
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 2, 28 pages.

https://doi.org/10.62056/a63z11zn4
Check for updates

Public-Key Authenticated Encryption with
Keyword Search Made Easy

Qinyi Li1 and Xavier Boyen2

1 Griffith University, Brisbane, Australia
2 QUT, Brisbane, Australia

Abstract. Public-key searchable encryption allows keyword-associated tokens to
be used to test if a ciphertext contains specific keywords. Due to the low entropies
of keywords, the token holder can create ciphertexts from candidate keywords and
test them using the token in hand to recover the keywords, known as inside keyword
guessing attacks (IKGA). Public-key authenticated encryption with keyword search
is a searchable encryption proposed to defend against such attacks. It ensures the
sender’s private key protects the ciphertexts from the IKGA. PAEKS schemes with
reasonable security and practical efficiency remain elusive despite many proposals.
This work provides a simple generic PAEKS scheme from non-interactive key exchange
(NIKE) and symmetric-key equality-predicate encryption with three new constructions
for the latter, respectively from pseudorandom functions (PRFs), the decision bilinear
Diffie-Hellman assumption, and the learning-with-errors assumption. Instantiating
our generic scheme, we derive several PAEKS schemes from the most well-known
assumptions, with some of them achieving full cipher-keyword indistinguishability
and full token indistinguishability in the standard model, for the first time. Our
instantiated schemes allow practical implementations and outperform the existing
PAEKS schemes under the same assumptions.
Keywords: Public-Key Authenticated Encryption · Keywords Search · Post-
quantum · Token Privacy · Generic Constructions

1 Introduction
Public-key encryption with keyword search (PEKS) [BCOP04] enables the private key
holder to generate a token tkw for a keyword w. The token can be used by an agent to
test if a ciphertext ctw encrypts the same keyword. However, PEKS only works when the
token holding agent is trusted, but not when it is malicious, since the encryption of PEKS
can be done publicly, the token holder can test its token against the ciphertext of keywords
to know the keywords embedded in the tokens – known as inside keyword guessing attack
(IKGA). Due to the low entropy of keyword distributions, IKGA can be very effective.

To defend against IKGA, public-key authenticated encryption with keyword search
(PAEKS) was introduced and has recently received much attention. PAEKS has limited
encryption ability. To create a ciphertext whose keyword can be tested, the sender’s private
key is needed, i.e., the privacy of the keyword of a ciphertext also relies on the secrecy
of the sender’s private key. As a result, the testing token holder, who does not have the
sender’s private key, cannot generate testable ciphertexts, and hence, IKGA is prevented.
Albeit being less flexible than the traditional PEKS, PAEKS enables many applications
that need malicious agents to locate encrypted content that contains specific keywords.

The security of PAEKS is formalised via a series of works [QCH+20, QCZZ21, LTT+22,
CM22, Emu22], primarily focusing on two aspects, namely ciphertext privacy and token

E-mail: qinyi.li@griffith.edu.au (Qinyi Li), xavier.boyen@qut.edu.au (Xavier Boyen)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-04-08 Accepted: 2024-06-03

https://doi.org/10.62056/a63z11zn4
https://crossmark.crossref.org/dialog/?doi=10.62056/a63z11zn4&domain=pdf&date_stamp=2024-07-03
https://orcid.org/0000-0002-1064-2600
mailto:qinyi.li@griffith.edu.au
mailto:xavier.boyen@qut.edu.au
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Public-Key Authenticated Encryption with Keyword Search Made Easy

privacy. The widely accepted security notions for ciphertext privacy and token privacy
are full cipher-keyword indistinguishability (FCI) and token indistinguishability (TI)
[QCZZ21, LTT+22, Emu22, XWC+24]. The FCI requires that no one can link between
ciphertexts from the same keyword. This security notion is defined by allowing the attackers
to get ciphertexts (resp. tokens) from any keywords they choose. The TI guarantees token
privacy when the attacker sees tokens with different keywords. FCI should be required
for practice as ciphertexts on the same keyword may appear often. TI is acceptable as
multiple tokens on the same keyword (under the same sender and receiver) may not be
needed.

Most PAEKS schemes do not have FCI security, e.g.,[NE19, QCH+20, LHHS22]. Thus,
the attacker of these schemes may be able to link two tokens if they are from the same
keyword. This is not sufficient for applications of encryption with keyword searches, and
we do not discuss these schemes in detail.

A stronger notion for token privacy, named full token indistinguishability (FTI), ensures
that the adversary cannot distinguish among tokens generated from the same keyword. As
noted by Qin et al. [QCZZ21], a randomised token generation algorithm is necessary to
achieve FTI. PAEKS schemes with FTI and FCI are rare: as far as we know, so far, there
are only two constructions [CM22, CQFM23]. We note that the multi-user CI and TI
notions exist in the literature, which are implied by the FCI and FTI notions [QCZZ21].

1.1 Motivations
Various constructions of PAEKS have been proposed. Most of the existing PAEKS schemes
apply a PEKS scheme on encrypted keywords EK(w) – the ciphertext/token are the PEKS
ciphertext/token on EK(w); the secrets from both the sender and receiver are used to
compute K. For example, K is derived by smooth projective hash functions (e.g., Emura
[Emu22] and Liu et al. [LTT+22]) or non-interactive key exchange (e.g., Xiang et al.
[XWC+24]). The primary disadvantage of this approach is that PEKS schemes are from
anonymous identity-based encryption (IBE) [BF01, BW06, ABB10] and smooth projective
hash functions (SPHFs), whose instantiations may not be very efficient (e.g., pairing
calculations are involved or large public keys used to define certain hard lattices) compared
to the commonly used key exchange and encryption. For example, the pairing-based
schemes by Qin et al. [QCH+20, QCZZ21] under-perform the BDOP-PEKS [BF01] on
which they are based. The lattice-based instantiations of the generic constructions of
Liu et al. [LTT+22] and Emura [Emu22] require smooth projective hash functions (e.g.,
[BBDQ18]) and lattice IBE schemes (e.g., [ABB10, DLP14]).

One exception that deviates from the above approach is the schemes by Cheng and
Meng [CM22], which uses tricks unique to certain families of lattices. However, the schemes
seem quite inefficient – The concrete LWE parameters provided in [CM22] give only 41-bit
security, yet leading to around 260Mb public-key size and around 10Mb ciphertext/token
size.1 To get a reasonable security level, e.g., 100 bits, a substantial blowup of parameter
sizes is expected, making the schemes of little use in practice. We would ask:

[RQ1] – “How can we construct secure and practical PAEKS schemes?”

The above PEKS-with-encryted-keywords approach and the lattice-based construction
by Cheng and Meng have two limitations. First, we cannot use them to construct efficient
PAEKS from other well-studied computational problems, e.g., the DH problem, the RSA
problem, and the isogeny-based problems, because PEKS does not have constructions
from those computational problems. On the other hand, the DH and RSA problems have

1The LWE parameters provided include the lattice dimension n = 256, number of LWE samples
m = 216, the LWE modulus q = 243 and the discrete Gaussian parameter σ = 216. The security level was
estimated using the LWE problem estimator maintained by Albrecht et al. at https://github.com/malb/
lattice-estimator on 16/11/2023.

https://github.com/malb/lattice-estimator
https://github.com/malb/lattice-estimator

Qinyi Li, Xavier Boyen 3

been well-studied for a long time; isogeny-based cryptography represents a significant
and promising direction of post-quantum cryptography. Hence, answering the following
question is of both practical and theoretical interest:

[RQ2] – “How can we design PAEKS so that it can be instantiated efficiently
with various (well-studied or post-quantum) computational assumptions?”

Second, the aforementioned approaches do not guide constructing PAEKS with the strongest
token privacy, i.e., FTI. The techniques used by the two FCI-secure PAEKS schemes seem
rather ad-hoc. Hence, the following research question is left open by Emura [Emu22]:

[RO3] – “How to provide FCI and FTI security in a generic construction (of
PAEKS)?”

Our work is motivated by the above three research questions.

1.2 Our Contributions
This work builds PAEKS from non-interactive key exchange (NIKE) and symmetric-key
equality-predicate encryption (EPE). NIKE allows two users to establish a shared key
using each other’s public keys without interactions. EPE is a special case of symmetric-key
predicate encryption (PE) [SSW09]. EPE supports equality predicates: Let K be the
secret key. A query key on keyword w, i.e., dkw, is generated using K. The ciphertext σw′

under the keyword w′ is encrypted using K. The query algorithm applies dkw to σw′ and
returns one if w = w′; otherwise, it returns zero.2 Our construction is straightforward. To
send a ciphertext on keyword w, the sender S computes the NIKE shared key K with the
receiver and uses K to generate the EPE ciphertext ctw as the PAEKS ciphertext. To get
the token for w, the receiver runs the NIKE scheme to get the shared key K and uses K to
generate the EPE query key dkw. dkw is given to a testing agent. Testing applies dkw, σw,
and the testing procedure of EPE. Security-wise, we use the standard security definitions
for NIKE, which requires that if the attacker does not get one of the private keys of the
two target users, the shared key looks random. We define ciphertext indistinguishability,
query-key privacy, and weak query-key privacy for EPE. We prove that if the NIKE scheme
is secure, and the EPE scheme has ciphertext indistinguishability and query-key privacy
(resp. weak query-key privacy), the PAEKS has FCI and FTI (resp. TI).

Our generic construction reduces the problem of constructing efficient PAEKS schemes
into the problem of making efficient NIKE and EPE schemes. The former has been well-
studied – NIKE can be built with practical efficiency from most commonly used computa-
tional problems, including the DH problem, factoring problem, the LWE problem and the
isogeny-based problems [DH76, CKS09, FHKP13, CLM+18, dK18, HHK18, GdKQ+24].
We provide several practical constructions for the latter, i.e., EPE, from pseudorandom
functions (PRFs), decision bilinear Diffie-Hellman (DBDH) problem, and the learning-
with-errors (LWE) problem, in the standard model.

Solution to RQ1: Most notably, our NIKE-PRF construction is simple and efficient.
It achieves the standard PAEKS security, i.e., FCI and TI. When instantiating the
construction using an efficient NIKE scheme and the standard HMAC-based PRFs, the
token and ciphertext sizes of the derived PAEKS scheme can be less than 100 bytes for
the standard security level, e.g., 128 bits. If the sender and receiver cache the NIKE
shared key, encryption, token generation, and testing in the derived PAEKS scheme only
involve symmetric-key operations, making our construction at least thousands of times
faster than the existing PAEKS schemes. We emphasise that the standard HMAC-based

2Note here describes the so-called predicate-only systems [SSW09]. Full encryption can be easily
obtained from it but is not needed.

