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Abstract. Verifiable encryption (VE) is a protocol where one can provide assurance
that an encrypted plaintext satisfies certain properties, or relations. It is an important
building block in cryptography with many useful applications, such as key escrow,
group signatures, optimistic fair exchange, and others. However, the majority of
previous VE schemes are restricted to instantiation with specific public-key encryption
schemes or relations.
In this work, we propose a novel framework that realizes VE protocols using zero-
knowledge proof systems based on the MPC-in-the-head paradigm (Ishai et al. STOC
2007). Our generic compiler can turn a large class of zero-knowledge proofs into secure
VE protocols for any secure public-key encryption scheme with the undeniability
property, a notion that essentially guarantees binding of encryption when used as a
commitment scheme.
Our framework is versatile: because the circuit proven by the MPC-in-the-head
prover is decoupled from a complex encryption function, the work of the prover is
focused on proving the encrypted data satisfies the relation, not the proof of plaintext
knowledge. Hence, our approach allows for instantiation with various combinations
of properties about the encrypted data and encryption functions. We then consider
concrete applications, to demonstrate the efficiency of our framework, by first giving
a new approach and implementation to verifiably encrypt discrete logarithms in any
prime order group more efficiently than was previously known. Then we give the
first practical verifiable encryption scheme for AES keys with post-quantum security,
along with an implementation and benchmarks.

1 Introduction
A verifiable encryption (VE) scheme is a public-key encryption scheme where one party
(called a prover, P) can encrypt data w with a public key pk (of which the corresponding
decryption key sk is held by the receiver, R), and convince a third party (called the verifier,
V) that the data satisfies a relation R, i.e., R(x, w) = 1 with respect to a public statement
x. At a very high-level, an (interactive) VE scheme should satisfy the following security
properties [CD00]:

• Completeness: If P, V and R are honest then V accepts after interacting with P,
and R uses sk to obtain a plaintext w satisfying R(x, w) = 1.

• Zero knowledge: As V does not have the decryption key sk, she learns nothing
about the plaintext from interacting with P.

• Validity: If V accepts after interacting with a prover P∗, R is guaranteed to obtain
a plaintext w such that R(x, w) = 1, even if P∗ is malicious.

Our Motivating Example for verifiable encryption is the verifiable backup problem,
where a cryptographic device (such as a hardware security module (HSM)) or cloud service
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(such as [AWS22a,AWS22b,AKV22,GK22]) that is entrusted to store key material must
securely export it for backup in case of hardware failure. These backups must be encrypted
(or “wrapped”) with the public key of another device, so that the plaintext keys are never
exposed outside of the secure hardware [YC22,PK15]. The administrator of the device,
responsible for creating backups, does not get assurance that the backup is well-formed,
and will import successfully on the new device. She could try the import operation, but
this may be expensive (e.g., if the backup device is in a separate facility), or risky (as it
spreads the key around more than necessary). This latter risk is well illustrated in the
case of cloud-based HSMs, where testing a backup by importing a key into a secondary
cloud provider greatly expands the trust boundary.

Even if the import operation succeeds, the admin should still test that the imported
private key corresponds to the expected public key, which typically requires using it to
create a test signature or decryption. This is undesirable for two reasons: it adds extra
use(s) of the key which must be logged for auditing, and it may also involve using the key
for a different purpose than it was created for. Ideally, the exporting device could prove
to the administrator that the ciphertext is a well-formed encryption under the receiving
device’s public key, and further, that the plaintext is a private key corresponding to a
particular public key, e.g., the device claims “I encrypted the ECDSA signing key x for a
public verification key y” and the administrator should be convinced that y = gx without
access to the plaintext x. If the exported key is a symmetric key, then the device should
prove that the plaintext is a key consistent with a commitment to the key, or a ciphertext
or MAC created with the key. Verifiable encryption is a natural solution to this problem.

Verifiable Encryption Despite being introduced decades ago by Stadler [Sta96] and
becoming a well-defined primitive with a relatively general solution in the work of Camenisch
and Damgård [CD00], constructions suitable for the verifiable backup problem are limited.
We briefly review some closely related work here, and defer a more complete review to the
full version [TZ21]. There are multiple challenges. We need generality, to allow multiple
types of relation to be supported, not only a single one (as in [CS03, NRSW20, LN17]).
Our use case requires verifiable encryption of many types of keys (potentially all the types
here [PK22]), and at least ECC, RSA, and AES (the common types supported by cloud
providers [AWS22a,AKV22,GK22]). We also want to minimize the additional assumptions
required, ideally not requiring any new assumptions; for example if an AES key is to
be exported, encrypted under an RSA key, we should not need to make assumptions in
elliptic curve groups (perhaps with a pairing), as might be the case if certain SNARK proof
systems were used for verifiability [Gro16,MBKM19,BBB+18,LCKO19]. We also want
flexibility in the receiver’s public-key encryption (PKE) scheme, again to minimize new
assumptions, but also to support security goals like threshold decryption or post-quantum
security, rather than have a VE scheme that dictates the PKE the receiver must use (as
in [CS03,NRSW20,LN17]).

While any PKE can be made verifiable using a sufficiently general NIZK proof system
(e.g., [BFM88,Mic00,GOS06]), the cost will be high. First, feasibility of VE for an arbitrary
relation R is trivial once general-purpose NIZK for NP is given: attach a NIZK proof for
modified relation R′ =

{
(ct, x), (pt, r)) : R(x, pt) = 1 ∧ ct = Enc(pt; r)

