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Abstract. One of the central questions in cryptology is how efficient generic
constructions of cryptographic primitives can be. Gennaro, Gertner, Katz, and
Trevisan [SIAM J. of Compt., 2005] studied the lower bounds of the number of
invocations of a (trapdoor) one-way permutation in order to construct cryptographic
schemes, e.g., pseudorandom number generators, digital signatures, and public-key
and symmetric-key encryption.
Recently, quantum machines have been explored to construct cryptographic primitives
other than quantum key distribution. This paper studies the efficiency of quantum
black-box constructions of cryptographic primitives when the communications are
classical. Following Gennaro et al., we give the lower bounds of the number of
invocations of an underlying quantumly-computable quantum-one-way permutation
when the quantum construction of pseudorandom number generator and symmetric-
key encryption is weakly black-box. Our results show that the quantum black-box
constructions of pseudorandom number generator and symmetric-key encryption
do not improve the number of invocations of an underlying quantumly-computable
quantum-one-way permutation.
Keywords: Quantum reduction · black-box construction · efficiency

1 Introduction
It is widely believed that showing the existence of (trapdoor) one-way permutations/functions
is incredibly hard. If it is shown, then the long-standing open problem P = NP is solved
negatively, and we notice that we live in Minicrypt/Cryptomania of Impagliazzo’s five
worlds [Imp95]. Cryptographers assume the existence of (trapdoor) one-way permuta-
tions/functions and construct various useful cryptographic schemes upon them.

Since cryptographic tools and protocols are used in the real world, the efficiency of
the constructions is also an important target of studies. For example, Kim, Simon, and
Tetali [KST99], Gennaro and Trevisan [GT00], and Gennaro, Gertner, and Katz [GGK03]
(and their journal version [GGKT05]) studied the efficiency of cryptographic constructions
based on general assumptions.

Example: pseudorandom generator from one-way permutation. As an example,
let us consider the basic construction of pseudorandom generator (PRG) from one-way per-
mutation (OWP) (See e.g., [KL20]): By using the Goldreich-Levin hardcore function [GL89],
we can construct PRG : {0, 1}ℓ → {0, 1}ℓ+k from OWP : {0, 1}n → {0, 1}n, where ℓ = 2n.
If we let the range of the hardcore function {0, 1}O(lg(n)), this basic construction requires
O(k/ lg(n))-invocations of the underlying OWP in the black-box way to extend k-bits.
Gennaro and Trevisan [GT00] showed that this is optimal up to constant factor; they
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showed that if there exists a PRG of extension length k that invokes the underlying OWP
o(k/ lg(n))-times in a black-box way, then there exists unconditionally-secure PRG, which
immediately implies the existence of unconditionally-secure OWF, DistNP ̸⊆ AvgP, and
P ̸= NP. 1 2

Quantum adversary, quantum construction, and quantum reduction: Crytp-
graphic researches exploit the properties of quantum machines and channels to advance
the classical counterparts. See, e.g., certified deletion [BI20, HMNY21] and multi-party
quantum computation [BCKM21a, BCKM21b, GLSV21].

Here, we consider the moderate setting where the machines are quantum but the
channels are classical, which is called the quantum-computation classical-communication
(QC-CC) model. This model has the benefit that we can reuse strings (e.g., secret key, public
key, ciphertext, and signature) since we can copy classical strings easily. While the channels
are classical, the quantum power of computation would improve the constructions and
reductions; for example, if the construction is quantum, we can factor an integer and solve
the discrete logarithm problem in polynomial time, which is already exploited by Okamoto,
Tanaka, and Uchiyama for construction [OTU00] and by Gentry for reduction [Gen10].
Moreover, Ananth, Gulati, Qian, and Yuen [AGQY22] constructed quantumly-computable
secret-key encryption with classical keys/ciphertexts from pseudorandom state generator
(PRS) [JLS18] which produces quantum states.

Let us turn back our example on PRG from OWP, where we consider post-quantumly-
secure OWP (qOWP). In the case of the generic construction of PRG, we already know that
the above PRG construction using the quantum version of the Goldreich-Levin hardcore
function [AC02, KY10] yields a similar upperbound for quantum-secure PRG from classical
access to qOWP, while it improves the tightness. Our question is:

Can quantum access to qOWP improve the efficiency of the construction?

1.1 Our Contribution
In this paper, we give the lower bounds of the number of quantum invocations of underlying
quantum-one-way permutation (qOWP) when the quantum construction of pseudorandom
number generator (PRG) and symmetric-key encryption (SKE) is quantum-black-box.
Our quantum lower bounds are asymptotically equivalent to those classical lower bounds
in [GGKT05].

1.1.1 OWP-to-PRG:

Roughly speaking, we show that if there exists a quantumly-computable PRG of extension
length k that invokes the underlying qOWP secure against S-size quantum adversaries
o(k/ lg(S))-times in a quantum-black-box way, then there exists unconditionally-secure
quantumly-computable PRG. This implies the existence of quantumly-computable qOWF
(QC-qOWF in short), the proof of (QCMA, BQP-Samp) ̸⊆ AvgBQP in the average-case
complexity, and the proof of BQP ̸= QCMA, which are quantum analogs of OWF, DistNP ̸⊆
AvgP, and P ̸= NP.

Gennaro and Trevisan [GT00] first showed that a random permutation is one-way.
They then observed that, if the number of queries is at most q, then a random permutation
can be simulated by random q strings, known as lazy sampling. Using this simulation,
they constructed a new PRG that takes a random seed s and the random q strings and

1Later, Holenstein and Sinha [HS12] improved the results as any black-box construction with fully-
black-box reduction of PRG requires Ω(n/ lg(n)) queries to (regular) OWF.

2Reingold, Trevisan, and Vadhan [RTV04] also gave an unconditional black-box construction of PRG
from OWF with at most one invocation of OWF. We note that the construction strongly depends on
whether OWF exists or not.
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outputs the output of PRG on the seed s where the random permutation is simulated
by the random q strings. Thus, this implies unconditionally secure PRG if the extension
length k is longer than the length of the random q strings.