4 Public-Key Authenticated Encryption with Keyword Search Made Easy

Table 1: PAEKS Schemes with FCI and TI Security (≥ 128-bit Security)

Parameter Size Assump. SM QR

[QCZZ21]:
|pk|: 1× Ĝ + 1× hash (e.g., 96 bytes)

DBDH ✗ ✗|tk|: 1× G + 1× hash (e.g., 96 bytes)
|ct|: 1× G + 1× hash (e.g., 96 bytes)

[Emu22]: |pk|: SPHF-|pk| + IBE-|pk| (> 108× bytes) NTRU
✔ ✔([DLP14]+[BBDQ18]) |tk|: SPHF-|sk| + id-|sk| (> 107 × bytes LWE

|ct|: SPHF-|hash| + IBE-|ct| (> 107 × bytes)
[LTT+22]: |pk|: SPHF-|pk| + IBE-|pk| (> 108× bytes) NTRU

✔ ✔([LW19]+[ABB10]) |tk|: SPHF-|sk| + id-|sk| (> 107 × bytes LWE
|ct|: SPHF-|hash| + IBE-|ct| (> 107 × bytes)

Ours: |pk|: 1× G (e.g., 64 bytes)
DDH ✔ ✗([DH76]+HMAC) |tk|: 32 bytes

|ct|: 64 bytes
Ours: |pk|: 2× G (e.g., 128 bytes)

CDH ✗([CKS09]+HMAC) |tk|: 32 bytes) ✔

|ct|: 64 bytes (DKR)
Ours: |pk|: 2× G + 1× Zp (e.g., 192 bytes)

DBDH ✔ ✗([FHKP13]+HMAC) |tk|: 32 bytes)
|ct|: 64 bytes

Ours: |pk|: 1× ZN (e.g., 96 bytes)
Factoring ✗([FHKP13]+HMAC) |tk|: 32 bytes) ✗

|ct|: 64 bytes (DKR)
Ours: |pk|: 1× Zp (e.g., 64 bytes)

CSIDH ✔ ✔([CLM+18]+HMAC) |tk|: 32 bytes
|ct|: 64 bytes

Ours: |pk|: 2×RN
q (e.g., ≈ 2.3× 105 bytes)

MLWE ✗ ✔([GdKQ+24]+HMAC) |tk|: 32 bytes
|ct|: 64 bytes

Ours: |pk|: 2×RN
q (e.g., ≈ 4× 105 bytes)

MLWE ✔ ✔([GdKQ+24]+HMAC) |tk|: 32 bytes
|ct|: 64 bytes

* Notations: |pk|, |tk|, |ct| denote the sizes of the public key, token, and ciphertext; G and Ĝ are the source
and target groups in a bilinear map ê : G×G→ Ĝ; “SM" and “QR" are abbreviatons of “Standard Model"
and “Quantum Resistant"; “HMAC-SHA256" means HAMC uses SHA256 hash function; The integer
N in ZN denotes the RSA modulus; “MLWE" and “RLWE" denote “Module-LWE’ and “Ring-LWE"
Assumptions; “DKR" denotes “dishonest key registration" and the DDH/factoring-based NIKE schemes
from [CKS09, FHKP13] are secure in the DKR model, see [FHKP13]; Rq denotes the polynomial ring
Zq [x]/(xn + 1) where n is the power of 2; N = 32 for [GdKQ+24].

PRFs are naturally quantum-resistant. When using quantum-resistant NIKE schemes, e.g.,
[CLM+18, dK18, HHK18, GdKQ+24], the derived PAEKS schemes are quantum resistant.

We compare the instantiations of our constructions with the three known PAEKS
schemes with FCI and TI [QCZZ21, LTT+22, Emu22] in Table 1. Compared with
Qin et al.’s [QCZZ21], our DBDH-based scheme is more efficient and does not require
random oracles. Compared with the lattice instantiations of the generic constructions
[LTT+22, Emu22], our lattice-based constructions are much more efficient (We couldn’t
use the concrete parameters provided in [LTT+22] as there are inconsistencies as explained
in Appendix C.1), and no concrete parameters are provided in [Emu22]). We estimate
the minimum order of parameters using their constructions’ underlying lattice primitives,
e.g., lattice SPHFs [BBDQ18] and lattice IBE [ABB10, DLP14]). As a result, we provide
a solution to RQ1, with post-quantum security.

Solution to RQ2: Meanwhile, Table 1 shows that most commonly used cryptographic
assumptions can be used to get PAEKS schemes with FCI and TI, using our generic

Qinyi Li, Xavier Boyen 5

Table 2: PAEKS Schemes with FCI and FTI Security (≥ 128-bit Security)

Parameter Size Assump. SM QR

[CQFM23]:
|pk|: G (e.g., 64 bytes)

DBDH ✗ ✗|tk|: 3× G + 1× Ĝ (e.g., 256 bytes)
|ct|: 3× G + 1× Ĝ (e.g., 256 bytes)

CM22[CM22]: |pk|: (3m + n)× Zn
q (≈ 2.6× 108 bytes)

LWE ✗ ✔(Parameters with |tk|: (3m + n)× Zm
q + Zn×n (≈ 8.8× 107 bytes)

41-bit security) |ct|: (3m + n)× Zm
q + Zn×n (≈ 8.8× 107 bytes)

Ours: |pk|: 1× G (e.g., 64 bytes)
DBDH ✔ ✗Pairing-EPE |tk|: 2× G (e.g., 192 bytes)

+ DH76[DH76] |ct|: 2× G + 1× Ĝ (e.g., 192 bytes)
Ours: |pk|: NIKE-|pk|+ 1×Rq (≈ 2.3× 105 bytes) MLWE

✗ ✔Lattice-EPE + |tk|: 3×Rq (≈ 2.3× 105 bytes) NTRU
[GdKQ+24]+[DLP14] |ct|: 3×Rq (≈ 2.3× 103 bytes)
Ours: |pk|: NIKE-|pk|+ 1×Rq (≈ 4× 105 bytes) MLWE

✔ ✔Lattice-EPE + |tk|: 3×Rq (≈ 4× 105 bytes) NTRU
[dK18]+[DLP14] |ct|: 3×Rq (≈ 4× 103 bytes)

*Notations: |pk|, |tk|, |ct| denote the sizes of public key, token, and ciphertext; “SM" and “QR"
are abbreviations of “Standard Model" and “Quantum Resistant"; “MLWE" denotes “Module-LWE
Assumption"; Rq denotes the polynomial ring Zq[x]/(xn + 1) where n is power of 2; G and Ĝ are the
source and target groups in a bilinear map ê : G× G→ Ĝ.
*The example parameters, except the ones explicitly given in [CM22] are conservative.

construction. Hence, we give a solution to the research question RQ2. In particular, we can
base PAEKS on the assumptions that the factoring and the isogeny-based problems are
hard. It was unknown how to construct efficient PAEKS schemes from these assumptions.

Solution to RQ3: Our generic construction paves the way to construct PAEKS with FTI,
i.e., constructing EPE with query-key privacy. Our concrete constructions of EPE from the
DBDH assumption and the LWE assumption demonstrate the applicability of our solution.
Combining with secure NIKE schemes (e.g., [DH76, CKS09, FHKP13, dK18, GdKQ+24])
we obtain PAEKS schemes with FCI and FTI from the DBDH assumptions or the LWE as-
sumption, which are more efficient than the existing two PAEKS schemes [CM22, CQFM23],
as shown in Table 2. 3

Besides solving the research questions, our generic constriction can be extended to
support more expressive search queries using expressive symmetric-key predicate encryption
and can be adapted to identity-based settings with identity-based NIKE. We believe that
this work helps shield the light of research on the cryptographic primitive PAEKS.

1.3 Organisation

The rest of the paper is organised as follows. Definitions of the cryptographic primitives are
given in Section 2. Section 3 defines PAEKS. Section 4 presents our generic construction of
PAEKS and the security proofs. In Section 5, we construct three symmetric-key equality-
predicate encryption schemes with security proofs. Section 6 discusses extensions of our
approach. We conclude in Section 7.

3We note that the oracle DH assumption is used to prove FCI and FTI in [CQFM23]. In Appendix
Section C.2, we explain that the DBDH assumption is needed.

6 Public-Key Authenticated Encryption with Keyword Search Made Easy

2 Preliminaries
2.1 Pseudorandom Functions
Definition 1. Let λ ∈ N be the security parameter. Let K, X and Y be countable sets,
F = {f : X → Y} is the set of all functions with domain X and range Y. A deterministic
function PRF : K ×X → Y is a secure pseudorandom function if PRF can be computed in
polynomial time in λ, and for all p.p.t adversary A, f ← U(F), K ← K, the advantage

AdvPRF,A(λ) :=
∣∣Pr[ExpPRF,A(λ) = 1]− 1/2

∣∣ ≤ negl(λ)

where ExpPRF,A(λ) is defined in Figure 1.

Experiment ExpPRF,A(λ):

1. K ← U(X), µ← U({0, 1})
2. If µ = 0, O(·) = PRF(K, ·), else, O(·) = f(·)
3. µ′ ← AO(·)(1λ)
4. Return (µ′ == µ)

Figure 1: Security Experiment of Pseudorandom Functions

2.2 Non-Interactive Key Exchange (NIKE)
A NIKE scheme Λ with identity space I, shared key space K has four p.p.t algorithms:

1. Setup(1λ): On input the security parameter λ, it returns public parameters pub.

2. Gen(ID): Given an identity ID ∈ I, the key generation algorithm returns a public/pri-
vate key pair (pk, sk).

3. Skey(ID1, pk1, ID2, sk2): The shared key establishment algorithm Skey takes as two
identities ID1, ID2 ∈ I and their corresponding public keys pk1, pk2, and returns a
shared key k ∈ K, or an error symbol ⊥.4

Definition 2. A non-interactive key exchange Λ = (Setup, Gen, Skey) is correct if for all
pub← Setup(1λ) with λ ∈ N, ID1, ID2 ∈ I, (pk1, sk1)← Gen(ID1), (pk2, sk2)← Gen(ID2),
K ′ ← Skey(ID1, pk1, ID2, sk2), K ← Skey(ID2, pk2, ID1, sk1),

Pr[K = K ′] ≥ 1− negl(λ)

where the probability is over the random coins of Setup and Gen.
Cash et al. (CKS) [CKS09] initialise formal definitions for NIKE. We follow Freire et al.

[FHKP13] to define NIKE’s passive and active security. The active security model, known
as the DKR-CKS model, allows the adversary to register public keys that she does not
know the corresponding private keys, whereas the passive model, known as the HKR-CKS
model, does not allow this.5 A NIKE scheme secure in the DKR-CKS model is also secure
in the HKR-CKS model, and the reverse is not true.
Definition 3. Let λ be the security parameter, atk = {hkr, dkr }. We say the NIKE
scheme Λ is secure if

Advatk−cks
Λ,A (λ) := |Pr[Expatk−cks

Λ,A (λ) = 1]− 1/2|

is negligible in λ for all p.p.t adversary A, where the experiment Expatk−cks
Λ,A (λ) is defined

in Figure 2 in which the highlighted part is only used by the DKR-CKS model.
4It is assumed that Skey returns ⊥ if ID1 = ID2.
5We note that there are multiple versions of the DKR-CKS and HKR-CKS model, which are shown to

be polynomially equivalent [FHKP13].

Qinyi Li, Xavier Boyen 7

Experiment Expatk−cks
Π,A (λ): // atk = {hkr, dkr }

1. pub← Setup(1λ), L = ∅

2. µ′ ← ARegHon(·), RegCorr(·),Reavel(·) ,Chall(·)(pub)
3. Return (µ′ == µ)

Oracle RegHon(ID):
1. If (corr, ID,⊥, ·) ∈ L, return ⊥
2. (pk, sk)← Gen(ID),
L ← {(honest, ID, sk, pk)} ∪ L

3. Return pk

Oracle RegCorr(ID, pk):
1. If (corr, ID,⊥, ·) ∈ L, set (corr, ID,⊥, ·) =

(corr, ID,⊥, pk)
2. Else, L ← L ∪ (corr, ID,⊥, pk)

Oracle Reveal(ID1, ID2):
1. If (honest, ID1, sk1, pk1) ∈ L and

(corr, ID2,⊥, pk2) ∈ L,
return Skey(ID2, pk2, ID1, sk1)

2. If (corr, ID1,⊥, pk1) ∈ L and
(honest, ID2,⊥,⊥) ∈ L,
return Skey(ID1, pk1, ID2, sk2)

3. If (honest, ID1, sk1, pk1) ∈ L and
(honest, ID2, sk2, pk2) ∈ L,
return Skey(ID1, pk1, ID2, sk2)

4. Otherwise, return ⊥

Oracle Chall(ID1, ID2):
1. If ID1 = ID2 or (corr, ID1, ·, ·) ∈ L

or (corr, ID2, ·, ·) ∈ L, return ⊥
2. µ← U({0, 1}), K∗

1 ← U(K)
3. K∗

0 ← Skey(ID1, pk1, ID2, sk2)
4. Return Kµ

Figure 2: Security Experiments of NIKE

The Diffie-Hellam key-exchange protocol [DH76] is HKS-CKS secure. DKR-CKS secure
NIKE schemes exist from standard assumptions, e.g., factoring [FHKP13], CDH [CKS09],
DBDH [FHKP13], and LWE [GdKQ+24].

2.3 Symmetric-Key Equality-Predicate Encryption
This section defines equality-predicate encryption (EPE) with predicate privacy. An EPE
system Σ = (KG, Enc, Qry) with key space K and keyword space W is defined as follows.
Let λ ∈ N be the security parameter and K ← U(K).

