multi-exponentiation in G2.

Proof of Lemma 3. Let G = (G1,G2,Gt, p, g1, g2, e) as above, and let A be an adversary
that runs in time at most t and issues at most qS, q0 and q1 oracle queries to the signing
oracle, H0 and H1, respectively. Without loss of generality, we assume that A does not
query either of these oracles more than once with the same input (since all three are
deterministic), and that when A outputs a potential forgery

(
v⃗k∗, m∗, σ∗

)
then it previously

issued the H1 query
(
vk∗, v⃗k∗

)
. For simplicity, we additionally assume that whenever A

issues a signing query
(
v⃗k, m

)
, then A previously issued the queries H0

(
m
)

and H1
(
vk∗, v⃗k

)
(this is not essential, and we discuss below how to avoid this assumption).

We transform the adversary A into an algorithm Ã that is compatible with Lemma
1. The algorithm Ã receives as input the group description G = (G1,G2,Gt, p, g1, g2, e), a
triplet X =

(
gα

1 , gβ
1 , gβ

2
)

of group elements, values h1, . . . , hq1 ∈ Zp, as well as randomness
ρ1, ρ2 ∈ {0, 1}∗, where ρ1 will be used as Ã’s own internal randomness and ρ2 will be used
as the randomness required for running A. The algorithm Ã is defined as follows:

The Algorithm Ã
(
gα

1 , gβ
1 , gβ

2 , h1, . . . , hq1 ; ρ1, ρ2
)

1. Sample k ← {1, . . . , q0}, and let vk∗ = gβ
2 .

2. Invoke A (vk∗; ρ2) by responding to A’s oracle queries as follows:

(a) For the ith H0-query m:

i. If i = k then return H0 (m) = gα
1 .

ii. Else, sample ri ← Zp and return H0 (m) = gri
1 .

(b) For the jth H1-query
(
vk, v⃗k

)
:

i. If vk = vk∗ and vk ∈ v⃗k then return H1
(
vk, v⃗k

)
= hj .

ii. Else, sample H1
(
vk, v⃗k

)
← Zp and return it.

(c) For any signing query
(
v⃗k, m

)
:

i. If H0 (m) = gα
1 then output (0,⊥) and terminate.

ii. Else, if vk∗ /∈ v⃗k then return ⊥.
iii. Else, retrieve the value r ∈ Zp previously chosen in Step 2(a)ii when respond-

ing to the query H0(m) for which H0 (m) = gr
1 , and the value t = H1

(
vk, v⃗k

)
previously chosen in Step 2(b)ii when responding to the query H1

(
vk, v⃗k

)
,

and return
(
gβ

1
)t·r.

3. When A outputs a forgery
(
v⃗k∗, m∗, σ∗), where v⃗k∗ = (vk∗

1, . . . , vk∗
n) for some n ∈ N,

proceed as follows:

(a) Retrieve the value aj = H1
(
vk∗

j , v⃗k∗) for every j ∈ [n], and compute aggvk∗ =
KeyAgg

(
v⃗k∗) (if some of the aj values have not yet been defined, then sample

them independently and uniformly).
(b) If H0 (m∗) ̸= gα

1 or Verify (aggvk∗, m∗, σ∗) ̸= 1 then output (0,⊥).
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(c) Else, let I ∈ [q1] denote the index of the H1-query
(
vk∗, v⃗k∗) issued by A, and

output (I, σ∗).

We observe that for uniformly and independently distributed α, β, h1, . . . , hq1 ∈ Zp

and ρ1, ρ2 ∈ {0, 1}∗, the algorithm Ã perfectly emulates the experiment AdvrMultiSig
ΠBLS[G]

(A) to
A, as long as A does not issue a signing query for the message m∗. Therefore, letting
ϵ = AdvrMultiSig

ΠBLS[G]
(A), we obtain

Pr
α,β,h1,...,hq1←Zp

ρ1,ρ2←{0,1}∗

[
Ã (X, h1, . . . , hq1 ; ρ1, ρ2) = (I, ·) s.t. I > 0

]
= ϵ

q0
,

where X =
(
gα

1 , gβ
1 , gβ

2
)
. In addition, in terms of Ã’s running time, note that it invokes A,

and performs the following additional computations (as common, we focus on counting the
additional number of group operations): (1) For each H0-query Ã computes at most one
exponentiation in G1, (2) for each signing query Ã computes at most one exponentiation in
G1, and (3) when A provides an output Ã computes an n-multi-exponentiation in G2 (for
simplicity, we ignore an additional minor additive term due to the single pairing computed
by Ã). Thus,

tÃ ≤ t + q0 · τexp1 + qS · τexp1 + τexpn
2

upper bounds the worst-case running time of tÃ. Now, applying Lemma 1 for the algorithm
Ã, C = Zp, q = q1 and d = 2, we obtain that either ϵ/q0 ≥ 2 · q2

