
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 2, 27 pages.

https://doi.org/10.62056/aevur-10k
Check for updates

Simple Watermarking Pseudorandom Functions
from Extractable Pseudorandom Generators

Estuardo Alpirez Bock1 , Chris Brzuska2 and Russell W. F. Lai2

1 Independent, United Kingdom
2 Aalto University, Finland

Abstract. Watermarking pseudorandom functions (PRF) allow an authority to
embed an unforgeable and unremovable watermark into a PRF while preserving its
functionality. In this work, we extend the work of Kim and Wu [Crypto’19] who gave
a simple two-step construction of watermarking PRFs from a class of extractable
PRFs satisfying several other properties – first construct a mark-embedding scheme,
and then upgrade it to a message-embedding scheme.
While the message-embedding scheme of Kim and Wu is based on complex homo-
morphic evaluation techniques, we observe that much simpler constructions can be
obtained and from a wider range of assumptions, if we forego the strong requirement
of security against the watermarking authority. Concretely, we introduce a new
notion called extractable PRGs (xPRGs), from which extractable PRFs (without
security against authorities) suitable for the Kim-Wu transformations can be simply
obtained via the Goldreich-Goldwasser-Micali (GGM) construction. We provide
simple constructions of xPRGs from a wide range of assumptions such as hardness of
computational Diffie-Hellman (CDH) in the random oracle model, as well as LWE
and RSA in the standard model.
Keywords: watermarking · extractable pseudorandom function · extractable pseu-
dorandom generator

1 Introduction
Software watermarking, formally introduced by Barak et al. [BGI+12] and Hopper et
al. [HMW07], allows an authority to embed a secret message into a program while preserving
its functionality, e.g. to identify the program’s owner or validate the program’s authenticity.
Unremovability and unforgeability require that an unauthorised party can neither remove
the watermark of a program while preserving its functionality, nor forge programs which
are considered watermarked.

1.1 Constructions from Obfuscation and Lattices
Cohen et al. [CHN+16] prove that watermarking classes of learnable functions is impossible,
and use indistinguishability obfuscation (iO) to watermark cryptographic functionalities.
Subsequent works [KW17, QWZ18, KW19] focus on constructing watermarking pseudoran-
dom functions (PRF), under different computational assumptions and achieving different
combinations of properties in addition to unremovability and unforgeability.

Currently, regardless of which additional properties are achieved, most known wa-
termarking PRF constructions are either based on iO or the learning with rounding
(LWR) assumption [BPR12] (with unbounded polynomial number of samples), the latter

E-mail: chris.brzuska@aalto.fi (Chris Brzuska), russell.lai@aalto.fi (Russell W. F. Lai)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-04-07 Accepted: 2024-06-03

https://doi.org/10.62056/aevur-10k
https://crossmark.crossref.org/dialog/?doi=10.62056/aevur-10k&domain=pdf&date_stamp=2024-07-05
https://orcid.org/0000-0002-8410-5488
https://orcid.org/0009-0001-7485-1217
https://orcid.org/0000-0001-9126-1887
mailto:chris.brzuska@aalto.fi
mailto:russell.lai@aalto.fi
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Simple Watermarking PRFs from Extractable PRGs

of which is implied [BGM+16] by the learning with errors (LWE) assumption [Reg05] with
a super-polynomial modulus-to-noise ratio.1

We highlight two landmark constructions based on LWE. The first is a construction of
Quach et al. [QWZ18] from CCA-secure public-key encryption schemes with pseudorandom
ciphertexts and privately puncturable PRFs, both of which can be construct based on
LWE. Their construction is publicly watermarkable but does not provide security against
authorities. The second is the construction of Kim and Wu [KW19] from extractable PRFs
satisfying several other properties, which they constructed from the LWE assumption.
Their construction achieves weak-pseudorandomness against semi-honest authorities (i.e.
authorities which have no choice over the generation of the public parameters and the trap-
doors, but who have knowledge of how these are generated), and is publicly watermarkable
in the random oracle model.

A notable exception to the above classification is another construction of Quach
et al. [QWZ18] from CCA-secure public-key encryption schemes with pseudorandom
ciphertexts and (standard) puncturable PRFs, which can be instantiated from a wide range
of assumptions such as CDH (with random oracles), DDH, DCR, QR, and LWE. However,
this construction only achieves a weaker functionality known as mark-embedding which, as
opposed to the standard notion called message-embedding, only allows to watermark the
PRF with a single message, e.g. “marked”. Although Kim and Wu [KW19] presented a way
to extend mark-embedding schemes to message-embedding schemes, the transformation is
non-black-box and does not seem to apply to the mark-embedding scheme of Quach et al.

1.2 Extractable PRFs
Watermarkable PRFs. The starting point of this work is the simple and generic
transformation of Kim and Wu [KW19], which turns PRFs satisfying an assortment of
different properties – what we call watermarkable PRFs – to watermarking PRFs.

In addition to pseudorandomness and (standard) puncturability, a core property of
watermarkable PRFs is robust extractability, as coined by Kim and Wu [KW19].2 Roughly,
a PRF f with trapdoored public parameters has robust extractability, if the PRF key k can
be extracted by the authority from any circuit C which approximates f(k, ·). Intuitively,
this means that f(k, .) must encode k redundantly, and thus it should be difficult to come
up with a circuit C which approximates f(k, .) but loses information about k.

From Watermarkability to Watermarking. We summarise the Kim-Wu transfor-
mation [KW19] from watermarkable PRFs to watermarking PRFs, and highlight the use
of the various properties of watermarkable PRFs when relevant. For formal details, we
refer to Appendix B and [KW19]. The transformation proceeds in two steps: 1) From a
watermarkable PRF f and an ordinary PRF g, construct a watermarking PRF F which
achieves the weaker functionality of mark-embedding. 2) Upgrade mark-embedding to
message-embedding via parellel composition (in a non-black-box manner).

The watermarking key for the mark-embedding scheme consists of the trapdoor of the
underlying watermarkable PRF f and a secret key of an ordinary PRF g. To mark a PRF
key k of f , the authority derives an input xk using g, then punctures the key k of f at
the input xk. The watermarked PRF program of F is then simply the PRF evaluation
algorithm for f with the punctured key hardwired. To check whether a circuit C is marked,
using the robust extractability of f , the authority extracts a candidate secret key k′ by
querying C, and outputs MARKED if C(xk′) 6= f(k′, xk′) and UNMARKED otherwise.

1Since LWR is implied by LWE when the number of samples is a priori bounded or when the modulus-
to-noise ratio is super-polynomial, from here on we will use LWR and LWE interchangeably whenever the
security of a construction relies on LWR.

2Kim and Wu [KW19] also required key-injectivity, which we gloss over here.

Estuardo Alpirez Bock, Chris Brzuska, Russell W. F. Lai 3

The pseudorandomness of F is inherited from that of f . The unremovability of F is
simply based on the puncturing security of f . To achieve unforgeability, the accuracy of
the above check can be amplified by puncturing a larger set Xk of inputs and outputting
MARKED if C(x) 6= f(k′, x) for all x in Xk′ .

To extend the mark-embedding scheme to a scheme which embeds a secret message
m ∈ {0, 1}t, the authority could derive 2t sets Xk,i,b for i ∈ [t] and b ∈ {0, 1} and
puncture the key k at

⋃
i∈[t] Xk,i,mi . For recovering the watermark, the authority extracts

a candidate key k as described above, derives the sets Xk,i,b and checks for which b the
circuit agrees the most with the PRF on the candidate key. Finally, the scheme can be
made publicly markable by replacing the ordinary PRF with a random oracle.

As shown above, the overhead of turning a watermarkable PRF into a watermarking
PRF is minimal. Therefore, the main complexity of constructing the latter under this
framework lies in constructing the former.

Constructing Watermarkable PRFs. The watermarkable PRF constructed by Kim
and Wu [KW19] is very strong, in the sense that it achieves (weak-)pseudorandomness
against (semi-honest) authorities. To achieve this, Kim and Wu rely extensively on complex
lattice-based homomorphic evaluation techniques, which were originally developed in the
context of attribute-based encryption for circuits [BGG+14]. On the other end of the
spectrum, if we were to drop the properties of robust extractability and security against au-
thorities, then even the classic Goldreich-Goldwasser-Micali (GGM) construction [GGM84]
can achieve the remaining properties of watermarkable PRFs, solely assuming the existence
of one-way functions.

Since security against authorities might not be necessary for applications where the
authority is naturally trusted, this poses a natural question:

Can we construct simpler watermarkable PRFs? In particular, can we achieve
robust extractability without homomorphic computation?

1.3 Our Contributions
We give affirmative answers to the above question. In short, our main results are simple
constructions of watermarkable PRFs from CDH (in the random oracle model), LWE, or
trapdoor permutations (hence RSA) which, through the simple transformation of Kim
and Wu [KW19], also yield simple watermarking PRFs in settings where the authority is
trusted. Along the way, we show that the robust extractability property required by Kim
and Wu is implied generically by other simpler properties. The core of our constructions is
a new primitive which we call extractable pseudorandom generator (xPRG) which implies
watermarkable PRFs through the GGM construction. Due to the general applicability of
PRGs, the new notion of xPRGs may by of independent interest.

Simplifying Robust Extractability. We define a watermarkable PRF to be a PRF
which is pseudorandom, extractable, and (publicly) puncturable. Specifically, our notion of
extractability means that, given any valid input-output pair (x, f(k, x)) of the PRF f with
key k, the trapdoored extraction algorithm is able to extract the key k. In Section 3.3, we
show that the above simple notion of extractability suffices to imply the robust extractability
property required by Kim and Wu [KW19].3

Watermarkable PRFs from Extractable PRGs. While Kim and Wu [KW19] con-
struct watermarkable PRFs directly from lattice-based homomorphic evaluation techniques,

3We also observe that extractability immediately implies key-injectivity.

4 Simple Watermarking PRFs from Extractable PRGs

our construction of watermarkable PRFs follows a completely different strategy and, ar-
guably, is much simpler. More concretely, our approach is to first construct an intermediate
object which we call extractable pseudorandom generators (xPRG), which map a seed x
to e outputs (y1, . . . , ye) such that x can be efficiently recovered given the trapdoor and
any output yi. We then instantiate the GGM construction in Section 5 with these xPRGs
to obtain watermarkable PRFs.

For an xPRG to be compatible with the GGM construction, it must satisfy two
functional properties. First, for recursive composability, the inputs and outputs of the
xPRG should be over a common alphabet.4 Second, for the output length to remain
polynomial after composition, it is crucial that the underlying xPRG is “rate-1”, i.e.
|yi| = |x|+ poly(λ), where | · | denotes the description length and the additive polynomial
overhead is independent of |x|.

Simple Constructions of Extractable PRGs. We provide three constructions of
xPRGs in Section 4:

(1) First we construct a rate-1 trapdoor function (TDF) family under the computational
Diffie-Hellman (CDH) assumption in the random oracle model, and show that
concatenating multiple instances of the TDF gives an xPRG.