1. KG(K, w): The query-key generation algorithm takes as input K and a keywords
w ∈ W, and returns a query key dkw.

2. Enc(K, w): The encryption algorithm returns a ciphertext σw.

3. Qry(dkw, σw): The querying algorithm return 1 or 0.

For correctness of Σ, we require for K ∈ K and w = w′,

Pr[Qry(KG(K, w), Enc(K, w′))→ 1] ≥ 1− negl(λ)

where the probability is taken over the randomness used by KG and Enc.
Regarding the security of EPE, we consider formalising two notions: query key privacy

and ciphertext indistinguishability.

Definition 4 (Query key privacy). Let λ be the security parameter. We say an EPE
scheme Σ = (KG, Enc, Qry) has query-key privacy if

Advqk−ind
Σ,A (λ) := |Pr[Expqk−ind

Σ,A (λ) = 1]− 1/2|

is negligible in λ for all p.p.t adversary A. We say Σ has weak query-key privacy if

Advqk−priv
Σ,A (λ) := |Pr[Expqk−priv

Σ,A (λ)] = 1− 1/2|

is negligible in λ for all p.p.t adversary A. The experiments Expqk−ind
Σ,A (λ) and Expqk−priv

Σ,A (λ)
are defined in Figure 3.6

6Note that weak query-key privacy model prohibits queries w = w∗
0 or w = w∗

1 to the oracle KK(·).

8 Public-Key Authenticated Encryption with Keyword Search Made Easy

Definition 5 (Ciphertext Indistinguishability). Let λ be the security parameter. We say
an EPE scheme Σ = (KG, Enc, Qry) has ciphertext indistinguishability if

Advct−ind
Σ,A (λ) := |Pr[Expct−ind

Σ,A (λ)] = 1− 1/2|

is negligible in λ for all p.p.t adversary A, where Expct−ind
Σ,A (λ) is defined in Figure 3.

Experiment Expct−ind
Σ,A (λ):

1. K ← U(K)
2. (w∗

0 , w∗
1)← AKK (·),EK (·)

3. b← U({0, 1})
4. σ∗ ← Enc(K, w∗

b)
5. b′ ← AKK (·),EK (·)(σ∗)
6. Return (b′ == b)

Oracle EK(w):
1. σw ← Enc(K, w)
2. Return σw

Oracle KK(w): // w ̸= w∗
0 , w∗

1

1. dkw ← KG(K, w)
2. Return dkw

Experiments Expqk−ind
Σ,A (λ), Expqk−priv

Σ,A (λ):

1. K ← U(K)
2. (w∗

0 , w∗
1)← AKK (·),EK (·)

3. b← U({0, 1})
4. dk∗ ← KG(K, w∗

b)
5. b′ ← AKK (·),EK (·)(dk∗)
6. Return (b′ == b)

Oracle EK(w): // w ̸= w∗
0 , w∗

1

1. σw ← Enc(K, w)
2. Return σw

Oracle KK(w): // w ̸= w∗
0 , w∗

1

1. dkw ← KG(K, w)
2. Return dkw

Figure 3: Security Experiments for Symmetric-Key EPE

3 Public-Key Authenticated Searchable Encryption
A PAEKS system Π consists of six p.p.t algorithms:

1. Setup(1λ): The setup algorithm Setup takes as input the security parameter λ and
returns public parameter param.

2. SGen(param, S): Given the sender’s identity S and param, the sender key generation
algorithm returns sender’s public-/private-key pair (pkS , skS).

3. RGen(param, R): Given the receiver’s identity R and param, the receiver key genera-
tion algorithm returns receiver’s public-/private-key pair (pkR, skR)

4. PAEKS(skS , pkR, w): The encryption algorithm takes as input the sender’s private
key skS , receiver’s public key pkR, and a keyword w, and outputs a ciphertext ctw.

5. Token(skR, pks, w): The receiver runs the token generation algorithm, which takes
as input the receiver’s private key skR, sender’s public key pkS , and a keyword w,
and produces a testing token tkw. tkw is sent to the testing server.

6. Test(pkS , pkR, tkw, ctw′): The testing algorithm inputs the sender’s public key and
the testing token tkw, and a ciphertext ctw′ , and outputs 1 if w = w′, or 0 otherwise.

Definition 6 (Full Cipher-Keyword Indistinguishability (FCI)). Let λ be the security
parameter. We say that a PAEKS scheme Π has cipher-keyword indistinguishability under
full chosen-keyword attacks if

Advfci
Π,A(λ) := |Pr[Expfci

Π,A(λ) = 1]− 1/2|

Qinyi Li, Xavier Boyen 9

Experiment Expfci
Π,A(λ):

1. param← Setup(1λ)
2. (pkS , skS)← SGen(param, S)
3. (pkS , skR)← SGen(param, R)
4. (w∗

0 , w∗
1)← AOEskS

(·,·),OT skR
(·,·)(pkS , pkR)

5. b← U({0, 1})
6. ct∗ ← PAEKS(skS , pkR, w∗

b)

7. b′ ← AOEskS
(·,·),OT skR

(·,·)(pkS , pkR, ct∗)
8. Return (b′ == b)
Oracle OEskS

(pk, w):
1. ctw ← PAEKS(skS , pk, w)
2. Return ctw

Oracle OT skR
(pk, w):

// (pk, w) ̸= (pkS , w∗
0), (pk, w) ̸= (pkS , w∗

1)
1. tkw ← Token(skR, pk, w)
2. Return tkw

Experiments Expfti
Π,A(λ), Expti

Π,A(λ):

1. param← Setup(1λ)
2. (pkS , skS)← SGen(param, S)
3. (pkS , skR)← SGen(param, R)
4. (w∗

0 , w∗
1)← AOEskS

(·,·),OT skR
(·,·)(pkS , pkR)

5. b← U({0, 1})
6. tk∗ ← Token(skR, pkS , w∗

b)

7. b′ ← AOEskS
(·,·),OT skR

(·,·)(pkS , pkR, tk∗)
8. Return (b′ == b)
Oracle OEskS

(pk, w):
// (pk, w) ̸= (pkR, w∗

0), (pk, w) ̸= (pkR, w∗
1)

1. ctw ← PAEKS(skS , pk, w)
2. Return ctw

Oracle OT skR
(pk, w):

// (pk, w) ̸= (pkS , w∗
0), (pk, w) ̸= (pkS , w∗

1)

1. tkw ← Token(skR, pk, w)
2. Return tkw

Figure 4: FCI, FTI and TI Security Experiments for PAEKS

is negligible in λ, where the experiment Expfci
Π,A(λ) is defined in Figure 4. Without loss of

generality, we assume that the A does not make query OE skS
(pkR, w∗

b) before she sends
them for the challenge ciphertext, but can do it after.7

Definition 7 (Token Indistinguishability (TI)). Let λ be the security parameter. A
PAEKS scheme Π has full trapdoor indistinguishability under chosen-keyword attacks if

Advfti
Π,A(λ) := |Pr[Expfti

Π,A(λ) = 1]− 1/2|

is negligible in λ where the experiment Expfti
Π,A(λ) is defined in Figure 4. Without loss of

generality, we assume that the A did not query w∗
0 and w∗

1 to OT skR
(pks, ·) before she

sends them for the challenge token. We say Π has trapdoor indistinguishability under
chosen-keyword attacks if

Advti
Π,A(λ) := |Pr[Expti

Π,A(λ) = 1]− 1/2|

is negligible in λ where the experiment Expti
Π,A(λ) is defined in Figure 4, which differs from

Expti
Π,A(λ) by the boxed highlight.

4 The Proposed PAEKS Scheme
We present our new PAEKS scheme based on non-interactive key exchange and symmetric-
key equality-predicate encryption.

4.1 The Construction
Our construction, which is given in Figure 5, uses the following building blocks: 1) A NIKE
scheme Λ = (Λ.Setup, Λ.Gen, Λ.Skey) with a share-key space K, and 2) A symmetric-key
EPE scheme Σ = (KG, Enc, Qry) with a key space K and a keyword space W .

7Considering the adversary asks OEskS
(pkR, w∗

b) at some point before the challenge point for which
there are at most poly(λ) + 1 choices. A reduction from this model to our model would simply guess such
a point, which would be correct with a non-negligible probability. A correct guess makes the two models
equivalent.

10 Public-Key Authenticated Encryption with Keyword Search Made Easy

Π.Setup(1λ):

1. pub← Λ.Setup(1λ)
2. param := pub

Π.PAEKS(skS , pkR, w):
1. KRS ← Λ.Skey(R, pkR, S, skS)
2. σw ← Σ.Enc(KRS , w)
3. ctw := σw

Π.SGen(param, S):
1. ID = S

2. (pkS , skS)← Λ.Gen(ID)

Π.Token(skR, pkS , w):
1. KSR ← Λ.Skey(S, pkS , R, skR)
2. dkw ← Σ.KG(KRS , w)
3. tkw := dkw

Π.RGen(param, R):
1. ID = R

2. (pkR, skR)← Λ.Gen(ID)

Π.Test(pkS , pkR, tkw, ctw′):
1. Return Qry(tkw, ctw′)

Figure 5: The Construction of PAEKS Scheme Π

Theorem 1 (Correctness). The PAEKS scheme Π is correct.

Proof. First of all, Λ.Skey(R, skR, S, skS) = Λ.Skey(S, pkS , R, skR) with overwhelming
probability due to the correctness of the NIKE scheme. So, we have KRS = KSR with
overwhelming probability. Under the condition KRS = KSR = K and w = w′,

Qry(tkw, ctw′) = Qry(dkw, σw′)
= Qry(Σ.KG(KSR, w), Σ.Enc(KRS , w′))
= Qry(Σ.KG(K, w), Σ.Enc(K, w)))
= 1

holds with overwhelming probability.

4.2 Security
We prove the following theorem, which states that our proposed scheme has full cipher-
keyword indistinguishability.

Theorem 2. Provided the NIKE scheme Λ and the EPE scheme Σ are secure, per Defini-
tion 3 and Definition 5, the PAEKS scheme Π has full cipher-keyword indistinguishability
(per Definition 6). More specifically, given a p.p.t adversary A against Π, we have

Advfci
Π,A(λ) ≤ 2 · Advatk−cks

Λ,B1
(λ) + Advct−ind

Σ,B2
(λ)

for p.p.t algorithms B1 and B2 where atk = {hkr, dkr}.

We prove the case atk = hkr which also proves the case atk = dkr, because a NIKE
scheme secure in DKR-CKS model is also secure in the HKR-CKS model.

Proof. We define two hybrid security games Hyb0, Hyb1. At the end of each game, a
well-defined binary value is output. We denote the event that the hybrid game Hybi

outputs 1 as Hybi ⇒ 1. The hybrid games are defined as follows.

Hyb0: This game is identical to the experiment Expfci
Π,A(λ) where Π is the proposed PAEKS.

Hyb1: This hybrid game is identical to Hyb0 except that it changes the way of setting KSR

and KRS for the oracles OE skS
(pkR, ·) and OT skR

(pkS , ·). In particular, instead of
computing KRS and KSR using Λ.Skey, a random key is selected and assigned to
KRS and KSR, i.e., KRS := K∗ and KSR := K∗ where K∗ ← U(K).

Let A be an adversary against Π. Since Hyb0 is identical to Expfci
Π,A(λ), we have

Advfci
Π,A(λ) + 1/2 = Pr[Hyb0 ⇒ 1] (1)

The only difference between Hyb0 and Hyb1 is how the shared key KRS (and KSR) is
set. We show this difference can be turned into a security breach of the NIKE system. We
build an algorithm B1 that simulates Hyb0 or Hyb1 to the adversary A as follows.

Qinyi Li, Xavier Boyen 11

1. B1 receives pub from the NIKE challenger, and publishes param := pub. Then, B1
initialises an empty set L. Moreover, it chooses the sender identity S and receiver
identity R, calls RegHon(S) and RegHon(R) to get pkS and pkR, calls the oracle
Chall(S, R) to receive K∗

µ, sets KSR = KRS = K∗
µ, and publishes pkS and pkR.

2. B1 answers queries OE skS
(pkR′ , w) as follows: If R′ = R, B1 returns ctw := σw ←

Σ.Enc(K∗
µ, w). Otherwise, if R′ ̸= R, B1 looks up L: if (R′, pkS′ , skS′) /∈ L, B1 runs

(pkR′ , skR′) ← Λ.Gen(param, R′), and updates L ← L ∪ (R′, pkR′ , skR′). Then, B1
sets KR′S := Λ.Skey(S, pkS , R, skR′) 8, and returns ctw := σw ← Σ.Enc(KR′S , w).

