TACR Communications in Cryptology https://doi.org/10.62056 /a6n59qgxq

ISSN 3006-5496, Vol. 1, No. 2, 26 pages.

Efficient isochronous fixed-weight sampling with
applications to NTRU

Décio Luiz Gazzoni Filho™? ®, Tomas S. R. Silva® ® and Julio Lépez!

! Universidade Estadual de Campinas (UNICAMP), Instituto de Computacio, Campinas, Brazil
2 State University of Londrina, Department of Electrical Engineering, Londrina, Brazil
3 Universidade Estadual de Campinas (UNICAMP), Instituto de Matemadtica, Estatistica e
Computacdo Cientifica, Campinas, Brazil

Abstract. We present a solution to the open problem of designing a linear-time,
unbiased and timing attack-resistant shuffling algorithm for fixed-weight sampling.
Although it can be implemented without timing leakages of secret data in any
architecture, we illustrate with ARMv7-M and ARMv8-A implementations; for the
latter, we take advantage of architectural features such as NEON and conditional
instructions, which are representative of features available on architectures targeting
similar systems, such as Intel. Our proposed algorithm improves asymptotically
upon the current approach based on constant-time sorting networks (O(n) versus
O(nlog®n)), and an implementation of the new algorithm applied to NTRU is
also faster in practice, by a factor of up to 6.91 (591%) on ARMvS8-A cores and
12.89 (1189%) on the Cortex-M4; it also requires fewer uniform random bits. This
translates into performance improvements for NTRU encapsulation, compared to
state-of-the-art implementations, of up to 50% on ARMvS8-A cores and 72% on the
Cortex-M4, and small improvements to key generation (up to 2.7% on ARMvS-A
cores and 6.1% on the Cortex-M4), with negligible impact on code size and a slight
improvement in RAM usage for the Cortex-M4.

Keywords: Post-quantum cryptography - NTRU - Sampling - ARM

1 Introduction

In the late 1990s, the rise of quantum algorithms for database search and factoriza-
tion [Gro96, Sho97] posed a threat to public-key cryptosystems based on integer factoriza-
tion and/or discrete logarithms. Even though quantum computers capable of efficiently
performing such computations do not exist yet, growing concern within the community led
to seeking alternative cryptographic primitives capable of resisting attacks from quantum
algorithms. Thus, Post-Quantum Cryptography (PQC) arises as an attempt to counter
these attacks by developing new public-key cryptographic algorithms built on problems
known to be resistant to quantum attacks, such as lattice-based problems.

One of the oldest lattice-based cryptosystems is NTRU, first presented in the rump
session of CRYPTO ’96 [HPS96]. It remains relevant, as shown by advancing to the third
round of the NIST PQC standardization process [CDHT20, Nat17], and its standardization
in other forums [Ins09, Amel7]. A performance bottleneck of NTRU is fixed-weight
sampling of polynomials, i.e. those with a prescribed number of randomly permuted
—1, 0 and 1 coefficients, employed in key generation and encapsulation. Unless carefully
optimized, this sampling incurs a significant runtime cost, particularly to encapsulation.

E-mail: decio.gazzoni@ic.unicamp.br (Décio Luiz Gazzoni Filho), tomas@ime.unicamp.br (Tom&s
S. R. Silva), jlopez@ic.unicamp.br (Julio Lépez)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-04-09 Accepted: 2024-06-03

https://doi.org/10.62056/a6n59qgxq
https://crossmark.crossref.org/dialog/?doi=10.62056/a6n59qgxq&domain=pdf&date_stamp=2024-06-29
https://orcid.org/0000-0002-6001-2172
https://orcid.org/0000-0002-5825-9133
https://orcid.org/0000-0001-5139-0158
mailto:decio.gazzoni@ic.unicamp.br
mailto:tomas@ime.unicamp.br
mailto:jlopez@ic.unicamp.br
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Efficient isochronous fixed-weight sampling with applications to NTRU

Shuffling algorithms appear perfectly suited to solve the problem of fixed-weight
sampling; however, there is no known linear-time algorithm that is resistant to timing
attacks for this problem. Instead, constant-time sorting is used to generate random
permutations, as mandated by the NTRU submission to the NIST PQC contest [CDH"20].
We propose a new, timing attack-resistant shuffling algorithm to replace the sorting-based
approach, with improved asymptotic running time and large performance improvements in
actual implementations, especially for embedded architectures.

Prior to our work, the main proposal to avoid the cost of fixed-weight sampling for
NTRU is NTRU-HRSS [HRSS17]. Their technique was later merged into the NTRU
proposal for NIST’s PQC standardization process [CDH'20]. Due to larger key and
ciphertext sizes, it was adopted for only one out of the four suggested parameter sets.

There exist many shuffling algorithms, such as Fisher—Yates [FY38, Dur64, Knu97], Rao—
Sandelius [Rao61, San62] and MERGESHUFFLE [BBHL18]. Algorithms in the coin tossing
model, aimed at minimizing the consumption of random bits, are reviewed in [BBHT17].
However, none of these are designed to resist side-channel attacks. Indeed, [Danl9] remarks
that Fisher—Yates is the most straightforward implementation of fixed-weight sampling,
but cautions that “implementing Fisher—Yates in such a way that there is no side channel is
difficult.” They opt for a constant-time sorting network [Bat68], as proposed by Bernstein,
Chou and Schwabe for use with the McEliece [BCS13] cryptosystem, and Bernstein et al.
for the NTRU Prime [BCLv17] cryptosystem.

Sendrier [Sen21] proposed a constant-time Fisher—Yates variant for binary vectors
for use with the BIKE cryptosystem. Its running time is O(w?), where w is the weight
(count of non-zero elements) of an n-element vector; since the weight in BIKE grows as
w = O(y/n), its performance behaves as O((y/n)?) = O(n). In NTRU, ternary vectors are
used, and also, a dense vector is sampled, i.e. w = O(n); thus, Sendrier’s algorithm cannot
compete with the O(nlog®n) running time of the fastest practical sorting networks.

Our contributions. In §3, we solve the open problem of designing an unbiased linear-
time shuffling algorithm resistant to timing attacks for the NTRU fixed-weight sampling
problem. It is a drop-in replacement for NTRU’s current sampling-by-sorting approach,
improving the running time from O(n log? n) for the best practical sorting networks
to O(n), without impacting security. We also discuss its application to other post-
quantum cryptosystems. In §4, we discuss implementation aspects. We show in §5 that
an implementation of our proposed approach is considerably faster for the fixed-weight
sampling step, by factors of up to 6.91 (591%) on ARMv8-A cores and 12.89 (1189%) on
the Cortex-M4. This translates into considerable improvements for the KEM encapsulation
operation (up to 50% on ARMvS8-A cores and 72% on the Cortex-M4) and smaller
improvements for key generation (up to 2.7% and 6.1% on the same respective platforms),
with little effect on code size, and small gains in memory usage, for embedded architectures.
We illustrate how to implement its main operations efficiently in the ARMv8-A and
ARMv7-M architectures, as well as generic operations suitable for any architecture, and
discuss possible implementations for Intel architectures. Our implementations are available
under an open source license in two different GitHub repositories: https://github.c
om/dgazzoni/NTRU-sampling for a reference version with ARMv8-A optimizations, and
https://github.com/dgazzoni/NTRU-sampling-pqm4 for a Cortex-M4 implementation.

2 Preliminaries

2.1 NTRU random sampling

NTRU is a post-quantum public-key cryptosystem whose security relies on the difficulty of
finding short vectors in high-dimensional lattices [Ajt96, MGO02]. It is based on a polynomial

https://github.com/dgazzoni/NTRU-sampling
https://github.com/dgazzoni/NTRU-sampling
https://github.com/dgazzoni/NTRU-sampling-pqm4

Décio Luiz Gazzoni Filho, Tomas S. R. Silva, Julio Lépez 3

ring over a finite field, and some of its parameters are random ternary polynomials!, i.e.,
with coefficients in {—1,0,4+1}. A subset of these are restricted to being fized-weight, i.e.
with a prescribed number of non-zero coefficients. Indeed, NTRU’s specification [CDH™20]
requires an even stronger property, defining 7 (d) as the set of ternary “polynomials that
have exactly d/2 coefficients equal to +1 and d/2 coefficients equal to —17.

The straightforward approach to sample from 7 (d) is to fix a representative of T (d)
(e.g., —1 for the first d/2 coefficients, +1 for the next d/2 coefficients, and 0 for the re-
maining ones), and randomly permute its coefficients using a shuffling algorithm. However,
known shuffling algorithms are not timing-attack resistant [Dan19]. The usual alternative,
mandated by the NTRU specification [CDH"20], is based on constant-time sorting. Briefly,
an array of key-value pairs is created, using uniformly random samples as keys, while values
are coefficients from the chosen fixed representative of 7(d). Sorting the random keys in-
duces a random permutation of the coefficients. This approach is illustrated in Algorithm 1.
While most classical sorting algorithms are variable-time, sorting networks [Bat68], [Knu98,
§5.3.4] are constant-time and shown to be efficient in practice [BCS13, BCLv17].

Algorithm 1 SAMPLEFIXEDTYPE: fixed-weight sampling by sorting [CDH'20, §1.10.5]
Input: (bg,b1,...,b—1) (random bit string of length [= 30(n — 1))
Output: v (an (n — 1)-coeflicient polynomial in 7 (g/16 — 1))
Notes: We denote by INT(zo, ..., zr—1) the unsigned integer with z; (0 <j <k —1) at
the j-th bit of its binary representation.
a+[0,0,...,0] > Array of n — 1 zeros
v <40 > The zero polynomial
140
for i =0 to ¢/16 — 2 do
afi] < 1 +4 - INT(b30i, - - -, b30i+29)
for i = ¢/16 — 1 to ¢/8 — 3 do
afi] < 2 +4 - INT(b30i, - - - , b30i+29)
fori=¢q/8—2ton—2do
afi] < 0+ 4 - INT(b30i, - - - , b30i+29)
Sort a in constant time
:fori=0ton—2do
v < v+ (afi] mod 4)x?

_ = e
M 22

: return v

—_
w

2.2 Shuffling algorithms

Fisher—Yates. The Fisher—Yates shuffle algorithm, also known as Knuth’s shuffle [FY38,
Dur64, Knu97], is a classical technique for randomly and unbiasedly permuting elements
in a collection. It is displayed in Algorithm 2.

Algorithm 2 FISHER—YATES(a, n)
Input: An array a of n elements
Output: A random permutation of a

1: for : =n — 1 downto 1 do

2 G {0,1,...,40)

3: Exchange a[j] and a[i]

4: return a

1Given that these are ternary polynomials, the coefficient 2 may be used interchangeably with —1.