}
. In general, the

main technical challenge in constructing VE is to minimize the cost of proof-of-plaintext-
knowledge (PoPK) “ct = Enc(pt; r)” while supporting a large class of relation R; the
naive approach would either require (1) re-designing a special encryption scheme for which
an efficient PoPK Σ-protocol exists, or otherwise (2) proving correct evaluation of the
circuit Enc, which would be costly depending on the encryption scheme (e.g., Kyber-KEM
standardized by NIST [SAB+20] involves both algebraic operations over a cyclotomic
ring and hashing). In summary, we desire a construction that is as general as possible,
introduces no new assumptions, is versatile enough to support as many encryption schemes
as possible, and is performant enough to be practical.
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There are multiple applications of verifiable encryption in the literature. Some early
examples include publicly verifiable secret sharing [Sta96], group/ring signatures [CD00,
BSZ05,BKM09] and verifiable encryption of signatures for optimistic fair exchange [ASW98,
Ate99], and more recent applications include blockchains [DHMW23, CDK+22]. Key
escrow [YY98,PS00], where parties encrypt their private key to a trusted escrow authority,
can be achieved with verifiable encryption, since it becomes possible for other parties
on the network to ensure that the correct key has been escrowed. A common theme is
identity escrow (or revokable anonymity) in privacy systems and group signatures, where
an anonymous party encrypts their identity for an authority, who can de-anonymize them
under certain circumstances. In cryptographic voting systems, voters often encrypt their
votes and prove that their selection is in a set of valid choices (e.g., in {0, 1} to encode a
“yes” or ”no” vote). The earliest paper with this idea predates the literature on verifiable
encryption [CF85] and VE is still used in cryptographic voting systems today, see for
example [EG21,CCFG16].
ZK from MPC The MPC-in-the-head (MPCitH) paradigm [IKOS07] is a way to create a
zero-knowledge (ZK) proof for a relation R, given a secure multiparty computation protocol
(MPC) to compute R. Some of the advantages of this approach make it well suited to
our verifiable encryption problem. First, MPC protocols are very flexible, so that we can
instantiate ZK proofs for many choices of R, typically expressed as binary or arithmetic
circuits. The paradigm extends beyond circuits as well: we give an MPCitH protocol to
prove knowledge of a discrete logarithm, and use our results to verifiably encrypt discrete
logs.

Second, if the MPC protocol is information theoretically secure, converting it to a
ZK proof only requires a secure commitment scheme, which can be instantiated with a
cryptographic hash function, so that the proof system requires minimal assumptions, and
is post-quantum secure. Finally, the performance of MPCitH proof systems in terms of
prover and verification costs and proof sizes are practical, and have been steadily improving
as has been demonstrated in the area of post-quantum signatures. To use the AES-128
circuit as an example, proof sizes went from 209 KB [GCZ16] to 32 KB [DDOS19] to
13 KB [BDK+21] to 9.9 KB [KZ22] in the past six years, and the running time of the
prover and verifier is below 20ms (see the implementation benchmarks in [KZ22]). Taken
together, these properties will allow us to construct verifiable encryption schemes that are
very general, make minimal assumptions, achieve post-quantum (PQ) security and are
efficient enough for practical use.

1.1 Our Contributions and Techniques
We outline our four main contributions and then discuss some of the techniques used in
the paper.
Generic compiler for MPC-in-the-head-based VE Our results apply to a broad class
of MPCitH proofs: those that can be viewed as an interactive oracle proof (IOP). The
original class from [IKOS07] is captured by the IOP framework as well as many more recent
MPCitH proofs aimed at concrete efficiency, such as [GMO16,KKW18,BN20,BDK+21,
BD20,Beu20,DOT21]. In section 3 we give a compiler that takes a proof protocol from the
MPCitH-IOP class and converts it into a verifiable encryption scheme, denoted MPCitH-VE.
Analogous to a series of work on black-box commit-and-prove [GLOV12,KOS18,Kiy20], our
compiler treats PKE in a black-box manner, avoids dedicated proof-of-plaintext-knowledge,
and is thus compatible with the majority of existing schemes. Unlike these feasibility
results, our result focuses on concretely efficient instantiations and compatibility with
typical relations and (possibly imperfectly correct) encryption schemes relevant to the
verifiable key backup problem. Compared to the naïve approach that generates proof-of-
plaintext-knowledge by representing the encryption function as an arithmetic circuit, our
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approach generally offers lower prover complexity while increasing the ciphertext sizes due
to the number of MPC parties and parallel repetitions. With our approach the prover
complexity is dominated by the cost of generating MPCitH-based ZK proof for relation R
satisfied by the VE plaintext. With recent progress in the MPCitH literature, a VE prover
can perform this task with low complexity for many types of relations such as the AES
circuit.
Methods for compressing ciphertext In our compiler, the ciphertext size is independent
of the relation R, but does depend on the witness and the number of parallel repetitions
required for soundness. To narrow this gap, in section 4 we give two methods that V can
use to compress the VE ciphertexts. The first, called the random subset method, is very
simple, incurs no computational overhead, and can reduce ciphertext size by a factor of
three when the number of parallel repetitions τ is large. The second approach, called
the equality proof method, is optimal as it achieves constant size ciphertexts, O(|w|).

However, the other costs of the resulting VE scheme (such as basic encryption and
decryption operations) increase significantly, and this approach limits the class of compatible
PKE to the homomorphic ones for which an efficient equality proof exists. See [TZ21] for
further details. We highlight improving compression as an interesting direction for future
work.
Concrete Instantiation and Implementation In section 5 we apply our transform to
encrypt different types of keys, and quantify performance. We first give a new proof of
knowledge and a VE scheme for discrete logarithms (DL) based on a new non-interactive
ZK proof called distributed key generation in the head (DKG-in-the-head). The prover
emulates a protocol where parties run a DKG protocol to compute y = gx. Since the DKG
protocol only needs to have passive security and a broadcast channel is available for free in
the MPC-in-the-head setting, our proposed protocol is extremely simple, requiring only a
single round of interaction between parties. We also give a variant of this scheme based on
a robust DKG protocol, that has faster verification and does not require parallel repetition
for soundness, and show that our DKG-based protocols may also be used to verifiably
encrypt RSA keys and plaintexts.

As discussed earlier, one of our goals is to design versatile VE suitable for wrapping a
variety of keys with arbitrary PKE schemes, while benefiting from modern MPCitH ZK
proofs which have more complex structures than Σ-protocols. To verifiably encrypt AES
keys, we apply our transform to the Banquet [BDK+21] and Helium [KZ22] ZK proofs,
where P proves knowledge of an AES key used to generate a public plaintext/ciphertext
pair. Prior to this work, there has been no practical VE scheme for AES keys, which
may find interesting applications in the post-quantum setting when instantiated with
quantum-resilient PKE.

We implement all three of these schemes, along with the scheme from [CD00] for
comparison, and give benchmark results.1 Overall we demonstrate that our new schemes
are efficient and practical. In the DL setting, we find that the DKG-based schemes each
offer a different tradeoff, e.g., allowing one to choose a scheme with short ciphertexts (1
KB), or fast verification (2ms on a 3.6GHz CPU) at the expense of lower performance
in one of the other metrics. We conclude that none of the schemes in our comparison is
strictly better than the others across all performance metrics. However, we believe the
range of tradeoffs our parameters can offer may be useful depending on the application
scenario. For our AES implementation we pair Helium with the post-quantum encryption
algorithm Kyber [SAB+20], and we show that an AES key can be verifiably encrypted
under a Kyber public key with 22 KB proofs, 13 KB ciphertexts, prover and verifier times
of 68 ms and decryption times of 2ms. For perspective, proofs of plaintext knowledge for
lattices generally require proofs that are tens to hundreds of KB in size [GHL+22, Table 1].