Let us consider the quantum version: In order to adopt their idea to the quantum setting,
we need two techniques; one is the quantum one-wayness of the random permutation; the
other is the way to simulate quantumly-queried random permutation with classical strings.

For the former, we need to show that the random permutation is one-way against
quantum adversaries: Formally, due to a technical reason, we want to show that all
but negligible δ fractions of random permutations over {0, 1}t cannot be invertible with
probability at least 2−t/c by any quantum adversary of size at most 2t/c for some constant
c, where the advantage of a quantum adversary A against a permutation f is defined
as Prx,A[f(A(f(x))) = f(x)]. (See Section 3.) There is research on quantum random
permutation/fucntion’s one-wayness (and more with advice), e.g., [Amb02, NABT15,
HXY19, CLQ20, CGLQ20, Liu23]. While Ambainis [Amb02] and Nayebi et al. [NABT15]
considered one-wayness of random permutations, their advantage definitions do not fit our
purpose. For example, the advantage in [NABT15] is defined as Prf,x[PrA[f(A(f(x))) =
f(x)] ≥ 2/3]. While [HXY19, CLQ20, CGLQ20, Liu23] considered the advantage defined
as Prf,x,A[f(A(f(x))) = f(x)], their theorems and that of [NABT15] are given in the
relation between 2t, the size S, the length of the advice α, and the advantage ϵ, e.g.,
ϵ = Õ((αS + S2)/2t) in [CGLQ20]. To give the bound in our wanted form, we give an
explicit proof by combining lemmas in [GGKT05, NABT15, HXY19].

For the latter, we need to emulate the random permutation quantumly queried q-
times with compact classical strings. We here use the quantum random-function/random-
permutation switching lemma [Zha12a, Zha15, Yue14] and Zhandry’s lemma that a random
function can be simulated with 2q-wise independent functions [Zha12b], which can be
described by random 2q + 1 strings.

Using those two ideas, we solve the above two problems and obtain the lower bound as
we want.

1.1.2 OWP-to-SKE:

Roughly speaking, we show that if there exists a quantumly-computable SKE of message
length m and key length k whose encryption and decryption algorithms invoke the
underlying qOWP secure against S-size quantum adversaries o((m− k)/ lg(S))-times in a
quantum-black-box way, then there exists unconditionally-secure quantumly-computable
SKE. This implies the proof of (QCMA, BQP-Samp) ̸⊆ AvgBQP and the proof of BQP ̸=
QCMA. If the underlying SKE computes a function, then it further implies the existence
of QC-qOWF.

Gennaro et al. [GGKT05] showed the relation between one-way trapdoor permutation
and public-key encryption and obtained the results for OWP and SKE as a corollary. For
simplicity, we review the SKE version here. Gennaro et al. [GGKT05] first observed that
the queried points of encryption and decryption may be different. Thus, the simulations
in new encryption and decryption algorithms should share the information between the
underlying encryption and decryption. This is done by encrypting the list of pairs of queries
and answers using the one-time pad. The new encryption algorithm takes a message M of
length m and a new secret key K ′, which is parsed as secret key K, random 2q strings for
the answers, and a secret key for the one-time pad; it outputs a ciphertext C of M by the
underlying encryption algorithm with secret key K and message M and a ciphertext C ′

of the list produced by the simulation of the random permutation. The new decryption
algorithm takes a pair of ciphertexts C and C ′ and the new secret key K ′; it decrypts the
list from C ′ and outputs a message M ′ by using the underlying decryption algorithm with
secret key K and a ciphertext C by simulating the random permutation with the list. The
length of a new secret key is k + O(q) lg(S). If m > k + O(q) lg(S), then the new SKE
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scheme is non-trivial, that is, not the one-time-pad, and unconditionally secure.
Let us consider the quantum setting: We again adopt the simulation of the random

permutation by 2q-wise independent hash function. We note that this simulation is the
same in both encryption and decryption algorithms, and we have no need to send the
list. The construction of a new SKE scheme becomes simple. As in the classical case,
if m > k + O(q) lg(S), then there exists an unconditionally secure SKE with negligible
decryption failure. Such an SKE scheme implies (QCMA, BQP-Samp) ̸⊆ AvgBQP and
BQP ≠ QCMA. Roughly speaking, the secret key and message are the classical witness of
QCMA, and the witness is verified by the decryption algorithm. As previously mentioned,
if the SKE computes a function, then the SKE implies QC-qOWF.

1.1.3 Limilations

Gennaro et al. [GGKT05] showed the lower bounds of the numbers of the queries to
construct a family of universal one-way hash functions (UOWHF) and weakly one-time-
secure signature scheme from one-way permutation and the queries to construct a public-key
encryption from trapdoor permutation. To upgrade those results into the quantum setting,
there are several hurdles.

For OWP-to-UOWHF and OWP-to-Siganature, we fail to adapt the lower bounds in
the classical setting into the quantum setting because the proofs exploit input/output
pairs of the ideal one-way permutation. Very roughly speaking, the proof construct
unconditionally secure UOWHF or OWF whose input contains the random strings yi’s
returned by the ‘one-way permutation’ and the output contains the queries xi’s made by
UOWHF or the verification algorithm of the signature scheme and yi’s. Constructing a
proper UOWHF/OWF in the quantum setting is an interesting open problem.

For TDP-to-PKE, we fail at the first stone, the simulation of a TDP with a short
classical description. As far as we know, this is a long-standing important open problem
in this area.

1.2 Related works
Hosoyamada and Yamakawa studied the gap between collision-resistant hash function
and one-way (trapdoor) permutations [HY20]. Austrin et al. studied the impossibility of
quantum construction of key exchange from one-way permutations [ACC+22]. Chung, Lin,
and Mahmoody showed that there is no quantum black-box construction of a quantum-
computation and classical-communication (QCCC) non-interactive commitment scheme
from OWP [CLM23].