4 Efficient isochronous fixed-weight sampling with applications to NTRU

Fisher—Yates has favorable performance characteristics: O(n) running time with small
constants. However, array accesses indexed by secret data are susceptible to timing attacks,
due to variabilities induced by the presence or absence of data in CPU caches. This was
observed in [Koc96], and demonstrated in practice in [TTMMO02, TSS*03, Ber04] and
many other works. This principle can be applied to Algorithm 2 to recover the indices j in
the accesses to a[j] in line 3, allowing an attacker to reconstruct the permutation.

Rao—Sandelius. A relevant shuffling algorithm is Rao—Sandelius, independently pro-
posed in the 1960s by [Rao61] and [San62]. It relies on a divide-and-conquer strategy.

Algorithm 3 RS(a,n): Rao—Sandelius shuffle

Input: An array a of n elements
Output: A random permutation of a

1: if n <1 then

2 return a

3: if n = 2 then

4: if rand-bit = 1 then

5: return [a[l],a[0]]

6 else

7 return [a[0],a[l]]

8: Let Ag and A; be two empty arrays
9: for i =0 ton do

10: Add a[l] into Arand—bit
11: return RS(Ay, |Ao|) || RS(A1, |A4])

The case n = 2 can be made constant-time using standard techniques. Line 10 directs
each element a[i] to a different array depending on a random bit; by evicting both arrays
from the cache for later probing, an attacker can find which array was written to. This
can be countered by writing to both arrays regardless of the random bit drawn, but only
incrementing the correct pointer. However, the random choice of array for assignment
may lead to uneven growth of the arrays. We are unaware of any concrete analyses in the
literature, but conjecture that this leaks enough data to mount a cache timing attack.

MergeShuffle. Finally, MERGESHUFFLE, introduced in [BBHL18], “is an (easy to
implement) extremely efficient algorithm to generate random permutations (or to randomly
permute an existing array)”. As with the Rao-Sandelius algorithm, MERGESHUFFLE uses
a divide-and-conquer strategy and is amenable to a parallel implementation.

Let k be a cut-off threshold to switch to Fisher—Yates. MERGESHUFFLE splits an input
array (ag,a1,...,a,_1) into 2% blocks to be shuffled using Fisher-Yates (Algorithm 2),
and then merges the resulting permutations as presented in Algorithm 4. The merging
procedure is similar in spirit to that of e.g. mergesort, but it is performed in-place and
uses a random bit to choose whether to swap elements from the two input arrays.

The use of Fisher—Yates as a subroutine of MERGESHUFFLE renders it equally suscepti-
ble to cache timing attacks. It is also unclear whether the merging step can be vectorized,
to attain competitive performance, and implemented in constant-time.

3 Fixed-weight sampling by constant-time shuffling

As just discussed, while shuffling is the natural solution to the fixed-weight sampling
problem in NTRU, we are unaware of any shuffling algorithm resistant to side-channel
attacks. In this section, we propose a linear-time, unbiased and timing attack-resistant

Décio Luiz Gazzoni Filho, Tomas S. R. Silva, Julio Lépez 5

Algorithm 4 MERGESHUFFLE(a, k)

Input: An array a of n elements
Output: A random permutation of a
1: Divide a into 2* blocks of roughly the same size
2: Shuffle each block independently using Fisher—Yates
3:p+k
4: repeat
5: Merge adjacent blocks of size 2P into new blocks of size 2P+! > See text
6 p—p+1
7: until a consists of a single block
8: return a

shuffling algorithm suitable for NTRU fixed-weight sampling. Throughout this section, n
is defined as in the NTRU specification and assumes values of either 509, 677 or 821.

We first describe a subroutine (Algorithm 5) to generate an array of random integers si
such that si[i] ~ U(0,n—1—14) for 0 < i < n—1. It is a slightly modified version of [Lem19,
Algorithm 5]. While other approaches exist to achieve the same result, some of which
are discussed in the same paper, this method achieves the best performance among all
methods we experimented with, while restricting costly (and, in all CPUs we are familiar
with, variable-time) divisions by non-power-of-two integers to a pre-computation step.

Algorithm 5 REJSAMPLINGMOD(n): Generation of an array of unbiased uniformly
random integers modulo n — 1,n —2,...,2

Input: n

Output: si (output array of n — 1 integers, s.t. sifi] ~U(0,n — 1 — 7))
1: fori=0ton—2do > Precomputation
2 t[i] = 2L mod (n — 1 — 1)
3: fori=0ton—2do
4 repeat
5: z & {0,1,...,2F -1} > Sample a uniformly random integer of L bits
6: s+—n—1—1
7 m< -8
8 [< m mod 2% > Reduce using a bitmask
9: until [> t[]

10: sifi] « |m/2L] > Divide using right-shift by L bits

11: return si

Lemma 1 (Correctness and unbiasedness of Algorithm 5 [Lem19]). Let L € N* = N\ {0}.
Then, Vs € [0,2F) and Yy € [0, s), with s,y integers, there are | 2L /s] values of = € [0,2%)
such that [(x-s)/2F| =y and | = (z - s) mod 2% > 2% mod s.

Proof. Take s € [0,2F) and z € [0,2F). Write y-2% +1 = x-s. Thus, 2 s lies in the interval
[y-2F (y+1)-2F) of length 2L, As we also require that [= (- s) mod 2% > 2% mod s, the
interval is narrowed down to [y - 2F + (2% mod s), (y + 1) - 2L), of length 2% — (2L mod s),
which is a multiple of s. There are (2L — (2L mod s))/s = |2L'/s] representatives of each
residue class modulo s in this interval, and in particular multiples of s of the form xz-s. [

Lemma 1 implies that rejecting values such that x - s mod 2% < 2F mod s ensures that
|z - s/2L] is unbiasedly sampled from [0, s). We discuss issues of timing attack resistance,
as well as the choice of the performance-critical parameter L in §4. Algorithm 6 is our
proposed shuffling approach for ternary fixed-weight sampling.

6 Efficient isochronous fixed-weight sampling with applications to NTRU

Algorithm 6 SHUFFLE(n, ¢g, ¢1): Ternary fixed-weight sampling by shuffling

Input: n
Input: ¢g,c; (prescribed number of coefficients equal to 0, resp. 1)
Output: v (output array of n — 1 integers)

1: si + REJSAMPLINGMOD(n)

2: fori=0ton—2do

3: if si[i] < ¢p then > See text for discussion of constant-time implementation
4: V[’L] —0

5: co—co—1

6: else if sifi] < ¢y + ¢; then

7 v[i] + 1

8: cp+c—1

9: else

10: vi[i] + -1

11: return v

Firstly, we note that, while NTRU prescribes an identical count of 1 and —1 elements
in the sampled vector, Algorithm 6 imposes no such restriction: the user is free to choose
the parameters ¢g and ¢; (and implicitly, c_; from n — 1 =co+ ¢ + c_1).

Evidently, the main loop of Algorithm 6, as presented, does not execute in constant
time due to the use of branches. However, architecture-agnostic standard techniques, as
well as architecture-specific conditional instructions, can be used to obtain a branchless,
constant-time implementation; see §4. Moreover, all accesses to the arrays si and v are
performed sequentially. We exploit the fact that O(1) distinct values need to be shuffled
(indeed, only 3: —1,0,1), a situation not considered in the usual shuffling algorithms.
Intuitively, one could draw an analogy between Fisher—Yates shuffling and selection sort,
and by replacing the latter with counting sort, arrive at our proposed algorithm.

Lemma 2 (Correctness and unbiasedness of Algorithm 6). Let n be an integer and
¢i fori € {—1,0,1} be the number of coefficients equal to i in the output polynomial,
so that c_1 +co+c¢1 =n—1, and write ¥ = (3q,...,3,-1) = {=1}1||{0}]||{1},
i.e. a concatenation of c_1, ¢y and ¢, repetitions of —1, 0 and 1, respectively. Then,
Algorithm 6 produces an array v = o(X), where o € Perm(X;c_1,co,¢1) is a uniformly
drawn permutation of 2.

Proof. Tt is easily seen that Algorithm 6 outputs v = (0(%1),...,0(Z,-1)) for some
o € Perm(3;c_1,¢p,c1). To show unbiasedness, we proceed by directly computing P(v =
(0(%1),...,0(Xn-1))) for an arbitrary o. Define ¢; for i € {—1,0,1} as the count of
elements equal to ¢ yet to be output by the algorithm at the start of the k-th iteration;
thus, ¢;1 = ¢;. Since si[k — 1] ~U(0,n — k) for 1 < k < n — 1, the probability that vy = 1,
given all previously drawn values, is ¢; ,/(n — k). We have:

P(v=(0(21),...,0(5n-1))) = P(vr = 0(21), ..., 0n-1 = 0(Sn_1))

n—1
= P(vy = o(21) [[Pk = o(Z) |1 = 0(51), ..., vp-1 = 0(Zk-1))
k=2
_ Co(m),1 Co(82)2 Co(25)3 Co(Sn-1)n-1
n—1 n—2 n-—3 1 '
The numerators in the last equation are in bijection with the values c_1, (c_1 —
1),...,1,¢co,(co—1),...,1,¢1,(c1 — 1),...,1, permuted in a specific order. It follows from

the commutativity of multiplication that:

C_1!CO!61! 1

Plo={o(Z1),...,0(En-1))) = (n—1)! - |Perm (X5 ¢_1,co,c1)|

Décio Luiz Gazzoni Filho, Tomas S. R. Silva, Julio Lépez 7

Then Algorithm 6 covers all possible permutations o € Perm(X; ¢_1, cp, ¢1) with uniform
probability. O

Lemma 3. Algorithm 6 executes in time O(n) on average, assuming 2* > 2n.

Proof. The loop of line 2 clearly executes in time O(n). Thus, the remaining work consists
in analyzing Algorithm 5. The outer loop (line 3) consists of n — 1 iterations. Noticing that
t[i] < n,Vi, the condition in line 9 will be satisfied with probability 1 — 5z > 1/2. Thus,
the expected number of iterations in the inner loop (line 4) is less than 2, so Algorithm 5
also executes in time O(n) on average. O

We remark that the O(n) running time of Algorithm 6 improves upon the O(nlog®n)
running time of sorting networks typically used for constant-time sorting implementa-
tions [BCS13, BCLv17], such as Batcher’s odd-even merge sort [Bat68, Knu9s].

The algorithm necessarily consumes at least n — 1 random L-bit integers and may, in
principle, consume an infinite number of them due to rejections; however, in §4, we show
that, for L = 16, generating just 4% to 5.5% extra random integers is sufficient in practice.

Application to other PQC cryptosystems. While we have directed our efforts to a
single scheme (NTRU) to showcase the potential of our approach through highly optimized
code, many other PQC schemes also rely on fixed-weight sampling. We briefly mention
some relevant schemes, commenting on the applicability of our techniques to them; note
that this is not an exhaustive list of potential applications.