1Our implementations are available at https://github.com/akiratk0355/verenc-mpcith

https://github.com/akiratk0355/verenc-mpcith
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Revisiting the Camenisch-Damgård VE Construction We show that the existing
verifiable encryption transform of Camenisch and Damgård [CD00] fails to retain the
validity property when instantiated with IND-CPA PKE schemes that are only statistically
correct, as opposed to perfectly correct. We describe concrete attacks in which a malicious
prover can convince the verifier to accept a ciphertext that decrypts to random data
unrelated to R. Finally, we show how their construction can be securely instantiated with
statistically correct PKE schemes. Due to space constraints this material is in [TZ21].

Our Techniques The output of our compiler is MPCitH-VE, a public-coin three-round
interactive protocol, which can be made non-interactive using the standard Fiat-Shamir
transform [FS87]. The first input to our compiler is a protocol MPCitH-IOP, this ab-
straction captures several three-round protocols, including [IKOS07], ZKBoo [GMO16],
ZKB++ [CDG+17], and our new DKG-in-the-head protocol. We also discuss using the
same ideas to compile IOP versions of KKW [KKW18], Banquet [BDK+21], Limbo [DOT21],
Ligero [AHIV17], and Shamir secret sharing-based MPCitH [FR23].

The other input to the compiler is a public key encryption (PKE) scheme, such as
Elgamal, RSA-OAEP or PQ-secure options like Kyber [SAB+20] or FrodoKEM [NAB+19].
We define and prove the requirements the PKE must have to ensure MPCitH-VE is secure.
In short, ciphertexts created by the PKE must be a secure commitment (both hiding
and binding) to the plaintext. Hiding is provided by CPA security (security against
chosen-plaintext attacks), and for binding, we define a new property called undeniability,
which is trivial for PKE schemes with perfect correctness, but may be absent otherwise.
Notably, lattice-based PQ schemes are usually not perfectly correct. In [TZ21] we prove
that the Fujisaki-Okamoto transform [FO99,FO13,HHK17] (and simpler variants of it)
can be used to upgrade any statistically correct PKE scheme to obtain undeniability,
making our construction compatible with many existing schemes. An implication is that
encryption schemes using the FO transform are secure commitment schemes, which might
be of independent interest.

Our approach can easily instantiate VE with various combinations of R and PKE,
since the circuit for R is decoupled from the encryption function of PKE. The prover’s
work is focused on proving the statement R about the encrypted data, not on the proof of
plaintext knowledge. Proof of plaintext knowledge is achieved with existing mechanisms
in the MPCitH proof. To illustrate the core idea of our transform, we sketch an example
VE scheme based on the ZKBoo proof system [GMO16]. The original ZKBoo protocol
for relation R(x, w) := (f(w) =? x) (where f is typically a one-way function) proceeds as
follows: the prover P first distributes to three parties additive shares (w1, w2, w3) of the
secret witness w. Then P runs an MPC protocol computing R “in the head”, to produce
the view of each party, i.e., a string consisting of the input share, output, communication,
and random tape. P sends commitments to the views as its first message, and the verifier
V returns a challenge ī ∈ {1, 2, 3}, indicating party ī’s view is supposed to remain secret.
P then responds with the views of party i ̸= ī and commitment randomness. V accepts if
the commitments are correctly opened and the views agree with a correct run of the MPC.

Notice that one can immediately recover the witness once the commitment to party ī is
revealed. Our main observation is that a technique similar to straight-line extractable ZK
proofs gives rise to a secure VE scheme: by replacing commitments in the original proof
system with public-key encryptions, the prover P now sends three ciphertexts containing
witness shares: Ci ← Enc(pk, wi) for i = 1, 2, 3 (and the remaining viewi can be committed
with a cheaper hash-based commitment). The verifier still learns nothing about the
encrypted data w since one of its additive shares is kept encrypted. By contrast, the
receiver R with knowledge of the decryption key sk can decrypt the unopened ciphertext
Cī (or commitment) to obtain the remaining share wī, from which the plaintext w can be
recovered using the shares (wi)i ̸=ī revealed in the public transcript. As usual, by applying
the Fiat–Shamir transform [FS87], the above interactive protocol can be turned into a
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non-interactive VE scheme in the random oracle model, as we formally discuss in [TZ21].
While the idea of the construction is relatively simple (given the machinery of MPCitH),

and its analysis may be straightforward for limited types of MPCitH proofs, the challenge
is in defining and analyzing the compiler so that it is practically useful. Recent highly
optimized, concretely efficient MPCitH proofs deviate significantly from the simpler
IKOS/ZKBoo [GMO16, IKOS07] example given above for performance (e.g., they have
more than three rounds, use broadcast channels, preprocessing, open more than two parties,
etc.). With our comprehensive approach, most of the literature describing MPCitH proof
systems can now be used for VE in an efficient way – arguably efficient enough for practice,
as we demonstrate with AES and DL.

2 Preliminaries
First we introduce some notation and conventions used throughout the paper. The security
parameter is denoted λ, and for an integer x, [x] is short for the set {1, . . . , x}. Whenever
we have a two-part adversary, written as a pair, e.g, (A∗, P∗), we assume that A∗ and P∗

share state, and do not explicitly write it as an output of A∗ and an input to P∗. For a
set S, we denote by x←$ S sampling an element x from S uniformly at random.

In [TZ21], we recall the standard notions of public-key encryption (PKE) and interactive
oracle proofs (IOP). We also introduce (straightline) extractable commitments (ECOM)
required by our transformation.

2.1 Verifiable Encryption
We define a secure verifiable encryption scheme by adapting the definition from [CD00].
Non-interactive VE is formally defined in [TZ21]. The main difference with [CD00] is
that we additionally consider a compression algorithm C that postprocesses a transcript
exchanged between a prover and a verifier, and outputs a corresponding ciphertext. In
practice, C would be run by the verifier right after interacting with the prover and obtaining
a valid transcript. We explicitly introduce this because our proposed construction will
benefit from different optimization strategies that post process accepting transcripts to
produce a highly compressed ciphertext. The usefulness of the compression algorithm is
motivated by the verifiable key backup scenario we sketched in the introduction. While
the communication from prover to verifier is unchanged, compression reduces both the
communication costs between the verifier and the receiver, and cost of storing ciphertexts.
In the key backup scenario, the administrator is a verifier, and thus after the backup from
the source HSM (prover) is verified, the administrator only needs to store a compressed
ciphertext to be sent to the destination HSM (receiver). Moreover, unlike [CD00] we only
consider ZK against honest verifiers, since this is sufficient to prove ZK of non-interactive
VE in the random oracle model using the Fiat-Shamir transform.