3. B1 answers oracle queries OT skR
(pkS′ , w) as follows: If S′ = S, B1 returns tkw :=

dkw ← Σ.KG(K∗
µ, w). Otherwise, if S′ ̸= S, B1 looks up L: if (S′, pkS′ , skS′) /∈ L, B1

runs (pkS′ , skS′) ← Λ.Gen(param, S′), and updates L ← L ∪ (S′, pkS′ , skS′). Next,
B1 sets KS′R := Skey(R, pkR, S′, skS′), and returns tkw := dkw ← Σ.KG(KS′R, w).

4. When A issues two different keywords w∗
0 and w∗

1 , B1 picks b ← U({0, 1}), and
returns ct∗ ← OE skS

(pkR, w∗
b).

5. Further oracle queries to OE skS
(·, ·) and OT skR

(·, ·) from A are answered as before.
Finally, B1 outputs 1 if A outputs b′ = b; Else, B1 outputs 0.

We analyse the simulation. It is easy to see param, the public keys created by B1 have the
correct distributions, i.e., distributed as in the real system. We consider two situations.

When µ = 0, i.e., K∗
µ = K∗

1 ← Skey(S, pkS , R, skR). Since Λ is correct, KSR =
Skey(S, pkS , R, skR) = Skey(R, pkR, S, skS) = KRS = K∗

1 except with negligible probability.
Hence, the oracle responses OE skS

(pkR, w) and OT skR
(pkS , w) which uses K∗

1 are distribute
as in Hyb0. For the same reason, the oracle responses OE skS

(pkR′ , w) with R′ ̸= R, which
are simulated using KR′S ← Λ.Skey(S, pkS , R′, skR′), and oracle responses OT skR

(pkS′ , w)
with S′ ̸= S, which are simulated using KS′R ← Skey(R, pkR, S′, skS′) are distributed as
in Hyb0, except with a negligible probability that is bounded by the correctness of Λ.

Second, we consider µ = 1, i.e., K∗
µ = K∗

1 ← U(K). The responses to the oracles
queries OE skS

(pkR, w) and OT skR
(pkS , w) are distributed as in Hyb1.

Let E be the event that at least one of the shared keys produced by OE skS
(pkR′ , w)

and OT skR
(pkS′ , w), i.e., KR′S and KS′R, do not match with the their counterparts, i.e.,

KSR′ and KRS′ (including S′ = S and R′ = R) due to the correctness failure of Λ.Skey.
By the correctness of Λ, Pr[¬E] ≤ 1− negl′(λ) where negl′(λ) is negligible in λ. We have

Pr[Hyb0 ⇒ 1] = Pr[(b′ = b|µ = 0) ∧ ¬E]
= Pr[b′ = b|µ = 0,¬E]− negl′′(λ)
= Pr[B1 ⇒ 1|µ = 0]− negl′′(λ)

where negl′′(λ) = negl′(λ) · Pr[B1 ⇒ 1|µ = 0,¬E] is negligible. This leads to

|Pr[Hyb1 ⇒ 1]− Pr[Hyb0 ⇒ 1]| (2)
=|Pr[B1 ⇒ 1|µ = 0]− Pr[B1 ⇒ 1|µ = 1]− negl′′(λ)|
=2 · |1/2− Pr[(Exphkr−cks

Λ,B1
(λ) = 1)]| − 1/2 · negl′′(λ)

=2 · Advhkr−cks
Λ,B1

(λ)− negl(λ)

Next, we efficiently reduce the attack against the EPE Σ to an attack to Hyb1. We con-
struct a p.p.t algorithm B2 which uses adversary A to break ciphertext indistinguishability
of Σ as follows.

8In the real scheme, the algorithm Π.PAEKS uses the sender S’s private key for Λ.Skey to get KSR′

12 Public-Key Authenticated Encryption with Keyword Search Made Easy

1. B2 sets param← Setup(1λ), (pkS , skS)← SGen(param, S), (pkR, skR)← SGen(param, R),
sends (pkS , pkR) to A. B2 then initialises an empty set L.

2. B2 answers A’s query OE skS
(pkR′ , w) as follows: If R′ = R, B2 makes an oracle

query EK(w) to get σw and returns ctw := σw. Otherwise, if R′ ̸= R, B2 looks
up L: if (R′, pkS′ , skS′) /∈ L, B2 runs (pkR′ , skR′)← Λ.Gen(param, R′) and updates
L ← L ∪ (R′, pkR′ , skR′). B2 sets KR′S := Skey(S, pkS , R′, skR′), and returns ctw :=
σw ← Σ.Enc(KR′S , w).

3. B2 answers A’s query OT skR
(pkS′ , w) as follows: If S′ = S, B2 calls the oracle

KK(w) to get dkw ← KK(w) and returns tkw := dkw. Otherwise, if S′ ̸= S, B2
looks up L: if (S′, pkS′ , skS′) /∈ L, B2 runs (pkS′ , skS′) ← Λ.Gen(param, S′) and
updates L ← L ∪ (S′, pkS′ , skS′). B2 computes KS′R := Skey(R, pkR, S′, skS′),
dkw ← Σ.KG(KS′R, w), and returns tkw := dkw.

4. When A issues two different keywords w∗
0 and w∗

1 , B2 passes them through to its own
challenger and receives back σ∗

b ← EncK(w∗
b) where b← U({0, 1}). B2 then forward

ct∗ := σ∗
b to A.

5. For further queries to OE skS
(·, ·) and OT skR

(·, ·) are answered as before. Finally,
when A outputs µ′, B2 outputs b′ = µ′.

We analyse the simulation. It is easy to see that param and all public keys available to A
are distributed properly as they are in Hyb1. In this simulation, B2 implicitly set the shared
key between the users S and R, i.e., KSR and KRS , as some (unknown) key K (which is
chosen uniformly at random by the EPE challenger) as required in Hyb1. Therefore, the
output distributions of oracles OE skS

(pkR′ , ·), OT skR
(pkS′ , ·) are correct, as in Hyb1. So,

B2 simulates Hyb1 correctly to A. Hence,

Pr[Hyb1 ⇒ 1] = Pr[Expct−ind
Σ,B2

(λ) = 1] (3)

We conclude the proof of the theorem by combining the inequalities (1), (2), and (3)
and the definition of Advct−ind

Σ,B2
(λ).

Theorem 3. Provided the NIKE scheme Λ is secure, and the EPE scheme has query-
key privacy (resp. weak query-key privacy), the PAEKS scheme Π has full trapdoor
indistinguishability (resp. trapdoor indistinguishability). More specifically, given any p.p.t
adversary A against Π, we have for atk = {hkr, dkr}

Advfci
Π,A(λ) ≤ 2 · Advatk−cks

Λ,B1
(λ) + Advct−ind

Σ,B2
(λ)

and
Advti

Π,A(λ) ≤ 2 · Advatk−cks
Λ,B1

(λ) + Advqk−priv
Σ,B′

2
(λ)

for some p.p.t algorithms B1, B2 and B′
2.

We prove the case atk = hkr which proves the case atk = dkr.

Proof. We define two hybrid security games Hyb0 and Hyb1. At the end of each game, a
well-defined binary value is returned. Let Hybi ⇒ 1 the event that Hybi returns 1. We
defined Hyb0 and Hyb1 as follows.

Hyb0: This game is identical to the experiment Expfti
Π,A(λ) (resp. Expti

Π,A(λ)) where Π is
the proposed PAEKS.

Hyb1: This hybrid game is identical to Hyb0 except that way of setting KSR and KRS

for the oracles OE skS
(pkR, ·) and OT skR

(pkS , ·). In particular, instead of computing
KRS and KSR using Λ.Skey, a random key is selected and assigned to KRS and
KSR, i.e., KRS := K∗ and KSR := K∗ where K∗ ← U(K).

Qinyi Li, Xavier Boyen 13

Given an adversary A against Π, we have

Advfti
Π,A(λ) + 1/2 = Pr[Hyb0 ⇒ 1] (4)

Hyb1 differs from Hyb0 in how to set the shared key between the prescribed identities
S and R: In Hyb0, the shared keys are computed as KSR ← Λ.Skey(R, skR, S, skS)
and KRS ← Λ.Skey(S, pkS , R, skR). By the correctness of Λ.Skey, KSR = KRS with
overwhelming probability. In Hyb1, a random shared key is chosen from K, the output
space of Λ.Skey and its value is assigned to KSR and KRS . Telling this difference amounts
to differentiating a shared key generated by Λ.Skey using non-corrupted users from a
random key. So, using the same process in the proof of Theorem 2, we can get

Pr[Hyb1 ⇒ 1]− Pr[Hyb0 ⇒ 1] ≤ Advhkr−cks
Λ,B1

(λ) (5)

for some p.p.t adversary B1 against Λ.
In Hyb1, for the prescribed identities S and R, the behaviours of the oraclesOT skR

(pkS , ·)
and OE skS

(pkR, ·) are identical to the behaviours of the oracles KK∗(·) and EK∗(·), re-
spectively. In particular, they have the same restrictions on queries, e.g., whether the
challenge keywords are allowed to be queried. Moreover, the challenge trapdoor of the
PAEKS system Π was generated using OT skR

(pkS , ·), and hence KK∗(·). So, breaking
the challenges produced by OT skR

(pkS , ·) in Hyb1 amounts to breaking the challenges
produced by KK∗(·). So, we obtain

Pr[Hyb1 ⇒ 1] = Pr[Expqk−ind
Σ,B2

(λ) = 1] (6)

for some adversary B2. Combining inequalities (4), (5), and (6) concludes the proof.

5 Constructions of EPE
To instantiate our generic PAEKS scheme, we provide three practical constructions of the
symmetric-key equality-predicate encryption. They are based on pseudorandom functions
(PRFs), the decision bilinear Diffie-Hellman (DBDH) problem, and the learning-with-errors
problem over rings. All of them have ciphertext indistinguishability. The PRF-based
construction has weak query-key privacy, while the other two have query-key privacy. The
PRF-based construction is very efficient and, combined with the state-of-the-art NIKE
scheme, outperforms all previous PAEKS schemes.

5.1 Construction from Pseudorandom Functions
We construct EPE based on pseudorandom functions (PRFs).

5.1.1 The Construction

Our constriction uses two PRFs: PRF1 : K ×W → K′ and PRF2 : K′ ×R → S. Let the
symmetric key K ← U(K). The construction is given below.

– KG(K, w): Returns dk := Kw ← PRF1(K, w).

– Enc(K, w): Sets Kw ← PRF1(K, w), r ← U(R), σ := (t← PRF2(Kw, r), r).

– Qry(dk, σ): Returns 1 if t = PRF2(Kw); Otherwise, return 0.

It is easy to see that the construction satisfies correctness.

14 Public-Key Authenticated Encryption with Keyword Search Made Easy

5.1.2 Security

We prove weak query-key privacy and ciphertext indistinguishability. Because the query-
key generation algorithm is deterministic, the above construction cannot achieve stronger
query-key privacy.

Theorem 4. Our construction of EPE based on PRFs has ciphertext indistinguishability
if the PRFs are secure.

Proof. Let A be the adversary. We define four hybrid games Hybi for i = {0, 1, 2, 3}. At
the end of each game, a well-defined binary value is output. The hybrid games are:

Hyb0: Hyb0 is identical to the experiment Advct−ind
Σ,A (λ).

Hyb1: Hyb1 is identical to Hyb0 except the that an empty list L is set, and oracles KK(·),
EK(·) are described in Figure 6. To generate the challenge on w∗

b , instead of running
Enc(K, w∗

b), it proceeds by choosing a random PRF key Kw∗
b
← U(K′), updating

L ← L ∪ {(w∗
b , Kw∗

b
)}, and returning σ∗

b := (t← PRF2(Kw∗
b
, r)) where r ← U(R).9

Hyb2: Hyb2 is identical to Hyb1 except that on the challenge input w∗
0 , the oracle EK(w∗

0)
samples r ← U(R), t← U(S) and returns σ∗

0 := (t, r).

Hyb3: Hyb3 is identical to Hyb2 except that on the challenge input w∗
1 , the oracle EK(w∗

1)
samples r ← U(R), t← U(S) and returns σ∗

1 := (t, r).