(2) The second construction is based on the observation that an LWR function is
itself a trapdoor function, and on a technique of extending the output length of a
trapdoor function to achieve rate-1. Similar to the first construction, we prove that
concatenating multiple TDFs yields an xPRG under the LWE assumption.5

(3) Since not all pseudorandom TDFs retain pseudorandomness under concatenation
(e.g. the RSA-based trapdoor permutation), our third construction generically turns
a trapdoor permutation into a rate-1 xPRG. This construction is based on the
“doubly-half-injective PRGs” construction by Alpirez Bock et al. [AAB+19] from
one-way permutation. We observe that their construction yields an xPRG if the
one-way permutation is replaced with a trapdoor permutation, and generalise their
construction with expansion factor e = 2 to arbitrary e = poly(λ).

Simple Watermarking PRFs. Putting everything together, we obtain simple construc-
tions of watermarking PRFs via the following chain of transformations:

CDH/LWE/RSA (4)→ xPRG GGM (5)→ Watermarkable PRF Kim-Wu (B)→ Watermarking PRF

In particular, we obtain watermarking PRFs which are unremovable and unforgeable in
the presence of marking and mark-extraction oracles, and pseudorandom to any party
except for the watermarking authority.

1.4 Related Work
Mark-Embedding Scheme of Quach et al. The watermarking PRF construction
most similar to ours in terms of underlying assumptions and security properties is the
mark-embedding scheme of Quach et al. [QWZ18]. In terms of security, both constructions
achieve pseudorandomness in presence of an extraction oracle, but provide no security
against the watermarking authority. In terms of underlying assumptions, the Quach et
al. mark-embedding construction relies only on the existence of a CCA-secure public-key
encryption scheme with pseudorandom ciphertexts, which can be instantiated with CDH

4Retaining extractability forbids non-injective strategies, e.g. hashing to bit strings.
5Concatenating LWE (instead of LWR) functions does not yield a PRG. Indeed, such a function is

efficiently invertible by linear algebra. See Section 4.3 for details.

Estuardo Alpirez Bock, Chris Brzuska, Russell W. F. Lai 5

in the random oracle model, DDH, DCR, QR, or LWE. In contrast, our construction can
be instantiated with CDH in the random oracle model, RSA, or LWE. In summary, in
terms of differences in underlying assumptions, our construction admits an instantiation
from RSA which, being a search assumption, can be viewed as slightly weaker than DCR
and QR, which are decisional assumptions.

The main difference in the two constructions is in functionality. While our construction
is message-embedding, the Quach et al. construction achieves only mark-embedding. Recall
that our construction is obtained by applying the transformations by Kim and Wu [KW19],
first (1) from a watermarkable PRF to a mark-embedding watermarking PRF, then (2) to
a message-embedding watermarking PRF via a non-black-box extension of transform (1).
It is therefore natural to ask if transform (2) can be applied to the mark-embedding scheme
of Quach et al. or whether the mark-embedding scheme of Quach et al. can be modified
to become compatible with (2). We are uncertain about the answer to this question. On
the one hand, (2) does not apply directly to the Quach et al. scheme since the (single)
punctured point is hardwired in the PRF key k (even before watermarking), while in
the Kim-Wu transformation the (multiple) punctured points are derived from k using an
additional secret PRF key held by the watermarking authority. On the other hand, it is
conceivable that it is possible to apply these two modifications to the Quach et al. scheme
while recovering the original security arguments.

Finally, we consider our construction conceptually simpler (in a pedagogical sense) since
we do not rely on CCA-secure public-key encryption schemes which, under the hood, require
hash-proof systems, double encryption with zero-knowledge proofs, or transformations
such as Fujisaki-Okomoto transform.

Additional Properties. Some additional properties that watermarking PRFs could have
are public watermarkability [QWZ18, KW19], public watermark verifiability [CHN+16],
and security against the watermarking authorities [CHN+16, KW17]. In particular, security
against authorities is useful in applications where the watermarked programs protect the
privacy of the users against an untrusted watermarking authority. However, there are
also applications where the watermarking authority is naturally trusted, such as when the
watermarked program is used for authenticated or confidential communication with the
authority, e.g. for software updates or broadcasting sports content.

Collusion Resistance. All watermarking PRFs discussed so far are insecure against
colluding adversaries, whose goal is to remove the watermark given multiple markings of
the same PRF. This issue was identified by Yang et al.[YAL+19] who construct collusion-
resistant watermarkable PRFs from iO. Subsequently, Yang et al. [YAYX20] proposed a
generic transformation turning watermarking PRFs, such as those constructed in this work,
to collusion-resistant ones.

Tracing vs. Watermarking. Goyal et al. [GKWW21] argue that watermarking PRFs
are too weak for traitor-tracing applications since programs can easily be useful without
retaining input-output behaviour on a large fraction of the input, e.g. by recovering
only half of the output value, or when used as subroutines, e.g. as part of a decryption
program. In these cases, the watermarking authority may not be able to extract the
mark from a forged program, since extraction is only guaranteed if given complete and
correct outputs of the PRF.6 They therefore propose the strengthened notion of traceable

6Strictly speaking, an adversarial program which drops logarithmically many bits would still be useful
to a watermarking PRF extractor, since these logarithmically many bits can be guessed (even if somewhat
inconvenient in practice). However, if the remaining bits can be guessed, then this also holds for the
authority who can still extract the key, now by guessing the bits.

6 Simple Watermarking PRFs from Extractable PRGs

PRFs which allow extraction given oracle access to any distinguisher which breaks the
weak-pseudorandomness of the PRF.

Goyal et al. [GKWW21] construct traceable PRFs from iO, and a single-key variant from
LWE. Maitra and Wu [MW22] provide a generic compiler which upgrades traceable PRFs
from single-key to multi-key. Since the extractor of a traceable PRF is only given oracle
access to a distinguisher, to extract a high-entropy PRF key, it must run the distinguisher
many times to extract multiple bits out of it. Designing a traceable-PRF-style extractor
for our GGM-based construction of extractable PRFs appears to be a challenging problem.

While the argument by Goyal et al. against the usefulness of watermarking seems to
apply to most applications of confidentiality where pseudorandomness is required, we argue
that watermarking programs for authenticating data is still useful for traitor tracing, since
using a PRF for authentication relies on the unpredictability of PRF values on a distribution
defined by the application.7 For example, if the PRF is used as a message-authentication
code (MAC), then a useful adversarial program must produce complete PRF values.

2 Preliminaries
We define security games G as sets of stateful oracles {O1, . . . ,On} that the adversary can
interact with. All games implicitly input a security parameter 1λ and a length parameter
1`, which are omitted. We write A O1,...,O`−→ G for the adversary interacting with game G by
calling oracles O1,…,On or simply A → G if the oracles are clear from context. In particular,
we write Pr

[
1 = A O1,...,On−→ G

]
or Pr[1 = A → G] for the probability that A returns 1 when

interacting with the oracles O1, . . . ,On of game G. In our pseudocode, we write “assert x”
to enforce call restrictions on the adversary. If the condition x does not hold, the oracle
call aborts and returns an error to the adversary.

2.1 Groups
Let ggen be a PPT algorithm which inputs the security parameter 1λ and outputs (the
description of) a cyclic group G, its (prime) order q ∈ N, and a generator [1] ∈ G. We
assume that G and q depend deterministically on λ. We write group operations additively,
i.e. [x] + [y] = [x+ y] and x · [y] = [x · y] for all x, y ∈ Zq.

Definition 1 (CDH). The computational Diffie-Hellman (CDH) assumption is said to
hold relative to (G, q, [1]) ∈ ggen(1λ) if for any PPT algorithm A

Pr
[
A(G, q, [1], [g], [h], [g · s]) = [h · s]

∣∣ g, h, s←$ Zq

]
= negl(λ).

2.2 Lattices
For p, q ∈ N with p ≤ q, let b·ep : Zq → Zp denote the function which sends x ∈ Zq to
bp·xq e mod p, where b·e rounds a real number to its closest integer. If x = (xi)i∈Zn

is a
vector over Z, we denote by ‖x‖ = maxi∈Zn

|xi| the infinity norm of x. If x,y are vectors
over Z satisfy ‖x− y‖ ≤ B, we write x ≈B y.

Definition 2 (LWR). Let (n,m, p, q) = (n,m, p, q)(λ) with 2 ≤ p ≤ q and χ be a
distribution over Zq. The learning with rounding (LWR) assumption is said to hold for
(n,m, p, q, χ) if for any PPT algorithm A∣∣∣∣∣ Pr

[
A(A,b) = 1

∣∣ s←$ χn, A←$ Zn×m
q , b← bs ·Aep

]
− Pr

[
A(A,b) = 1

∣∣A←$ Zn×m
q , b←$ Zm

p

] ∣∣∣∣∣ = negl(λ).

7Hashing before running the PRF thus means that we rely on the PRF unpredictability on the uniform
distribution which is compatible with watermarking weak PRFs.

Estuardo Alpirez Bock, Chris Brzuska, Russell W. F. Lai 7

Throughout this work we focus on the case where χ is the uniform distribution over
Zp ⊆ Zq, denoted simply by Zp. A series of works (e.g. [BGM+16]) showed that the LWR
problem is as hard as the learning with errors (LWE) problem in cases where the number
of samples m is polynomially bounded or the modulus-to-noise ratio is super-polynomial.
Direct constructions of PRFs from LWR usually require the LWR assumption to hold for
an a priori unbounded number of samples. In this work, however, we only require the
LWR assumption to hold for some fixed polynomial m number of samples, since we are
constructing (x)PRFs from (x)PRGs using the GGM construction, where the security of
each (x)PRG instance relies on LWR with a fixed polynomial number of samples.

Lemma 1 (Lattice Trapdoors, e.g. [MP12]). There exist PPT algorithms:

• (A, td)←$ TrapGen(1n, 1m, p, q): The trapdoor generation algorithm inputs dimen-
sions and moduli n,m, p, q ∈ N with 2 ≤ p ≤ q and outputs a matrix A ∈ Zn×m

q

together with a trapdoor td .

• s← LWEInvert(td ,y): The deterministic LWE inversion algorithm inputs a trapdoor
td and a vector y ∈ Zm

p and outputs a vector s ∈ Zn.

Furthermore, for any n,m, p, q ∈ N with m = Ω(n log q) and q = Ω(np
√
log q),

• the distribution
{
A : (A, td)←$ TrapGen(1h, 1k, p, q)

}
and the uniform distribution

over Zh×k
q are statistically close in λ, and

• for any s ∈ Zh
p , it holds that LWEInvert(td , bs ·Aep) = s.

3 Extractable PRFs and PRGs
In this section, we introduce the new notion of extractable pseudorandom generators
(Section 3.1), and recall the definitions of extractable pseudorandom functions and their
properties (Section 3.2). The properties that we define for xPRFs slightly differ from
existing ones [KW19]. In Section 3.3, we show that the robust extractability property
required by Kim and Wu [KW19] is generically implied by other simpler properties.

3.1 Extractable Pseudorandom Generators (xPRG)
We provide a natural definition of extractable pseudorandom generators (xPRG). Ex-
tractability for a PRG with expansion factor e means that, given the trapdoor and one of
the e outputs of the PRG, the seed which produces the output can be efficiently recovered.