Definition 1 (Verifiable Encryption Scheme). Let R be a relation with language LR :={
x : ∃w : (x, w) ∈ R

}
. A secure verifiable encryption scheme VER for R consists of a

tuple (G,P,V, C,R):
• G(1κ): A key generation algorithm that outputs a key pair (pk, sk).
• (P,V): A two-party protocol, where both P and V take (x, pk) and P additionally

takes a plaintext w as inputs. We let (b, tr)← ⟨P(w),V⟩(pk, x) denote the output
pair of V on common input (pk, x) when interacting with P(w), where b ∈ {0, 1}
indicates whether V accepts or rejects, and tr denotes a transcript exchanged between
P and V.

• C(x, tr): A compression algorithm that outputs a compressed ciphertext C.
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• R(sk, C): A receiver (or recovery) algorithm that outputs a plaintext w.

VE is secure if it satisfies the following three properties.
Completeness VER is ϵcomp-complete if for all (x, w) ∈ R.

Pr

b ̸= 1 ∨ (x, w′) /∈ R :
(pk, sk)← G(1κ);

(b, tr)← ⟨P(w),V⟩(pk, x);
C ← C(x, tr); w′ ← R(sk, C)

 ≤ ϵcomp(κ)

Validity VER is ϵval-valid if for all pairs of PPT adversaries (A∗,P∗),

Pr

b = 1 ∧ (x, w′) /∈ R :
(pk, sk)← G(1κ); x← A∗(pk, sk);

(b, tr)← ⟨P∗(sk),V⟩(pk, x);
C ← C(x, tr); w′ ←R(sk, C)

 ≤ ϵval(κ)

Computational Honest Verifier Zero-knowledge VER is ϵzk-HVZK if there exists a
PPT simulator S such that for all pairs of PPT adversaries (A,D) such that A always
outputs a valid statement-witness pair,∣∣∣∣∣∣∣∣∣∣∣∣

Pr

i = i′ :

(pk, sk)← G(1κ);
(x, w)← A(pk);

(b, tr0)← ⟨P(w),V⟩(pk, x);
tr1 ← S(pk, x);

i←$ {0, 1}; i′ ← D(pk, x, tri);

−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ ϵzk(κ)

Note that computational HVZK (as opposed to perfect, or statistical) is the best
possible in the context of verifiable encryption, as an unbounded adversary can always try
w′ = R(sk, C) with all possible sk, checking whether (x, w′) ∈ R.

2.2 MPC-in-the-Head Proofs as IOPs
In Protocol 1 we describe the blueprint of a simple MPC-in-the-head protocol characterized
as a single-round IOP. In [TZ21] we provide further details of the original IKOS framework.
We mainly focus our description on MPC-in-the-head ZK proofs derived from semi-honest
MPC, because in the parameter regime of the simple NP-relations considered in this paper,
they typically perform better than the ones from robust MPC. Since newer protocols such
as, [FR23], Ligero, KKW and Banquet deviate from MPCitH-IOP significantly (e.g., they
have more than 3 rounds, perform cut-and-choose, use Sharmir secret sharing, etc.), we
separately describe them as IOPs in [TZ21] and formulate our definitions and analysis
accordingly.

The framework of IOPs allows for a modular design of ZK proof systems and is becoming
increasingly common for constructing efficient SNARKs and MPC-in-the-head ZK proofs
(e.g., [CHM+20, CFF+21, DOT21]). As in prior work, we first design an information-
theoretically secure protocol in the form of an IOP, where commitments are idealized in
that both hiding and binding hold unconditionally. This is why the security properties for
IOPs are defined w.r.t. unbounded adversaries, and the computational assumptions will
only come into play when we later compile the IOP into a verifiable encryption scheme via
a cryptographic commitment scheme with straight-line extractability.

In MPCitH-IOPR, P proves knowledge of a witness w such that R(x, w) = 1, where Πf

is an MPC protocol computing f that uses additive secret sharing over some finite field F,
and R(x, w) := (f(w) =? x). This protocol is similar to the one from [IKOS07] relying on
the “idealized commitment functionality”, but modified to cover MPC protocols with a
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Protocol 1: MPCitH-IOPR

Parameters: The number of parties N ; the number of parallel repetitions τ ; the number of
opened parties t; the challenge set Ch =

{
e ⊂ [N ] : |e| = t

}
.

Inputs: prover P receives (x, w); verifier V receives x.
Committing phase The first-round message of V is empty. P proceeds as follows.

1. Choose random w1, . . . , wN such that w =
∑N

i=1 wi.
2. Emulate “in her head” the execution of Πf on input (x, w1, . . . , wN ).
3. Prepare, based on the execution, the share of the witness, and the randomness, the

views V1, . . . , VN of the N parties; P outputs the proof string π = (V1, . . . , VN ).
Query phase

1. V chooses a random e ∈ Ch and queries the oracle for π with e.
2. The oracle returns (Vi)i∈e.

Decision phase: V accepts if and only if CheckView(x, (Vi)i∈e) = 1. See section 2.2 for the
definition of CheckView

P and V execute τ instances of the above procedures in parallel. If V accepts in all τ
executions, it outputs b = 1; otherwise it outputs b = 0.

broadcast functionality, so the prover may open 2 < t < N parties’ views instead of two.
We also employ the IOP framework following more recent MPC-in-the-head protocols such
as Ligero [BFH+20] and Limbo [DOT21]. As we shall see below, as an IOP protocol it
is straightforward to prove straight-line extractability of MPCitH-IOPR. This will allow
a smooth transition to SLE of the MPCitH proof systems we compile (with suitable
commitment schemes), then to the validity of the resulting verifiable encryption schemes.

Our description also has parallel repetition: a simpler protocol is repeated τ times in
parallel to increase soundness. These changes make presentation consistent with many
practical MPCitH proof protocols (e.g., ZKB++, KKW and Banquet all use (N−1)-private
MPC protocols with broadcast channels).

The helper function CheckView in MPCitH-IOPR takes the statement and a set of views
as input and returns 1 if:

1. The outputs of the opened parties (determined by their views) are 1, and
2. The opened views are consistent with each other, with respect to x and Πf ,

and returns 0 otherwise. We further define a utility function GetW, which takes a party’s
view and extracts their share of the witness from it.