Oracle KK(w): // w ̸= w∗
0 , w∗

1

1. Return Kw if (w, Kw) ∈ L
2. Kw ← U(K′)
3. L ← L ∪ {(w, Kw)}
4. Return dkw := Kw

Oracle EK(w):
1. Kw ← KK(w)
2. r ← U(R)
3. t← PRF2(Kw, r)
4. Return σw := (t, r)

Figure 6: Oracles KK(·), EK(·) in Hyb1, proof of Theorem 4

As Hyb0 is the same as Expct−ind
Σ,A (λ). By definition,

Pr[Hyb0 ⇒ 1] = Pr[Expct−ind
Σ,A (λ) = 1] (7)

The only difference between Hyb1 and Hyb0 is that in Hyb0, Kw is computed by
PRF1(K, w) while in Hyb1, Kw is chosen uniformly at random. We construct an algorithm
B1 who has access to oracle O and needs to decide if O = PRF1(K) (when µ = 0) or O = f
where f : W → K′ is a random function (when µ = 1).
B1 follows Hyb1 except simulating KK(w) as follows: If (w, Kw) ∈ L, returns Kw,

otherwise, calls Kw ← O(w), sets L ← L ∪ (w, Kw), and returns dkw := Kw. Note that
this change also modifies the oracle EK(w), which uses KK(w) as a subroutine. Finally,
when B1 outputs 0 if A outputs b′ = b; otherwise, B1 outputs 1.

It can be seen that if O(·) = PRF(K, ·) (for some random K ∈ K unknown to B1), B1

9Note, the way that σ∗
b was generated in the same way as EK(). However, we cannot say we use

EK(w∗
b) as a step to create the challenge as EK(·) uses KK(·) as a subroutine and we specified w∗

b cannot
be used to query KK(·).

Qinyi Li, Xavier Boyen 15

simulates Hyb0 to A; otherwise, B1 simulates Hyb1. We have

|Pr[Hyb1 ⇒ 1]− Pr[Hyb0 ⇒ 1]| (8)
=|Pr[A ⇒ 1|µ = 1]− Pr[A ⇒ 1|µ = 0]|
=|Pr[B1 ⇒ 1|µ = 1]− Pr[B1 ⇒ 1|µ = 0]|
=|Pr[B1 ⇒ 1|µ = 1]− (1− Pr[B1 ⇒ 0|µ = 0])|
=2 · |Pr[ExpPRF1,B1(λ) = 1]− 1/2|
=2 · AdvPRF1,B1(λ)

Hyb2 differs from Hyb1 by generating a random tag σ∗
0 . In Hyb1, σ∗

0 is computed using
PRF2 with key PRF1(K, w∗

0). We build an algorithm B2 that uses the difference between
Hyb1 and Hyb2 to break PRF2.
B2 has access to oracle O and needs to decide if O = PRF2(Kw∗

0 ,·) (when µ = 0) or
O = f where f : R → S is a random function (when µ = 1). Note that Kw∗

0 ∈K′ is random
and unknown to B2. B2 follows Hyb1 except simulating EK(w∗

0) after received the challenge
keyword w∗

0 : B2 samples r ← U(R), calls O(w∗
0) to get t and set σ∗

0 := (t, r). Finally, B2
outputs 0 if A’s output b′ = b, otherwise, B2 outputs 1.

We can see that B2 cannot reply to the query KK(w∗
0) which should be equal to Kw∗

0
.

However, A is not allowed to make such a query as required by the security model. So, B2
simulates Hyb1 when O(·) = PRF2(K∗

w∗
0
, ·) (and µ = 0) and Hyb2 when O(·) = f(·) (and

µ = 1). Hence, a routine calculation (similar to (8)) gives

|Pr[Hyb2 ⇒ 1]− Pr[Hyb0 ⇒ 1]| = 2 · AdvPRF2,B2(λ) (9)

Hyb3 differs from Hyb2 in setting a random tag σ∗
1 . This difference is essentially the

same as the difference between Hyb2 and Hyb1. So, using the same strategy as above, we
can construct an algorithm B3 such that

|Pr[Hyb2 ⇒ 1]− Pr[Hyb1 ⇒ 1]| = 2 · AdvPRF2,B3(λ) (10)

Since the outputs of EK(w∗
b) is independent of b in Hyb3, we get

|Pr[Hyb3 ⇒ 1] ≤ 1/2 (11)

Combining inequalities (7) to (11), we have

Advct−ind
Σ,A (λ) ≤ 2 · (AdvPRF1,B1(λ) + AdvPRF2,B2(λ) + AdvPRF2,B3(λ))

where the right part is negligible under our hypotheses.

Theorem 5. The PRF-based EPE has weak query-key privacy if the PRFs are secure.

Proof. Let A be the adversary. We define two hybrid security games Hyb0, Hyb1, each
returns a well-defined binary value. The hybrid games are defined as follows:

Hyb0: This game is identical to the experiment Expqk−priv
Σ,A (λ).

Hyb1: Hyb1 is identical to Hyb0 except an empty set L is set and the oracle KK(·), EK(·)
are described in Figure 7. Meanwhile, instead of running KG(K, w∗

b) to create the
challenge, it proceeds by sampling Kw∗

b
← U(K′), updating L ← L ∪ {(w∗

b , Kw∗
b
)},

and return Kw∗
b
.10

10Note, w∗
b is not queried EK(·) and EK(·) according to the security definition.

16 Public-Key Authenticated Encryption with Keyword Search Made Easy

Oracle KK(w): // w ̸= w∗
0 , w∗

1

1. Return Kw if (w, Kw) ∈ L
2. Kw ← U(K′)
3. L ← L ∪ {(w, Kw)}
4. Return dkw := Kw

Oracle EK(w): // w ̸= w∗
0 , w∗

1

1. Kw ← KK(w)
2. r ← U(R)
3. t← PRF2(Kw, r)
4. Return σw := (t, r)

Figure 7: Oracles KK(·), EK(·) in Hyb1, proof of Theorem 5

As Hyb0 is the same as Expqk−priv
Σ,A (λ). By definition,

Pr[Hyb0 ⇒ 1] = Pr[Expct−ind
Σ,A (λ) = 1] (12)

Hyb1 differs from Hyb0 by sampling a uniformly random value Kw for each keyword w
(including w = w∗

0 , w∗
1) in stead of computing using PRF1. We construct an algorithm B

which uses this difference to break PRF1.
B has access to an oracle O and needs to decide whether O(·) = PRF1(K, ·) or O = f

where f : W → K′ is a random function. To response to queries to KK(w) (including the
subroutine call to EK(w)), B makes a call to O(w) and receives Kw. For generating the
challenge dk∗ on w∗

b , B calls O(w∗
b) to get Kw∗

b
and returns dk∗ := Kw∗

b
. Finally, if A

returns b′ = b, B outputs 0; otherwise, 1.
It is easy to see that B simulates Hyb0 of O(·) = PRF1(K, ·); else, B simulates Hyb1.

So, same to deriving inequality 13, we get

|Pr[Hyb1 ⇒ 1]− Pr[Hyb0 ⇒ 1]| = 2 · AdvPRF1,B(λ) (13)

Finally, we note that since w∗
0 and w∗

1 cannot be used to query EK(·), hence, Kw∗
b

and
b remain uniformly random under A’s view. So, we conclude

|Pr[Hyb1 ⇒ 1] ≤ 1/2 (14)

Combining inequalities (12) to (14), we have

Advqk−priv
Σ,A (λ) ≤ 2 · AdvPRF1,B(λ)

where the right part is negligible under our hypotheses.

5.2 Construction from Bilinear Maps
We present our EPE scheme based on the DBDH (and the DDH) assumptions.

5.2.1 Bilinear Maps and Assumptions

Let G0, G1 and Ĝ be three cyclic groups of order p where G0 ̸= G1, g0 ∈ G0 and g1 ∈ G1
are generators. An efficiently computable function ê : G0 × G1 → Ĝ is a (asymmetric)
bilinear map or a pairing if the following properties are satisfied:
– ĝ := ê(g, g) is the generator of Ĝ

– ∀a, b ∈ Z, ê(ga
0 , gb

1) = ê(g0, g1)ab

Let λ be the security parameter, The DBDH assumption holds over (G0,G1, Ĝ, ê) if for all
p.p.t algorithm A, T ← U(Ĝ), α, β, γ ← U(Zp), the advantage AdvDBDH,A(λ) defined as

|Pr[A(g0, gα
0 , gβ

0 , g1, gα
1 , gγ

1 , ê(g0, g1)αβγ) = 1]− Pr[A(g0, gα
0 , gβ

0 , g1, gα
1 , gγ

1 , T) = 1]|

is negligible in λ. We say the DDH assumption holds over G0 if for all p.p.t algorithm A,
T ← U(G0), α, c← U(Zp) the advantage AdvDDH,A(λ) defined as

|Pr[A(g0, gα
0 , gβ

0 , gα
1 , gαβ

0) = 1]− Pr[A(g0, gα
0 , gβ

0 , gα
1 , T) = 1]|

is negligible in λ. The above two assumptions hold simultaneously in Type-3 pairings.

Qinyi Li, Xavier Boyen 17

5.2.2 The Construction

Let z ← U(Zp), g0, u0 = gz
0 , h0 ∈ G0, g1, v1 = gz

1 ∈ G1, ê : G0×G1 → Ĝ be an asymmetric
bilinear map, and PRF : K×W → Zp be a PRF. (g0, u0, h0, g1, v1, ê) are public parameters.

– KG(K, w): r ← U(Zp), t← PRF(K, w), dk := (k1, k2) = (ht
0ur

0, gr
0).

– Enc(K, w): s← U(Zp), t← PRF(K, w), σ := (c1, c2, c3) = (ê(h0, g1)ts, vs
1, gs

1).

– Qry(dk, σ): Returns 1 if ê(c3, k1) = c1 · ê(k2, c2); Else, return 0.

For correctness, ê(k1, c3) = ê(ht
0ur

0, gs
1) = ê(h0, g1)st · ê(g0, g1)zsr = c1 · ê(k2, c2), as required.

5.2.3 Security

The security of our construction of EPE from bilinear maps is stated in the following two
theorems. We provide the proofs in Section A.1 and Section A.2.

Theorem 6. Our construction based on bilinear maps has ciphertext indistinguishability,
provided PRF is secure and the DBDH assumption holds.

Theorem 7. Our construction based on bilinear maps has query-key privacy, provided the
DDH assumption in G0 holds.

5.3 Constructions from (Ring) Lattices
This subsection describes an EPE from lattices with query-key privacy and ciphertext
indistinguishability in the standard model. Hence, combining with the lattice-based NIKE
scheme, e.g., [dK18, GdKQ+24], we obtain practical PAEKS schemes from lattices with
FCI and FTI. Our construction is inspired by the PAEKS scheme from [CM22].

5.3.1 Lattice Preliminary

We use bold lower and upper case letters for vectors and matrices, e.g., a, A. Vectors
are column vectors. We denote a⊺ the transpose of a. Let R = Z[x]/(xn + 1) where
n is a power of two and q is a prime. The scheme works over the polynomial rings R
and Rq = R/qR. We note that the multiplication over R (and Rq) is commutative. We
denote by DR,τ the discrete Gaussian distribution over Rq with Gaussian parameter τ
(see [BEP+21]). For a ∈ R, ∥a∥ denotes the Euclidean norm of the coefficients vector of a.
Our construction uses lattice trapdoors. Let k = ⌈log2 q⌋ and ā← U(Rm−k

q).

Lemma 1 ([GPV08, MP12, BEP+21]). There exists a p.p.t algorithm TrapGen(ā; r) that
takes as input ā and randomness r ∈ S, returns a and a trapdoor R where a and R are
distributed statistically close to U(Rm

q) and DR(m−k)×k,ω(
√

log2 m), respectively.

Lemma 2 ([GPV08, MP12]). Let (a, R) be the output of TrapGen and u ∈ Rq. There is a
p.p.t algorithm SampleD(a, R, u, η) with u ∈ Rq, η ≥ ℓ ·ω(

√
log2 m) where ℓ is the operator

norm of R (see [MP12]) that samples d according to a distribution that is statistically
close to DRm,η, conditioned on a⊺d = u.