Definition 3 (Extractable PRG). An extractable pseudorandom generator (xPRG) family
G with family of domains (Xλ,`)λ,`∈N and codomains (Ye

λ,`)λ,`∈N and expansion factor e
consists of three PPT algorithms (setup, eval, inv) with the following syntax:

• (pp, td) ←$ setup(1λ, 1`): The setup algorithm inputs 1λ and length parameter 1`

and outputs the public parameters pp and a trapdoor td .

• (yi)i∈Ze
← eval(pp, x): The deterministic evaluation algorithm inputs the public

parameters pp and a preimage x ∈ Xλ,` and outputs e images (yi)i∈Ze
∈ Ye

λ,`. To
ease notation, we write yi ← eval(pp, i, x) for i ∈ Ze.

• x ← inv(td , i, y): The deterministic inversion algorithm inputs a trapdoor td , an
index i ∈ Ze, and an image y ∈ Yλ,` and outputs a preimage x ∈ Xλ,`.

The rate r(λ) of the xPRG is defined as r(λ) := lim`→∞ log |Xλ,`|/ log |Yλ,`|.

8 Simple Watermarking PRFs from Extractable PRGs

Definition 4 (Pseudorandomness). An xPRG family G is pseudorandom if for any
` = poly(λ) and any PPT adversary A,

AdvprgG,A(λ) :=
∣∣∣Pr[1 = A setupO,evalO−→ Prg0

G

]
− Pr

[
1 = A setupO,evalO−→ Prg1

G

]∣∣∣ = negl(λ),

where Figure 1 defines Prgb
G for b ∈ {0, 1}.

Definition 5 (t-Extractability). Let t ∈ [e]. An xPRG family G is t-extractable if for
any λ, ` ∈ N, (pp, td) ∈ setup(1λ, 1`), x ∈ Xλ,`, (y0, . . . , ye−1) ∈ eval(pp, x), i ∈ Zt ⊆ Ze,
it holds that inv(td , i, eval(pp, x)) = x. If G is e-extractable, we simply say that it is
extractble. If G is 1-extractable, we call G a 1xPRG family.

3.2 Extractable Pseudorandom Functions (xPRF)
We give slightly different definitions of extractable pseudorandom functions (xPRF) and
their properties than those of Kim and Wu [KW19]. The main difference is that our notion
of extractability requires to extract the PRF secret key given a valid input-output pair,
while the robust extractability property [KW19] requires to extract the PRF secret key
given a circuit that approximates the PRF. Another difference is that we omit security
properties against the authority, such as “T-Restricted Pseudorandomness Given the
Trapdoor” [KW19, Definition 4.7]. In Section 3.3, we discuss how our simpler notion of
extractability generically implies robust extractability.

Definition 6 (Extractable PRF). An extractable pseudorandom function (xPRF) family
F with family of key spaces (Kλ)λ∈N, domains (Xλ,`)λ,`∈N and codomains (Yλ,`)λ,`∈N
consists of three PPT algorithms (setup, eval, inv) with the following syntax:

• (pp, td)←$ setup(1λ, 1`): The setup algorithm takes 1λ and length parameter 1` as
input and outputs the public parameters pp and a trapdoor td .

• y ← eval(pp, k, x): The deterministic evaluation algorithm takes pp, a secret key
k ∈ Kλ, and a value x ∈ Xλ,` and outputs an image y ∈ Yλ,`.

• k ← inv(td , x, y): the deterministic invert algorithm takes as input a trapdoor, a
pre-image x and an image y and returns the secret key k.

Definition 7 (Pseudorandomness). An xPRF family F is pseudorandom if for any
` = poly(λ) and any PPT adversary A,

AdvprfF,A(λ) :=
∣∣∣Pr[1 = A setupO,evalO−→ Prf0

F

]
− Pr

[
1 = A setupO,evalO−→ Prf1

F

]∣∣∣ = negl(λ),

where Figure 1 defines Prfb
F for b ∈ {0, 1}.

Let K′ = (K′λ)λ be a family of key spaces and let D be a PPT function generator
which inputs (1λ, 1`) and outputs (the description of) a function δ : K′λ ×Xλ,` → Kλ. An
xPRF family F is weakly-pseudorandom against semi-honest extraction authorities under
D-weak-input-related-key-attacks if for any ` = poly(λ) and PPT adversary A,

AdvwprfaaF,D,A(λ) :=

∣∣∣∣∣Pr
[
1 = A

setupO

evalO
−→ wPrfaa0

F,D

]
− Pr

[
1 = A

setupO

evalO
−→ wPrfaa1

F,D

]∣∣∣∣∣ = negl(λ),

where Figure 1 defines wPrfaab
F,D for b ∈ {0, 1}. In case δx is the identity function for all

x, then we simply omit D from all subscripts and say that F is weakly-pseudorandom
against semi-honest extraction authorities.

Definition 8 (t-Extractability). Let t = t(λ, `). An xPRF family F is t-extractable if for
any λ, ` ∈ N and (pp, td) ∈ setup(1λ, `),

Estuardo Alpirez Bock, Chris Brzuska, Russell W. F. Lai 9

Prfb
F

setupO()

assert pp = ⊥

(pp, td)←$ F .setup(1λ, 1`)
k ←$ Kλ

return pp

evalO(x)

assert pp 6= ⊥
if b = 0 then

y ← F .eval(pp, k, x)
if b = 1 then

if T [x] = ⊥ then

T [x]←$ Yλ,`

y ← T [x]

return y

wPrfaab
F,D

setupO()

assert pp = ⊥

(pp, td)←$ F .setup(1λ, 1`)
k′ ←$ K′

λ

δ ←$ D(1λ, 1`)
return (pp, td , δ)

evalO()

x←$ Xλ,`

assert pp 6= ⊥
if b = 0 then

y ← F .eval(pp, δ(k′, x), x)

if b = 1 then

if T [x] = ⊥ then

T [x]←$ Yλ,`

y ← T [x]

return (x, y)

Prgb
G

setupO()

assert pp = ⊥

(pp, td)←$ G.setup(1λ, 1`)

return pp

evalO()

x←$ Xλ,`

assert pp 6= ⊥
if b = 0 then

(y0, . . . , ye−1)← G.eval(pp, x)
if b = 1 then

(y0, . . . , ye−1)←$ Ye
λ,`

return (y0, . . . , ye−1)

Figure 1: Pseudorandomness of xPRFs (left), weak-pseudorandomness of xPRFs against
semi-honest extraction authorities under weak-input-related-key attacks (middle), and
pseudorandomness of xPRGs (right).

• the trapdoor td (implicitly) specifies a t-subset S = S(td) ⊆ Xλ,`, and

• for any k ∈ Kλ and x ∈ S(td), it holds that inv(td , x, eval(pp, k, x)) = k.

If S(td) ≡ X , then we simply say that F is extractable.

Remark 1. Weak pseudorandomness as specified in Figure 1 can only be achieved for
t-extractable PRFs where t/|X | is considerably small, such that a randomly sampled x is
only in S with negligible probability. More generally, for ` = `(λ), weak pseudorandomness
is not achievable for values t with t/|X | = 1/poly(λ).

Definition 9 (Key-Injectivity). An xPRF is key-injective if for ` = poly(λ),

Pr

[
∃k, k′ ∈ Kλ s.t. k 6= k′;x ∈ Xλ,` :

eval(pp, k, x) = eval(pp, k′, x))

∣∣∣∣∣ (pp, td)←$ setup(1λ, 1`)

]
= negl(λ).

Definition 10 (Puncturable xPRFs). An xPRF family F is puncturable if there addition-
ally exist the following deterministic, polynomial-time algorithms

• kS ← punct(pp, k,S): The puncturing algorithm takes the public parameters pp, a
key k ∈ Kλ, and a set S ⊆ Xλ,` and outputs a punctured key kS .

• y ← punctEval(pp, kS , x): The punctured evaluation algorithm takes the public
parameters pp, the punctured key kS , and a value x ∈ Xλ,`, and outputs y ∈ Yλ,`.

such that for all λ, ` ∈ N, (pp, td) ∈ setup(1λ, 1`), k ∈ Kλ, S ⊆ Xλ,`, x ∈ Xλ,` \ S,
kS ∈ punct(pp, k,S), it holds that eval(pp, k, x) = punctEval(pp, kS , x).

10 Simple Watermarking PRFs from Extractable PRGs

Punct-xPrfb
F

setupO(S)
assert pp = ⊥

(pp, td)←$ F .setup(1λ, 1`)
k ←$ Kλ, kS ← punct(pp, k,S)
return pp, kS

evalO(x)

assert pp 6= ⊥ ∧ x ∈ S
if b = 0 then y ← F .eval(pp, k, x)
if b = 1 then

if T [x] = ⊥ then T [x]←$ Yλ,`

y ← T [x]

return y

Figure 2: xPRF puncturing security.

Definition 11 (Puncturing Security). An xPRF family F is puncturably secure if for any
` = poly(λ) and any PPT adversary A,

AdvPunct−xPrfF,A (λ) :=

∣∣∣∣∣Pr
[
1 = A

setupO

evalO
−→ Punct-xPrf0

F

]
− Pr

[
1 = A

setupO

evalO
−→ Punct-xPrf1

F

]∣∣∣∣∣
is negligible, where Figure 2 defines Punct-xPrfb

F for b ∈ {0, 1}.

We define special families of xPRFs which vary depending on their functionality and
security properties.

Definition 12 (Watermarkable PRF). An xPRF family F is called a watermarkable
PRF if it is 1. extractable (Definition 8), 2. puncturable (Definition 10), 3. pseudorandom
(Definition 7), and 4. puncturably secure (Definition 11).

3.3 Robust Extractability
The compiler of Kim and Wu [KW19] from watermarkable to watermarking PRFs requires
the former to satisfy robust extractability, i.e., given a program (represented by a circuit)
which approximates the PRF with a hardwired key, the trapdoored extraction algorithm
should be able to extract the hardwired key. The following defines a measure of how well
programs approximate each other.

Definition 13 (Far and Close Programs). For two programs C and C ′ with domain X ,
we denote by SD(C,C ′) := Prx←$X [C(x) 6= C ′(x)] the distance between two programs C
and C ′. C and C ′ are δ-far if SD(C,C ′) ≥ δ. C and C ′ are ε-close if SD(C,C ′) ≤ ε.

To define and prove robust extractability, Kim and Wu [KW19, Remark 4.10] uses
notions that they call “Extract-and-Test” and “Generalized Candidate Testing”, i.e. given
the public parameters pp (but not the trapdoor td), a circuit C, and a PRF key k, one
can test whether C is close to eval(pp, k, .). We summarise these notions into a “public
testability” property where the only differences are syntactical.

Definition 14 (Public Testability). Let 0 ≤ ε < δ ≤ 1. Family F is publicly (ε, δ)-testable
if there exists a PPT algorithm test such that for all λ, ` ∈ N, (pp, td) ∈ setup(1λ, 1`),
k ∈ Kλ, and all programs C with domain Xλ:

Close programs. SD(C, eval(pp, k, .)) ≤ ε =⇒ Pr[test(pp, k, C)] = 1− negl(λ).

Far programs. SD(C, eval(pp, k, .)) ≥ δ =⇒ Pr[test(pp, k, C)] = negl(λ).