We further recall the canonical way of extracting a witness from any MPC-in-the-head
proofs, which is often implicit in the literature.

Definition 2 (Canonical extractor). An extractor E for one repetition of MPCitH-IOPR is
called canonical if on input x and π = (V1, . . . , VN ), it works as follows: E obtains witness
shares via wi = GetW(Vi) for i ∈ [N ] and then outputs a candidate witness w :=

∑
i∈[N ] wi.

For τ repetitions, the canonical extractor Eτ runs E on each repetition j ∈ [τ ] and outputs
w(j) if (x, w(j)) ∈ R for some j, otherwise it outputs ⊥.

It is rather straightforward to check that the protocol MPCitH-IOPR is (1) straight-
line extractable with respect to the canonical knowledge extractor Eτ with ϵsle-iop ≤
((k− 1)/|Ch|)τ assuming the notion called k-consistency , and (2) HVZK if the underlying
MPC protocol is t-private . For completeness, [TZ21] formally introduces these notions
and proves SLE and HVZK.
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3 Our Transform
In this section we present our transform, which generically constructs a verifiable encryption
scheme MPCitH-VE from an MPCitH-IOP protocol in the class described in Protocol 1. We
start with a simple construction of extractable commitments from public-key encryption,
then come to our compiler in section 3.2.

3.1 Extractable Commitments from Undeniable PKE

In the following we show that most commonly used public-key encryption schemes give rise
to extractable commitments. A similar construction appears in [GH03], and its analysis in
the perfectly correct case is somewhat folklore, below we describe the exact construction
we will use, and analyze its security. Let PKE = (Gen, Enc, Dec) be a public key encryption
scheme. We construct an extractable commitment scheme ECOM = (CGen, Commit, CExt)
(see [TZ21] for definition and syntax). For simplicity we assume throughout that the
message space Sm and random space Sr of the commitment schemes are identical to
those of the encryption schemes. We remark that our formulation of ECOM is specifically
tailored to non-interactive and straight-line extractable schemes, as opposed to what’s
referred to as an “extractable commitment” in some previous works (e.g., [GLOV12])
where the committing phase is interactive and the extractor has to rewind the prover.
Interactivity is not suitable for VE, since the receiver does not directly interact with the
prover.

• CGen(1λ) runs PKE.Gen(1λ) and outputs pk as the commitment key.
• Commit(pk, m; r) outputs c = PKE.Enc(pk, m; r).
• The opening of the commitment c is (m, r), and the verifier checks (m, r) against

c by computing c′ = Enc(pk, m, r); the opening is accepted iff c′ = c, m ∈ Sm and
r ∈ Sr.

• CExt(sk, c) outputs m = PKE.Dec(sk, c).
It is rather straightforward to show the above construction is perfectly extractable,

perfectly binding and computationally hiding, assuming PKE is perfectly correct and
IND-CPA secure. This is because perfect correctness implies, for every valid ciphertext c,
there exists a unique message-randomness pair (m, r) such that c = Enc(pk, m; r). The two
most commonly used choices of PKE, RSA and Elgamal, both meet these requirements,
and can be used as commitment schemes.

However, IND-CPA security of PKE is not sufficient for guaranteeing validity of the
resulting verifiable encryption, if the correctness is imperfect. For encryption schemes that
are not perfectly correct, there can exist (m∗, r∗) such that Dec(sk, (Enc(pk, m∗; r∗))) ̸= m∗.
Then a malicious prover may be able to craft a ciphertext c∗ that can be correctly opened
to plaintext m∗ such that it passes validity checks performed by a verifier, while c∗ decrypts
to junk during the recovery phase.

In [TZ21], we will show two examples of such schemes, one based on decisional composite
residuosity, and one based on the learning with errors (LWE) problem. In general, the base
encryption scheme of post-quantum lattice-based candidates like FrodoKEM [NAB+19]
and Kyber [SAB+20] are CPA secure, but not perfectly correct, and even the complete
CCA-secure schemes may still be incorrect with bounded probability.

To prevent this attack, we require an additional property called undeniability. Intuitively,
undeniability forces an adversary A to open any ciphertext to the plaintext identical to
the result of decryption even if A may bias the randomness r.

Definition 3 (Undeniability). We say that a public-key encryption scheme PKE =
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(Gen, Enc, Dec) is ϵund-undeniable if for any PPT adversary A:

Pr

m ̸= m′ ∧ c = Enc(pk, m; r) :
(sk, pk)← Gen(1κ);

(c, m, r)← A(pk, sk);
m′ := Dec(sk, c)

 ≤ ϵund(λ)

The following utility lemma guarantees that an undeniable IND-CPA encryption scheme
can be used as a secure extractable commitment with the simple construction given above.

Lemma 1. If PKE is ϵund-undeniable and ϵcpa-IND-CPA secure, then the commitment
scheme ECOM constructed from PKE is ϵcext-extractable with ϵcext ≤ ϵund, ϵbind-binding with
ϵbind ≤ ϵund and ϵhide-hiding with ϵhide ≤ ϵcpa.

Proof. We prove the three properties separately.
Extractability follows from undeniability. That is, if the adversary can output a tuple
(c, m, r) breaking the extractability of ECOM, it also holds that c = Enc(pk, m; r) and
m ̸= Dec(sk, c). Therefore, (c, m, r) is also an instance breaking undeniability.
Binding follows from undeniability. Suppose there exists an adversary that outputs
a tuple (m, r, m′, r′, c) such that it breaks binding with non-negligible probability, i.e.,
c = Enc(pk, m; r) = Enc(pk, m′; r′) and m ̸= m′. Given such an efficient adversary
A against the binding game, we construct another adversary B that uses A to break
undeniability as follows.

1. On receiving (pk, sk) as input, B forwards it to A.
2. When A outputs (c, m, r, m′, r′) such that c = Enc(pk, m; r) = Enc(pk, m′; r′) and

m ̸= m′, the B first decrypts c: m̃ = Dec(sk, c) and proceeds as follows: (a) If
m̃ ≠ m, then B outputs (c, m, r) in the undeniability game, and (b) If m̃ ≠ m′, then
B outputs (c, m′, r′) in the undeniability game.