1.3 Open Problems
As we discussed in above, the limit of the black-box OWP-to-UOWHF, OWP-to-Siganture,
and TDP-to-PKE constructions are left as an open problem.

Holenstein and Sinha [HS12] improved the parameter setting of the limit of the black-
box OWP-to-PRG construction of Gennaro and Trevisan [GT00]. It is interesting whether
we can obtain a similar quantum lower-bound to that in Holenstein and Sinha [HS12].

An extension to a quantum-computation and quantum-communication (QCQC)-model
is also interesting. Let λ be the security parameter. For example, [AQY22] showed that if
we have appropriate PRS which outputs d = O(lg(λ)) qubits, then we have pseudorandom
functional state generator (PRFS) by calling PRS at most O(2dλ)-times. It is very
interesting whether it matches the lower bound or not.

We also leave showing a general non-trivial unconditionally-secure SKE scheme implies
QC-qOWF as an interesting open problem. We also have a question on the complete
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problems of (Q(C)MA, BQP-Samp) and (Q(C)MA, BQP-Comp), and the relation between
them.

Organization: Section 2 reviews basic notions and notations. Section 3 gives a generic
quantum hardness of one-way permutations. Section 4 and Section 5 give the lower bounds
for PRGs and SKEs, respectively.

Appendix A reviews definitions of the average-case complexity class. Appendix B
discusses the relation between unconditionally-secure non-trivial quantum SKE and the
hard distributional problem in (QCMA, BQP-Samp).

2 Preliminaries
For a positive integer N , [N ] denotes the set {1, 2, . . . , N}. We use lg(·) := log2(·). For
two finite sets D and R, Func(D, R) denotes a set of all functions whose domain is D and
whose range is R. For a finite set F , U(F ) denotes the uniform distribution over F . For a
distribution D, d←↩ D indicates we take a random sample d according to D. For a finite
set F , we often write d←↩ F instead of d←↩ U(F ).

PPT (and QPT resp.) stands for probabilistic (quantum resp.) polynomial-time. For
gates of quantum machines, we employ Toffoli (CCX), Hadamard (H), and Rπ/4 gates as
the basis of the universal computation due to Kitaev.

We say that a PPT oracle machine P (·) is a black-box construction from OWP if for
any OWP π, (1) P π satisfies the functionalities and (2) P π is secure against ever efficient
adversary Aπ. We consider its quantum version: We say that a QPT oracle machine P |·⟩

is a quantum black-box construction from qOWP if for any qOWP π, (1) P |π⟩ satisfies
the functionalities and (2) P |π⟩ is secure against ever quantum efficient adversary A|π⟩.

We review k-wise independent functions and their properties.

Definition 1. A family F of functions D → R is said to be k-wise independent if for any
a, a1, . . . , ak−1 ∈ D and b, b1, . . . , bk−1 ∈ R satisfying b ̸= bt for all t < k, the following
holds:

Pr
f←↩F

[f(a) = b | f(a1) = bi ∧ · · · ∧ f(ak−1) = bk−1] = 1/|R|.

Lemma 1 ([Zha12b]). For any finite sets D and R of classical strings and q-quantum
query algorithm A, we have

Pr
H←↩Func(D,R)

[A|H⟩ = 1] = Pr
H←↩H2q(D,R)

[A|H⟩ = 1],

where H2q(D, R) is a family of 2q-wise independent hash functions from D to R.

2.1 One-way Permutation/Function
We define the quantum one-wayness of permutation and function in the concrete security
style:

Definition 2. We say that a function f : {0, 1}n → {0, 1}n is (S, ϵ)-quantumly-one-way
or quantumly-one-way function (qOWF) if for every quantum circuit A of size at most S,
we have

Pr
x←↩{0,1}n

[f(A(f(x))) = f(x)] ≤ ϵ.

When f is given as a quantum oracle, we will denote A|f⟩. We say if a function is
(S, 1/S)-qOWF, then we will call it S-qOWF.

If f is a permutation, then we use the term quantumly-one-way permutation (qOWP).
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We will denote the set of all permutations over {0, 1}n by Πn. For t ≤ n, we define Πt,n

the subset of Πn such that the set of all permutations which keep n− t last bits unchanged;
that is, Πt,n := {π ∈ Πn : ∃π̂ ∈ Πt such that ∀(a, b) ∈ {0, 1}t × {0, 1}n−t, π(a, b) =
(π̂(a), b)}. We also denote the set of all functions over {0, 1}n by Φn and define the set of
all functions which keep the n− t last bits unchanged by Φn,t; that is, Φt,n := {ϕ ∈ Φn :
∃ϕ̂ ∈ Φt such that ∀(a, b) ∈ {0, 1}t × {0, 1}n−t, ϕ(a, b) = (ϕ̂(a), b)}.

The following theorem is a quantum version of the random-function and random-
permutation (RF-RP) switching lemma shown by Zhandry [Zha15].

Theorem 1 (The quantum RF-RP switching lemma ([Zha12a, Thm. 7.3] and [Zha15,
Thm. 7])). Let A be an oracle-aided quantum algorithm that makes at most q quantum
queries. Then we have∣∣∣∣ Pr

π←↩Πn

[A|π⟩() = 1]− Pr
ϕ←↩Φn

[A|ϕ⟩() = 1]
∣∣∣∣ ≤ (8π2/3) · (q3/2n).

2.2 Pseudorandom Number Generator
A pseudorandom number generator is a QPT algorithm PRG which takes a seed s ∈ {0, 1}ℓ

as input and outputs a pseudorandom string y ∈ {0, 1}ℓ+k.

Definition 3. We say a function PRG : {0, 1}ℓ → {0, 1}ℓ+k is an (S, ϵ)-secure pseudo-
random number generator (PRG) if for any quantum circuit A of size at most S, we
have ∣∣∣∣ Pr

s←↩{0,1}ℓ
[A(PRG(s)) = 1]− Pr

z←↩{0,1}ℓ+k
[A(z) = 1]

∣∣∣∣ ≤ ϵ.