Lemma 3 (Lemma 7, [DM14]). Let m ≥ 2 log2 q + 2. Let d← DRm,η, a⊺d is statistically
close to U(Rq).

Definition 8. Let λ be the security parameter. a, b← U(Rm
q), e← DZm,τ , and s← DZ,τ ,

we say the LWE assumption holds if for all p.p.t adversary A, the advantage

Advlwe
A (λ) = |Pr[A(a, b⊺) = 1]− Pr[A(a, sa⊺ + e⊺)]|

is negligible in λ.

18 Public-Key Authenticated Encryption with Keyword Search Made Easy

5.3.2 The Construction

Our lattice-based construction has a key space K, and a keywords space W. It uses
ā← U(Rm−k

q), u← U(Rq) as public parameters. It also uses a pseudorandom function
PRF : K×W → S, i.e., PRF outputs the randomnesses used by TrapGen. Let β = O(τηm).
The construction is given below.

– KG(K, w):

1. rw ← PRF(K, w||0), r̃w ← PRF(K, w||1)
2. (a, Rw)← TrapGen(ā; rw), (b, R̃w)← TrapGen(ā; r̃w)
3. e← DRm,τ , e← DR,τ , s← DR,τ , c← su + e, c⊺ ← sb⊺ + e⊺

4. d← SampleD(a, Rw, c, η), dkw := (d, c)

– Enc(K, w):

1. rw ← PRF(K, w||0), r̃w ← PRF(K, w||1)
2. (a, Rw)← TrapGen(ā; rw), (b, R̃w)← TrapGen(ā; r̃w)
3. ẽ← DRm,τ , ẽ← DR,τ , s̃← DR,τ , c̃← s̃u + ẽ, c̃⊺ ← s̃a⊺ + ẽ⊺

4. d̃← SampleD(b, R̃w, c̃, η), σw := (d̃, c̃)

– Qry(dkw, σw):

1. Parse dkw → (d, c), ctw → (d̃, c̃), v← c⊺d̃− (c̃)⊺d
2. Return 1 if ∥v∥ ≤ β; Otherwise, 0

For correctness, we have

∥v∥ =
∥∥c⊺d̃− (c̃)⊺d

∥∥ =
∥∥(sb⊺ + e⊺)d̃− (s̃a⊺ + ẽ⊺)d

∥∥
≤ 2τ

√
m · η

√
m + 2τ2n ≤ O(τηm)

= β

Instantiations. We describe our lattice-based EPE using the polynomial ring Rq to make
it slightly general and easy to read. The construction contains operations from the GPV
identity-based encryption (GPV-IBE) scheme [GPV08], i.e., lattice preimage sampling and
dual-Regev encryption. Therefore, our construction can be adapted to other lattices as
long as they allow the implementations of GPV sampling and dual-Regev encryption. One
such important example is NTRU lattices. Ducas et al. [DLP14] show how to build very
efficient GPV-IBE from NTRU lattices.

5.3.3 Security

The security of our construction of EPE from lattices is stated in the following two theorems.
We provide the proofs in Section B.1 and Section B.2.

Theorem 8. Our construction from ring lattices has ciphertext indistinguishability if PRF
is secure and the LWE assumption holds.

Theorem 9. Our construction from ring lattices has full query-key privacy, provided PRF
is secure, and the LWE assumption holds.

6 Extensions
Our generic construction offers several interesting extensions to expressive public-key
authenticated encryption with keyword search.

Qinyi Li, Xavier Boyen 19

Expressive PAEKS. We observe that EPE with query-key privacy is a special case
of symmetric-key predicate encryption with predicate privacy or symmetric-key function-
private functional encryption [SSW09, AAB+13, BS18] which support richer classes of
functions than the equality function. We can extend our generic construction to build
expressive public-key authenticated searchable encryption by combining NIKE schemes
with predicate-private predicate encryption to support expressive searching patterns, e.g.,
conjunctions/disjunctions or any polynomial-sized functions over keywords, hence enabling
a wider range of applications.

Our construction can be extended to identity-based PAEKS by using identity-based
NIKE [SOK00]. This will be beneficial to applications on small domains to ease certificate
management. Finally, we can extend our construction to support token revocation, meaning
that tokens can be revoked and disabled.

Token Revocation. To mitigate the situations where the tokens of the PAEKS system
are compromised, or the key holders leave the domain, token revocation needs to be
considered – the token is disabled from testing the ciphertext keywords once it is revoked.
Similar to the identity key revocation from identity-based cryptography, discussed in
[BF01], our generic construction of PAEKS can concatenate time information to the
keywords, and new tokens are issued when the current token is expired. This way the
ciphertext/token sizes are unchanged.

Notice that the tokens and ciphertexts in the PRF-based and DBDH-based constructions
apply a PRF to the keywords. We can include the time slot t into the input, so the tokens
with different time slots from that of the ciphertext will not be able to work. More
specifically, let K be the shared key between the sender and the receiver. For the PRF-
based construction, the token at time slot t is tkw,t = PRF1(K, w||t), while the ciphertext
at t′ is computed as ctw,t′ := (PRF2(PRF1(K, w||t′), r), r). tkw,t does not work on ctw,t′ if
t ̸= t′. For the DBDH-based construction, the token for w at time slot t is tkw,t = (hs·ur, gr)
where s = PRF(K, w||t) and the ciphertext for w at time slot t′ is ctw,t′ = (ê(e, h)sr′

, us, gs),
where s′ = PRF(K, w||t′). Again, tkw,t does not work on ctw,t′ if t ̸= t′.

ID-Based Authenticated Encryption with Keywords Search For public-key cryp-
tographic applications in small domains, the overhead of managing public-key certificates
can be alleviated using identity-based cryptography [Sha85]. In an identity-based cryp-
tosystem, user’s public keys are their unique identity in the domain that they belong to,
which can be any publicly known strings, e.g., company email addresses. A trusted entity,
named the key generation center (KGC), generates private keys for users based on their
identities. As users’ public keys are unique and publicly known, they certify the users by
default, and no public key certificates are needed.

Our generic constructions of PAEKS can be easily extended to identity-based settings.
The only public-key primitive used by our constructions is NIKE. So, we can acquire an
identity-based PAEKS construction by using identity-based non-interactive key exchange
(ID-NIKE) while keeping the symmetric-key equality-predicate encryption unchanged.
The security properties of identity-based PAEKS can be formalised straightforwardly by
considering the ID-NIKE security models. Practical ID-NIKE schemes are known, e.g.,
[SOK00]. We also note that one can consider using an attribute-based NIKE to make a
PAEKS attribute-based.

7 Conclusion
The cryptographic primitive public-key authenticated encryption with keyword search
(PAEKS) recently emerged to deal with inside keyword guessing attacks (IKGA) against
public-key encryption with keyword search (PEKS). PAEKS allows keyword-associated

20 Public-Key Authenticated Encryption with Keyword Search Made Easy

tokens to test if a ciphertext from a designated sender contains the keyword. PAEKS
requires the tokens and ciphertexts not to leak information about the keywords embedded
into them, known as token privacy and ciphertext indistinguishability. This paper presents
a generic construction of PAEKS, featuring great simplicity and practicality. Instantiating
our construction using efficient non-interactive key exchange and PRFs leads to the most
efficient PAEKS schemes, with some having post-quantum security. We show how to
instantiate our construction from pairings and lattices to get efficient PAEKS schemes
with the strongest token privacy and ciphertext indistinguishability. To the best of our
knowledge, only two PAEKS schemes have such strong token privacy yet substantially
underperforming our ones under the same assumptions.

References
[AAB+13] Shashank Agrawal, Shweta Agrawal, Saikrishna Badrinarayanan, Abishek

Kumarasubramanian, Manoj Prabhakaran, and Amit Sahai. Functional
encryption and property preserving encryption: New definitions and positive
results. Cryptology ePrint Archive, Paper 2013/744, 2013. URL: https:
//eprint.iacr.org/2013/744.

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h)ibe
in the standard model. In Henri Gilbert, editor, Advances in Cryptology
- EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science,
pages 553–572. Springer Berlin Heidelberg, 2010. doi:10.1007/978-3-642
-13190-5_28.

[BBDQ18] Fabrice Benhamouda, Olivier Blazy, Léo Ducas, and Willy Quach. Hash proof
systems over lattices revisited. In Michel Abdalla and Ricardo Dahab, editors,
Public-Key Cryptography – PKC 2018, pages 644–674, Cham, 2018. Springer
International Publishing. doi:10.1007/978-3-319-76581-5_22.

[BCOP04] Dan Boneh, Giovanni Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.
Public key encryption with keyword search. In Advances in Cryptology -
EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science,
pages 506–522. Springer Berlin Heidelberg, 2004. doi:10.1007/978-3-540
-24676-3_30.

[BEP+21] Pauline Bert, Gautier Eberhart, Lucas Prabel, Adeline Roux-Langlois, and
Mohamed Sabt. Implementation of lattice trapdoors on modules and appli-
cations. In Post-Quantum Cryptography – PQCrypto 2021, pages 195–214.
Springer, 2021. doi:10.1007/978-3-030-81293-5_11.

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing.
In Joe Kilian, editor, Advances in Cryptology–CRYPTO 2001, volume 2139 of
Lecture Notes in Computer Science, pages 213–229. Springer Berlin Heidelberg,
2001. doi:10.1007/3-540-44647-8_13.

[BS18] Zvika Brakerski and Gil Segev. Function-private functional encryption in
the private-key setting. Journal of Cryptology, 31:202–225, 2018. doi:
10.1007/s00145-017-9261-0.

[BW06] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based
encryption (without random oracles). In Cynthia Dwork, editor, Advances
in Cryptology - CRYPTO 2006, volume 4117 of Lecture Notes in Computer
Science, pages 290–307. Springer Berlin Heidelberg, 2006. doi:10.1007/11
818175_17.

https://eprint.iacr.org/2013/744
https://eprint.iacr.org/2013/744
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-319-76581-5_22
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-030-81293-5_11
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/s00145-017-9261-0
https://doi.org/10.1007/s00145-017-9261-0
https://doi.org/10.1007/11818175_17
https://doi.org/10.1007/11818175_17

Qinyi Li, Xavier Boyen 21

[CKS09] David Cash, Eike Kiltz, and Victor Shoup. The twin diffie–hellman problem
and applications. Journal of Cryptology, 22:470–504, 2009. doi:10.1007/s0
0145-009-9041-6.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. Csidh: an efficient post-quantum commutative group action. In
Advances in Cryptology–ASIACRYPT 2018, pages 395–427. Springer, 2018.
doi:10.1007/978-3-030-03332-3_15.

[CM22] Leixiao Cheng and Fei Meng. Public key authenticated encryption with
keyword search from lwe. In European Symposium on Research in Computer
Security, pages 303–324. Springer, 2022. doi:10.1007/978-3-031-17140-6
_15.

[CQFM23] Leixiao Cheng, Jing Qin, Feng Feng, and Fei Meng. Security-enhanced public-
key authenticated searchable encryption. Information Sciences, 647:119454,
2023. doi:10.1016/j.ins.2023.119454.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
transactions on Information Theory, 22(6):644–654, 1976. doi:10.1109/TIT.
1976.1055638.

[dK18] Bor de Kock. A non-interactive key exchange based on ring-learning with
errors. PhD thesis, Master’s thesis. Master’s thesis, Eindhoven University of
Technology, 2018.

[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based
encryption over ntru lattices. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 22–41. Springer,
2014. doi:10.1007/978-3-662-45608-8_2.

[DM14] Léo Ducas and Daniele Micciancio. Improved short lattice signatures in the
standard model. In Juan A. Garay and Rosario Gennaro, editors, Advances
in Cryptology – CRYPTO 2014, pages 335–352, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg. doi:10.1007/978-3-662-44371-2_19.

[Emu22] Keita Emura. Generic construction of public-key authenticated encryption
with keyword search revisited: stronger security and efficient construction.
In Proceedings of the 9th ACM on ASIA Public-Key Cryptography Workshop,
pages 39–49, 2022. doi:10.1145/3494105.352623.

[FHKP13] Eduarda SV Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G Paterson.
Non-interactive key exchange. In Public-Key Cryptography–PKC 2013, pages
254–271. Springer, 2013. doi:10.1007/978-3-642-36362-7_17.