1/p, or that the algorithm
FÃ,B defined in Section 3 satisfies

Pr
α,β←Zp

[
FÃ,B (G, X) ̸= ⊥

]
≥ B

8q1
·
(

ϵ

q0

)2

and

Eα,β←Zp

[(
Time

(
FÃ,B (G, X)

))2
]
≤ 2 · (1 + B)2 ·

(
t + q0 · τexp1 + qS · τexp1 + τexpn

2

)2 · ϵ

q0
,

where B =
⌈

(q0/ϵ)1/2−1
⌉
. Equipped with the algorithm F , consider the following co-CDH

algorithm Aco-CDH that receives as input G = (G1,G2,Gt, p, g1, g2, e) and X =
(
gα

1 , gβ
1 , gβ

2
)
:

The Algorithm Aco-CDH (G, X)
1. Invoke FÃ,B (G, X) and output ⊥ if FÃ,B returns ⊥.

2. Otherwise, denote by
(
I, σ, σ′, h1, . . . , hq1 , h′

I , . . . , h′
q1

)
the output produced by FÃ,B ,

and output (σ/σ′)1/(hI −h′I ) ∈ G1.

First, note that the distribution of Aco-CDH’s running time is essentially identical to that
of FÃ,B, where we ignore for simplicity the additional minor additive term due to the
computation of its output (σ/σ′)1/(hI−h′I ).

Second, note that whenever FÃ,B (G, X) outputs
(
I, σ, σ′, h1, . . . , hq1 , h′I , . . . , h′q1

)
, then

for some ρ1, ρ2 ∈ {0, 1}∗ it holds that

(I, σ) = Ã
(
gα

1 , gβ
1 , gβ

2 , h1, . . . , hq1 ; ρ1, ρ2
)

(I, σ′) = Ã
(
gα

1 , gβ
1 , gβ

2 , h1, . . . , hI−1, h′I , . . . , h′q1
; ρ1, ρ2

)
,

where hI ̸= h′I . These two executions are identical up until Ã responds to the I-th
H1-query issued by A, and therefore in both executions the I-th H1-query issued by A

is the same
(
vk∗, v⃗k∗

)
. Moreover, this also implies that in both executions A produces a
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forgery with respect to the same vk∗ and v⃗k∗, where in the first execution it holds that
H1
(
vk∗, v⃗k∗

)
= hI and in the second execution it holds that H1

(
vk∗, v⃗k∗

)
= h′I . Letting

v⃗k∗ =
(
vk∗1, . . . , vk∗n

)
, and denoting by ℓ ∈ [n] the index for which vk∗ = vk∗ℓ , we observe

that in both execution the values H1
(
vk∗i , v⃗k∗

)
are identical for every i ̸= ℓ since these

values are sampled the same internal randomness ρ1.
The fact that A produces valid signatures σ and σ′ in these two executions implies that

e (σ, g2) = e

gα
1 , (vk∗)hI ·

∏
i∈n\{ℓ}

(vk∗i )H1(vk∗i , ⃗vk∗)


e (σ′, g2) = e

gα
1 , (vk∗)h′I ·

∏
i∈n\{ℓ}

(vk∗i )H1(vk∗i , ⃗vk∗)
 ,

and therefore

e (σ/σ′, g2) = e
(

gα
1 , (vk∗)hI−h′I

)
= e

(
gα

1 ,
(

gβ
2

)hI−h′I
)

= e
(

gαβ
1 , g2

)hI−h′I
.

Thus, (σ/σ′)1/(hI−h′I ) = gαβ
1 , and we obtain

Pr
α,β←Zp

[
Aco-CDH (G, X) = gαβ

1

]
≥ Pr

α,β←Zp

[
FÃ,B (G, X) ̸= ⊥

]
≥ B

8q1
·
(

ϵ

q0

)2

as required.