Estuardo Alpirez Bock, Chris Brzuska, Russell W. F. Lai 11

F .Extr(pp, td , C)

(x1, . . . , xt)← S(td)

for i ∈ [t] do

ki ← F .inv(td , xi, C(xi))

if Testε,δ(pp, ki, C) = 1

return ki

return ⊥

F .Testε,δ(pp, k, C)

thld← ε+ δ

2
, bnd← λ2 · (1

thld−ε
)2, ctr← bnd

for i ∈ [bnd] do
xi ←$ X
if C(xi) = F .eval(pp, k, xi) then ctr← ctr− 1

if ctr
bnd ≤ thld then return 1

else return 0

Figure 3: Construction of the Testε,δ and Extr algorithms.

RExtb
F

setupO()

(pp, td)←$ setup(1λ)

return pp

extrO(C)

if b = 0 then return extr(td , C)

if ∃! k : SD(C, eval(pp, k, .)) ≤ δ ∧ test(pp, k, C) = 1 then

return k

return ⊥

Figure 4: Robust extractability of xPRFs.

In Figure 3, we construct Testε,δ and Extr algorithms for any xPRF family F .

Lemma 2 (Public Testability). For any xPRF family F , any 0 ≤ ε < δ ≤ 1, F is publicly
(ε, δ)-testable.

Proof. We show that the F .Testε,δ algorithm constructed in Figure 3 satisfies the criteria for
(ε, δ)-public testability (Definition 14). F .Testε,δ used the fraction ctr

bnd as an approximation
of the distance of program C to F .eval(pp, k, ·). If the two programs are ε-close, then each
iteration of the for loop has independent probability ≤ ε of succeeding to substract 1 from
ctr. Hence, the sum has E

[ctr
bnd

]
≤ ε. Using a Chernoff bound, the probability that ctr

bnd
is greater than ε+δ

2 = ε + δ−ε
2 is negligible and F .Testε,δ returns 1 with overwhelming

probability. Analogously, when C is δ-far from F .eval(pp, k, ·), then a Chernoff bound
shows that the probability that F .Testε,δ returns 1 is negligible.

Definition 15 (Robust Extractability). Let RExtb
F be the experiment in Figure 4. Family

F has robust extractability if F is public (ε, δ)-testable for some 0 ≤ ε < δ ≤ 1 with some
PPT algorithm testε,δ and there exists a PPT extr algorithm such that for any PPT A,

AdvRExtF,A,extr,test(1
λ) :=

∣∣∣∣∣Pr
[
1 = A

setupO

extrO
−→ RExt0

F

]
− Pr

[
1 = A

setupO

extrO
−→ RExt1

F

]∣∣∣∣∣ = negl(λ).

Next, we show that any extractable xPRF must also have robust extractability. In
Appendix A, we handle a slightly more complicated case where the xPRF is only t-
extractable for t < |X | but not extractable.

Lemma 3. Let F be a xPRF family. If F is extractable (Definition 8), then it has robust
extractability (Definition 15).

Proof. By Lemma 2, F is (ε, δ)-publicly testable with the algorithm F .Testε,δ constructed
in Figure 3. The proof idea is implicit in the proof of [KW19, Theorem 4.26]. The proof
proceeds via a sequence of games, described below:

12 Simple Watermarking PRFs from Extractable PRGs

• Game 0: The real robust extractability game RExt0
F .

• Game 1: extrO queries are now answered using the following inefficient algorithm
IneffExtr: Evaluate C on all xi ∈ S to obtain pairs (xi, yi). For each of these pairs,
check whether there is a unique ki such that F .eval(pp, ki, xi) = yi. If yes, then run
Testε,δ(pp, ki, C), and if Testε,δ outputs 1, return ki.

• Game 2: extrO now performs the ideal test of whether the program is δ-close to
F .eval(pp, k, .). This game is precisely RExt1

F .

Below, we prove the computational indistinguishability of the games.

Game 0 to 1: We prove that the two games are statistically indistinguishable. First, we
note that extractability implies key-injectivity. Indeed, assume that y = eval(pp, k, x) =
eval(pp, k′, x), then by extractability, k = inv(td , x, y) = k′.

By key-injectivity and by the use of identical extraction points, with overwhelming
probability, the inefficient extraction algorithm considers the same set of candidate keys as
F .extr. Assuming this is the case, then both algorithms run Testε,δ which succeeds/fails
with the same probability in both games.

Game 1 to 2: Using a Chernoff bound, testing whether the program C is δ-close to
F .eval(pp, k, .) can be reasonably closely approximated by extracting from C on a poly-
nomial number of random points and testing the resulting keys. We use the two ways of
testing closeness equivalently in the following.

This proof is a hybrid argument over the number of queries which the adversary
makes. Before the first extraction query of the adversary, the adversary has information-
theoretically no information about the extraction points S which extrO uses. When the
adversary submits a close program C, it will be tested on uniformly random values (in
the view of the adversary) chosen from a spuer-polynomially-large space and thus, when
it is δ-close to F .eval(pp, k, .), the oracle will return k with overwhelming probability in
Game 2, and we can replace the extraction oracle with an ideal oracle which does not
sample extraction points. Thus, the answer to the first extraction query does not leak any
information to the adversary about the extraction points, and now, the argument can be
applied to the second query and so on.

4 Extractable PRG Constructions
We now construct extractable PRGs (xPRGS) from the computational Diffie-Hellman
(CDH) assumption in the random oracle model (Section 4.2), from the learning with
rounding (LWR) assumption (Section 4.3), and from trapdoor permutations (Section 4.4).
All three constructions have an arbitrary polynomial expansion factor e = e(λ), i.e. provide
an output which consists of e(λ) symbols. Note that the input alphabet Xλ,` and output
alphabet Yλ,` might be different. Since we want to compose extractable PRGs recursively
in a GGM tree, Xλ,` and Yλ,` need to be over the same alphabet, say Xλ,` = Σ`

λ and
Yλ,` = Σ`′

λ , and logYλ,` is bigger than logXλ,` at most by an additive factor, since else,
the output length would increase exponentially with the depth of the GGM tree.

4.1 Trapdoor Functions and Permutations
We recall the standard definition of trapdoor functions and permutations.

Definition 16 (Trapdoor Functions and Permutations). A trapdoor function (TDF) family
T with domains (Xλ,`)λ,`∈N and codomains (Yλ,`)λ,`∈N consists of three PPT algorithms
(setup, eval, inv) with the following syntax:

Estuardo Alpirez Bock, Chris Brzuska, Russell W. F. Lai 13

G.setup(1λ, 1`)
for i ∈ Ze do

(ppi, td i)←$ T .setup(1λ, 1`)
pp ← (pp0, . . . , ppe−1)

td ← (td0, . . . , tde−1)

return (pp, td)

G.eval(pp, x)
(pp0, . . . , ppe−1)← pp

for i ∈ Ze do

yi ← T .eval(ppi, x)

return (y0, . . . , ye−1)

G.inv(td , i, y)
(td0, . . . , tde−1)← td

x← T .inv(td i, y)

return x

Figure 5: Construction of xPRGs from TDFs.

• (pp, td) ←$ setup(1λ, 1`): The setup algorithm inputs 1λ and length parameter 1`

and outputs the public parameters pp and a trapdoor td .

• y ← eval(pp, x): The deterministic evaluation algorithm inputs the public parameters
pp and a preimage x ∈ Xλ,` and outputs an image y ∈ Yλ,`.

• x← inv(td , y): The deterministic inversion algorithm inputs a trapdoor td and an
image y ∈ Yλ,` and outputs a preimage x ∈ Xλ,`.

The family T is said to be correct if for any λ, ` ∈ N, (pp, td) ∈ setup(1λ, 1`), x ∈ Xλ,`,
it holds that inv(td , eval(pp, x)) = x. The family T is said to be a trapdoor permutation
(TDP) family if |Xλ,`| = |Yλ,`| for all λ, ` ∈ N. The rate r(λ) of the TDF is defined as
r(λ) := lim`→∞ log |Xλ,`|/ log |Yλ,`|.

Figure 5 constructs a simple xPRG by concatenating multiple instances of a TDF family.
The following functionality and efficiency properties are immediate.

Proposition 1. Let e ∈ N. The xPRG family G constructed in Figure 5 has expansion
factor e. Furthermore, if the TDF family T is correct, then G is extractable.

Definition 17 (e-Correlated Pseudorandomness). Let e ∈ N. The TDF family T is
said to be e-correlated-pseudorandom if the xPRG family G constructed in Figure 5 is
pseudorandom. We call a 1-correlated-pseudorandom TDF a trapdoor PRG.

4.2 xPRG from CDH
An e-correlated pseudorandom trapdoor function is trivially an extractable PRG, cf. Fig-
ure 5 and Definition 17. Thus, all we need to construct is a CDH-based e-correlated
pseudorandom trapdoor function, which is rate-1, i.e., referring to the property that
logYλ,` is bigger than logXλ,` at most by an additive constant.

Döttling et al. [DGH+19] gave a simple construction of TDFs over a prime-order cyclic
group G. In a nutshell, the TDF of Döttling et al. inputs x ∈ {0, 1}n and outputs
[u]← 〈x, [g]〉 and vi ← bl(〈x, [hi]〉)⊕xi for i ∈ [n], where [g] and [hi] are public vectors of
G elements and bl is a randomness extractor which outputs a single bit. In other words, an
output of the TDF is longer than its input by a single G element. Since log |G| = poly(λ)
is a fixed polynomial in λ independent of n, the TDF is rate-1. It is also not difficult to
prove that their TDF family is in fact e-correlated pseudorandom for any e = poly(λ).

Unfortunately, since we later compose extractable PRGs recursively in GGM style
to obtain extractable PRFs, the mismatching domains and codomains of the TDFs of
Döttling et al. constitute an obstacle. Instead, we would like the domains and codomains
of a TDF to fall into the same family. Our natural strategy is to modify the domains and
codomains of the TDFs so that they both contain tuples of H elements for some group
H, e.g. the binary field {0, 1}, any finite field F, or the group G itself. Executing this

14 Simple Watermarking PRFs from Extractable PRGs

G.setup(1λ, 1`)
td ← r ←$ Zq

[g]←$ G, [h]← r · [g]
h1 ←$H1,λ,`

h2 ←$H2,λ,`

pp ← ([g], [h], h1, h2)

return (pp, td)

G.eval(pp, [x] ∈ G`)

([g], [h], h1, h2)← pp

s← h1([x])

[u]← [g] · s
[v]← h2([h] · s) + [x]

return ([u], [v])

G.inv(td , ([u], [v]) ∈ G`+1)

r ← td

[w]← [v]− h2(r · [u])
return [w]

Figure 6: Construction of rate-1 trapdoor functions from CDH in the ROM.

strategy requires two changes to the construction. The first, simpler, change is to replace
the randomness extractor bl with one that outputs an H element, in case H 6= {0, 1}. The
second step, in case H 6= G, is to encode a G element by a k-tuple of H elements for some
k ∈ N, such that the set of encodings is of size negligibly close to |H|k. Although there
exist methods to encode G elements for some choice of G, e.g. [BHKL13], they often only
encode a (noticeable) subset of G and the number of encodings is practically but not
negligibly close to |H|k.8 Using a random oracle is, in principle, a good approach for an
encoding, but we need the encoding to be invertible.