For lattice-based schemes, we are only aware of applications of fixed-weight sampling to
NTRU variants, such as NTRU LPRime and Streamlined NTRU Prime [BCLv17, BBC*20],
also submitted to the NIST PQC contest. As in NTRU, these variants sample vectors in
{-1,0,1} with a fixed weight, i.e. count of non-zero elements; however, we recall that,
in NTRU, the count of elements equal to 1 and —1 in a sampled vector is identical, a
constraint which is lifted in these variants?. For concreteness, we consider the parameter
sets sntrup761 and ntrulpr761; in the notation of Algorithm 6, we have n = 761 and
co = 761 — 286 = 475 for sntrup761 and ¢y = 761 — 250 = 511 for ntrulpr761. Whereas
NTRU fixes ¢; = (n — ¢)/2, in these variants ¢; is freely chosen, although there are
attacks for the case that ¢; that is too small [BCLv19, §6]. Consider the process of uniform
sampling of ternary vectors of size 761 with ¢y elements equal to zero. Then, c¢; follows
a binomial distribution with n — ¢g trials and identical success/failure probabilities of
0.5 (mapping wlog “success” and “failure” to sampling 1 and —1, respectively). We can
efficiently sample from this distribution by a simple procedure: sample an array of n — ¢
random bits and set ¢; to the population count of this random bit array®. We believe that
this extra step does not add too much cost, and that these NTRU variants should still
benefit considerably from our approach; we encourage others to investigate this possibility.

Another class of PQC schemes that require fixed-weight sampling are code-based
cryptosystems, such as Classic McEliece [ABC'22], BIKE [ABB*22] and HQC [AAB*22],
all of which are contenders in the fourth round of NIST’s PQC contest. They require
binary, rather than ternary, fixed-weight vectors; Algorithm 6 is easily modified to handle
this case. Nevertheless, our approach is unlikely to benefit these schemes, due to their use
of low weight (sparse) vectors: typically w = O(y/n). These schemes perform fixed-weight
sampling using distinct approaches: [Sen21, Algorithm 5] for BIKE and HQC, and rejection
sampling of indices of non-zero elements (rejecting in the case of index collisions) for
McEliece. In both cases, the running time, memory usage and randomness consumption

2We note that Algorithm 6, as previously discussed, is not restricted to identical counts of 1 and —1
elements either.

3Intel and ARMvS8-A architectures provide population count instructions; for architectures lacking such
instructions, such as the Cortex-M4, there are efficient algorithms for its computation using universally
available arithmetic, logic and shift instructions [War12].

8 Efficient isochronous fixed-weight sampling with applications to NTRU

are a function of the weight w rather than the vector length n, whereas these parameters
are a function of n in Algorithm 6. D. J. Bernstein, in private communication with
the authors, indicates that he has devised a new algorithm with favorable performance
characteristics for the sparse setting?.

WAVE [BCC"23] is a code-based signature scheme submitted to NIST’s additional
digital signatures contest, which calls for random permutations of fixed-weight ternary
vectors. Despite similarities to the fixed-weight sampling problem treated in this paper, an
important distinction is a requirement for computing the explicit permutation mapping the
input vector to the randomly permuted output vector. We have superficially investigated
a modified version of Algorithm 6 to fit this scenario, by keeping track of the indices of
each element during the shuffling process, but this version departs significantly from the
efficiency and constant-time characteristics of Algorithm 6. Lacking further progress, it
appears that sorting remains better suited to this scenario for now.

4 Implementation aspects

Architectural guarantees regarding constant-time execution. Both ARMv8-A
and Intel architectures have recently introduced hardware flags that, when set, guarantee
constant-time execution of a subset of CPU instructions, which should generally be sufficient
to implement most cryptographic algorithms: FEAT DIT for ARMvS8-A [ARM23, §A2.6.1,
B1.3.6, C5.2.4] and DOIT for Intel [Int23a, Int23b]. We verified that all instructions
handling secret data in our ARMv8-A implementations are included in the affected subset.

These new features do not imply that CPUs launched prior to the introduction of these
flags execute these instructions in variable time. Indeed, ARM claims to be unaware of
older CPUs with variable timing for instructions now covered by FEAT_DIT [ARM]?;
and Intel advises developers to assume older microarchitectures behave as if DOIT is
enabled [Int23a].

This issue has garnered attention at the beginning of 2024, as Apple ARMvS8-A cores
(which are designed by Apple and not ARM) are subject to a microarchitectural attack
called GoFetch [CWS™24]; setting the FEAT _DIT bit on the M3 disables the data memory-
dependent prefetchers targeted by the attack, rendering it ineffective, while for the M1
there appears to be no countermeasure at the hardware level.

Resistance against timing attacks of Algorithm 5. There are some possible sources
of timing leaks in Algorithm 5, which we enumerate and analyze.

The integer multiplication in line 7 must execute in constant-time, which is the norm
in modern CPUs®, although there are rare exceptions such as the ARM Cortex-M3 for
32 x 32 = 64-bit multiplications; however, 32 x 32 = 32-bit multiplication suffices for the
purpose of this algorithm, and there is evidence that it executes in constant time in the
Cortex-M3 [dG15, Porl18].

Array accesses in line 9 use sequential indices; thus, secret data is not leaked. The loop
in lines 4 to 9 performs rejection sampling based on public data, precomputed in line 2:
the remainder of 2% divided by integers in the sequence n — 1,n —2,...,1, where L and n
are public parameters. Nevertheless, given the attack of Guo et al. [GHJT22] targeting
rejection sampling in fixed-weight sampling algorithms for BIKE and HQC code-based
cryptosystems, it is worth analyzing whether a similar attack could apply here. We note
that their attack relies on two key assumptions:

4Prototype source code available at https://cr.yp.to/2024/gcww-20240512.py and https://cr.yp.
to/2024/insertionseries-20240515.py.

5However, [GS23] measured an increase in execution time for integer multiplication when both operands
are > 232 in the ARM Cortex-A53, as found in the Raspberry Pi 3B single-board computer.

6Note that multiplication instructions are covered by ARMv8-A’s FEAT DIT and Intel’s DOIT flags.

https://cr.yp.to/2024/gcww-20240512.py
https://cr.yp.to/2024/insertionseries-20240515.py
https://cr.yp.to/2024/insertionseries-20240515.py

Décio Luiz Gazzoni Filho, Tomas S. R. Silva, Julio Lépez 9

1. A high rejection rate, leading to multiple calls to the seedexpander routine (equiva-
lently in our case, the randombytes routine) which creates a timing distinguisher.
As discussed next, the rejection rate for our chosen parameter L = 16 is sufficiently
small that e.g. a full run of Algorithm 5 in the case n = 509 has > 40% probability
of no rejections at all. Due to this low rejection rate, and using a batch random
number generation idea discussed later, we sample enough uniform random integers
from the outset so that the probability that extra samples are required is deemed
negligible (< 277, which can be further reduced at little extra cost). This allows
calling randombytes only once, generating a fixed number of random integers, while
introducing a negligible overhead.

2. Derivation of the random seed for fixed-weight sampling from secret data — namely, the
output of decryption from the reencryption step of decapsulation, as required by the
Fujisaki-Okamoto transform for IND-CCA security of the KEM. The attack starts by
trial encrypting many candidate messages until finding an m that requires multiple
calls to seedexpander, which gives rise to a timing distinguisher (a possibility
ruled out by the first point above). Carefully constructed perturbations of the
resulting ciphertext ¢ are fed to the decapsulation procedure, while using the timing
distinguisher to determine whether the decryption step of reencryption outputs the
same m or a different message, allowing the attacker to learn information about the
secret key. Repeated application of this procedure extracts the vast majority of key
material, and the remaining bits are easily found. However, we note that NTRU
does not require reencryption due to the rigidity of the NTRU DPKE [CDH™20,
Figures 9 and 10]; indeed, the fixed-weight sampling algorithm is not executed at all
during either decapsulation or decryption.

Thus, we conclude that Algorithm 5 does not render NTRU vulnerable to the attack
of Guo et al [GHJT22].

Choosing the parameter L. The choice of L in Algorithm 5 is a tradeoff between
the cost of random number generation and the frequency of rejections; the latter lead to
branch mispredictions and costly pipeline flushes in modern, highly-pipelined superscalar
CPUs such as some of the ARMvS8-A cores considered in this work. If samples are rarely
rejected, a SIMD implementation of the algorithm becomes feasible; one can keep track of
which lanes were rejected and resample them later (usually with scalar code). To minimize
rejection, one must choose L such that 2 > n — i, but this translates into added cost for
random number generation, and thus L should not be unreasonably larger than n — i.

We propose L = 16 as a natural choice, supported by all scalar and SIMD instruction
sets we are aware of. The next smaller size, 8 bits, is insufficient for half or more of the
values to be sampled in the standard NTRU parameter sets, and for most of the intervals
where it is sufficient, it would lead to a high rejection rate, running counter to the SIMD
philosophy. By exactly matching an available lane size, no bit shifts/masks/permutations
are required to load random integers into SIMD registers, further improving performance. It
is also the natural choice for storing the 11- or 12-bit NTRU polynomial coefficients; indeed,
it is the representation used by the reference code and the state-of-the-art implementations
we chose for performance comparisons, requiring no size conversions.

Finally and most importantly, rejections are relatively rare: a block of 16 samples
is fully accepted (zero rejections) with probability at least 94.2%, 91.6% and 90.1% for
n = 509, 677 and 821, respectively. These are minimum figures, and as n — ¢ decreases, the
acceptance probability increases even further. Furthermore, the probability of accepting
all n — 1 samples (i.e., no rejections at all during a complete execution of the algorithm) is
40.2%, 18.9% and 8.6% for n = 509, 677 and 821 respectively. These figures are obtained
by modeling the number of required samples as a sum of geometric random variables and
are displayed in a Jupyter notebook accompanying the source code of our implementation.

10 Efficient isochronous fixed-weight sampling with applications to NTRU

Due to the low rejection probability, it is sufficient to generate just a few extra random
integers over the lower bound of n. For each n, we computed the cumulative distribution
function P(z < k) and sought the minimum k such that 1 — P(x < k) < 27 enough to
sample 210 > n integers for each of 24 key exchanges. For L = 16, and rounding up to the
next multiple of 8 (the number of 16-bit lanes in a NEON register), we find that 536, 704
and 856 random 16-bit integers are sufficient (i.e., an overhead of 5.5%, 4.1% and 4.4%)
for n = 509, 677 and 821, respectively. This calculation is included in the aforementioned
Jupyter notebook, which can be adapted to other choices of L if desired.

One might argue that L = 16 is a “wasteful” choice, as it requires 123%, 109% and
103% more bits than the (unattainable) lower bound of log,(n!) bits for n = 509, 677 and
821, respectively. Still, we note this is slightly more than half as many random bits as the
approach dictated by the NTRU specification [CDH™20], which calls for 30 x n bits.