[GdKQ+24] Phillip Gajland, Bor de Kock, Miguel Quaresma, Giulio Malavolta, and Peter
Schwabe. Swoosh: Efficient lattice-based non-interactive key exchange. In
USENIX Security Symposium – USENIX Security 2024. USENIX Association,
2024. URL: https://www.usenix.org/system/files/sec24summer-prepu
b-883-gajland.pdf.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In Proceedings of the 40th
annual ACM symposium on Theory of computing, STOC ’08, pages 197–206,
New York, NY, USA, 2008. ACM. doi:10.1145/1374376.1374407.

https://doi.org/10.1007/s00145-009-9041-6
https://doi.org/10.1007/s00145-009-9041-6
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-031-17140-6_15
https://doi.org/10.1007/978-3-031-17140-6_15
https://doi.org/10.1016/j.ins.2023.119454
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-44371-2_19
https://doi.org/10.1145/3494105.352623
https://doi.org/10.1007/978-3-642-36362-7_17
https://www.usenix.org/system/files/sec24summer-prepub-883-gajland.pdf
https://www.usenix.org/system/files/sec24summer-prepub-883-gajland.pdf
https://doi.org/10.1145/1374376.1374407

22 Public-Key Authenticated Encryption with Keyword Search Made Easy

[HHK18] Julia Hesse, Dennis Hofheinz, and Lisa Kohl. On tightly secure non-interactive
key exchange. In Annual International Cryptology Conference – CRYPTO
2018, pages 65–94. Springer, 2018. doi:10.1007/978-3-319-96881-0_3.

[KY16] Shuichi Katsumata and Shota Yamada. Partitioning via non-linear polynomial
functions: More compact ibes from ideal lattices and bilinear maps. In
Advances in Cryptology–ASIACRYPT 2016, pages 682–712. Springer, 2016.
doi:10.1007/978-3-662-53890-6_23.

[LHHS22] Hongbo Li, Qiong Huang, Jianye Huang, and Willy Susilo. Public-key au-
thenticated encryption with keyword search supporting constant trapdoor
generation and fast search. IEEE Transactions on Information Forensics and
Security, 18:396–410, 2022. doi:10.1109/TIFS.2022.3224308.

[LTT+22] Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen.
Public-key authenticated encryption with keyword search: Cryptanalysis,
enhanced security, and quantum-resistant instantiation. In Proceedings of
the 2022 ACM on Asia conference on computer and communications security,
pages 423–436, 2022. doi:10.1145/3488932.3497760.

[LW19] Zengpeng Li and Ding Wang. Achieving one-round password-based authenti-
cated key exchange over lattices. IEEE transactions on services computing,
15(1):308–321, 2019. doi:10.1109/TSC.2019.2939836.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In David Pointcheval and Thomas Johansson, edi-
tors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture
Notes in Computer Science, pages 700–718. Springer Berlin Heidelberg, 2012.
doi:10.1007/978-3-642-29011-4_41.

[NE19] Mahnaz Noroozi and Ziba Eslami. Public key authenticated encryption with
keyword search: revisited. IET Information Security, 13(4):336–342, 2019.
doi:10.1049/iet-ifs.2018.5315.

[QCH+20] Baodong Qin, Yu Chen, Qiong Huang, Ximeng Liu, and Dong Zheng. Public-
key authenticated encryption with keyword search revisited: Security model
and constructions. Information Sciences, 516:515–528, 2020. doi:10.1016/
j.ins.2019.12.063.

[QCZZ21] Baodong Qin, Hui Cui, Xiaokun Zheng, and Dong Zheng. Improved security
model for public-key authenticated encryption with keyword search. In
Provable and Practical Security – ProvSec 2021, pages 19–38. Springer, 2021.
doi:10.1007/978-3-030-90402-9_2.

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In Georg-
eRobert Blakley and David Chaum, editors, Advances in Cryptology, volume
196 of Lecture Notes in Computer Science, pages 47–53. Springer Berlin
Heidelberg, 1985. doi:10.1007/3-540-39568-7_5.

[SOK00] Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems based
on pairing. In Symposium on Cryptography and Information Security. Springer,
2000.

[SSW09] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption
systems. In Omer Reingold, editor, Theory of Cryptography, pages 457–473,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. doi:10.1007/978-3-6
42-00457-5_27.

https://doi.org/10.1007/978-3-319-96881-0_3
https://doi.org/10.1007/978-3-662-53890-6_23
https://doi.org/10.1109/TIFS.2022.3224308
https://doi.org/10.1145/3488932.3497760
https://doi.org/10.1109/TSC.2019.2939836
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1049/iet-ifs.2018.5315
https://doi.org/10.1016/j.ins.2019.12.063
https://doi.org/10.1016/j.ins.2019.12.063
https://doi.org/10.1007/978-3-030-90402-9_2
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-642-00457-5_27
https://doi.org/10.1007/978-3-642-00457-5_27

Qinyi Li, Xavier Boyen 23

[XWC+24] Tao Xiang, Zhongming Wang, Biwen Chen, Xiaoguo Li, Peng Wang, and
Fei Chen. Stopguess: A framework for public-key authenticated encryption
with keyword search. Computer Standards & Interfaces, 88:103805, 2024.
doi:10.1016/j.csi.2023.103805.

A Supplemental Proofs for Section 5.2
A.1 Security Proofs of Theorem 6
Proof. Let A be the adversary. We defined four hybrid games Hybi for i = {0, 1, 2, 3}. A
well-defined binary value is returned at the end of each hybrid game. We denote Hybi ⇒ 1
the event that Hybi outputs 1. We defined the hybrid games as follows:

Hyb0: This is identical to Expct−ind
Σ,A (λ).

Hyb1: This is identical to Hyb0 except that an empty set L is set and the oracles EK(·)
and KK(·) are described in Figure 8. Meanwhile, the challenge σ∗ on keyword w∗

b is
also created using EK(·).11

Hyb2: This is identical to Hyb1 except for answering EK(w∗
b) to create the challenge on

query w∗
b . In stead of generating σ∗ as in Hyb1, Hyb2 samples a random element

R ← U(Ĝ), s ← U(Zp), sets (c1, c2, c3) = (R, vs
1, gs

1), and returns σ∗ = (c1, c2, c3).
The same steps are followed for repeated queries on w∗

b .

Hyb3: This is identical to Hyb2 except for answering EK(w∗
1−b). Hyb2 samples a random

element R ← U(Ĝ), s ← U(Zp), sets (c1, c2, c3) = (R, vs
1, gs

1), and returns σ =
(c1, c2, c3). The same steps are followed for repeated queries on w∗

1−b.

Oracle KK(w): // w ̸= w∗
0 , w∗

1

1. Return t if (w, t) ∈ L
2. t← U(Zp), L ← L ∪ {(w, t)}, r ← U(Zp)
3. (k1, k2) = (ht

0ur
0, gr

0)
4. Return dkw := (k1, k2)

Oracle EK(w):
1. Return t if (w, t) ∈ L
2. t← U(Zp), L ← L ∪ {(w, t)}, s← U(Zp)
3. (c1, c2, c3) = (ê(h0, g1)ts, vs

1, gs
1)

4. Return σw := (c1, c2, c3)

Figure 8: Oracles KK(·), EK(·) in Hyb1, proof of Theorem 6

By definition, we have

Pr[Hyb0 ⇒ 1] = Pr[Expct−ind
Σ,A (λ) = 1] (15)

Since the only difference between Hyb0 and Hyb1 is that in Hyb0, t = PRF(K, w) for
all w in the queries EK(w), KK(w). Using the same reduction as we give in the proof of
inequality 8, we can differentiate PRF from a random function and get

|Pr[Hyb1 ⇒ 1]− Pr[Hyb0 ⇒ 1]| ≤ 2AdvPRF,B1(λ) (16)

for some algorithm B1.
We show that Hyb1 and Hyb2 can not be efficiently distinguished if the DBDH assump-

tion holds. We construct an efficient algorithm B2 to break the DBDH assumption using
the difference between Hyb1 and Hyb2 shown in Figure 9.

We note that the parameters (g0, h0, u0, g1, v1) simulated B2 are randomly distributed
over Zp as required. For w ̸= w∗

b , KK(w) and EK(w) simulated by B2 are distributed as
11Note, there are no restrictions from the security definition on the input to EK(·).

https://doi.org/10.1016/j.csi.2023.103805

24 Public-Key Authenticated Encryption with Keyword Search Made Easy

Algorithm B2:
Input: (g0, gα

0 , gβ
0 , g1, gα

1 , gγ
1 , T)

1. z ← U(Zp), h = gβ , u0 = gz
0 , v1 = gz

1
2. (w∗

0 , w∗
1)← AKK (·),EK (·), b← U({0, 1})

3. σ∗ ← Ẽ(w∗
b), b′ ← AKK (·),EK (·)(σ∗)

4. Return (b′ == b)

Oracle KK(w): // w ̸= w∗
0 , w∗

1

1. Return t if (w, t) ∈ L
2. t← U(Zp), L ← L ∪ {(w, t)}, r ← U(Zp)
3. (k1, k2) = (ht

0ur
0, gr

0)
4. Return dkw := (k1, k2)

Oracle EK(w):

1. Return Ẽ(w) if w = w∗
b

2. Return t if (w, t) ∈ L
3. t← U(Zp), L ← L ∪ {(w, t)}, s← U(Zp)
4. (c1, c2, c3) = (ê(h0, g1)ts, vs

1, gs
1)

5. Return σw := (c1, c2, c3)

Oracle Ẽ(w∗
b):

1. s̃← U(Zp)
2. c1 = T s̃, c2 = (gα

1)zs̃, c3 = (gα
1)s̃

3. Return σ∗ := (c1, c2, c3)

Figure 9: Algorithm B2 breaks DBDH, proof of Theorem 6

in Hyb1 (and Hyb2). Note that challenge σ∗ is produced by Ẽ(w∗
b), and EK(w∗

b) = Ẽ(w∗
b).

B implicitly sets the keyword w∗
b ’s corresponding exponent t = γ and the encryption

randomness s = αs̃. When T = ê(g0, g1)αβγ , we have c1 = T s̃ = ê(g0, g1)αβγs̃ = ê(h0, g1)ts,
c2 = (gα

1)zs̃ = vs
1, and c3 = (gα

1)s̃ = gs
1, which is a challenge ciphertext distributed as in

Hyb1. Otherwise, if T is random, σ∗ is random and independent of w∗
b , i.e., a distribution

required by Hyb2. We note that we implicitly set the encryption randomness s = cs̃ where
s̃ is freshly chosen for each repeated challenge query. The ciphertexts generated by Ẽ(w∗

b)
when T is random are random and independent of each other. Hence, we have

|Pr[Hyb2 ⇒ 1]− Pr[Hyb1 ⇒ 1]| ≤ 2AdvDBDH,B2(λ) (17)

for the algorithm B2.
Hyb3 generates fresh random ciphertext for repeated EK(w∗

1−b), the same as the way
that Hyb2 deal with the queries EK(w∗

b), using the same argument, we have

|Pr[Hyb3 ⇒ 1]− Pr[Hyb2 ⇒ 1]| ≤ 2AdvDBDH,B2(λ) (18)

for the algorithm B2. Finally, we note that the response to EK(w∗
b) and EK(w∗

1−b) are
independent of b. Thus, A has no advantage in winning the game, hence

|Pr[Hyb3 ⇒ 1] = 1/2 (19)

Combining the inequalities (15) to (19) and the hypotheses PRF is secure and DBDH
assumption holds.

A.2 Security Proofs of Theorem 7
Proof. We proceed with the proof via three hybrid games.

Hyb0: This is identical to Expqk−ind
Σ,A (λ).

Hyb1: This is identical to Hyb0 except that changes the way of constructing the challenge
dk∗ and the oracle KK(·). In particular, to construct the challenge on w∗

b and
(repeated) queries EK(wb∗), it choose a random R1, R2 ← U(G) and returns (R1, R2).