We call ℓ as the seed length and k as the stretch length.

2.3 Symmetric-Key Encryption
The symmetric-key encryption (SKE) scheme for m-bit messages using k-bit keys is a pair
of QPT algorithms SKE = (Enc, Dec);

• Enc takes a key K ∈ {0, 1}k and a message M ∈ {0, 1}m as input and outputs a
ciphertext C ∈ {0, 1}m′ .

• Dec takes a key K ∈ {0, 1}k and a ciphertext C ∈ {0, 1}m′ as input and outputs a
message M ∈ {0, 1}m or the rejection symbol ⊥.

We require statistical correctness as follows: SKE is statistically correct if for any M ∈
{0, 1}m, PrK←↩{0,1}k,C←Enc(K,M)[Dec(K, C) = M ] is overwhelming.

We consider the basic security notion of SKE:

Definition 4. We say that SKE is (S, ϵ)-secure if for any quantum circuit A of size at
most S and for any messages M0, M1 ∈ {0, 1}m we have∣∣∣∣ Pr

K←↩{0,1}k,C←Enc(K,M0)
[A(C) = 1]− Pr

K←↩{0,1}k,C←Enc(K,M1)
[A(C) = 1]

∣∣∣∣ ≤ ϵ.

Remark 1. We remark that the above definitions can be extended into an interactive
symmetric-key encryption. In the interactive case, we will consider a transcript between
an encryption algorithm and a decryption algorithm as a ciphertext and denote C ←
⟨Enc(K, M), Dec(K)⟩. As Gennaro et al. [GGKT05], our result applies to the interactive
case.
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3 Hardness of Random Permutations
In what follows, we only consider purified quantum circuits with Toffoli (CCX), Hadamard
(H), Rπ/4, and f gates, where f will be a function. The following lemma gives the
upperbound of the number of quantum circuits.
Lemma 2. Let n ≥ 3. The number of quantum circuits of size S having input/output
length n, (S − n)-qubits ancilla, and oracle access to a function f : {0, 1}n → {0, 1}n is at
most (4S)n(S+1).
Proof. Let us count the number of possible quantum circuits. A quantum circuit of size
S is specified as follows: For i = 1, . . . , S, the i-th step is specified by the type of gates
(CCX , H, Rπ/4, and f) and the list of input-output qubits. The numbers of the possible
list of qubits are at most S · (S − 1) · · · · · (S − n + 1) = S!/(S − n)! because we consider
f -gate with f : {0, 1}n → {0, 1}n. In addition, the numbers of the possible output wires
are at most S!/(S − n)!. Thus, the upperbound of the number of quantum circuits is at
most (4S!/(S − n)!)S · S!/(S − n)! ≤ (4S!/(S − n)!)S+1 ≤ (4S)n(S+1).

3.1 Hardness of Random Permutations
Gennaro et al. [GGKT05] proved that a random π ∈ Πt is 2t/5-hard with probability at
least 1− 2−2t/2 for sufficiently large t. We prove its quantum analog as follows:
Theorem 2. For sufficiently large t, a random π ∈ Πt is 2t/6-qOWP with probability at
least 1− 2−2t/6 .
Corollary 1. For sufficiently large t ≤ n, a random π ∈ Πt,n is 2t/6-qOWP with probability
at least 1− 2−2t/6 .
Remark 2. Nayebi et al. [NABT15] showed the one-wayness of quantum random permu-
tations with classical advice. Moreover, there are studies of more properties of quantum
random functions/permutations with advice, e.g., [HXY19, CGLQ20, Liu23].

3.1.1 Preliminaries:

Before giving the proof, we review useful lemmas. The first one is the randomized
compression lemma.
Lemma 3 ([DTT10, Fact 8.1], Randomized Compression Lemma). Suppose there is a
randomized encoding procedure E : X ×R→ Y and a decoding procedure D : Y ×R→ X.
For any constant c ∈ [0, 1], if Prr←↩R[D(E(x, r), r) = x] ≥ c, then |Y | ≥ c|X|.

The next one is taken from Hhan et al. [HXY19], while we adapt it slightly to consider
permutations instead of keyed functions to permutations.
Lemma 4 ([HXY19], Reduction to biased adversary, adapted). Let Π be the set of all
permutations over [N ] and let X be its subset. Suppose that we have a quantum adversary
B of size S whose number of queries is at most Q such that, for all π ∈ X, B inverts π
with advantage at least ϵ, that is,

Pr
x←↩[N ],B

[B|π⟩(π(x)) = x] ≥ ϵ. (1)

Then, we have a biased quantum adversary A of size S̃ whose number of queries is at most
Q̃ such that, for all π ∈ X, we have

Pr
x←↩[N ]

[
Pr
A

[A|π⟩(π(x)) = x] ≥ 2/3
]
≥ ϵ̃, (2)

where S̃ = S ·O(1/
√

ϵ), Q̃ = Q ·O(1/
√

ϵ), and ϵ̃ = ϵ/2.
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In order to verify how we can compute S̃, Q̃, and ϵ̃, we include the proof of this lemma.

Proof. Fix π ∈ X. By applying the average argument to Equation 1, we have

Pr
x←↩[N ]

[
Pr
B

[B|π⟩(π(x)) = x] ≥ ϵ/2
]
≥ ϵ/2.

Let us consider B̃, B̃−1, the unitaries corresponding to B without final measurement. Using
the amplitude amplification technique (see e.g., [BHMT00]), with O(1/

√
ϵ/2) repetition

of B̃ and B̃−1, the success probability is amplified to 2/3. The amplified circuit is called
as A.

From the above arguments, we can set S̃ = S ·O(1/
√

ϵ/2), Q̃ = Q ·O(1/
√

ϵ/2), and
ϵ̃ = ϵ/2.

We finally review the main theorem of Nayebi et al. [NABT15], which states that if
there exists a biased quantum adversary for π ∈ X, then we can construct randomized
encoding procedures.