Taking L > 16 appears counterproductive, e.g. due to reduced computational through-
put from using larger SIMD lanes. On the other hand, in scenarios where pseudo-random
number generation is expensive, SIMD is not available and pipeline flushes have less
performance impact (i.e. deeply embedded cores such as the Cortex-M4), choosing L < 16
(say, 12 or 10) may result in better overall performance. One might even conceive of an
adaptive choice, decreasing L along with n — 4, although this results in more complex code.

D. J. Bernstein, in private communication with the authors, pointed us to an unpub-
lished paper of his [Ber18] which quantifies the security loss due to foregoing rejection
sampling in Algorithm 5, with obvious performance benefits due to the avoidance of
branches. For the choice L = 16, it leads to 1.52, 2.61 and 3.84 bits of security loss,
respectively, for n = 509, 677 and 821. Alternatively, a larger value of L can be chosen
to reduce the security loss, but then the performance gains due to branchless code must
be weighted against extra randomness consumption and reduced arithmetic throughput.
We have experimented with L = 20, which reduce security by 0.09, 0.16 and 0.24 bits,
respectively, for n = 509, 677 and 821. Benchmarks show a speedup of 9.7% to 11.5% in
the performance of fixed-weight sampling on the Cortex-M4; however, due to the increased
randomness consumption, encapsulation performance actually decreased by 0.6% to 0.7%.
Preliminary experiments on a NEON version with L = 22 resulted in a small slowdown,
but we cannot rule out a crossover to a small improvement through careful optimization.

Batch random number generation in Algorithm 5. For ease of understanding,
we displayed uniform random numbers as being sampled online in line 5 of Algorithm 5.
However, this leads to high overheads in actual implementations. Instead, we sample the
required count of uniform random numbers (see previous discussion about the choice of L)
into an array ahead of time, and consume the randomness directly from this array.

SIMD implementation of Algorithm 5. To minimize the execution time of Algo-
rithm 6, we seek to implement Algorithm 5 using SIMD instructions. At first glance, it
is unsuitable for SIMD, as some lanes may be rejected while others are accepted during
sampling. However, it is possible to sample a whole SIMD register and take note of which
lanes, if any, were rejected, to be fixed up later using scalar code (recall that an adequate
choice of L ensures that rejections occur with low probability, so the performance impact
of this fixup procedure is limited.) However, when the batch random number generation
idea is used, rejections induce an irregular access pattern to the array of random numbers.
We avoid this issue by using disjoint ranges of the array for SIMD sampling (indices 0 to
n — 2) and the fixup procedure (n — 1 onwards). These ideas are captured in Algorithm 7.

In addition to previously discussed issues of timing attack resistance of Algorithm 5,
we note that any non-sequential accesses to the array rnd arise from switching between
the ranges of indices 0 < i+ k <n —1and j > n — 1, that is, they are due to rejections
and thus do not leak secret data; accesses within each range are sequential.

Décio Luiz Gazzoni Filho, Tomas S. R. Silva, Julio Lépez 11

Algorithm 7 SIMD-REJSAMPLINGMOD(n,rnd): SIMD version of Algorithm 5.

Input: n

Input: rnd (array of random L-bit integers; refer to previous discussion about its length)

Output: si (output array of (W +1)|(n—1)/W | integer elements, of which only the first
n — 1 entries are valid.)

1: fori=0ton—2do > Precomputation
2: t[i] = 2¥ mod (n — 1 —1)

3 j+—n—-1

4: for i = 0,W,2W,... , W|(n—1)/W| do

5: mask < 0

6: for k=0to W —1do > Loop body implemented using SIMD code
7: mlk] <~ rnd[i + k] x (n—1—(i+k))

8: 1[k] + m[k] mod 2

9: sifi + k] « |m/2F]
10: if 1[k] < t[i + k] then
11: masky < 1 > masky, denotes the k-th bit of mask
12: else

13: masky, < 0

14: while mask # 0 do > Loop body implemented using scalar code
15: k = COUNTTRAILINGZEROS(mask)

16: repeat

17: m' < rnd[j] x (n—1—(i+k))

18: j—i+1

19: ' < m mod 2F
20: until I’ > t[i + k]
21: si[i + k] « |m//2L]
22: masky, < 0

23: return si

Line 10 should use SIMD comparison instructions (e.g. NEON’s CMHI or AVX2’s
VPCMPGT). These create a mask with all bits set or clear in the corresponding lane, while
Algorithm 7 as written calls for setting and clearing individual bits, a choice made purely
for ease of exposition. Actual implementations are advised to tweak the representation to
employ groups of bits instead, so as to achieve an efficient implementation of the inner
loop of line 6. For instance, VPMOVMSKB is a natural choice in AVX2, resulting in 2-bit
mask groups for 16-bit lanes. In NEON, we extract 8-bit masks with UZP1, and reduce
them to 4-bit masks using SHRN by 4. NEON’s 128-bit registers suggest a choice of W =8
if L = 16. However, we achieved better performance by taking W = 16, implemented as
an unrolled 2-iteration loop processing 8-element vectors. We attribute this to the fact
that converting a mask with UZP1 and SHRN costs the same for 8 or 16 values.

Constant-time implementation of Algorithm 6. We now discuss how to implement
Algorithm 6 in constant-time. First, we rewrite it using the C language’s ternary operator,
as shown in Algorithm 8, and then discuss strategies to implement this operator in constant
time, firstly as an architecture-agnostic solution, and then consider conditional instructions
present in the ARMv8-A, ARMv7-M and Intel architectures. Note that this version
replaces —1 coefficients by 2; this is not an issue as the sampled polynomial has coefficients
in Z/3Z, and indeed, the reference NTRU code employs the same representation.
Expressions of the form (x <y) ?—1:0, in lines 4 and 5 of Algorithm 8, can be made
constant-time by noticing that, in two’s complement integer arithmetic (used in nearly all
modern architectures), —1 and 0 have all bits set and cleared, respectively. The sign (most

12 Efficient isochronous fixed-weight sampling with applications to NTRU

Algorithm 8 CT-SHUFFLE(n, g, c1,rnd): Fixed-weight sampling by shuffling, imple-
mented in constant-time
Input: n
Input: ¢y, c; (prescribed number of coefficients equal to 0, resp. 1)
Input: rnd (array of random L-bit integers; refer to previous discussion about its length)
Output: v (output array of n — 1 integers)
Notes: We employ the C language ternary operator 7 to denote constant-time selection
between two values based on a condition. See text for implementation possibilities.
1: si «+ SIMD-REJSAMPLINGMOD(n, rnd)
2: co1 < Co + 1 > Note this invariant is maintained in the loop body
3: fori=0ton—2do
4: to + (sifi] <) 7—1:0
5 t1 <« (sifi] <cp1) 7—1:0
6: co — co + 1o
7 co1 < co1 + 1
8
9

v[i] & 2+to+ 1

: return v

significant) bit of z — y is 1 if x < y and 0 otherwise; an arithmetic right shift by w — 1
bits, where w is the word size, replicates the sign bit across the entire word. Concretely,
the following C code implements line 4 for 16-bit signed integer variables:

= (si[i] - c0) >> 15;

While already efficient, better performance is achievable. To that end, we analyze the
critical path of the main loop of Algorithm 8, shown in Figure 1. We disregard memory
loads and stores, which can be removed from the critical path by proper scheduling. For any
mobile-, desktop- or server-class modern CPU, one can assume at least a 2-way superscalar
pipeline and single-cycle latency for all used operations, in which case the critical path of
lines 4 and 5 from one iteration to the next (the bold arrows in the figure) takes 3 cycles.

Iteration ¢ Tteration 7 + 1

?.—»
=2+ >l =i+t

Figure 1: Critical path of the main loop of Algorithm 8.

In ARMvS8-A, arithmetic instructions can be encoded so that one of the input operands
is shifted; thus, a single instruction can compute both tg = tg > (w — 1) and ¢y = ¢p + to.
Unfortunately, ARMv8-A CPUs considered in this work, such as the Apple M1 [Joh22]
and Cortex-A72 [ARM15], execute these instructions with a 2-cycle latency, offering no
gain in performance (but a slight reduction in code size).

By employing ARMv8-A conditional instructions such as CINC and CSET, it is possible
to reduce the critical path to 2 cycles. However, Algorithm 8 calls for decrementing cg
and cp1, and there is no CDEC instruction in ARMv8-A; we modify the algorithm to use

Décio Luiz Gazzoni Filho, Tomas S. R. Silva, Julio Lépez 13

negative values for ¢g, ¢p1 and si[é], so that we can increment ¢ and cp; using CINC instead.
Thus, we arrive at the code of Listing 4.1 for the algorithm’s main loop.

cmp c0, sil[i]
cinc cO0, cO, 1t
cset v[il, ge
cmp c01, sili]
cinc cO01, cO01, 1t
cinc v[i]l, vI[il, ge

Listing 4.1: Main loop of Algorithm 8 in the ARMv8-A architecture.

There are two critical paths: one from cmp c0, r to cinc c0, c0, 1t to the next
iteration’s cmp cO0, r; and the second for the same instructions involving c01. In all
the considered ARM CPUs, all instructions in the code fragment above have single-cycle
latency, and thus the loop has the potential to execute in 2 cycles/iteration.

Unfortunately, we run into throughput issues: in the Apple M1, reverse engineering
efforts [Joh22] indicate that, although it is capable of executing 6 scalar instructions/cycle,
only 3 execution units can execute flag-setting and conditional instructions, i.e. all
instructions in the above code fragment. While theoretically sufficient to run the code at
maximum throughput, we have observed instruction scheduling issues while attempting to
software-pipeline Algorithms 7 and 8, preventing execution at maximum throughput. The
instruction sequence of Listing 4.2 requires more pops, but performs better in the M1.

subs tmp, c0, silil
cinc cO0, cO0, 1t
add v[i], two, tmp, asr #31
subs tmp, c01, silil
cinc c01, cO01, 1t
add v[i], v[i], tmp, asr #31

Listing 4.2: Main loop of Algorithm 8 optimized for the Apple M1.

We use 32-bit registers (w0, wi, etc.) and initialize two with the constant 2. It is also
advantageous for the Cortex-A72, since the add instruction with shifted argument executes
in the M pipeline, whereas all other instructions execute in the I0/I1 pipelines. While
other bottlenecks come into play in the Cortex-A72, notably its 3-wide instruction decoder,
this alternative instruction sequence performs better than the original.

Intel has conditional instructions for conditional moves (CMOVcc) and sets (SETcc),
where cc are condition codes, but no conditional increments or decrements. For positive
values of ¢y and cp1, as in the original version of Algorithm 8, an alternative is to decrement
c0 and c01 and use CMOV to select between original and decremented values; decrements
can execute in parallel with comparisons, thus the critical path is not lengthened.