Facing the above, we instead set H := G and let H1 = (H1,λ,`)λ,`∈N be a family of hash
functions (modelled as a random oracle) where each h1 ∈ H1,λ,` maps G` to Zq, where
(G, q, [1]) ∈ ggen(1λ). Additionally, to break the circular dependency of the secrecy of an
input [x] and the randomness s← h1([x]) used to mask [x], let H2 = (H2,λ,`) be a family
of hash functions (modelled as well as a random oracle) where each h2 ∈ H2,λ,`,G maps G
to G`. Our modified construction is shown in Figure 6.
Remark 2. The TDF construction in Figure 6 can be seen as the deterministic encryption
(DE) construction of [BBO07] where the public-key encryption scheme is instantiated with
the ElGamal encryption scheme and the random oracle is replaced by a universal hash
function. Alternatively, we can view it as a variant of the DE scheme of [BFO08], where
the message space {0, 1}` is replaced with G` and the specific universal hash function
mapping {0, 1}` to Zq is replaced with a general one which maps G` to Zq. The security
proof technique of their DE construction in the standard model relies on the domain being
{0, 1}` ⊆ Zq and fails when the domain is replaced by G`.

Theorem 1. Let e = poly(λ) and (G, q, [1])←$ ggen(1λ). If the CDH assumption holds
relative to (G, q, [1]), and the hash function families H1 and H2 are modeled as random
oracles, then the TDF family constructed in Figure 6 is e-correlated pseudorandom.

Proof. Let G denote the xPRG constructed in Figure 5 using the trapdoor function
from Figure 6. Suppose that A makes at most Q = poly(λ) queries to the evalO oracle.
We will index the queries to evalO by i ∈ [Q]. For j ∈ [e], let ([gj], [hj], hj,1, hj,2) denote
the public parameters of the j-th instance of the TDF. We write evalOj for the part of
evalO which computes the j-th output component. We reduce the security of the xPRG
from CDH by a two-layer hybrid argument. For i ∈ [Q], we define the first layer of hybrid
experiments as follows:

• Hybrid Hyb0: Identical to the Prg0
G experiment.

• Hybrid Hybi: Identical to Hybi−1, except that evalO answers the i-th query by
returning random samples from G`+1 for all e branches.

8There also exist methods, e.g. [BF01], which only work for very specific choices of G and achieve
negligible closeness.

Estuardo Alpirez Bock, Chris Brzuska, Russell W. F. Lai 15

• Hybrid HybQ: Identical to the Prg1
G experiment.

It suffices to prove that, for each i ∈ [Q], the hybrids Hybi−1 and Hybi are computationally
indistinguishable. To show this, we define the second-layer hybrid experiments:

• Hybrid Hybi,0: Identical to Hybi−1. In other words, on the first i− 1 queries, evalO
outputs a random sample from G`+1 for each branch. The remaining queries are
computed honestly.
In particular, on the i-th query, evalO proceeds as follows: It samples [x]←$ G` and
then, for each j ∈ [e], it fetches sj ← hj,1([x]) if hj,1([x]) is already programmed,
and otherwise samples sj ←$ Zq and program hj,1([x]) := sj . Also, it fetches [tj]←
hj,2([hj] ·sj) if hj,2([hj] ·sj) is already programmed, and otherwise samples [tj]←$ G`

and programs hj,2([hj] · sj) := [tj]. Finally, evalO outputs ([gi] · sj , [tj] + [x])j∈[e].

• Hybrid Hybi,1: Identical to Hybi,0, except that evalO implements the following
additional abortion logic: For any j ∈ [e], if hj,1([x]) is already programmed or if
hj,2([hj] · sj) is already programmed, abort.

• Hybrid Hybi,2: Identical to Hybi,1, except that the experiment aborts if, at any time
and for any j ∈ [e], random oracle hj,2 is queried on [hj] · sj .

• Hybrid Hybi,3: Identical to Hybi,2, except that the experiment aborts if, at any time
and for any j ∈ [e], random oracle hj,1 is queried on [x].

• Hybrid Hybi,4: Identical to Hybi,3, except that evalO answers the i-th query by
outputting a random sample of G`+1 on all branches.

• Hybrid Hybi,5: Identical to Hybi,4, except that all abort conditions are dropped. In
other words, this hybrid is identical to Hybi.

We show that the above second-layer hybrids are computationally indistinguishable.

Hybi,0 ≈s Hybi,1. We show that Hybi,0 and Hybi,1 are statistically close. First, we observe
that, conditioned on the event that, before the i-th query to evalO, [x] is never queried to
the random oracle hj,1 and [hj] ·sj is never queried to the random oracle hj,2 for any j ∈ [e],
the adversary’s views in Hybi,0 and Hybi,1 are identical. However, before the i-th query to
evalO, the adversary’s views in Hybi,0 and Hybi,1 are independent of [x] and (sj)j∈[e], and
thus the probability that the adversary queried hj,1 on [x] or hj,2 on [hj] · sj for any j ∈ [e]
before the j-th query to evalO is at most e · (poly(λ)/|G|` + poly(λ)/q) ≤ negl(λ), where
the poly(λ) factors hide the polynomial number of queries that the adversary makes.

Hybi,1 ≈c Hybi,2. We show that Hybi,1 and Hybi,2 are computationally indistinguishable
based on the CDH assumption. More precisely, we will apply the CDH assumption e times,
once per each j ∈ [e]. First, we observe that, before hj,2 is queried on [hj] · sj , the vector
[x] is information-theoretically hidden from the view of the adversary, and therefore the
probability of the adversary querying hj,1 on [x] before querying hj,2 on [hj] · sj is at most
poly(λ)/|G|` ≤ negl(λ).

Now, suppose that the adversary queries hj,2 on [hj] · sj before querying hj,1 on [x]
with non-negligible probability. We turn this adversary into a CDH solver. On input
a CDH instance (G, q, [1], [gi], [hj], [gi] · sj), simulate the hybrid experiment Hybi,j,1 or
Hybi,j,2 until either hj,1 is queried on [x] or the experiment returns, whichever is sooner.
Output a random query which was submitted to the hj,2 oracle.

Since the adversary queries hj,2 on [hj] · sj before querying hj,1 on [xi] with non-
negligible probability, one of the hj,2 oracle queries is the CDH solution [hj] · sj with
non-negligible probability, and conditioned on that the CDH solver picks this as its output
with probability at least 1/poly(λ).

16 Simple Watermarking PRFs from Extractable PRGs

G.setup(1λ, 1`)
(A, td)←$ TrapGen(1n, 1m, p, q)

B←$ Zn×`
q

pp ← (A,B)

return (pp, td)

G.eval(pp, (r, s) ∈ Zn+`
p)

(A,B)← pp

u← br ·Aep
v← br ·Bep + s mod p

return (u,v)

G.inv(td , (u,v) ∈ Zm+`
p)

r← LWEInvert(td ,u)

s← v − br ·Bep mod p

return (r, s)

Figure 7: Construction of an e-correlated, pseudorandom trapdoor functions from LWE.
See Lemma 1 for the algorithm TrapGen.

Hybi,2 ≈s Hybi,3. We show that Hybi,2 and Hybi,3 are statistically close, by an analogous
argument as before. To be precise, we realise that in these two hybrids the vector [x] is
information-theoretically hidden from the view of the adversary. Therefore, the probability
of the adversary querying hj,1 on [x] for any j ∈ [e] is at most e · (poly(λ)/|G|`) ≤ negl(λ).

Hybi,3 ≡ Hybi,4. These two hybrid games are functionally equivalent. Indeed, since [x]
and (sj)j∈[e] are information-theoretically hidden from the adversary, all components of
([gi] · sj , [tj] + [x])j∈[e] are independently and uniformly distributed.

Hybi,4 ≡ Hybi,5. These two hybrid games are statistically close. Indeed, since [x] and
(sj)j∈[e] are information-theoretically hidden from the adversary, the probability that the
adversary queries random oracle hj,1 on [x] or random oracle hj,2 on [hj] · sj for any j ∈ [e]
is at most e · (poly(λ)/|G|` + poly(λ)/q) ≤ negl(λ).

4.3 xPRG from LWR
We now provide an analogous lattice-based e-correlated pseudorandom TDF family in Fig-
ure 7. Our main idea is that an LWR function r 7→ brAep itself is already a trapdoor
function, and that the following extension yields a new, related trapdoor function with the
desired properties: Suppose f(x) is a trapdoor function, then we build another trapdoor
function f ′(x, x′) which first computes f(x) and then uses x as a secret key to encrypt x′.

Theorem 2. Let e = poly(λ). If the LWR assumption holds for (n, e · (m+ `), p, q,Zp),
then the TDF T constructed in Figure 7 is e-correlated pseudorandom.

Proof. Let G denote the xPRG constructed in Figure 5 using the TDF from Figure 7. We
proceed by a hybrid argument over the Q queries which A makes.

• Hybrid 1: Replace (Ai)i∈Ze
in pp by uniformly random matrices in Zn×m

q .

• Hybrid (2, k) for k ≤ [Q]: For the first k queries to evalO, replace (brk ·Aiep, (brk ·
Biep))i∈Ze

by a sample from U(Ze·(m+`)
p), where rk is part of the PRG seed xk =

(rk, sk) sampled for the k-th query.

By Lemma 1, Prg0
G and Hybrid 1 are statistically close in λ. Observe that Hybrid 1 is equal

to Hybrid (2, 0). For each k ∈ [Q], Hybrid (2, k− 1) and Hybrid (2, k) are computationally
indistinguishable due to the LWR assumption. Finally, Hybrid (2, Q) is identical to the
Prg1
G experiment.

4.3.1 On (not) using LWE instead of LWR for our xPRGs.

As mentioned earlier, since the LWR assumption is implied by the LWE assumption
(e.g. [BGM+16]), the TDF constructed in Figure 7 is ultimately based on LWE (and so
are the xPRGs we obtain from the TDF).

Estuardo Alpirez Bock, Chris Brzuska, Russell W. F. Lai 17

Since the LWE function (r, e) 7→ rA + e mod q is also a trapdoor function and is
pseudorandom (under the LWE assumption), a natural question is why we need to
specifically use LWR in Figure 7. The answer to this is that, if the LWR function is
replaced by the LWE function in Figure 7, then the resulting TDF is not e-correlated
pseudorandom for sufficiently large e.

Indeed, plugging the resulting TDF into the xPRG construction in Figure 5, an xPRG
output consists of LWE samples (rAi+e mod q)ei=1 with the same secret r and error e and
different matrices A1, . . . ,Ae. For sufficiently large e, the tuple (r, e) could be recovered
by linear algebra, hence violating pseudorandomness (even one-wayness).

The TDF based on the LWR function does not suffer from the same vulnerability
since, if we were to write r 7→ brAiep = rAi + ei mod q, where ei is the deterministic
error induced by rounding, an xPRG output would instead consist of LWR samples
(rAi + ei mod q)ei=1 with different error terms e1, . . . , ee.