Note that at least one of 2(a) or 2(b) must occur since m ̸= m′. In either case, B successfully
wins the undeniability game as long as A breaks binding. Clearly B succeeds with the same
probability as A, and B’s runtime is the same as A’s plus the cost of one Dec operation.
Hiding follows from the IND-CPA security of PKE. That is, if there exists a PPT
distinguisher for commitment c = Commit(pk, mb; r) = Enc(pk, mb; r) one can construct a
reduction algorithm that maps a challenge ciphertext of the IND-CPA game to c.

How to construct undeniable PKE Validity of our generic compiler described in the
next section heavily relies on extractable commitments. The straightforward construction
of ECOM requires undeniability, which is not necessarily satisfied by public-key encryption
schemes with statistical correctness. As we shall see in [TZ21], this is not just a limitation
in a security proof; a lack of undeniability actually allows cheating provers to break validity
entirely. A natural question is whether one can generically add the undeniable property
to any IND-CPA-secure encryption scheme with statistical correctness. We answer this
question in the affirmative by proving that several variants of the Fujisaki–Okamoto
transform [FO99,FO13,HHK17] can make a given PKE scheme undeniable in the random
oracle model.

For example, suppose we are given an encryption function Enc that takes a public
key, message, and random value as input, and a random oracle G that hashes into the
randomness space of Enc. The simplest FO transform [FO99] defines Enc′ such that

Enc′(pk, m; r) := Enc(pk, m||r; G(m||r)). (1)

A crucial observation is that cheating provers are now forced to derive encryption
randomness uniformly by querying the random oracle G. This makes it difficult to craft a
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malicious ciphertext c from biased randomness, which decrypts to a plaintext inconsistent
with what she originally encrypted. Using the same observation we can also prove that
well-known FO-based CCA conversion methods employed by Kyber and FrodoKEM achieve
undeniability. Details are deferred to [TZ21].

3.2 Compiling MPCitH-IOP Into Verifiable Encryption
Our construction MPCitH-VE is given in Protocol 2. The description already incorporates
the random subset optimization that will be analyzed in the next section. Here, we focus
on the case of n = τ for simplicity. As for the intuition for our construction, we observed
in section 2.2 that for any MPCitH IOP following the [IKOS07] paradigm, there exists a
(canonical) straight-line extractor that recovers the witness from the committed values of
all parties. Recall that:

• The MPC protocol evaluates R with inputs x and w.
• The input x is public and w is shared amongst the parties.
• The view of each party must include their share of the witness and random tapes in

order to allow verification to check consistency, since some of the outgoing messages
of the parties must depend on both of these values.

Therefore, given the opening of the commitments of all parties (all N views), the
extractor can recover the witness based on the shares of all parties. For constructing
ZK proofs or signatures allowing for straight-line witness extraction, one can compile
MPCitH-IOP by letting a prover commit to every per-party view with random oracle
commitments as in [Pas03,KKW18,ZCD+20,DFMS22]: the extractor can reconstruct a
witness by observing the RO query history. However, this does not suffice for instantiating
verifiable encryption because the receiver (i.e., decryptor) in the real-world clearly has no
access to the query history.

Our compiler takes an alternative approach similar to [Kat21,HLR21], which simulta-
neously realizes a straight-line extractable ZK proof system and valid verifiable encryption
scheme. By replacing the commitment function with an extractable commitment ECOM
(as defined in previous section) where the recipient has the decryption key sk, the recipient
can decrypt the commitments to the unopened view(s) and recover all openings, then use
the extractor algorithm to recover a witness. We remark that our transform naturally
generalizes to other types of MPCitH protocols as well, since all such protocols (we are
aware of) allow extraction of a witness given the openings of the per-party commitments
(and indeed use this in their security reductions).

Because our presentation assumes the witness is shared with an additive secret sharing
scheme, we make use of this to compress the ciphertext, by summing the t revealed shares
into the single value w̃. If the secret sharing scheme of Πf does not allow such partial
reconstruction, then the ciphertext may simply include all shares. When generalizing to
other types of secret sharing schemes the decryption operation must also be generalized to
reconstruct w from the shares of all parties.

Theorem 1. Let MPCitH-IOPR be an MPC-in-the-head-based IOP in the class described
by Protocol 1 that is perfectly HVZK and SLE with knowledge error ϵsle-iop. Let ECOM be
an extractable commitment scheme that has ϵcext-extractability and is ϵhide-hiding. Then
the compiled protocol, MPCitH-VER described in Protocol 2 with n = τ , is ϵval-valid with
validity error ϵval = ϵsle-iop + ϵcext, and ϵzk-HVZK with ϵzk = τ(N − t)ϵhide.

HVZK directly follows from hiding of ECOM (and thus from IND-CPA of the underlying
PKE). Proof of validity essentially proceeds as follows: if an MPCitH-VE cheating prover
P∗ can convince the verifier V while the receiver fails to decrypt a correct witness, then
it must be that either (1) P∗ broke extractability of ECOM, or (2) one can construct a
pair of adversaries (A∗, P∗) that break SLE of MPCitH-IOPR. Adversaries (A∗, P∗) first
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extract views from the commitments sent by P∗ and then forward them as a complete set
of N views in the SLE-IOP game. Formal proof is deferred to [TZ21].

Protocol 2: MPCitH-VER

Converts the MPCitH-IOP prover P and verifier V to an MPCitH-VE prover P and
verifier V using the the extractable commitment scheme ECOM = (CGen, Commit, CExt)
as constructed in section 3.1.
Parameters: The number of parties N ; the number of parallel repetitions τ ; the number

of opened parties t; the challenge set Ch =
{

e ∈ [N ] : |e| = t
}

; the subset size for
compression n.

Key Generation G(1κ): It invokes (pk, sk)← CGen(1κ) and outputs (pk, sk).
Two-party protocol ⟨P(w),V⟩(pk, x):

1. P runs P on input (x, w) to obtain the proof string π = (V1, . . . , VN ).
2. P separately commits to each of these N views to generate per-party com-

mitments (C1, . . . , CN ) where Ci = Commit(pk, Vi; ri) and ri is commitment
randomness uniformly sampled from Sr.

3. V invokes V on input x to obtain challenge e ∈ Ch, and sends it to P.
4. P opens the commitments of the t parties, by revealing (Vi, ri)i∈e.
5. V sends the views (Vi)i∈e to V as a response to the oracle query. It accepts if

and only if:
(a) Ci = Commit(pk, Vi; ri) and r ∈ Sr for all i ∈ e, i.e., P opened the views

corresponding to (Ci)i∈e successfully, and
(b) V outputs 1.