Unfortunately, Intel instructions do not offer the three-operand form of ARMv8-A
and other RISC architectures, so an extra MOV is required to create a copy prior to
decrementing in order to avoid overwriting the original values; this doesn’t necessarily
increase the critical path, due to MOV elimination [Fog22], but it does increase front-end
pressure. Implementers are advised to keep in mind the achievable performance given the
critical path, to benchmark and analyze compiler-generated code if employing a high-level
language, and to consider inline assembly (or a full assembly language implementation) to
emit instructions that are well-matched to the decoder restrictions.

For the ARMv7-M architecture, a straightforward implementation of Algorithm 8,
implementing lines 4 and 5 using the arithmetic right shift trick, works really well; this
is aided by the ability to shift one of the input operands to data processing (logical and

14 Efficient isochronous fixed-weight sampling with applications to NTRU

arithmetic) instructions. We have experimented with ARMv7-M’s conditional execution
(IT) instruction, but we were unable to improve performance compared to the straightfor-
ward implementation. However, we did find an especially compact instruction sequence
devoid of IT instructions to implement the main loop of Algorithm 8, shown in Listing 4.3.

cmp si[i], «cO
sbc cO, #0
sbc v[i], one
cmp si[i], cO01
sbc cO01, #0
sbc v[i], #-1

Listing 4.3: Main loop of Algorithm 8 optimized for the Cortex-M4.

We set one to the constant 1. As the straightforward implementation is already efficient,
this alternative saves one clock cycle per loop iteration, i.e. < 1000 cycles for the full
algorithm. As fixed-weight sampling is performed only once during key generation and
encapsulation, the speedup is just < 0.02% for the former and ~ 0.15% for the latter.

Software pipelining of Algorithms 7 and 8. Modern superscalar CPUs use distinct
execution units for scalar and SIMD instructions. Most of the execution time of Algorithm
7 is spent in SIMD code, while Algorithm 8 is strictly scalar. This is amenable to software
pipelining [Lam88]. In the best-case scenario, one can achieve execution time close to the
maximum, rather than the sum, of the execution times of Algorithms 7 and 8.

Concretely, we inline Algorithm 7 into Algorithm 8, strip-mine the main loop of the
latter, and then fuse the outer loops of both algorithms, processing W entries at a time.
With this approach, we were able to achieve, in the Apple M1, execution times only
~ 12% slower than the lower bound (2 cycles/iteration) for the main loop of Algorithm 8
alone. This includes all overhead such as function calls and returns, prologue and epilogue,
initialization, and of course, the execution of Algorithm 7 itself, as seen in Table 4. The
narrow (3-wide) decoder of the Cortex-A72 precludes achieving a similar result as the M1,
but by interleaving instructions of both algorithms to improve scheduling, we achieved
results not far from the limit dictated by the decoder bandwidth bottleneck.

Known Answer Tests. We note that the Known Answer Tests (KATs) in NTRU’s
specification [CDH™20] are tightly coupled to the fixed-weight sampling by sorting approach
mandated there. Therefore, an implementation employing Algorithm 6 will fail these
KATs for key generation and encapsulation. However, our sampled polynomials meet the
fixed-weight requirement imposed by NTRU and are in principle indistinguishable from
those generated by the existing approach. Thus, keys generated using our algorithm are
valid, and the result of an encapsulation employing our algorithm will produce a correct
decapsulation even by an unmodified implementation of the current NTRU proposal.

Given the simplicity and improved performance and code size characteristics of Algo-
rithm 6, we suggest that future standardization attempts of NTRU specify our approach
instead of sampling by sorting, and generate KATs accordingly. Implementers attempting
to replicate our results, whether on ARMv8-A or other architectures, can use unofficial
KATs generated by us, included in our source code package.

5 Experimental results

We now present experimental results for implementations of our proposed approach for
various 64-bit ARMv8-A cores, as well as the 32-bit ARMv7-M Cortex-M4 core.

Décio Luiz Gazzoni Filho, Tomas S. R. Silva, Julio Lépez 15

5.1 Methodology

We implemented reference versions of Algorithms 5 and 6, and optimized versions for
ARMv7-M and ARMv8-A by replacing Algorithm 6 with Algorithm 8; for ARMv8-A
specifically, we replaced Algorithm 5 by a NEON version of Algorithm 7. We integrated the
reference and optimized implementations with existing state-of-the-art implementations
of NTRU: pgm4 [KRSS19]” for ARMv7-M and [GFBL24, NG21, CCHY24] for ARMv8-A.
KATs were generated using the reference implementation and compared against the opti-
mized implementations; we added tests to ensure interoperability between a conventional
implementation (using sampling by sorting) and our proposed approach.

Testbeds and measurement methods. Our testbeds for performance measurement,
with their corresponding CPU cores, are:

e Apple M1 P-core at 3200 MHz in an Apple MacBook Air laptop running macOS;
e Apple M3 P-core at 4064 MHz in an Apple MacBook Pro laptop running macOS;
e Cortex-A72 at 1500 MHz in a Raspberry Pi 4 single-board computer running Linux;

e Cortex-A57 at 1430 MHz in an Nvidia Jetson Nano single-board computer running
Linux;

e Cortex-A53 at 1400 MHz in a Raspberry Pi 3 single-board computer running Linux;

e Cortex-M4 at 24 MHz in an STM32F4DISCOVERY development board.

Save for the ARMv7-M Cortex-M4 core, the remaining testbeds are ARMvS8-A, running
in 64-bit mode. Of these, the Apple M1, M3 and Cortex-A57 cores feature ARMvS8-A
Cryptographic Extensions, but the Cortex-A72 and the Cortex-A53 do not.

Our ARMvS8-A performance measurements use the cycle counting routines originally
introduced in [NG21]. Each routine is executed for 1,024 times and the average cycle count
is reported. ARMv7-M measurements employ the pqmé4 [KRSS19] benchmarking harness,
which counts cycles using the Cortex-M4 SysTick timer. The number of iterations is set to
10, and the mean of results are reported; although this is a small number, the Cortex-M4
core is much simpler and more deterministic than the large out-of-order ARMv8-A cores,
thus exhibiting little run-to-run variability.

While, to a first approximation, cycle counts are not influenced by CPU clock speed,
there may be second-order effects such as the decoupling of CPU and bus/RAM/cache
clocks. Thus, we take precautions to maximize the likelihood that benchmarks are
performed at the nominal clock speeds quoted above. For Linux systems, we use the
performance scaling governor. In Apple systems, as far as we aware, there is no control
over clock speeds, and there is no TurboBoost-like feature. In both cases, we try to avoid
thermal throttling by inserting delays between benchmark runs to allow systems to cool
down. The Cortex-M4 core does not automatically boost/throttle clock speeds; pqm4
configures it to 24 MHz at startup, ensuring all benchmarks run at that fixed clock speed.

ARMv8-A binaries were compiled with Apple clang 15.0 (Apple M1 and M3), clang 17.0
(Cortex-A72 and Cortex-A53), and clang 10.0 (Cortex-A57), with -03 and core-specific
-mcpu optimization flags. ARMv7-M binaries were compiled with gce 13.2.1, passing the
-o speed flag to the pgm4 benchmark script. We enable the FEAT_DIT bit on ARMv8-A
cores where it is available (in the case of our testbeds, only the Apple M1 and M3).

7Although NTRU was removed from the most recent version of pqmé4, after Kyber was selected in the
NIST post-quantum standardization process, we used the most recent version prior to NTRU’s removal.

16 Efficient isochronous fixed-weight sampling with applications to NTRU

ARMYvVS8-A implementation. Our implementation is based on the source code provided
by [GFBL24|, which contains their AMX implementation and the NEON implementations
of [CCHY24, NG21]. As [CCHY24] is the state-of-the-art in NEON implementations,
but targets only the HPS2048677 and HRSS701 parameter sets, [NG21] is included to
display HPS2048509 and HPS4096821 results. Importantly, [GFBL24] backports opti-
mized auxiliary routines of [CCHY24] to [NG21] (in particular a NEON implementation of
constant-time sorting) and provides an optimized implementation of NIST’s randombytes ()
AES-CTR-DRBG pseudo-random number generator (PRNG), using ARMv8-A Crypto-
graphic Extensions. These routines are critical to the performance of fixed-weight sampling.

For CPUs that do not feature ARMv8-A Cryptographic Extensions, the ChaCha20
PRNG of [CCHY24] is used. As KATs are incompatible across different PRNGs, we supply
two KAT sets for validation, using ChaCha20 and AES-CTR-DRBG generators. We ensure
that latter matches those provided in the NTRU specification, which uses the same PRNG.

ARMv7-M implementation. pgm4 [KRSS19] is the gold standard for Cortex-M4
implementations of PQC schemes. While its NTRU implementation has highly optimized
polynomial multiplication and inversion routines, the constant-time sorting routine in use is
the portable3d variant of djbsort [Ber19], using an architecture-agnostic implementation of
the core minimum/maximum operation of the sorting network. Inspection of the binaries
reveals that the minimum/maximum idiom was not recognized by the compiler, thus
generating suboptimal code without using e.g. conditional instructions. We performed
some optimization work on this routine, so as to avoid casting our proposed approach in an
excessively favorable light. We switched to the more efficient portable4 variant of djbsort,
wrote inline assembly versions of the core minimum/maximum operation using conditional
operations and a reduced number of memory accesses, and replaced all long long (64-bit)
variables by 32-bit long variables to avoid unnecessary use of multi-precision arithmetic,
given that ARMv7-M is a 32-bit architecture. This range reduction does not present an
issue in NTRU due to the small lengths (hundreds of elements) of the arrays to be sorted.
While it is certainly possible to further optimize this routine, further experiments by us
resulted in code size increases, which are undesirable in deeply embedded environments.

Table 1 compares the performance, code size and stack memory usage of encapsulation
in the existing version of NTRU (using sampling by sorting), for the original pgmé4 imple-
mentation and our optimized version in our STM32F4DISCOVERY testbed; we denote
these as “[KRSS19] original” and “[KRSS19] optimized”, respectively, in Table 1. It is
seen that our optimizations result in large speedups (43-47%) with negligible effect on
code size and none at all on stack usage. While we omit corresponding figures for key
generation, our optimizations also outperformed the original implementation, although by
smaller amounts (5.4-6.0%); code size and stack usage differences are similar. Results for
decapsulation and for the HRSS701 parameter set are not shown, as they do not call the
constant-time sorting routine.

5.2 Performance figures and analysis

We present performance figures for NTRU KEM key generation and encapsulation in
Tables 2 (for Apple SoCs) and 3 (for ARM Cortex cores); decapsulation does not em-
ploy fixed-weight sampling, thus its performance is unaffected by our proposed approach.
We present NEON results from the implementations of [NG21] for the HPS2048509 and
HPS4096821 parameter sets, and [CCHY24] for the HPS2048677 and HRSS701 param-
eter sets. AMX results are from the implementation of [GFBL24]. We emphasize that
all ARMv8-A implementations use the NEON optimized constant-time sorting routine
of [CCHY24]. For the Cortex-M4 core, we use the implementation of [KRSS19], incor-
porating our optimizations for constant-time sorting. We present performance results as
cycle counts, calculating speedups as csorting / Cshuffling — 1.