Hyb2: This is identical to Hyb1 except that for all (repeated) queries on getting the query
keys for w∗

1−b, it chooses a random R1, R2 ← U(G) and returns (R1, R2)

By definition, we have

Pr[Hyb0 ⇒ 1] = Pr[Expct−ind
Σ,A (λ) = 1] (20)

Qinyi Li, Xavier Boyen 25

Algorithm B1:
Input: (g0, gα

0 , gβ
0 , g1, gα

1 , T)
1. u0 = gα

0 , h0 ← U(G0), v1 = gα
1

2. K ← U(K), (w∗
0 , w∗

1)← AKK (·),EK (·)

3. b← U({0, 1})
4. σ∗ ← K̃(w∗

b), b′ ← AKK (·),EK (·)(σ∗)
5. Return (b′ == b)

Oracle KK(w):

1. If w = w∗
b , return K̃(w∗

b)
2. t← PRF(K, w), r ← U(Zp)
3. (k1, k2) = (ht

0ur
0, gr

0)
4. Return dkw := (k1, k2)

Oracle EK(w):

1. Return K̃(w) if w = w∗
b

2. t← PRF(K, w), s← U(Zp)
3. (c1, c2, c3) = (ê(h0, g1)ts, vs

1, gs
1)

4. Return σw := (c1, c2, c3)

Oracle K̃(w∗
b):

1. t← PRF(K, w∗
b)

2. r̃ ← U(Zp)
3. (k1, k2) = (ht

0T r̃, (gβ
0)r̃)

4. Return dk := (k1, k2)

Figure 10: Algorithm B1 breaks DDH, proof of Theorem 7

We show that Hyb0 and Hyb1 are indistinguishable if the DDH assumption holds. We
constructed an efficient DDH problem solver B1 in Figure 10 who is given (g0, gα

0 , gβ
0 , g1, gα

1 , T)
and decides if T ∈ G0 is random or equals gαβ

0 .
We can see that the parameters (g0, u0, h0, g1, v1), oracles KK(·) and EK(·) on queries

w ̸= w∗
b simulated by B1 are distributed correctly as in Hyb0 (and in Hyb1). When T = gαβ ,

we have k1 = ht
0T r̃ = ht

0(gα
0

βr̃) = ht
0ur

0, and k2 = (gβ
0)r̃ = gr

0, i.e., a challenge query key
distributed as in Hyb0. We note, for repeated query on w∗

b , the (unknown) randomness
r = βr̃ is uniformly random over Zp where r̃ is freshly chosen. On the other hand, if T is
random, the responses are random and independent of each other, which is distributed as
required in Hyb1. Hence,

|Pr[Hyb1 ⇒ 1]− Pr[Hyb0 ⇒ 1]| ≤ 2AdvDDH,B1(λ) (21)

for B1. Using the same argument to Hyb1 and Hyb2, we obtain

|Pr[Hyb2 ⇒ 1]− Pr[Hyb1 ⇒ 1]| ≤ 2AdvDDH,B1(λ) (22)

for the algorithm B2.
Finally, we can see that all the query-key responses are independent of w∗

b and w∗
1−b,

hence A no advantage, i.e.,

|Pr[Hyb3 ⇒ 1] = 1/2 (23)

Combining the inequalities (20) to (23) and the hypotheses PRF is secure and the DBDH
assumption holds.

B Supplemental Proofs for Section 5.3
B.1 Security Proofs for Theorem 8
We give the security proof below. We note that the polynomially many hybrid games make
the proof non-tight. We can tighten the reduction using LWE sample generation [GPV08]
and noise re-randomisation [KY16], albeit relying on a stronger LWE assumption.

Proof. We assume that the adversary makes Q and Q′ queries to EK(·) on the challenge
keyword w∗

b and w∗
1−b, respectively, after receiving the challenge ciphertext σ∗. We proceed

with the proof via hybrid games Hyb0, Hyb1, Hyb2,i for i = {1, 2, , ..., Q} and Hyb3,i for
i = {1, 2, , ..., Q′}. A binary value is returned at the end of each game. We denote by
Hybx ⇒ 1 the event that Hybx returns 1.

26 Public-Key Authenticated Encryption with Keyword Search Made Easy

Hyb0: This is identical to Expct−ind
Σ,A (λ).

Hyb1: This is identical to Hyb0 except that a PRF is not used to generate the randomness
for TrapGen: At the beginning of Hyb1, an empty list L is initialised. Given query w
to the oracles K and E, Hyb1 first check if (w, rw, r̃w) ∈ L, if yes, returns (w, rw, r̃w);
otherwise the game draws r, r̃ ← U(S), and updates L ← L ∪ {(w, rw, r̃w)}.

Hyb2: This is identical to Hyb1 except that for all KK(·) and EK(·) on the challenge
keyword w∗

b , a← U(Rm
q).

Hyb3: This is identical to Hyb2 except that that for the challenge query on the keyword
w∗

b query, the ciphertext components c̃ and c̃ are chosen uniformly random over Rq

and Rm
q , respectively.

Hyb3,i: This is identical to Hyb3,i−1 except that for the ith EK(w∗
b) query, the ciphertext

components c̃ and c̃ are chosen uniformly random over Rm
q and Rq, respectively. We

define Hyb3,0 = Hyb3.

Hyb4: This is identical to Hyb3,Q except that for all ẼK(w∗
b) queries, d̃ ← DRm,η and

c̃← b⊺d̃.

Hyb4,i: This is identical to Hyb3,i−1 except that for the ith EK(w∗
1−b) query, the ciphertext

components c̃ and c̃ are chosen uniformly random over Rm
q and Rq, respectively. We

define Hyb4,0 = Hyb4.

Hyb5: This is identical to Hyb4,Q′ except that for all EK(w∗
1−b) queries, d̃← DRm,η and

c̃← b⊺d̃.

By definition, we have

Pr[Hyb0 ⇒ 1] = Pr[Expct−ind
Σ,A (λ) = 1] (24)

Hyb2 generates true randomness for TrapGen instead of using PRF. It also uses the list
L to maintain consistency, i.e., the same keyword gives the same vectors a, b. A routine
reduction shows

|Pr[Hyb1 ⇒ 1]− Pr[Hyb0 ⇒ 1]| ≤ 2AdvPRF,B1(λ) (25)

for some algorithm B1.
Hyb2 samples a ← U(Rm

q) for the challenge keyword w∗
b . Since w∗

b cannot used to
query KK(), a trapdoor for a is no longer needed. Using Lemma 3, we have Hyb2 and
Hyb1 are statistically indistinguishable. Hence,

|Pr[Hyb2 ⇒ 1]− Pr[Hyb1 ⇒ 1]| ≤ negl(λ) (26)

Hyb3 differs from Hyb2 in choosing random ciphertext component c̃ and c̃. Since a
and u are random, c̃ and c̃ are LWE samples with the secret s. Hence, a straightforward
reduction builds an algorithm B1 such that

|Pr[Hyb3 ⇒ 1]− Pr[Hyb2 ⇒ 1]| ≤ 2Advlwe
B1

(λ) (27)

for some algorithm B1.
The difference between Hyb3,i and Hyb3,i−1 is similar to the difference between Hyb3

and Hyb2. Using the same algorithm B1 we have

|Pr[Hyb3,i ⇒ 1]− Pr[Hyb3,i−1 ⇒ 1]| ≤ 2Advlwe
B1

(λ) (28)

Qinyi Li, Xavier Boyen 27

In Hyb4, b is statistically close to Rm
q according to Lemma 3. It produce the joint

distribution (d̃, c̃) by sampling d̃ ← DRm,η and setting c̃ ← b⊺d̃. So, using Lemma
3 again, c̃ is statistically close to U(Rq). In Hyb3, c̃ ← U(Rq) and d̃ is obtained via
SampleD(b, R̃w∗

b
, c̃, η). According to Lemma 2, d̃ in the two hybrid games are distributed

statistically close. As a result,

|Pr[Hyb4 ⇒ 1]− Pr[Hyb3,Q ⇒ 1]| ≤ negl(λ) (29)

The difference between Hyb4,i and Hyb4,i−1 is similar to the difference between Hyb3,i

and Hyb3,i−1. So, we obtain

|Pr[Hyb4,i ⇒ 1]− Pr[Hyb4,i−1 ⇒ 1]| ≤ 2Advlwe
B1

(λ) (30)

The difference between Hyb4,Q′ and Hyb5 is essentially the same as the difference
between Hyb3,Q and Hyb4. Hence, using the same argument, we have

|Pr[Hyb4,Q′ ⇒ 1]− Pr[Hyb5 ⇒ 1]| ≤ negl(λ) (31)

We note that both the challenge ciphertext and the ciphertexts replied to the encryption
query on w∗

b and w∗
1−b are randomly chosen and independent of w∗

b and w∗
1−b. Hence, we

have

Pr[Hyb5 ⇒ 1] = 1/2 (32)

Putting 24 to 32 together and using the fact that Q, Q′ are polynomials and the
hypothesis that LWE problem is hard, we get Advct−ind

Σ,A (λ) is negligible in λ.

B.2 Security Proof of Theorem 9
Proof. Note that the ciphertext and key are constructed essentially in the same way. The
ciphertext indistinguishability and the full query-key privacy are defined symmetrically.
Thus, a proof similar to the proof of Theorem 8 applies. We omit the details.

C Comments on Existing PAEKS Schemes
C.1 Comment On Liu at al.’s Scheme
Liu et al. [LTT+22] give a generic construction of PAEKS with an instantiation from
the LWE problem. There is an inconsistency in the concrete parameters provided. Let
n, m, and q be the lattice dimension, the number of LWE samples, and the modulus.
The parameters given are n = 256, m = 9753, and q = 4096 plus the discreet Gaussian
parameter σ = m · ℓ · ω(

√
log2 n) with ℓ = 10, ω(

√
log2 n) > 1. The concrete value of σ

provided is 8, which is less than m.

C.2 Comment On Cheng et al.’s Scheme
Cheng et al. propose a PAEKS scheme from pairings under the oracle Diffie-Hellam (DH)
assumption [CQFM23]. We comment that the scheme needs the DBDH assumption, which
is stronger than the oracle DH assumption.

The scheme use a pairing ê : G × G → Ĝ where G and Ĝ are cyclic group of prime
order p. g, h ∈ G and hash functions H, Ĥ are public parameters. Let S and R be the
sender and receiver, respectively. The public/private key pair of S is (pkS , skS) = (gy, y),
and the public/private key pair of R is (pkR, skR) = (gx, x). The token is (T1, T2, T3, T4)
where

T1 = H(Ĥ(K), w, pkR, pkS)s1hys2 , T2 = gys1 , T3 = hs2 , T4 = gs1

28 Public-Key Authenticated Encryption with Keyword Search Made Easy

where K = gxy, and s1, s2 ← U(Zp). Given a token, one can compute

ê(T1, g)
ê(T3, pkS) = ê(H(Ĥ(K), w, pkR, pkS)s1hys2 , g)

ê(hs2 , gy)
= ê(H(Ĥ(K), w, pkR, pkS), hs2)
= ê(cS,R,w, hs2)

where cS,R,w ∈ G is a fixed constant when S, R, and the keyword w is given. In the FTI
model, the attacker can ask for multiple, e.g., Q tokens from S, R on w to obtain multiple
such values {ê(cS,R,w, hs2,i)}i∈{1,2,...,Q}. To argue the scheme is of FTI, one needs to show
the joint distribution of {ê(cS,R,w, hs2,i)}i∈{1,2,...,Q is computationally indistinguishable
from the uniform distribution over the Cartesian product of Q groups G, for which the
oracle DH assumption is insufficient but the DBDH assumption is.

	Introduction
	Motivations
	Our Contributions
	Organisation

	Preliminaries
	Pseudorandom Functions
	Non-Interactive Key Exchange (NIKE)
	Symmetric-Key Equality-Predicate Encryption

	Public-Key Authenticated Searchable Encryption
	The Proposed PAEKS Scheme
	The Construction
	Security

	Constructions of EPE
	Construction from Pseudorandom Functions
	Construction from Bilinear Maps
	Constructions from (Ring) Lattices

	Extensions
	Conclusion
	References
	Supplemental Proofs for Section 5.2
	Security Proofs of Theorem 6
	Security Proofs of Theorem 7

	Supplemental Proofs for Section 5.3
	Security Proofs for Theorem 8
	Security Proof of Theorem 9

	Comments on Existing PAEKS Schemes
	Comment On Liu at al.'s Scheme
	Comment On Cheng et al.'s Scheme