Lemma 5 ([NABT15, Lemma 5], adapted). Let Π be the set of all permutations over [N ]
and let X be its subset. Let A be a quantum adversary of size at most S̃ that queries to π
at most Q̃ times. Suppose that, for all π ∈ X, we have Prx←↩[N ]

[
PrA[A|π⟩(π(x)) = x] ≥

2/3
]
≥ ϵ̃. Then, there exists a randomized encoding procedure E : X×R→ Y and a decoding

procedure D : Y ×R→ X such that, for all π ∈ X, we have Prr←↩R[D(E(π, r), r) = π] ≥ 0.8
and lg(|Y |) ≤ lg(N !)−Ω(ϵ̃N/Q̃2) + O(lg(N)).

3.1.2 Proof of Theorem 2:

We first show the following claim:

Claim. Let X be a subset of Π. Let δ be a fraction of X in Π, that is, δ := |X|/N !. If
there exists a quantum adversary B of size S such that, for all π ∈ X, B inverts π with a
probability at least ϵ by making at most Q queries, then we have

δ ≤ 2−Ω̃(ϵ2N/Q2).

Proof of Claim. Using Lemma 4, we can construct a quantum adversary A of size S̃ =
S ·O(1/

√
ϵ/2) that queries to a permutation at most Q̃ = Q ·O(1/

√
ϵ/2) such that, for

any π ∈ X,
Pr

x←↩[N ]

[
Pr
A

[A|π⟩(π(x)) = x] ≥ 2/3
]
≥ ϵ̃ = ϵ/2.

According to Lemma 5, there exists a randomized encoding procedure E and its decoder
D such that for all π ∈ X, we have

Pr
r←↩R

[D(E(π, r), r) = π] ≥ 0.8 and lg(|Y |) ≤ lg(N !)−Ω(ϵ̃N/Q̃2) + O(lg(N)).

Using Lemma 3, the former implies that |Y | ≥ 0.8|X|. Therefore, we have the following
inequality:

0.8|X| ≤ |Y | ≤ N ! · 2−Ω(ϵ̃N/Q̃2) · poly(N).

Recall that the relations |X| = δN !, ϵ̃ = ϵ/2, and Q̃ = Q ·O(1/
√

ϵ/2). Putting them into
the above and dividing by N !, we obtain

δ ≤ 2−Ω(ϵ2N/Q2) · poly(N) ≤ 2−Ω̃(ϵ2N/Q2).
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Now, we can prove Theorem 2 as follows: Let N = 2t. Let c > 1 be a constant, which
we will set later. Let A be an oracle quantum circuit of size S = 2t/c = N1/c. This yields
Q = 2t/c.

First, we recall that the number of circuits of size at most S is at most (4S)t(S+1) =
2Õ(S) = 2Õ(N1/c).

Second, according to our claim, if B of size S inverts for all π ∈ X with a probability
at least ϵ = 1/S, then the fraction of X should be δ ≤ 2−Ω̃(ϵ2N/S2) ≤ 2−Ω̃(N/S4) =
2−Ω̃(N1−4/c).

Taking the union bound, the probability over a random choice of π that there exists a
quantum circuit of size S which will invert π with a probability at least 1/S is at most
the product of the number of circuits of size S and the maximum fraction of invertible
X for S, that is, 2Õ(N1/c) · 2−Ω̃(N1−4/c). By setting c = 6, the probability is at most
2Õ(N1/6) · 2−Ω̃(N1/3) ≤ 2−N1/6 for sufficiently large N . Hence, a random π ∈ Πt is
S = 2t/6-hard with a probability greater than 1− 2−2t/6 as we wanted.

4 The Bound on Pseudo-Random Number Generator
We show the lower bound for the number of invocations of qOWP to construct PRG. We
first review the definition of the black-box construction of PRG from qOWP.
Definition 5. A construction of a PRG scheme based on qOWP is an oracle procedure
PRG|·⟩ : {0, 1}ℓ → {0, 1}ℓ+k. We refer k as the stretch length of PRG.

We say that PRG|·⟩ is an (Sp, Sg, ϵ)-qOWP-to-PRG weak black-box construction if for
every π ∈ Πn that is Sp-hard, PRG|π⟩ is (Sg, ϵ)-secure PRG.

Intuition: First, we review the proof in the classical setting by Gennaro and Trevisan.
We note that the answers of the random permutation π ∈ Πt,n on q queries can be simulated
with q random t-bit strings y1, . . . , yq unless the strings y1, . . . , yq collide: On the i-th query
xi = (ai, bi) ∈ {0, 1}t × {0, 1}4t, we answer with (yi, bi). Based on PRG with extension
length k using OWF q-times, Gennaro and Trevisan constructed a new secure PRG with
longer seed s, y1, . . . , yq which emulates a random permutation by using y1, . . . , yq. Thus,
if the extension length k is larger than qt, then we have unconditionally-secure PRG, which
implies the unconditionally-secure OWF.

In the quantum setting, the black-box construction will access to the random permu-
tation with the superposition queries. Thus, the classical pre-sampling strings y1, . . . , yq

are not enough to answer those q superposition queries. Instead, we simulate the random
permutation by 2q-wise independent hash function. Zhandry showed that such hash
function perfectly simulates the random function (Lemma 1). In addition, the random
function and the random permutation is indistinguishable up to 2t/2 queries (Theorem 1).
Hence, we can construct an unconditionally-secure PRG from secure PRG upon qOWF
and this implies unconditionally-secure QC-qOWF.
Theorem 3. Let PRG|·⟩ be an (Sp, Sg, ϵ)-qOWP-to-PRG weak black-box quantum con-
struction for message of length m using a key of length k in which PRG makes q quantum
queries to an oracle |π⟩, where π ∈ Πn. Let t = 6 lg Sp < n. If (2q + 1)t < k, then
there exists an (Sp, ϵ + 2−Sp + ϵ0)-secure PRG scheme without any access to oracles,
where ϵ0 = (8π2/3)(q3/S6

p) is the maximum advantage of q-query distinguisher against the
random permutation in Πt and the random function in Φt.
Proof of Theorem 3. From the hypothesis, if π : {0, 1}n → {0, 1}n is (Sp, 1/Sp)-hard, then
for any distinguisher T of size at most Sg, we have∣∣∣∣ Pr

z←↩{0,1}ℓ+k
[T (z) = 1]− Pr

s←↩{0,1}ℓ
[T (PRG|π⟩(s)) = 1]