Décio Luiz Gazzoni Filho, Tomas S. R. Silva, Julio Lépez 17

Table 1: Comparison of the original pqm4 [KRSS19] NTRU implementation and our
optimized version for encapsulation. Code size and stack usage are in bytes. For differences,
positive values denote an increase in the optimized version relative to the original one.

Parameter set Work Cycle count Code size Stack usage
[KRSS19] original 557976 191 760 14068
[KRSS19] optimized 390729 191824 14068
HPS2048509 Speedup 43%
Difference +0.03% 0%
[KRSS19] original 801993 281504 19980
HPS2048677 [KRSS19] optimized 552700 281568 19980
Speedup 45%
Difference +0.02% 0%
[KRSS19] original 998 761 370008 23420
HPS4096521 [KRSS19] optimized 681402 370076 23420
Speedup 47%
Difference +0.02% 0%

Results for the shuffling approach consist in replacing the sample_fixed_type routine
by our proposed algorithms, and adjusting the amount of uniform random bits to match
the requirements of the shuffling algorithms, as discussed in §4.

We also present performance figures for fixed-weight sampling, by measuring calls
to the sample_fixed_type routine, whose results are presented in Table 4. Finally, we
present code size (Flash) and stack (RAM) usage figures for the Cortex-M4 in Table 5.

Key generation and encapsulation. Our proposed approach achieved performance
improvements across the board, for both key generation and encapsulation, save for a few
outliers in the former. For Cortex-M4, these improvements come at a negligible cost to
code size (Flash), and even a slight improvement in stack (RAM) usage, as seen in Table 5.

With regards to key generation, we see improvements of up to 2.7% for ARMv8-A cores
and 6.1% for the Cortex-M4. We recall that NTRU key generation is computationally
expensive; disregarding simpler operations, it requires a modulo-¢ inversion (usually
realized by a modulo-2 inversion followed by 8 multiplications), a modulo-3 inversion, 5
extra multiplications, 2 different types of sampling (including sample_fixed_type) and
pseudo-random number generation. Therefore, it is not surprising that optimizing a single
sampling routine results in limited performance improvements.

Results are more significant for encapsulation, which are arguably of more interest
than key generation, seeing as, for most cryptographic applications, the former will be
run far more often than the latter. We see improvements of up to 44% and 50% for
NEON and AMX implementations in ARMvS8-A, respectively, and 72% for the Cortex-
M4. Improvements correlate well with polynomial multiplication performance, which is
fastest for NEON in the HPS2048677 parameter set (based on the faster TMVP approach
of [CCHY24]) and in AMX implementations; this is expected due to Amdahl’s law.

Fixed-weight sampling. Table 4 shows that our shuffling approach significantly im-
proves performance of fixed-weight sampling compared to the sampling by sorting approach
of previous works. We see very significant speedups for all platforms: factors of up to
6.91 (591%) in ARMv8-A cores and 12.89 (1189%) in the Cortex-M4. Measurements do
not include the cost of pseudo-random number generation (i.e. the randombytes routine),

18 Efficient isochronous fixed-weight sampling with applications to NTRU

Table 2: Cycle counts (in kilocycles) for NTRU KEM key generation (KG) and encapsu-
lation (Enc.) in the Apple M1 and M3 SoCs.

Apple M1 Apple M3

Param. Sampling NEON AMX NEON AMX
KG Enc. KG Enc. KG Enc. KG Enc.
Sorting 218 161 170 125 214 155 164 117
509 Shuffling 214 125 167 890 211 120 160 8.23
Speedup 1.7% 29% 2.1% 40% 1.7% 29% 2.3% 43%
Sorting 307 206 283 171 296 194 266 16.0
677 Shuffling 309 149 278 119 296 141 261 11.0
Speedup -0.8% 39% 1.9% 44% -0.1% 37% 1.9% 46%
Sorting 498 280 384 194 491 272 371 181
821 Shuffling 491 218 378 131 485 21.2 365 121
Speedup 1.3% 28% 1.7% 48% 1.2% 28% 1.8% 50%
N/A 323 146 287 115 309 139 269 10.5

Slowdown vs.

c01 677 sorting 5:4% -29% 1.5% -33% 4.4% -28% 1.4% -35%

Slowdown vs.

677 shuffling 4.6% -1.7% 3.4% -3.9% 4.2% -1.7% 3.3% -4.4%

which is highly platform-dependent; recall that our approach requires slightly more than
half as many pseudo-random bytes as sampling by sorting.

Effect of the FEAT_ DIT bit. Recall that, out of all our ARMv8-A testbeds, only the
Apple M1 and M3 SoCs implement the FEAT_DIT bit for data-independent timing. In
order to ascertain the performance impact of setting this bit, we have also ran benchmarks
with FEAT _DIT unset on those Apple SoCs. Although we omit the full dataset, it is
available as part of our GitHub repository.

Briefly, for fixed-weight sampling alone (i.e. benchmarks equivalent to those of Table 4,
across all parameter sets, both SoCs and both the sorting and shuffling approaches, we see
differences of 0 to at most 3 clock cycles (corresponding to at most a 0.14% difference), in
both directions: faster with FEAT__DIT set or unset. On average, the difference is 0.01%
in favor of FEAT _DIT unset. Given the magnitude and varying direction of the difference,
we conjecture that this is merely due to measurement noise, which is to be expected when
running benchmarks in such a complex core.

Protocol-level benchmarks display similar behavior, but with a slightly greater magni-
tude (from 0.14% faster to 0.37% slower with FEAT DIT set), averaging 0.004% slower
across all parameters sets and different SoCs, implementations (AMX/NEON) and shuf-
fling/sorting approaches. There is no clear performance trend either in favor or against
setting FEAT_DIT, and the increased magnitude appears to be due to benchmarking more
complex code, which further taxes the cache/memory subsystem and AMX coprocessor.

We thus conclude that, at least for Apple SoCs, setting FEAT DIT has at most a
negligible impact on performance, and most likely no impact at all.

Comparison with NTRU-HRSS. It is instructive to compare NTRU-HPS2048677
to NTRU-HRSS701, as both are designed to the same NIST security level. Fortunately,
the state-of-the-art NEON implementation of [CCHY24] implements both parameter sets,
allowing for a fair comparison. Tables 2 and 3 include rows marked “Slowdown vs. 677
sorting” and “Slowdown vs. 677 shuffling”, computed as ¢791/ce77 — 1; thus, positive values

Décio Luiz Gazzoni Filho, Tomas S. R. Silva, Julio Lépez 19

Table 3: Cycle counts (in kilocycles) for NTRU KEM key generation (KG) and encapsu-
lation (Enc.) in ARM Cortex cores.

Param. . Cortex-A72 Cortex-A57 Cortex-A53 Cortex-M4
Set Sampling

KG Enc. KG Enc. KG Enc. KG Enc.

Sorting 884 71.2 884 61.5 1243 111 2690 391

509 Shuffling 860 54.1 892 51.8 1213 86.7 2536 235
Speedup 2.7% 32% -0.8% 19% 2.4% 28% 6.1% 66%

Sorting 1140 77.4 1146 65.1 1636 121 4332 553

677 Shuffling 1123 55.3 1123 45.3 1600 84.9 4111 327
Speedup 1.5% 40% 2.1% 44% 2.3% 43% 5.4% 69%

Sorting 2156 135 2131 121 2993 197 5740 681

821 Shuffling 2111 109 2102 95.2 2951 156 5449 396
Speedup 2.1% 24% 1.4% 27% 1.4% 26% 5.3% 72%

N/A 1200 58.0 1200 53.6 1579 7.7 4210 370

Slowdown vs.
701 677 sorting

Slowdown vs.
677 shuffling 6.8% 4.8% 6.9% 18% -1.3% -8.5% 2.4% 13%

5.2% -25% 4.7"% -18% -3.5% -36% -2.8% -33%

Table 4: Cycle counts (in kilocycles) for fixed-weight sampling, excluding the cost of
uniform random number generation.

Param. S li Apple Apple Cortex- Cortex- Cortex- Cortex-
Set amping npq M3 AT2 A57 A53 M4
Sorting 4.57 4.36 13.0 14.0 23.2 156
509 Shuffling 1.11 1.06 2.28 2.30 4.97 13.3
Speedup 4.12x% 4.12% 5.71x 6.11x 4.67x 11.73x
Sorting 6.43 6.24 19.5 21.2 35.1 227
677 Shuffling 1.48 1.41 3.11 3.07 6.79 18.4
Speedup 4.34% 4.42X% 6.25x% 6.91x% 5.18x% 12.36x
Sorting 7.65 7.49 22.6 24.9 40.9 287
821 Shuffling 1.79 1.71 3.75 3.77 8.12 22.3

Speedup 4.28x 4.37x 6.03 % 6.61x 5.03 % 12.89x

indicate that HRSS701 is slower than HPS2048677, and the contrary for negative values.

Even with the sampling by sorting approach, HPS2048677 is usually faster than
HRSS701 for key generation, with the exception of the Cortex-A53 and Cortex-M4 cores;
with the shuffling approach, HPS2048677 key generation also outperforms HRSS701 in the
Cortex-M4, and reduces the gap in the Cortex-A53. As for encapsulation, HPS2048677
using sampling by sorting was significantly slower than HRSS701 in all cases, by up to 35%,
36% and 33% in Apple SoCs, ARMv8-A Cortex cores and the Cortex-M4, respectively.
The shuffling approach closes this gap, with HPS2048677 slower by at most 4.4% in Apple
SoCs, and 8.5% in the Cortex-A53; for other ARMv8-A cores, HPS2048677 is actually
faster, by up to 18%, and in the Cortex-M4, it is also faster by 13%.

6 Conclusion

In this work, we showed that timing attack-resistant fixed-weight sampling can be performed
without using constant-time sorting. We have proposed a new algorithm (Algorithm 6)

20 Efficient isochronous fixed-weight sampling with applications to NTRU

Table 5: Code size (Flash) and stack (RAM) usage, in bytes, for ARMv7-M binaries.
Statically allocated data (.data and .bss sections) were reported as zero in all cases.
“Diff.” refers to the percentual difference between implementations; positive values denote
an increase in our version relative to [KRSS19].

Param. ‘Work Code Stack usage
set size Key gen. Encaps.

HPS [KRSS19] 191824 21 360 14068
Diff. +0.2% -3.9% —6.0%

HPS [KRSS19] 281568 28472 19980
Diff. +0.3% —4.0% -5.6%

HPS [KRSS19] 370076 35224 23420
Diff. +0.3% -3.9% -5.8%

HRSS701 [KRSS19] 264492 27528 18316

which achieves a running time of O(n), an improvement over O(nlog®(n)) for previous,
sorting network-based approaches. This results in performance improvements in actual
implementations across a range of different platforms, from deeply embedded to high-
performance laptop CPUs. Additionally, the amount of random data needed for sampling
is reduced by almost half, which is advantageous for architectures without instructions
to accelerate cryptographically secure PRNGs. Moreover, our proposed method may be
simpler to implement in an optimized fashion than constant-time sorting networks.