4.3.2 GGM-based PRFs from LWR.

In the next section we will use our xPRGs for instantiating the GGM construction and thus
obtaining extractable PRFs. Thus for our xPRGs from LWR, we will obtain a GGM-based
PRF from LWR. Chuengsatiansup and Stehlé [CS19] construct a PRF from LWR, based as
well on the GGM. They obtain a PRG from a single LWR instance (instead of e instances)
and plug that PRG in the GGM construction. The authors also provide concrete parameter
instantiations for adjusting the input-output rate of the PRGs and thus obtaining optimal
efficiency in the GGM construction.

The LWR-based PRGs presented in [CS19] are certainly simpler than our LWR-based
(x)PRGs obtained from the construction presented in this section. We namely concatenate
two or more of the LWR-based TDF described in Figure 7 for obtaining a PRG with the
desired e-expansion factor (see Figure 5). The reason why we cannot use a single LWR
instance for each PRG in the GGM as done in [CS19] is that we want our final GGM-based
PRF to be extractable, i.e. a GGM output and the trapdoor should allow to go back to the
seed of the initial PRG in the tree. We can achieve this by going backwards through the
GGM and extracting the seed from each PRG in the tree. Our PRG outputs correspond
to concatenated TDF-outputs, whereby all trapdoors are instantiated with the same input
(see Figure 5). Thus, the seed of the PRGs in the tree need to come from complete TDF
outputs so that once that seed is recovered, that value can be used for going back to the
input of the TDF used in the previous PRG.

4.4 xPRG from TDP
The Goldreich-Levin hardcore bit [GL89] allows to build a PRG from any one-way permu-
tation. We here re-state their lemma for a keyed trapdoor permutation.

Lemma 4 (Goldreich-Levin). If Π.(setup, eval, inv) is a TDP (Definition 16) with Xλ =
Yλ = {0, 1}λ, then G.(setup, eval, inv) is a trapdoor PRG (Definition 17) with domain
Xλ = {0, 1}2λ and codomain Yλ = {0, 1}2λ+1, where G.setup = Π.setup, G.eval(pp, x||r) :=
Π.eval(pp, x)||r||

⊕n
i=1 xi · ri, and G.inv(td , y||r||b) := Π.inv(td , y)||r.

By iterating the PRG, we obtain a PRG which expands its input by an arbitrary
polynomial p(n), see Goldreich [Gol01, Theorem 3.3.3] for a proof.

Lemma 5 (PRG Length-Extension). Let Π.(setup, eval, inv) be a TDP (Definition 16),
G.(setup, eval, inv) be the resulting trapdoor PRG from Lemma 4, and let p = p(λ) > 2λ
and t = t(λ) = p(λ) − 2λ be polynomials, then G′.(setup, eval, inv) is a trapdoor PRG
(Definition 17) with domain Xλ = {0, 1}2λ and comain Yλ = {0, 1}p, where G′.setup =
G.setup = Π.setup and Figure 8 defines G′.eval and G′.inv.

18 Simple Watermarking PRFs from Extractable PRGs

G′.eval(pp, x||r)
x(0) ← x

for i ∈ [t] do

x(i)||r||zi ← G.eval(pp, x(i−1)||r)

return x(t)||r||z1|| . . . ||zt

G′.inv(td , y||r||z1|| . . . ||zt)
x(p) ← y

for i ∈ [t] do

x(t−i) ← Π.inv(td , x(t−i+1))

return x(0)

Figure 8: Construction of G′.eval and G′.inv.

It is immediate that G′.(setup, eval, inv) is actually a 1xPRG up to syntactical changes.

Lemma 6 (1xPRG). Let Π.(setup, eval, inv) be a TDP (Definition 16), G′.(setup, eval, inv)
be the resulting trapdoor PRG from first applying Lemma 4 and subsequently Lemma 5
using p(λ) = e · 2λ. Interpreting each 2λ chuck of the output of G′.eval as a sym-
bol, then G′1x.(setup, eval, inv) is a 1xPRG, where G′1x.(setup, eval) := G′.(setup, eval),
G′1x.inv(td , 1, y||r) := G′1x.inv(td , y||r||0|| . . . ||0), and G′1x.inv(·, i, ·) is defined arbitrarily
for i > 1.

In Figure 9, we show how to build an extractable PRG G with domains and codomains
Xλ = Yλ = Σe

λ from a 1-extractable PRG G with domains and codomains X ′λ = Y ′λ = Σλ,
where Σλ is equipped with group operation +.

Lemma 7 (xPRG). If G′ is a 1xPRG with Xλ = Σ and Yλ = Σe, then G (defined
in Figure 9) is an xPRG with domain Σe

λ and range Σe2

λ . I.e. from a 1xPRG with
expansion factor e, we build an xPRG with expansion factor e.

Proof. Extractability. We show that for all i ∈ Ze, G.inv(td , i, yi) indeed successfully
returns a pre-image. Firstly, for k ∈ [j − 1], the values xi+k have already been defined in
previous loops and thus, G.inv is well-defined. Secondly, the j-th symbol of yi is computed
as g′0(xi+j) +

∑j
k=1 g

′
j−k(xi+k), and thus, substracting from it

∑j
k=1 g

′
j−k(xi+k) yields

g′j(xi+j) so that running it through G′.inv(td , ·) yields xi+j by correctness of G′.

Pseudorandomness. Pseudorandomness reduces to pseudorandomness of G′. For all
0 ≤ i, j ≤ e− 1, denote zi,j := g′j(xi). Then, we can re-write G′.eval(x) as first computing
(zi,0, .., zi,e−1)← G′.eval(xi) and then computing yi[j]← zi,j + zi+1,j−1 + ..+ zi+j,0. Note
that the xi are now only used to compute the (zi,0, .., zi,e−1) and nowhere else. Thus, to
replace all zi,j by uniformly random values, we can proceed via a hybrid argument over
all e invocations of G′: In the i-th hybrid game, for all i′ < i, we sample (zi′,0, .., zi′,e−1)
uniformly at random, and for all i′ ≥ i, we sample xi′ and compute (zi′,0, .., zi′,e−1) ←
G′.eval(xi′). The 0-th hybrid corresponds to the construction G.eval while in the e-th
hybrid, all zi,j have been replaced by random values as desired. The reduction from hybrid
i to i + 1 to G′ security embeds its input challenge as (zi+1,0, .., zi+1,e−1), samples all
(zi′,0, .., zi′,e−1) uniformly random for i′ ≤ i and for i′ > i+1, it samples xi′ and computes
(zi′,0, .., zi′,e−1)← G′.eval(xi′). The reduction emulates both hybrids perfectly.

Now that we have replaced all zi,j by uniformly random strings, we argue that the
returned distribution is already uniformly random. To see this, consider the following
information-theoretic argument. Since yi[j] = zi,j + zi+1,j−1 + ..+ zi+j,0 for all 0 ≤ i, j ≤
e − 1, we can observe that terms zi,j with j = e − 1 only ever in yi[e − 1], because all
other sums only sum over smaller j-values. Since for all i, the term zi,e−1 is only used
in one sum, namely in yi[e − 1], the sum yi[e − 1] = zi,e−1 + zi+1,e−2 + .. + zi+e−1,0
is uniformly random and independent of everything else, since it sums the term zi,e−1
which is uniformly random and independent of everything else. Therefore, we can replace
yi[e−1] = zi,e−1+ zi+1,e−2+ ..+ zi+e−1,0 by yi[e−1] = zi,e−1 while maintaining the same

Estuardo Alpirez Bock, Chris Brzuska, Russell W. F. Lai 19

G.eval(pp, x ∈ Σe
λ)

(x0, . . . , xe−1)← x

(g′0, . . . , g
′
e−1)← G′.eval(·)

for i ∈ Ze do

yi ←


g′0
g′1 g′0
...

...
. . .

g′e−1 g′e−2 . . . g′0




xi

xi+1

...
xi+e−1


return (y0, . . . ,ye−1)

G.inv(td , i, y ∈ Σe
λ)

(y0, . . . , ye−1)← y

(g′0, . . . , g
′
e−1)← G′.eval(·)

for j ∈ Ze do

xi+j ← G′.inv

(
td , 1, yj −

j∑
k=1

g′j−k(xi+k)

)
x← (x0, . . . , xe−1)

return x

Figure 9: Construction of xPRGs from 1xPRGs, where G.setup := G′.setup. Subscripts
arithmetic are modulo e. g′j denotes the function returning the j-th output of G′.eval(·).
Analogous to matrix multiplication, the expression assigned to yi means that the j-th
entry of yi is given by g′j(xi) + g′j−1(xi+1) + . . .+ g′0(xi+j).

F .setup(1λ)
for i ∈ Zd do

(ppi, td i)←$ Gi.setup(1λ)
pp ← (pp0, . . . , ppd−1)

td ← (td0, . . . , tdd−1)

return (pp, td)

F .eval(pp, k, x)
(pp0, . . . , ppd−1)← pp

(x0, . . . , xd−1)← x

k0 ← k

for i = 0, 1, . . . , d− 1 do

ki+1 ← Gi.eval(ppi, xi, ki)

return kd

F .inv(td , x, y)
(td0, . . . , tdd−1)← td

(x0, . . . , xd−1)← x

kd ← y

for i = d, d− 1, . . . , 1 do

ki−1 ← Gi.inv(td i, xi, ki)

return k0

Figure 10: Construction of an xPRF F with key space X0, domain Z`
d, and codomain Xd

from xPRGs (Gi)i∈Zd
where Gi has domain Xi and codomain Xi+1.

output distribution. After this step, zi,e−2 is only used in one sum, namely in yi[e− 2]
and thus, we can replace yi[e− 2] = zi,e−2 + zi+1,e−3 + ..+ zi+e−2,0 by yi[e− 2] = zi,e−2
while maintaining the same output distribution. Continuing this process, we eventually
end up defining yi[j] = zi,j for 0 ≤ i, j ≤ e − 1, all of which are uniformly random and
independent values.

As a corollary of Lemmas 4 to 7, we obtain the following theorem.

Theorem 3 (xPRG from TDP). Let (setup, eval, inv) be a TDP and e = poly(λ). The
familyG constructed in Figure 9 is an xPRG with domain Σe

λ, range Σe2

λ and expansion
factor e, where Σλ = {0, 1}e.

5 Watermarkable PRF Construction
We now construct watermarkable PRFs from xPRGs, e.g. those provided in Section 4. The
core idea is to use the xPRG in a GGM tree [GGM84] to inherit the pseudorandomness
and puncturability of GGM. At the same time, the extraction properties of the xPRG
carry over to the watermarkable PRF.

Theorem 4. Let d = poly(λ). For i ∈ Zd, let Gi be an xPRG with input domain Xλ,i and,
for i ∈ Zd−1, let the output domain be Yλ,i = X κ

λ,i+1, and for i = d − 1, let Yλ,i = Σκ.
Then F (Figure 10) is a watermarkable PRF with key space Xλ,0, input domain {0, 1}`·log(κ)
and output domain Σ.

20 Simple Watermarking PRFs from Extractable PRGs

punctEval(pp, kS , x
∗)

(K0, . . . ,Kd−1)← kS , j ← −1
for i = 0, 1, . . . , d− 1 do

if j = −1 ∧ x∗
i 6= xi then j ← i

if j = −1 then abort

kj ← kx0,...,xi−1,x
∗
j

for i = j + 1, . . . , d− 1 do

ki+1 ← Gi.eval(ppi, xi, ki)

return kd

Figure 11: Description of punctEval.