∣∣∣∣ ≤ ϵ.
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We here drop the quantum oracle access of T , since this only makes T weaker. Let
t = 6 lg(Sp) < n. According to Corollary 1, a random permutation π ∈ Πt,n is Sp-hard
with probability greater than 1− 2−2t/6 = 1− 2−Sp . Using the average argument, we have∣∣∣∣ Pr

z←↩{0,1}ℓ+k
[T (z) = 1]− Pr

π←↩Πt,n,s←↩{0,1}ℓ
[T (PRG|π⟩(s)) = 1]

∣∣∣∣ ≤ ϵ + 2−Sp .

We next replace π ∈ Πt,n with ϕ ∈ Φt,n. Due to Theorem 1, we have∣∣∣∣ Pr
π←↩Πt,n,s←↩{0,1}ℓ

[T (PRG|π⟩(s)) = 1]− Pr
ϕ←↩Φt,n,s←↩{0,1}ℓ

[T (PRG|ϕ⟩(s)) = 1]
∣∣∣∣ ≤ ϵ0,

where ϵ0 := (8π2/3)(q3/2t) = (8π2/3)(q3/S7
p). Using the triangle inequality, we obtain∣∣∣∣ Pr

z←↩{0,1}ℓ+k
[T (z) = 1]− Pr

ϕ←↩Φt,n,s←↩{0,1}ℓ
[T (PRG|ϕ⟩(s)) = 1]

∣∣∣∣ ≤ ϵ + 2−Sp + ϵ0.

Here, we note that PRG|ϕ⟩(s) may fail because the construction might exploit the fact that
π is the permutation. However, the failure probability of PRG|ϕ⟩(s) is at most ϵ0 due to
Theorem 1.

Recall that PRG queries to |π⟩ (and |ϕ⟩) at most q times. We construct PRG′ : {0, 1}ℓ′ →
{0, 1}ℓ+k, where ℓ′ := ℓ + (2q + 1)t < ℓ + k, as follows: Parse s′ ∈ {0, 1}ℓ+(2q+1)t

as (s, f0, . . . , f2q) ∈ {0, 1}ℓ × ({0, 1}t)2q+1 and define f : {0, 1}t → {0, 1}t by f(z) :=∑
i fiz

i ∈ GF(2t), which is 2q-wise independent hash functions [WC81]. Using this f

instead of a random function ϕ̂ of ϕ, we define F (a, b) = (f(a), b).
Now, we define

PRG′(s′) := PRG′(s, f0, . . . , f2q) = PRG|F ⟩(s).

According to Zhandry’s lemma (Lemma 1), the 2q-wise independent hash functions and
the random functions are indistinguishable up to q-queries and we have

Pr
ϕ←↩Φt,n,s←↩{0,1}ℓ

[T (PRG|ϕ⟩(s)) = 1] = Pr
s′←↩{0,1}ℓ′

[T (PRG′(s′)) = 1].

Combining the (in)equalities, we obtain our theorem.

Remark 3. We note that PRG′ : {0, 1}ℓ′ → {0, 1}ℓ′+k is efficiently computable because it just
runs PRG with simulation of F based on 2q-wise independent hash function f(z) =

∑
i fiz

i.
Thus, PRG′ yields an unconditionally-secure QC-qOWF; if it is not qOWF, then it is not
secure PRG.

5 The Bound on Symmetric-Key Encryption
We show the lower bound for the number of invocations of qOWP to construct SKE. We
start with a review of the definition of the black-box construction of SKE from qOWP.

Definition 6. Construction of an SKE scheme based on qOWP is a pair of oracle
procedures SKE|·⟩ = (Enc|·⟩, Dec|·⟩) such that, for all π ∈ Πn, the resulting SKE|π⟩ satisfies
the functional definition of an SKE scheme.

We say that SKE|·⟩ is an (Sp, Se, ϵ)-qOWP-to-SKE weak black-box construction if for
every π ∈ Πn that is Sp-hard, SKE|π⟩ is (Se, ϵ)-hard.
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Intuition: We start to review the proof in the classical setting by Gennaro, Gertner,
and Katz [GGK03]: Let k be the key length and m be the message length. We again
note that the answers of the random permutation π ∈ Πt,n on q queries can be simulated
with q random t-bit strings y1, . . . , yq unless the strings y1, . . . , yq collide: On the i-the
query xi = (ai, bi) ∈ {0, 1}t × {0, 1}4t, we answer with (yi, bi). However, SKE involves
two algorithms Enc and Dec which may ask different queries. In order to maintain the
queried points, they make a new encryption algorithm Enc′ sends a ciphertext made by
Enc plus the encrypted list of queried points by the one-time pad. If the key length k
is shorter than m−O(qt), then we have unconditionally-secure SKE, which implies the
unconditionally-secure OWF [IL89, GGKT05].

In the quantum setting, we again simulate the random permutation by 4q-wise inde-
pendent hash function, since Enc and Dec make q queries. Since this simulation allows us
to share the same function in both algorithms, we do not need to send the encrypted list
and the simulation becomes simple.

Using the same idea, we can show that if the key length k is shorter than m− (4q + 1)t,
then we have unconditionally-secure non-trivial SKE. While we tend to conclude this
unconditionally-secure SKE implies the unconditional existence of qOWF, we cannot say
so since the new encryption algorithm and decryption algorithm are probabilistic, which
we discuss later.