This solves a long-standing open problem: to date, the best alternative was the NTRU-
HRSS variant, which also seeks to eliminate the cost of constant-time sorting required for
sampling fixed-weight polynomials. As discussed in §5, a modified NTRU-HPS2048677,
using our proposed approach, nearly closes the performance gap to NTRU-HRSS701 in
some cases, and actually outperforms it in others (recalling that both are designed to
the same NIST security level). We also note that key and ciphertext sizes for NTRU-
HPS2048677 are smaller: 930 (resp. 1138) bytes for the public key and ciphertext, and 1234
(resp. 1450) bytes for the private key, for NTRU-HPS2048677 (resp. NTRU-HRSS701).
Finally, the need to support both NTRU-HPS and NTRU-HRSS to achieve different
security levels results in increased implementation complexity, e.g. due to the HRSS-
specific version of Lift [CDH'20, §1.9.3] and the additional Ternary_Plus sampling
routine [CDH 20, §1.10.4]. In light of these arguments, we call into question the need for
a separate NTRU-HRSS parameter set.

Future work. Although NTRU is no longer being considered by NIST, we recall that it
has been standardized in other forums [Ins09, Amel7]. Since our proposed Algorithm 6
improves upon the existing fixed-weight sampling by sorting approach mandated by
the NTRU specification submitted to NIST [CDHT20], we suggest amending NTRU
specifications to use Algorithm 6, and incorporating it into any future standardization efforts
(for instance, we note that FrodoKEM [BCD™16] is also no longer under consideration by
NIST, but is being considered for standardization by ISO [Int23c]). Similarly, as discussed
in §3, other PQC schemes such as Streamlined NTRU Prime and NTRU LPRime are
likely to benefit from our approach, and we encourage investigations of its use in these
schemes. We also suggest developing implementations for other widely-used architectures,
in particular, Intel (using AVX2 and AVX-512 SIMD extensions) and the recently released

Décio Luiz Gazzoni Filho, Tomas S. R. Silva, Julio Lépez 21

ARMv8.1-M Helium SIMD instruction set for deeply embedded systems [Dir19].
Algorithm 8, as stated, is not amenable to vectorization, due to a loop-carried de-
pendency between iterations of its main loop. Using a similar idea as the initial step of
MERGESHUFFLE (Algorithm 4), vectorization becomes possible; we developed a prototype
implementation that confirms its potential for large speedups, especially on wide CPUs such
as the M1 and M3. However, without applying the remaining steps of MERGESHUFFLE,
the resulting permutation is biased, which may create an avenue of attack. An alternative
we envisioned involves sampling from the hypergeometric distribution; however, this is an
uncommon distribution in cryptography, and we were unable to find any efficient, constant-
time algorithms. We invite future work into either modifying MERGESHUFFLE to be
constant-time, or to propose efficient, constant-time hypergeometric sampling algorithms.
While Algorithm 5 already consumes fewer random bits than the approach mandated
by the NTRU specification, there is room for improvement, as discussed in §4. This is
particularly relevant for architectures without instructions to accelerate cryptographically-
secure PRNGs, in which case the performance bottleneck may be the generation of
uniformly random samples consumed by Algorithm 5. We encourage further research into
parameter choices and new approaches that may reduce randomness requirements.

Acknowledgements

The first and third author thank the Cryptography Research Centre at the Technology

Innovation Institute for financial support during the development of this work. The second

author is supported by Sdo Paulo Research Foundation (FAPESP) grant 2022/09891-4.
We thank the anonymous reviewers for helpful suggestions.

References

[AAB*22] Carlos Aguilar-Melchor, Nicolas Aragon, Slim Bettaieb, Loic Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, Gilles
Zémor, Jurjen Bos, Arnaud Dion, Jerome Lacan, Jean-Marc Robert, and Pascal
Veron. HQC. Technical report, National Institute of Standards and Technology,
2022. available at https://csrc.nist.gov/Projects/post-quantum-crypto
graphy/round-4-submissions.

[ABB*22] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Phillipe Gaborit, Shay Gueron, Tim Guneysu,
Carlos Aguilar-Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier,
Jean-Pierre Tillich, Gilles Zémor, Valentin Vasseur, Santosh Ghosh, and Jan
Richter-Brokmann. BIKE. Technical report, National Institute of Standards
and Technology, 2022. available at https://csrc.nist.gov/Projects/post-
quantum-cryptography/round-4-submissions.

[ABC*22] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher,
Tanja Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben Nieder-
hagen, Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters, Peter
Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tomlinson, and
Wen Wang. Classic McEliece. Technical report, National Institute of Standards
and Technology, 2022. available at https://csrc.nist.gov/projects/post—
quantum-cryptography/round-4-submissions.

[Ajt96] Miklés Ajtai. Generating hard instances of lattice problems (extended abstract).
In 28th Annual ACM Symposium on Theory of Computing, pages 99-108. ACM
Press, May 1996. doi:10.1145/237814.237838.

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1145/237814.237838

22 Efficient isochronous fixed-weight sampling with applications to NTRU

[Amel7] American National Standards Institute. Lattice-based polynomial public key
establishment algorithm for the financial services industry. ASC X9.98-2010
(R2017), 2017.

[ARM] ARM Limited. How is instruction timing affected by the FEAT _DIT architec-
tural feature? URL: https://developer.arm.com/documentation/ka005181
/latest/.

[ARM15] ARM Limited. Cortex®-AT2 software optimization guide, 2015. URL: https:
//developer.arm.com/documentation/uan0016/a/.

[ARM23] ARM Limited. Arm® architecture reference manual for A-profile architecture,
2023. URL: https://developer.arm.com/documentation/ka005181/1-0/.

[Bat68] K. E. Batcher. Sorting networks and their applications. In Proceedings of the
April 30-May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring),
page 307-314, New York, NY, USA, 1968. Association for Computing Machinery.
doi:10.1145/1468075.1468121.

[BBCT20] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, Chitchanok
Chuengsatiansup, Tanja Lange, Adrian Marotzke, Bo-Yuan Peng, Nicola Tu-
veri, Christine van Vredendaal, and Bo-Yin Yang. NTRU Prime. Technical
report, National Institute of Standards and Technology, 2020. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum-cryptography-standardization/round-3-submissions.

[BBHL18] Axel Bacher, Olivier Bodini, Alexandros Hollender, and Jérémie O. Lumbroso.
MergeShuffle: a very fast, parallel random permutation algorithm. In Luca
Ferrari and Malvina Vamvakari, editors, Proceedings of the 11th International
Conference on Random and Ezhaustive Generation of Combinatorial Structures,
GASCom 2018, Athens, Greece, June 18-20, 2018, volume 2113 of CEUR
Workshop Proceedings, pages 43-52, Aachen, Germany, 2018. CEUR-WS.org.
URL: http://ceur-ws.org/Vol-2113/paper3.pdf.

[BBHT17] Axel Bacher, Olivier Bodini, Hsien-Kuei Hwang, and Tsung-Hsi Tsai. Gen-
erating random permutations by coin tossing: Classical algorithms, new anal-
ysis, and modern implementation. ACM Trans. Algorithms, 13(2), feb 2017.
doi:10.1145/3009909.

[BCCt23] Gustavo Banegas, Kévin Carrier, André Chailloux, Alain Couvreur, Thomas
Debris-Alazard, Philippe Gaborit, Pierre Karpman, Johanna Loyer, Ruben
Niederhagen, Nicolas Sendrier, Benjamin Smith, and Jean-Pierre Tillich. Wave.
Technical report, National Institute of Standards and Technology, 2023. available
at https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-
signatures.

[BCD'16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take
off the ring! Practical, quantum-secure key exchange from LWE. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and
Communications Security, pages 1006-1018. ACM Press, October 2016. doi:
10.1145/2976749.2978425.

[BCLv17] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine
van Vredendaal. NTRU prime: Reducing attack surface at low cost. In Carlisle

https://developer.arm.com/documentation/ka005181/latest/
https://developer.arm.com/documentation/ka005181/latest/
https://developer.arm.com/documentation/uan0016/a/
https://developer.arm.com/documentation/uan0016/a/
https://developer.arm.com/documentation/ka005181/1-0/
https://doi.org/10.1145/1468075.1468121
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
http://ceur-ws.org/Vol-2113/paper3.pdf
https://doi.org/10.1145/3009909
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1145/2976749.2978425

Décio Luiz Gazzoni Filho, Toméas S. R. Silva, Julio Lépez 23

[BCLv19]

[BCS13]

[Ber04]

[Ber18]

[Ber19]

Adams and Jan Camenisch, editors, SAC 2017: 24th Annual International
Workshop on Selected Areas in Cryptography, volume 10719 of Lecture Notes
in Computer Science, pages 235—260. Springer, Heidelberg, August 2017. doi:
10.1007/978-3-319-72565-9_12.

Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine
van Vredendaal. NTRU Prime. Technical report, National Institute of Standards
and Technology, 2019. available at https://csrc.nist.gov/projects/post-
quantum-cryptography/post-quantum-cryptography-standardization/ro
und-2-submissions.

Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: Fast constant-time
code-based cryptography. In Guido Bertoni and Jean-Sébastien Coron, editors,
Cryptographic Hardware and Embedded Systems — CHES 2013, volume 8086 of
Lecture Notes in Computer Science, pages 250-272. Springer, Heidelberg, August
2013. doi:10.1007/978-3-642-40349-1_15.

Daniel J. Bernstein. Cache-timing attacks on AES. http://cr.yp.to/papers.
html#cachetiming, 2004.

Daniel J. Bernstein. Divergence bounds for random fixed-weight vectors obtained
by sorting, April 2018. URL: https://ntruprime.cr.yp.to/divergence-
20180430 . pdf.

Daniel J. Bernstein. djbsort. https://sorting.cr.yp.to, 2019.

[CCHY24] Han-Ting Chen, Yi-Hua Chung, Vincent Hwang, and Bo-Yin Yang. Algorithmic

views of vectorized polynomial multipliers — NTRU. In Anupam Chattopad-
hyay, Shivam Bhasin, Stjepan Picek, and Chester Rebeiro, editors, Progress in
Cryptology — INDOCRYPT 2023, pages 177-196, Cham, 2024. Springer Nature
Switzerland. doi:10.1007/978-3-031-56235-8_9.

[CDH*20] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Ri-

jneveld, John M. Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang,
Tsunekazu Saito, Takashi Yamakawa, and Keita Xagawa. NTRU. Technical
report, National Institute of Standards and Technology, 2020. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum-cryptography-standardization/round-3-submissions.