Proof. We show that F is extractable (Definition 8), puncturable (Definition 10), pseudo-
random (Definition 7), and puncturably secure (Definition 11).

Syntax and extractability. The algorithms are well-defined and satisfy extractability
(Definition 8), which demands that for any key k ∈ Xλ,0, any input x ∈ {0, 1}`·log(κ), it
holds that inv(td , x, eval(pp, k, x)) = k. Indeed, this follows direcly from the extractability
property of the xPRGs G0, . . . ,Gd−1.

Puncturability. The puncturing is standard for the GGM tree and only included here for
completeness. We first describe the puncturing procedure for puncturing at a singleton
S := {x} and then explain how to puncture at general sets.

The key punctured at x = (x0, . . . , xd−1) consists of the following d sets Ki :=
{kx0,...,xi−1,w∗ |w∗ ∈ {0, 1}log(κ) \ {xi}} for i ∈ Zd, where kw := G0.eval(pp0, w, k0) for
w ∈ {0, 1}log(κ) and kx0,...,xi−1,w := Gi.eval(ppi, w, k0) for w ∈ {0, 1}log(κ). In order
to evaluate the PRF on a punctured key (K0, . . . ,Kd−1) and input x∗ 6= x, parse
x∗ = (x∗0, . . . , x

∗
d−1), take the first j such that x∗j 6= xj (which exists since x∗ 6= x),

retrieve kx0,...,xj−1,x∗
j

and continue evaluation from there, see Figure 11.

Pseudorandomness. The security reduction for Theorem 4 is the standard GGM security
reduction [GGM84]. The existence of trapdoors does not affect the reduction since the
adversary is not given the trapdoors. The reduction is slightly generalized to expansion κ
instead of just a length-doubling PRG which has κ = 2.

Puncturing Security. Puncturing security is also the standard proof for puncturing security
of GGM, see, e.g. [GGM84], again generalized to expansion κ. It applies the PRG security
once on each layer to show that all keys in Ki are indistinguishable from uniformly random
keys from the appropriate key spaces.

Acknowledgements
We thank the anonymous reviewers of CiC for insightful feedback and discussions. Chris
Brzuska and Russell W. F. Lai are supported by the Research Council of Finland grants
358950 and 358951 respectively.

References
[AAB+19] Estuardo Alpirez Bock, Alessandro Amadori, Joppe W. Bos, Chris Brzuska,

and Wil Michiels. Doubly half-injective PRGs for incompressible white-box

Estuardo Alpirez Bock, Chris Brzuska, Russell W. F. Lai 21

cryptography. In Mitsuru Matsui, editor, CT-RSA 2019, volume 11405 of
LNCS, pages 189–209. Springer, Heidelberg, March 2019. doi:10.1007/97
8-3-030-12612-4_10.

[BBO07] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and
efficiently searchable encryption. In Alfred Menezes, editor, CRYPTO 2007,
volume 4622 of LNCS, pages 535–552. Springer, Heidelberg, August 2007.
doi:10.1007/978-3-540-74143-5_30.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
Weil pairing. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 213–229. Springer, Heidelberg, August 2001. doi:10.1007/3-540-4
4647-8_13.

[BFO08] Alexandra Boldyreva, Serge Fehr, and Adam O’Neill. On notions of security
for deterministic encryption, and efficient constructions without random
oracles. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 335–359. Springer, Heidelberg, August 2008. doi:10.1007/978-3-5
40-85174-5_19.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Niko-
laenko, Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy.
Fully key-homomorphic encryption, arithmetic circuit ABE and compact
garbled circuits. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 533–556. Springer, Heidelberg,
May 2014. doi:10.1007/978-3-642-55220-5_30.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. J. ACM, 59(2):6:1–6:48, 2012. doi:10.1145/2160158.2160159.

[BGM+16] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon
Rosen. On the hardness of learning with rounding over small modulus. In
Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume
9562 of LNCS, pages 209–224. Springer, Heidelberg, January 2016. doi:
10.1007/978-3-662-49096-9_9.

[BHKL13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange.
Elligator: elliptic-curve points indistinguishable from uniform random strings.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
CCS 2013, pages 967–980. ACM Press, November 2013. doi:10.1145/2508
859.2516734.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions
and lattices. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 719–737. Springer, Heidelberg,
April 2012. doi:10.1007/978-3-642-29011-4_42.

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and
Daniel Wichs. Watermarking cryptographic capabilities. In Daniel Wichs and
Yishay Mansour, editors, 48th ACM STOC, pages 1115–1127. ACM Press,
June 2016. doi:10.1145/2897518.2897651.

[CS19] Chitchanok Chuengsatiansup and Damien Stehlé. Towards practical GGM-
based PRF from (module-)learning-with-rounding. In Kenneth G. Paterson
and Douglas Stebila, editors, SAC 2019, volume 11959 of LNCS, pages 693–713.
Springer, Heidelberg, August 2019. doi:10.1007/978-3-030-38471-5_28.

https://doi.org/10.1007/978-3-030-12612-4_10
https://doi.org/10.1007/978-3-030-12612-4_10
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-540-85174-5_19
https://doi.org/10.1007/978-3-540-85174-5_19
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1007/978-3-662-49096-9_9
https://doi.org/10.1007/978-3-662-49096-9_9
https://doi.org/10.1145/2508859.2516734
https://doi.org/10.1145/2508859.2516734
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1145/2897518.2897651
https://doi.org/10.1007/978-3-030-38471-5_28

22 Simple Watermarking PRFs from Extractable PRGs

[DGH+19] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Kevin Liu, and Giulio
Malavolta. Rate-1 trapdoor functions from the Diffie-Hellman problem. In
Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part III,
volume 11923 of LNCS, pages 585–606. Springer, Heidelberg, December 2019.
doi:10.1007/978-3-030-34618-8_20.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic
applications of random functions. In G. R. Blakley and David Chaum, editors,
CRYPTO’84, volume 196 of LNCS, pages 276–288. Springer, Heidelberg,
August 1984. doi:10.1007/3-540-39568-7_22.

[GKWW21] Rishab Goyal, Sam Kim, Brent Waters, and David J. Wu. Beyond soft-
ware watermarking: Traitor-tracing for pseudorandom functions. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III, vol-
ume 13092 of LNCS, pages 250–280. Springer, Heidelberg, December 2021.
doi:10.1007/978-3-030-92078-4_9.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-
way functions. In 21st ACM STOC, pages 25–32. ACM Press, May 1989.
doi:10.1145/73007.73010.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1.
Cambridge University Press, Cambridge, UK, 2001.

[HMW07] Nicholas Hopper, David Molnar, and David Wagner. From weak to strong
watermarking. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS,
pages 362–382. Springer, Heidelberg, February 2007. doi:10.1007/978-3-5
40-70936-7_20.

[KW17] Sam Kim and David J. Wu. Watermarking cryptographic functionalities from
standard lattice assumptions. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 503–536. Springer,
Heidelberg, August 2017. doi:10.1007/978-3-319-63688-7_17.

[KW19] Sam Kim and David J. Wu. Watermarking PRFs from lattices: Stronger
security via extractable PRFs. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 335–366.
Springer, Heidelberg, August 2019. doi:10.1007/978-3-030-26954-8_11.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer, Heidelberg,
April 2012. doi:10.1007/978-3-642-29011-4_41.

[MW22] Sarasij Maitra and David J. Wu. Traceable PRFs: Full collusion resistance
and active security. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe,
editors, PKC 2022, Part I, volume 13177 of LNCS, pages 439–469. Springer,
Heidelberg, March 2022. doi:10.1007/978-3-030-97121-2_16.

[QWZ18] Willy Quach, Daniel Wichs, and Giorgos Zirdelis. Watermarking PRFs
under standard assumptions: Public marking and security with extraction
queries. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II,
volume 11240 of LNCS, pages 669–698. Springer, Heidelberg, November 2018.
doi:10.1007/978-3-030-03810-6_24.

https://doi.org/10.1007/978-3-030-34618-8_20
https://doi.org/10.1007/3-540-39568-7_22
https://doi.org/10.1007/978-3-030-92078-4_9
https://doi.org/10.1145/73007.73010
https://doi.org/10.1007/978-3-540-70936-7_20
https://doi.org/10.1007/978-3-540-70936-7_20
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-030-26954-8_11
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-030-97121-2_16
https://doi.org/10.1007/978-3-030-03810-6_24

Estuardo Alpirez Bock, Chris Brzuska, Russell W. F. Lai 23

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005. doi:10.1145/1060590.1060603.

[YAL+19] Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu. Collusion
resistant watermarking schemes for cryptographic functionalities. In Steven D.
Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume
11921 of LNCS, pages 371–398. Springer, Heidelberg, December 2019. doi:
10.1007/978-3-030-34578-5_14.

[YAYX20] Rupeng Yang, Man Ho Au, Zuoxia Yu, and Qiuliang Xu. Collusion resistant
watermarkable PRFs from standard assumptions. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS,
pages 590–620. Springer, Heidelberg, August 2020. doi:10.1007/978-3-0
30-56784-2_20.

A From t-Extractability to Robust Extractability
For xPRFs which are only t-extractable for t < |X | to achieve robust extractability [KW19],
they need to additionally satisfy a property which we call extraction-points hiding, i.e. the
public parameters statistically hide S(td).

Definition 18 (Extraction-Points Hiding). A t-extractable xPRF family F is extraction-
points hiding if for ` = poly(λ) and any (unbounded) adversary A∣∣∣∣∣∣∣

Pr
[
A(pp,S) = 1

∣∣ (pp, td)←$ F .setup(1λ, 1`), S := S(td)
]

− Pr

[
A(pp,S) = 1

∣∣∣∣ (pp, td)←$ F .setup(1λ, 1`), S ←$

(
Xλ,`

t

)]∣∣∣∣∣∣∣ = negl(λ)

where S ←$
(Xλ,`

t

)
denotes the sampling of a random t-subset from Xλ,`.

Lemma 8 (Alternative to Lemma 3). Let F be a xPRF family. If t = poly(λ),
t/|Xλ,`| = negl(λ) for any ` = poly(λ), and F is key-injective (Definition 9), t-extractable
(Definition 8), and extraction-points hiding (Definition 18), then F has robust extractability
(Definition 15).

Proof. By Lemma 2, F is (ε, δ)-publicly testable with the algorithm F .Testε,δ constructed
in Figure 3. The proof idea is implicit in the proof of [KW19, Theorem 4.26]. The proof
proceeds via a sequence of games, described below:

• Game 0: The real robust extractability game RExt0
F .

• Game 1: The extraction points S are now sampled uniformly at random, as in the
second distribution of Definition 18.

• Game 2: extrO queries are now answered using the following inefficient algorithm
IneffExtr: Evaluate C on all xi ∈ S to obtain pairs (xi, yi). For each of these pairs,
check whether there is a unique ki such that F .eval(pp, ki, xi) = yi. If yes, then run
Testε,δ(pp, ki, C), and if Testε,δ outputs 1, return ki.

• Game 3: extrO now performs the ideal test of whether the program is δ-close to
F .eval(pp, k, .).