Theorem 4. Let SKE|·⟩ be an (Sp, Se, ϵ)-qOWP-to-SKE weak black-box construction for
message of length m using a key of length k in which Enc|·⟩ and Dec|·⟩ makes q queries to
an oracle π ∈ Πn. Let t = 6 lg(Sp). If m > k + (4q + 1)t, then there exists an (Se, ϵ̃)-secure
SKE scheme whose message length is m′ = m and key length is k′ = k + (4q + 1)t without
any access to oracles, where ϵ̃ = ϵ + 2−Sp+1 + (16π2/3)(q3/S6

p).

Proof. We set n = 6t and consider Πt,n ⊆ Πn.
The hypothesis of the theorem on SKE|·⟩ = (Enc|·⟩, Dec|·⟩) implies that if π is Sp-hard,

then for any circuit B of size Se and for any messages M0, M1 ∈ {0, 1}m we have∣∣∣∣ Pr
s←↩{0,1}k,v←Enc|π⟩(s,M0)

[B(v) = 1]− Pr
s←↩{0,1}k,v←Enc|π⟩(s,M1)

[B(v) = 1]
∣∣∣∣ < ϵ.

We here drop the quantum oracle access of B, since this only makes B weaker.
According to Theorem 2, π ∈ Πt,n is Sp-hard for all but except 2−Sp fraction. By using

the averaging argument, for any circuit B of size at most Se and for any two messages
M0, M1 ∈ {0, 1}m we have∣∣∣∣ Prs←↩{0,1}k,π←↩Πt,n,v←Enc|π⟩(s,M0)[B(v) = 1]

−Prs←↩{0,1}k,π←↩Πt,n,v←Enc|π⟩(s,M1)[B(v) = 1]

∣∣∣∣ < ϵ + 2−Sp+1.

Using Zhandry’s lemma (Theorem 1), we can replace π ←↩ Πt,n with ϕ←↩ Φt,n as follows:∣∣∣∣ Prs←↩{0,1}k,ϕ←↩Φt,n,v←Enc|ϕ⟩(s,M0)[B(v) = 1]
−Prs←↩{0,1}k,ϕ←↩Φt,n,v←Enc|ϕ⟩(s,M1)[B(v) = 1]

∣∣∣∣ < ϵ + 2−Sp+1 + 2ϵ0 = ϵ̃, (3)

where ϵ0 = (8π2/3)(q3/S6
p).

Let us construct a new SKE scheme SKE′ for m-bit messages using a random key of
length k′ = k+(4q+1)·t, which is (Se, ϵ̃)-secure and has no oracle access. Again, we simulate
the random function ϕ by 4q-wise independent hash function. The simulation is very simple:
We prepare F (a, b) := (f(a), b), where f : {0, 1}t → {0, 1}t : f(a) =

∑4q
i=0 fia

i ∈ GF(2t).
Now, SKE′ is defined as follows:

• Enc′ parses the shared key s′ ∈ {0, 1}k′ as the original shared key s and 4q-wise
independent hash function f and encrypts a message into C by C ← Enc|F ⟩(s, M).
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• Dec′ parses the shared key s′ as s and f and decrypts a ciphertext C by M ′ ←
Dec|F ⟩(s, C).

The (Se, ϵ̃)-security of SKE′ directly follows from Equation 3.

Remark 4. We note that our SKE′ may have negligible decryption errors because we replace
a permutation with a 4q-wise independent hash function. This is similar to the case that
yi’s collide in the classical setting.
Remark 5. We only consider a non-interactive SKE scheme for simplicity. We can
extend the results into the interactive setting by replacing v ← Enc|·⟩(s, Mb) with
v ← ⟨Enc|·⟩(s, Mb), Dec|·⟩(s)⟩ in the equations in the proof.
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16 On the Efficiency of Generic, Quantum Cryptographic Constructions

We say a language is in QCMA if there exists QPT machine V , called as a verifier, such
that there exists a polynomial r(·) and 1) for any x ∈ L, there is a classical sting w ∈ {0, 1}∗
of length polynomial in |x| such that Pr[V (x, w) = 1] ≥ 1− 2−r(|x|); and 2) for any x ̸∈ L,
for all classical stings w ∈ {0, 1}∗ of length polynomial in |x|, Pr[V (x, w) = 1] < 2−r(|x|).

We follow the terminology in Bogdanov and Trevisan [BT06]. A pair (L, µ) is said to
be a distributional problem if L ⊆ {0, 1}∗ and µ = {µn}n∈Z≥0 is an ensamble of probability
distributions. Following the definition of P-sampleable distribution, we define its quantum
version as follows:

Definition 7. A distribution µ is said to be BQP-sampleable if there exists a QPT machine
S such that Pr[S(1n) = x] = µn(x).

We define the quantum analogs of the average-case complexity (NP, P-Samp).

Definition 8. (QMA, BQP-Samp) denotes the set of distributional problems (L, µ) with
L ∈ QMA and BQP-sampleable µ. (QCMA, BQP-Samp) denotes the set of distributional
problems (L, µ) with L ∈ QCMA and BQP-sampleable µ.

We here call a sampling machine an instance generator if it samples a pair of an
instance x in a language L and its corresponding witness w. We say that a problem
(L, µ) ∈ (QCMA, BQP-Samp) is (S, ϵ)-hard if 1) there exists a QPT instance generator E
such that E’s first output distributes as µ and 2) for any quantum machine A of size at
most S = S(n), Pr(x,w)←E(1n)[V (x, A(x)) = 1] ≤ ϵ, where V is a verifier of (L, µ).