P and V execute τ instances of the above protocol in parallel. If V accepts in all τ
executions, it outputs b = 1 and a transcript

tr = ((C(j)
i )i∈[N ], e(j), (V (j)

i , r
(j)
i )i∈e(j))j∈[τ ] .

Otherwise, V outputs b = 0 and tr = ⊥.
Compression C(x, tr):

1. It samples a subset S ⊆ [τ ] of size n ≤ τ uniformly at random.

2. For j ∈ S, extract the t witness shares w
(j)
i = GetW(V (j)

i ) for i ∈ e(j) and
partially reconstruct the witness w̃(j) =

∑
i∈e(j) w

(j)
i .

3. Output the compressed ciphertext C = (w̃(j), (C(j)
i )i/∈e(j))j∈S .

Receiver R(sk, C): To decrypt the ciphertext C, the receiver proceeds as follows.

1. For j ∈ S and i /∈ e(j), extract the unopened parties’ views V̂
(j)

i = CExt(sk, C(j)
i )

and computes the corresponding witness shares ŵ
(j)
i = GetW(V̂ (j)

i ). Let
w(j) = w̃(j) +

∑
i/∈e(j) ŵ

(j)
i be the jth candidate witness.

2. If there exists some j ∈ S such that (x, w(j)) ∈ R, output w(j). Otherwise,
output ⊥.

Optimizations While the prover in our generic compiler MPCitH-VE commits to a
complete per-party view Vi using ECOM, several standard optimization techniques in the
literature also are applicable in our setting for better computational and communication
complexities. Notice that R would only need witness shares (wi)i∈[N ] to be able to recover



Akira Takahashi, Greg Zaverucha 13

the plaintext. Hence, it would be sufficient to have the prover P commit to wi using
ECOM, and to the rest of the strings in Vi using the random oracle commitments as the
ZKBoo/ZKB++ prover does [GMO16,CDG+17]. Since ECOM is instantiated with PKE
in practice while the RO is instantiated with cryptographic hash functions, this would
significantly reduce the size of transcripts and could save both prover and verifier time for
creating/opening commitments.

Moreover, following [KKW18, §2.3] and subsequent works [ZCD+20,BDK+21,DOT21,
KZ22], in case the MPC protocol Πf relies on a broadcast channel and thus N − 1 out of
N views are revealed, we can decouple broadcast messages (msgsi)i∈[N ] from per-party
views to reduce the communication complexity, where each msgsi consists of messages
broadcast by party i. That is, the prover P first generates a root seed sd∗ to derive
per-party seeds (sdi)i∈[N ] with a binary tree construction. P now only commits to each
seed sdi used for deriving a witness share and a random tape of party i using ECOM, and
sends h = H((msgsi)i∈[N ]). On receiving challenge ī ∈ [N ] from V, indicating the index of
unopened party, P reveals msgsī and ⌈log2(N)⌉ nodes in the tree, which are sufficient to
compute (sdi)i∈[N ]\{ī}. From such information, V can reconstruct the remaining broadcast
messages, check h against broadcast messages sent by all N parties, and check that N − 1
parties on input (sdi)i∈[N ]\{ī} lead to a correct output with respect to x and msgsī. Our
DKG-in-the-head protocol in section 5.1 benefits from these optimizations.

3.3 Compiling Other MPC-in-the-Head Proofs
Although the IOPs corresponding to KKW and Banquet (given in [TZ21]) are not exactly
in the class described by MPCitH-IOP, we can compile them into verifiable encryption
schemes using essentially the same idea.

To compile Banquet-IOP, it is sufficient to have the VE prover P commit to the per-
party seeds (sdi)i∈[N ] with an extractable commitment scheme during the first round. The
second and third round operations are identical to the original Banquet-IOP protocol, and
the VE verifier V proceeds by following the decision phase of Banquet-IOP and accepts iff
V accepts and the N − 1 per-party commitments are opened correctly. The compression
and receiver algorithms C and R are defined analogously to those of MPCitH-VE, except
that the witness offset ∆w is added by C when creating a partially reconstructed witness w̃.
Since the receiver tries to decrypt by using the SLE extractor algorithm defined in [TZ21],
the compiled protocol has ϵval-validity with ϵval = ϵcext + ϵsle, assuming ϵcext-extractability
of ECOM and ϵsle-SLE of Banquet-IOP. [TZ21] provides detailed analysis of Banquet-based
VE.

Likewise, we can compile KKW-IOP by having the VE prover P commit to the offline
per-party states (st(j)

i )i∈[N ] with ECOM. On the other hand, the other commitments in
KKW-IOP can be instantiated with the usual random oracle commitments as in the original
KKW protocol. As we only need τ revealed online executions to recover a witness, the
compression algorithm C outputs as a ciphertext w̃(j) =

∑
i ̸=īj

λw
i ⊕ ŵ(j) and C(j)

īj
for

j ∈ T ⊂ [M ], where each witness mask share λw
i is obtained from the revealed value st(j)

i .
Then the receiver R extracts the unopened share of the witness mask from C(j)

īj
and XORs

it with ŵ(j) to recover a candidate witness.
Compiling Limbo is straightforward since the protocol of [DOT21, Fig.5] is already

presented using the language of IOPs. The VE prover uses ECOM to commit to each
witness share as part of the first oracle, and the rest of the proof string is committed with
the existing commitment scheme.

Compiling protocols utilizing robustness and/or (t, N)-threshold LSSS-based protocols
such as [AHIV17, BFH+20, FR23] is also possible and eliminates the need for parallel
repetitions. E.g., if instantiated with Shamir secret sharing, the prover encrypts wi = fw(i)
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for i = 1, . . . , N where fw ∈ F[X] is a degree t polynomial encoding w in its constant
term and containing uniformly random coefficients otherwise. The verifier asks the prover
to open views of parties in I ⊂ [N ] with |I| = t. To recover the witness, the receiver
then descrypts remaining shares and invokes the reconstruction algorithm of Shamir or
a suitable decoding algorithm if the scheme relies on Reed-Solomon code. The validity
analysis is rather straightforward given the knowledge soundness of these schemes, because
undeniable PKE can be seen as a straight-line extractable commitment that replaces
RO-based commitment, and the receiver of VE essentially acts as a knowledge extractor.
However, our concrete instantiations mainly focus on simple non-robust MPC-in-the-Head
since they typically perform better in the context of the simple NP-relations considered in
our intended applications (e.g. AES circuits).