• Game 4: The ideal robust extractability game RExt1
F . Extraction points are now

defined by the trapdoor, as in the first distribution of Definition 18.

https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-030-34578-5_14
https://doi.org/10.1007/978-3-030-34578-5_14
https://doi.org/10.1007/978-3-030-56784-2_20
https://doi.org/10.1007/978-3-030-56784-2_20

24 Simple Watermarking PRFs from Extractable PRGs

Below, we prove the computational indistinguishability of the games.

Game 0 to 1: The two games are statistically indistinguishable due to (statistical) extraction-
point hiding.

Game 1 to 2: We prove that the two games are statistically indistinguishable. By key-
injectivity and by the use of identical extraction points, with overwhelming probability,
the inefficient extraction algorithm considers the same set of candidate keys as F .extr.
Assuming this is the case, then both algorithms run Testε,δ which succeeds/fails with the
same probability in both games.

Game 2 to 3: First, observe that using a Chernoff bound testing whether the program C
is δ-close to F .eval(pp, k, .) can be reasonably closely approximated by extracting from C
on a polynomial number of random points and testing the resulting keys. We use the two
ways of testing closeness equivalently in the following.

This proof is a hybrid argument over the number of queries which the adversary
makes. Before the first extraction query of the adversary, the adversary has information-
theoretically no information about the extraction points S which extrO uses. When the
adversary submits a close program C, it will be tested on uniformly random values (in
the view of the adversary) chosen from a spuer-polynomially-large space and thus, when
it is δ-close to F .eval(pp, k, .), the oracle will return k with overwhelming probability in
Game 2, and we can replace the extraction oracle with an ideal oracle which does not
sample extraction points. Thus, the answer to the first extraction query does not leak any
information to the adversary about the extraction points, and now, the argument can be
applied to the second query and so on.

Game 3 to 4: This step is the same as the hop from Game 1 to 0.

B The Kim-Wu Transformations
We summarise, in our notation, the transformations given by Kim and Wu [KW19], from
watermarkable to mark- and message-embedding watermarking PRFs.

B.1 Definitions for Watermarking PRFs
Definition 19 (Watermarking Pseudorandom Functions). A (secretly markable and
extractable) watermarking pseudorandom function family F with message spaces (Mλ)λ∈N,
key spaces (Kλ)λ∈N, domains (Xλ,`)λ,`∈N and codomains (Yλ,`)λ,`∈N consists of four PPT
algorithms (setup, eval,mark, extr) with the following syntax:

• (pp, td)←$ setup(1λ, 1`): The setup algorithm takes 1λ and length parameter 1` as
input and outputs the public parameters pp and a trapdoor td .

• y ← eval(pp, k, x): The deterministic evaluation algorithm takes pp, a secret key
k ∈ Kλ, and a value x ∈ Xλ,` and outputs an image y ∈ Yλ,`.

• C ← mark(td , k,m): The watermarking algorithm inputs the trapdoor td , a PRF
key k ∈ Kλ, and a message m ∈Mλ and outputs a circuit C : Xλ,` → Yλ,`.

• m← extr(td , C): The mark extraction algorithm inputs the trapdoor td and a circuit
C : Xλ,` → Yλ,` and outputs a message m ∈Mλ ∪ {⊥}.

If |Mλ| ≥ 2 for all λ then we say that F is a message-embedding watermarking PRF
family. If |Mλ| = 1 for all λ then we say that F is a mark-embedding watermarking PRF
family. In this case, we drop the input m from the mark algorithm. Similarly, extr outputs
either marked or unmarked rather than a message m.

Estuardo Alpirez Bock, Chris Brzuska, Russell W. F. Lai 25

WMF
setupO()

assert pp = ⊥

(pp, td)←$ setup(1λ, 1`)

ctr ← 0

return pp

markO(m, k)

assert pp 6= ⊥
ctr ← ctr + 1

Cctr ← mark(td , k,m)

return Cctr

extrO(C)

assert pp 6= ⊥
ret. extr(td , C)

challO(m)

assert Ĉ = ⊥
m̂← m

k̂ ←$ Kλ

Ĉ ← mark(td , k̂, m̂)

return Ĉ

Figure 12: Watermarking game to define unforgeability and unremoveability for mark-
embedding and message-embedding watermarking PRFs. For mark-embedding watermark-
ing, the oracles and algorithms do not take a message m as input.

Correctness and pseudorandomness. Correctness requires that the watermarked
program C ← mark(td , k,m) (or C ← mark(td , k) for mark-embedding schemes) behaves
as eval(pp, k, ·) except for a negligible fraction of the domain. Pseudorandomness requires
that the marked program is still indistinguishable from a random function when given
black-box access to it, even when the distinguisher has access to an extraction oracle.
Recall that we do not consider pseudorandomness against the authority.

Unforgeability and Unremoveability. We recall unforgeability and unremoveability,
which are the two main security properties for watermarking PRFs. Unremoveability states
that the adversary cannot remove the message (or mark) from the program without sub-
stantially sacrificing the program’s functionality. Unforgeability states that the adversary
cannot create new marked programs.

Concretely, both unremoveability and unforgeability are defined with respect to a
watermarking game WMF (cf. Frg. 12). For unremoveability, the adversary gets a challenge
program Ĉ and tries to create a program C∗ with a similar functionality as Ĉ, but not
containing the embedded message (resp. mark). The formal definitions is as follows.

Definition 20 (ε-unremoveability). A message-embedding watermarking pseudorandom
function family F is ε-unremovable if, for all PPT adversaries A, the probability

Pr
[
(C∗, Ĉ) ε-close ∧ extr(td , C∗) 6= m̂

]
is negligible, where

C∗ ←$ A

setupO

markO

extrO

challO
−→ WMF ,

and Ĉ and m̂ are defined by A’s query to challO. Analogously, a mark-embedding
watermarking pseudorandom function family F is ε-unremovable if, for all PPT adversaries
A, the probability

Pr
[
(C∗, Ĉ) ε-close ∧ extr(td , C∗) = unmarked

]
is negligible, where

C∗ ←$ A

setupO

markO

extrO

challO
−→ WMF ,

and Ĉ is defined by A’s query to challO.

26 Simple Watermarking PRFs from Extractable PRGs

F ′.setup(1λ)
(ppF , tdF)←$ F .setup(1λ)

ppG ←$ G.setup(1λ)
kG ←$ G.Kλ

return ((ppF , ppG), (tdF , kG))

F ′.eval(pp, k, x)
return F .eval(ppF , k, x)

F ′.mark(td , k)

for i ∈ [λ] do

xk,i ← G.eval(ppG , kG , (k, i))

S ← {xk,i : i ∈ [λ]}
kS ← F .punct(ppF , k,S)
C(·)← F .punctEval(ppF , kS , ·)
return C

F ′.extr(td , C)

k ← F .extr(td , C)

for i ∈ [λ] do

xk,i ← G.eval(ppG , kG , (k, i))

if F .eval(ppF , k, xk,i) = C(xk,i)

then return unmarked

return marked

Figure 13: Construction of mark-embedding watermarking PRF F ′ from a watermarkable
PRF F and an ordinary PRF G.

For unforgeability, the adversary does not make any query to the challenge oracle
but instead tries to come up with a new, forged marked program C∗. The adversary is
considered successful if it creates a program C∗ that is far from all marked programs
C1, . . . , C` that it received from the markO oracle, but is considered marked by extr.

Definition 21 (δ-unforgeability). A message-embedding watermarking pseudorandom
function family F is δ-unforgeable if for all PPT adversaries A, the probability

Pr[∀i ∈ [ctr], (C∗, Ci) δ-far ∧ extr(td , C∗) 6= ⊥]

is negligible, where

C∗ ←$ A

setupO

markO

extrO
−→ WMF ,

and ctr and Ci are defined by A’s queries to markO. Analogously, a mark-embedding
watermarking pseudorandom function family F is δ-unforgeable if for all PPT adversaries
A, the probability

Pr[∀i ∈ [ctr], (C∗, Cctr) δ-far ∧ extr(td , C∗) = marked]

is negligible, where

C∗ ←$ A

setupO

markO

extrO
−→ WMF ,

and ctr and Ci are defined by A’s queries to markO.

B.2 From Watermarkable to Watermarking
We here recall a simple, elegant transformation by Kim and Wu [KW19] to transform,
in our terminologies, a watermarkeable PRF into a mark-embedding watermarking PRF.
In order to embed a mark into a PRF key k, the mark algorithm punctures k at λ many
points xk,1, . . . , xk,λ which are deterministically computed from k (using a standard PRF
keyed with a private watermarking key). To determine whether the program is marked or
not, the extr algorithm first recovers k, re-computes xk,1, . . . , xk,λ and checks whether the
given program behaves as eval(k, ·) or not. See Figure 13 for a formal description.

Then, in Figure 14, we recall a generalisation of the transform, also presented in
[KW19], which turns a watermarkable PRF into a message-embedding watermarking
PRF. The idea, here, is that for every message bit, 2λ many points are derived and the
watermarkeable PRF key is punctured on half of them, depending on the value of the
message bit. Analogously, the extr algorithm then recovers the message bit by bit.

Estuardo Alpirez Bock, Chris Brzuska, Russell W. F. Lai 27

F ′.setup(1λ)
(ppF , tdF)←$ F .setup(1λ)

ppG ←$ G.setup(1λ)
kG ←$ G.Kλ

return ((ppF , ppG), (tdF , kG))

F ′.eval(pp, k, x)
return F .eval(ppF , k, x)

F ′.mark(td , k,m)

for (i, j) ∈ [λ]2 do

xk,i,j,mj ← G.eval(ppG , kG , (k, i, j,mj))

S ←
{
xk,i,j,mj : (i, j) ∈ [λ]2

}
kS ← F .punct(ppF , k,S)
C(·)← F .punctEval(ppF , kS , ·)
return C

F ′.extr(td , C)

k ← F .extr(td , C)

for i, j, b ∈ [λ]2 × {0, 1} do
xk,i,j,b ← G.eval(ppG , kG , (k, i, j, b))

for j, b ∈ [λ]× {0, 1} do
Nj,b ← |{i : F .eval(ppF , k, xk,i,j,b) 6= C(xk,i,j,b)}|
if ∃j, Nj,0, Nj,1 < 2λ/3 ∨Nj,0, Nj,1 > 2λ/3

then return ⊥
for j ∈ [λ] do

mj ← arg max
b∈{0,1}

{Nj,b}

return m

Figure 14: Construction of message-embedding watermarking PRF F ′ with message space
M = {0, 1}λ from a watermarkable, puncturable PRF F and an ordinary PRF G.

	Introduction
	Constructions from Obfuscation and Lattices
	Extractable PRFs
	Our Contributions
	Related Work

	Preliminaries
	Groups
	Lattices

	Extractable PRFs and PRGs
	Extractable Pseudorandom Generators (xPRG)
	Extractable Pseudorandom Functions (xPRF)
	Robust Extractability

	Extractable PRG Constructions
	Trapdoor Functions and Permutations
	xPRG from CDH
	xPRG from LWR
	xPRG from TDP

	Watermarkable PRF Construction
	References
	From t-Extractability to Robust Extractability
	The Kim-Wu Transformations
	Definitions for Watermarking PRFs
	From Watermarkable to Watermarking