Recall that when proving Lemma 3, we have additionally assumed that whenever A
issues a signing query

(
v⃗k, m

)
, then A previously issued the queries H0 (m) and H1

(
vk∗, v⃗k

)
.

The simplest way to avoid this assumption is to transform A into a completely equivalent
algorithm that issues these two queries upon any signing query. This would increase the
number of H0-queries and H1-queries issued by A by an additive qS term, and thus have
a minor effect on the resulting concrete security bound. However, as for the number of
H0 queries, this is not essential. Specifically, for avoiding a (potential) additional query
H0 (m) with each signing query, we can modify Ã as follows: Upon any signing query(
v⃗k, m

)
, since it is guaranteed that m ̸= m∗ (recall that we are considering the relaxed

experiment as discussed following the statement of Theorem 7), then Ã can first execute
Step 2(a)ii for sampling a value r ← Zp and defining H0 (m) = gr

1 before proceeding to
Step 2(c)iii.

Equipped with Lemma 3, we can now derive the proof of Theorem 7.

Proof of Theorem 7. Let G = (G1,G2,Gt, p, g1, g2, e) as above, let A be an adversary,
and let

ϵ = AdvrMultiSig
ΠBLS[G]

(A).

Lemma 3 states that either ϵ < 2q0 · q2
1/p, or there exists a co-CDH algorithm Aco-CDH

such that
Pr

α,β←Zp

[
Aco-CDH

(
G, gα

1 , gβ
1 , gβ

2

)
= gαβ

1

]
≥ B

8q1
·
(

ϵ

q0

)2

and

Eα,β←Zp

[(
Time

(
Aco-CDH

(
G, gα

1 , gβ
1 , gβ

2

)))2
]

≤ 2 · (1 + B)2 ·
(
t + q0 · τexp1 + qS · τexp1 + τexpn

2

)2 · ϵ

q0
,
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for B =
⌈

(q0/ϵ)1/2 − 1
⌉
. Assuming the co-CDH problem is second-moment hard in G

guarantees that

Pr
α,β←Zp

[
Aco-CDH

(
G, gα

1 , gβ
1 , gβ

2

)
= gαβ

1

]
≤

Eα,β←Zp

[(
Time

(
Aco-CDH

(
G, gα

1 , gβ
1 , gβ

2

)))2
]

p
,

and thus

B

8q1
·
(

ϵ

q0

)2
≤

2 · (1 + B)2 ·
(
t + q0 · τexp1 + qS · τexp1 + τexpn

2

)2

p
· ϵ

q0
.

This implies that

ϵ ≤

(
16q

3/2
0 · q1 ·

(
t + q0 · τexp1 + qS · τexp1 + τexpn

2

)2

p

)2/3

.

Taking into account also the case in which ϵ < 2q0 · q2
1/p and using the fact that q1 ≤ t,

we obtain

ϵ ≤ max


(

16q
3/2
0 · q1 ·

(
t + q0 · τexp1 + qS · τexp1 + τexpn

2

)2

p

)2/3

,
2q0 · q2

1
p


=
(

16q
3/2
0 · q1 ·

(
t + q0 · τexp1 + qS · τexp1 + τexpn

2

)2

p

)2/3

,

which settles the proof of Theorem 7.
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A Proofs of Claims 3 and 4
A.1 Proof of Claim 3
Consider the functions f, g : [0, 1]→ R defined as follows:

f(z) = z · (1− (1− z)B)

g(z) =
{ 1

2 ·B · z
2 if 0 ≤ z < 1

B
z − 1

2·B otherwise
Then,

E
[
ϵ̃i(x, ρ, h⃗i−1) ·

(
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))B
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])
Recall that we have defined ϵi = Pr [I0 = i] and ϵ̃i = E
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ϵ̃i(x, ρ, h⃗i−1)

]
, and therefore

ϵ̃i ≥ max
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|C|

}
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0, ϵi −

q

|C|

}
Since for every i ∈ [q] it holds that ϵi ≤ ϵ ≤ 1

B , then we obtain ϵ̃i ≤ ϵ ≤ 1
B . Hence, by the

definition of g we obtain
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A.2 Proof of Claim 4
By definition, it holds that

ϵ̃i = Ex,ρ,⃗hi−1
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where Eq. (8) follows from the monotonicity of the expectation, and Eq. (9) follows from
the law of total probability.
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