[CWST24] Boru Chen, Yingchen Wang, Pradyumna Shome, Christopher W. Fletcher,

[Dan19]

[dG15]

[Dir19]

David Kohlbrenner, Riccardo Paccagnella, and Daniel Genkin. GoFetch: Break-
ing constant-time cryptographic implementations using data memory-dependent
prefetchers. In USENIX Security, 2024. URL: https://gofetch.fail/files
/gofetch.pdf.

Oussama Danba. Optimizing NTRU using AVX2. Master’s thesis, Radboud
University, 2019. URL: https://www.ru.nl/publish/pages/769526/y_oussa
ma_danba.pdf.

Wouter de Groot. A performance study of X25519 on Cortex-M3 and M4.
Master’s thesis, Eindhoven University of Technology, 2015. URL: https://re
search.tue.nl/files/47038543/800603-1.pdf.

Rhonda Dirvin. Next-generation Armv8.1-M architecture: Delivering enhanced
machine learning and signal processing for the smallest embedded devices.
https://www.arm.com/company/news/2019/02/next-generation-armv8-1-
m-architecture, 2019.

https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-319-72565-9_12
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://doi.org/10.1007/978-3-642-40349-1_15
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
https://ntruprime.cr.yp.to/divergence-20180430.pdf
https://ntruprime.cr.yp.to/divergence-20180430.pdf
https://sorting.cr.yp.to
https://doi.org/10.1007/978-3-031-56235-8_9
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://gofetch.fail/files/gofetch.pdf
https://gofetch.fail/files/gofetch.pdf
https://www.ru.nl/publish/pages/769526/y_oussama_danba.pdf
https://www.ru.nl/publish/pages/769526/y_oussama_danba.pdf
https://research.tue.nl/files/47038543/800603-1.pdf
https://research.tue.nl/files/47038543/800603-1.pdf
https://www.arm.com/company/news/2019/02/next-generation-armv8-1-m-architecture
https://www.arm.com/company/news/2019/02/next-generation-armv8-1-m-architecture

24

Efficient isochronous fixed-weight sampling with applications to NTRU

[Dur64]

[Fog22]

[FY38]

Richard Durstenfeld. Algorithm 235: Random permutation. Commun. ACM,
7(7):420, jul 1964. doi:10.1145/364520.364540.

Agner Fog. The microarchitecture of Intel, AMD, and VIA CPUs. https:
//www.agner.org/optimize/microarchitecture.pdf, 2022.

R. A. Fisher and F. Yates. Statistical tables for biological, agricultural and
medical research. Oliver & Boyd, Oxford, England, 3rd edition, 1938.

[GFBL24] Décio Luiz Gazzoni Filho, Guilherme Brandao, and Julio Lépez. Fast polynomial

multiplication using matrix multiplication accelerators with applications to
NTRU on Apple M1/M3 SoCs. TACR Communications in Cryptology, 1(1),
2024. doi:10.62056/a3txommol.

[GHJ*22] Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander

[Gro96]

[GS23]

[HPS96]

Nilsson, and Robin Leander Schréder. Don’t reject this: Key-recovery timing
attacks due to rejection-sampling in HQC and BIKE. TACR Transactions
on Cryptographic Hardware and Embedded Systems, 2022(3):223-263, 2022.
doi:10.46586/tches.v2022.1i3.223-263.

Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, STOC 96, page 212-219, New York, NY, USA, 1996. Association
for Computing Machinery. URL: https://doi.org/10.1145/237814.237866.

Garrett Gu and Hovav Shacham. Constant-time wasmtime, for real this time:
End-to-end verified zero-overhead constant-time programming for the web and
beyond, 2023. URL: https://arxiv.org/abs/2311.14246.

Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: a new high
speed public key cryptosystem. CRYPTO 96 rump session, 1996. https:
//web.securityinnovation.com/hubfs/files/ntru-orig.pdf.

[HRSS17] Andreas Hiilsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe. High-

[Ins09]

[Int23a]

[Int23b)]

[Int23c]

speed key encapsulation from NTRU. In Wieland Fischer and Naofumi Homma,
editors, Cryptographic Hardware and Embedded Systems — CHES 2017, volume
10529 of Lecture Notes in Computer Science, pages 232—-252. Springer, Heidelberg,
September 2017. doi:10.1007/978-3-319-66787-4_12

Institute of Electrical and Electronics Engineers. IEEE standard specification
for public key cryptographic techniques based on hard problems over lattices.
IEEE Std 1363.1-2008, 2009. doi:10.1109/IEEESTD.2009.4800404.

Intel Corporation. Data operand independent timing instruction set architecture
(ISA) guidance, 2023. URL: https://www.intel.com/content/www/us/en/de
veloper/articles/technical/software-security-guidance/resources/d
ata-operand-independent-timing-instructions.html.

Intel Corporation. Data operand independent timing instructions, 2023. URL:
https://www.intel.com/content/www/us/en/developer/articles/tec
hnical/software-security-guidance/best-practices/data-operand-
independent-timing-isa-guidance.html.

International Organization for Standardization. FrodoKEM: Learning with
errors key encapsulation preliminary draft standard, 2023. URL: https://frod
okem.org/files/FrodoKEM-IS0-20230314.pdf.

https://doi.org/10.1145/364520.364540
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://doi.org/10.62056/a3txommol
https://doi.org/10.46586/tches.v2022.i3.223-263
https://doi.org/10.1145/237814.237866
https://arxiv.org/abs/2311.14246
https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
https://doi.org/10.1007/978-3-319-66787-4_12
https://doi.org/10.1109/IEEESTD.2009.4800404
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/data-operand-independent-timing-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/data-operand-independent-timing-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/data-operand-independent-timing-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://frodokem.org/files/FrodoKEM-ISO-20230314.pdf
https://frodokem.org/files/FrodoKEM-ISO-20230314.pdf

Décio Luiz Gazzoni Filho, Toméas S. R. Silva, Julio Lépez 25

[Joh22]

[Knu97)

[Knu9s]

[Koc96]

Dougall Johnson. Apple M1 microarchitecture research. https://dougallj.g
ithub.io/applecpu/firestorm.html, 2022.

Donald E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. Addison-Wesley, Boston, third edition, 1997.

Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting and
Searching. Addison-Wesley Longman Publishing Co., Inc., USA, 2nd edition,
1998.

Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, Advances in Cryptology —
CRYPTO’96, volume 1109 of Lecture Notes in Computer Science, pages 104-113.
Springer, Heidelberg, August 1996. doi:10.1007/3-540-68697-5_9.

[KRSS19] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.

[Lam88]

[Lem19]

[MG02]

[Nat17]

ING21]

[Por18]

[Rao61]

[San62]

pam4: Testing and benchmarking NIST PQC on ARM Cortex-M4. Workshop
Record of the Second PQC Standardization Conference, 2019. URL: https:
//csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-
Conference/documents/accepted-papers/kannwischer-pqmé.pdf.

M. Lam. Software pipelining: An effective scheduling technique for VLIW
machines. SIGPLAN Not., 23(7):318-328, jun 1988. doi:10.1145/960116.540
22.

Daniel Lemire. Fast random integer generation in an interval. ACM Trans.
Model. Comput. Simul., 29(1), jan 2019. doi:10.1145/3230636.

Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: A
Cryptographic Perspective, volume 671 of The Springer International Series in
Engineering and Computer Science. Springer, New York, NY, first edition, 2002.
doi:10.1007/978-1-4615-0897-7.

National Institute of Standards and Technology. Post-quantum cryptography
standardization: Call for proposals announcement, 2017. https://csrc.nist.
gov/Projects/post-quantum-cryptography/post-quantum-cryptography-
standardization.

Duc Tri Nguyen and Kris Gaj. Fast NEON-based multiplication for lattice-based
NIST post-quantum cryptography finalists. In Jung Hee Cheon and Jean-Pierre
Tillich, editors, Post-Quantum Cryptography - 12th International Workshop,
PQCrypto 2021, pages 234-254. Springer, Heidelberg, 2021. doi:10.1007/978-
3-030-81293-5_13.

Thomas Pornin. Constant-time multiplication. https://www.bearssl.org/ct
mul.html, 2018.

C. Radhakrishna Rao. Generation of random permutations of given number of
elements using random sampling numbers. Sankhya: The Indian Journal of
Statistics, Series A (1961-2002), 23(3):305-307, 1961. URL: http://www. jsto
r.org/stable/25049166.

Martin Sandelius. A simple randomization procedure. Journal of the Royal
Statistical Society. Series B (Methodological), 24(2):472-481, 1962. URL: http:
//www. jstor.org/stable/2984238.

https://dougallj.github.io/applecpu/firestorm.html
https://dougallj.github.io/applecpu/firestorm.html
https://doi.org/10.1007/3-540-68697-5_9
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf
https://doi.org/10.1145/960116.54022
https://doi.org/10.1145/960116.54022
https://doi.org/10.1145/3230636
https://doi.org/10.1007/978-1-4615-0897-7
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://doi.org/10.1007/978-3-030-81293-5_13
https://doi.org/10.1007/978-3-030-81293-5_13
https://www.bearssl.org/ctmul.html
https://www.bearssl.org/ctmul.html
http://www.jstor.org/stable/25049166
http://www.jstor.org/stable/25049166
http://www.jstor.org/stable/2984238
http://www.jstor.org/stable/2984238

26

Efficient isochronous fixed-weight sampling with applications to NTRU

[Sen21]

[Sho97]

[TSST03]

Nicolas Sendrier. Secure sampling of constant-weight words — application to
BIKE. Cryptology ePrint Archive, Report 2021/1631, 2021. https://eprint
.iacr.org/2021/1631.

Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. STAM J. Comput., 26(5):1484-1509, October
1997. doi:10.1137/30097539795293172.

Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi
Miyauchi. Cryptanalysis of DES implemented on computers with cache. In
Colin D. Walter, Cetin Kaya Kog, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems — CHES 2003, volume 2779 of Lecture Notes
in Computer Science, pages 62—76. Springer, Heidelberg, September 2003. doi:
10.1007/978-3-540-45238-6_6.

[TTMMO02] Yukiyasu Tsunoo, Etsuko Tsujihara, Kazuhiko Minematsu, and Hiroshi

[Warl2]

Miyauchi. Cryptanalysis of block ciphers implemented on computers with
cache. In Proceedings of the International Symposium on Information Theory
and Its Applications, ISITA 2002, pages 803-806, 2002.

Henry S. Warren. Hacker’s Delight. Addison-Wesley Professional, 2nd edition,
2012.

https://eprint.iacr.org/2021/1631
https://eprint.iacr.org/2021/1631
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1007/978-3-540-45238-6_6
https://doi.org/10.1007/978-3-540-45238-6_6

	Introduction
	Preliminaries
	NTRU random sampling
	Shuffling algorithms

	Fixed-weight sampling by constant-time shuffling
	Implementation aspects
	Experimental results
	Methodology
	Performance figures and analysis

	Conclusion
	References