We also define the quantum analog of the average-case complexity AvgBPP:

Definition 9. We say that a distributional problem (L, µ) is in AvgBQP if there exists a
quantum algorithm A such that

1. for every n, δ, x, PrA[A(x, 1n, δ) ̸∈ {L(x),⊥}] ≤ 1/4 holds, where L(x) ∈ {0, 1} is an
indicator function;

2. for every n, δ, Prx←↩µn [PrA[A(x, 1n, δ) = ⊥] ≥ 1/4] ≤ δ holds; and

3. A runs in a polynomial time of n/δ.

Relations: If there exists qOWF, then we have FBQP ≠ FQCMA (and BQP ̸= QCMA).
Kretschmer [Kre21] showed that there exists an oracle relative to which BQP = QMA but
secure PRS exists. Aaronson, Ingram, and Kretschmer [AIK22] showed that there exists
an oracle relative to which P = NP but BQP ̸= QCMA. They also showed that there exists
an oracle relative to which P ̸= NP but BQP = QCMA = QMA. Kretschmer, Qian, Sinha,
and Tal [KQST23] further showed that there exists an oracle relative to which P = NP but
single-copy-secure PRS exists [JLS18].

B SKE implies hard instance generator for QCMA
Unfortunately, unconditionally-secure non-trivial QC-SKE does not imply qOWF. The
existing proofs in [IL89, GGKT05] require an encryption algorithm to be a PPT ma-
chine, where we can treat a random tape explicitly. Instead, we consider the class of
average-case complexity, (QCMA, BQP-Samp), which consists of pairs of a language in
QCMA and a probability distribution of instances sampleable by a QPT machine, and
AvgBQP. Our unconditionally-secure non-trivial QC-SKE, QC-qSKE in short, implies
(QCMA, BQP-Samp) ̸⊆ AvgBQP, quantum analogue of (NP, P-Samp) ̸⊆ AvgP.

The proof is essentially the same as that of [GGKT05]:
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Theorem 5. Let (Enc, Dec) be an (S, δ)-secure perfectly-correct quantum SKE scheme
whose message length is m and key length is k < m. Let Se be the size of the circuit of Enc
and let Sd be the size of the circuit of Dec. For any ℓ, there exists a pair of a QPT instance
generator and a QPT verifier (E, D) that is (S−2ℓSe−2ℓSd−poly(m, k, ℓ), ℓδ +2−ℓ(m−k))-
hard.

We can easily extend the correctness to quantum SKE to statistical one.

Proof. Let SKEℓ = (Encℓ, Decℓ) be an intermediate quantum SKE scheme whose mes-
sage length and key length are ℓm and ℓk, respectively defined as follows: Encℓ takes
(sk1, . . . , skℓ) ∈ {0, 1}ℓk and (M1, . . . , Mℓ) ∈ {0, 1}ℓm as input and outputs (C1, . . . , Cℓ)
where Ci ←↩ Enc(ski, Mi); Decℓ takes (sk1, . . . , skℓ) ∈ {0, 1}ℓk and (C1, . . . , Cℓ) as input
and outputs (Dec(sk1, C1), . . . , Dec(skℓ, Cℓ)) ∈ {0, 1}ℓm. By the standard hybrid argument,
it is easy to see that SKEℓ is (S − ℓSe, ℓδ)-secure quantum SKE scheme.

We now define a QPT instance generator E and a QPT verifier D as follows: E on
input sk ∈ {0, 1}ℓk and M ∈ {0, 1}ℓm outputs Encℓ(sk, M)∥M . D on input (c, M) and sk ′
checks if M = Decℓ(sk ′, c) or not.

We want to show that the distribution E(Uℓk, Uℓm) generates average-case hard in-
stances. Let us assume the contrary; suppose that there exists an algorithm B of size at
most S′ breaking (S′, δ′)-hardness of E. Let advB denote the advantage of B, that is,

advB := Pr
sk←↩{0,1}ℓk,M←↩{0,1}ℓm,c←Encℓ(sk,M)

[D(c∥M, B(c∥M)) = 1] > δ′.

We then construct an algorithm A of size at most S′ − Sd − poly(m, k, ℓ) with whose
advantage against SKEℓ is at least ℓδ, where the advantage is∣∣∣∣ Prsk←↩{0,1}ℓk,M0,M1←↩{0,1}ℓm,c←Encℓ(sk,M0)[A(M0, M1, c) = 1]

−Prsk←↩{0,1}ℓk,M0,M1←↩{0,1}ℓm,c←Encℓ(sk,M1)[A(M0, M1, c) = 1]

∣∣∣∣ .

A is defined as follows: Given M0, M1, and c, the algorithm A runs B on input c and M0
and receives sk ′∥M ′. It then checks whether both Decℓ(sk ′, M ′) = C and M ′ = M0 hold
or not. If so, B succeeds to find such sk ′ and M ′, and A outputs 1. Otherwise, A outputs
0.

By the definition of A, when c is produced by M0, A outputs 1 if B succeeds. Thus,
we have

Pr
sk←↩{0,1}ℓk,M0,M1←↩{0,1}ℓm,c←Encℓ(sk,M0)

[A(M0, M1, c) = 1] = advB > δ′.

We also have

Pr
sk←↩{0,1}ℓk,M0,M1←↩{0,1}ℓm,c←Encℓ(sk,M1)

[A(M0, M1, c) = 1]

≤ Pr
sk←↩{0,1}ℓk,M0,M1←↩{0,1}ℓm,c←Encℓ(sk,M1)

[∃sk ′ s.t. Decℓ(sk ′, c) = M0]

≤
∑

sk′∈{0,1}ℓk

Pr
sk←↩{0,1}ℓk,M0,M1←↩{0,1}ℓm,c←Encℓ(sk,M1)

[Decℓ(sk ′, c) = M0]

≤
∑

sk′∈{0,1}ℓk

2−ℓm = 2−ℓ(k−m),

where we use the fact that the distribution of M0 is independent of Dec(sk ′, C).
Thus, the advantage of A is at least δ′ − 2−ℓ(k−m). By setting S′ = S − ℓSe and

δ′ = ℓδ + 2−ℓ(k−m), we have SA = S′ − ℓSd − poly(m, k, ℓ) = S − ℓSe − ℓSd − poly(m, k, ℓ)
and δA = δ′ − 2−ℓ(k−m) = ℓδ as we wanted.

We note that if Enc computes a function, then the above construction implies QC-qOWF
as in [GGKT05].
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