3.4 Applying Fiat–Shamir
Following the standard Fiat–Shamir transform [FS87], we can make our verifiable encryption
protocol MPCitH-VE non-interactive in the random oracle model, by hashing the first prover
messages together with x and pk to obtain the challenge e ∈ Ch. Since the base interactive
protocol has three rounds, the FS transform introduces a multiplicative factor of q security
loss in validity, where q is the number of random oracle queries made by a non-interactive
cheating prover. Note that this loss is well-known in (knowledge) soundness analysis
for FS-NIZK proofs and EUF-KOA security of signatures constructed from canonical
identification schemes [KMP16]. Formal analysis is deferred to [TZ21]. Banquet-based
verifiable encryption however requires a separate concrete analysis dedicated to the non-
interactive version, since it has 7 rounds of interaction. Because the EUF-KOA security
analysis of Banquet as a signature scheme [BDK+21, Theorem 2] already evaluates the
probability that the witness (i.e., secret signing key) extraction fails, their analysis can be
reused in large part to derive the concrete validity error of non-interactive Banquet-VE.
Construction of Banquet-NIVE and validity analysis are deferred to [TZ21].

3.5 Achieving Strong Validity
To the best of our knowledge, prior definitions of validity for verifiable encryption in the
literature assume that the key generation phase is always performed honestly. One can
strengthen the validity property so that a cheating prover takes control of key generation.
Formally, we say a VE scheme has ϵsval-strong validity if for all pairs of PPT adversaries
(A∗,P∗),

Pr

 b = 1 ∧
(x, w′) /∈ R ∧

(pk, sk) ∈ G(1κ)
:

(x, pk, sk)← A∗(1κ);
(b, tr)← ⟨P∗(sk),V⟩(pk, x);

C ← C(x, tr); w′ ← R(sk, C)

 ≤ ϵsval(κ).

We remark that allowing A∗ to choose (pk, sk) is very strong, and that in practice it’s
not possible to check whether (pk, sk) ∈ G(1λ). However, without this condition, note that
A∗ can trivially break strong validity by generating a keypair then setting sk to 0. In the
context of our verifiable key backup scenario, the device could be encrypting the key to
a future instance of itself, or to another device in the same security domain. Here the
user must trust that the device importing the key has generated its keypair honestly. This
seems to be the best possible validity assurance when the device is responsible to store sk.

If ECOM is instantiated with a perfectly correct PKE, we can achieve strong validity of
MPCitH-VE. Observe that if PKE has perfect correctness, then for every key pair and for
every ciphertext, the corresponding plaintext is uniquely determined. Therefore, as long
as the key pair is in the right domain (which the receiver can easily check) undeniability
can never be broken regardless of the distribution of keys.
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Figure 1: Approximate minimum cost of breaking validity of ZKBoo-based VE (left) and
DKGitH-based VE (right) with a random subset of size n. The parameter τ denotes the
number of parallel repetitions. The number of parties N is fixed to 3 for ZKBoo and 64
for DKGitH, respectively. Note that τ = 219 corresponds to the picnic-L1 parameters
from the Picnic spec [ZCD+20].

4 Compressing Ciphertexts

Because MPCitH protocols use τ parallel repetitions to boost soundness, the ciphertexts
output by our transform can be large. For example, for 128-bit security, τ could range
from 20 to 219. Each repetition outputs one PKE ciphertext and a share of the witness, so
the total size is τ(|PKE.Enc| + |w|). Also, in the post-quantum PKE case, lattice-based
constructions can have relatively large ciphertexts. An interesting question is whether
these can be compressed, since these ciphertexts will usually be very redundant: note that
for an honestly created proof all τ repetitions encrypt the same witness (in different ways),
and the receiver will only need to decrypt one.

In this section we give two methods to compress the verifiable encryption ciphertexts
output by schemes created with our transform. The first, called the random subset method,
is very simple, incurs no computational overhead, and can reduce ciphertext size by a
factor of three when τ is large.

The second approach, called the equality proof method, is optimal as it achieves constant
size ciphertexts, O(|w|) (provided PKE has constant ciphertext expansion). However, it
requires special properties of PKE, increases proof size, prover and verifier computational
costs significantly, so it is more of a possibility result rather than a practical construction.
We defer detailed description of the equality proof method to [TZ21], and give only the
high-level idea here. In an honestly generated proof, all component ciphertexts are valid,
and decryption will always succeed on the first attempt. If after the VE protocol, the
prover were able to additionally prove that R would output the same witness from all
of the component ciphertexts, then the verifier could keep only one of the component
ciphertexts, making the VE ciphertext constant size. This is because either: all values are
equal and correct, or all values are equal and incorrect, but the latter case is equivalent to
creating an invalid proof, which is possible with only negligible probability by soundness
of the proof protocol.

Note that the equality proof proves that R outputs the same value for all component
ciphertexts – and is not requiring that we prove the relation. The crux of R for MPCitH
protocols is recombining additive shares of the witness, a comparatively simple operation.
However one of the shares is encrypted, meaning we are back to proving something about
encrypted data. We describe one instantiation of the idea to show that this is possible
without resorting to general methods, by using PKE in a non-black-box way.
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4.1 The Random Subset Method
This compression method is rather simple, but the impact on ciphertext size can be
significant, and the cost to the prover is nothing, and almost nothing to the verifier. That
is, we set n < τ in Protocol 2 to optimize the compression and receiver algorithms. Upon
receiving a verifiable encryption proof with our transform, the verifier has a set of τ
ciphertext components, corresponding to the τ parallel repetitions used to produce the
proof. The verifier chooses a subset of the ciphertexts to keep at random, and discards the
others. The size of the subset is denoted n, and is a parameter of the method.

We stress that soundness of the proof is unchanged, since the entire is proof is com-
municated to the verifier and checked. Only the analysis of the validity error must be
updated, since the receiver now has only n ciphertexts. Naïvely, one may be able to
bound the validity error by ϵsle-iop(n) which corresponds to the adversary’s advantage in
convincing the verifier while using n bad repetitions (out of τ) leading to an invalid witness
if decrypted. However, this loose bound does not help us reduce the ciphertext size. In
fact, thanks to the fact that VE verifier picks a random subset after the verification checks
are completed, the actual validity error is significantly lower than ϵsle-iop(n), since the
adversary must make sure that all the bad repetitions fall in the uniformly selected subset
of size n for the receiver to fail.

More formally, let s be the number of ciphertexts in the initial set of size τ that are
bad, meaning they do not decrypt to the witness. For the proof systems we consider,
having s > 0 is quite easy, as it only requires guessing a small part of the challenge. Note
that s must be at least n, otherwise the attack against compression never succeeds, since
V ’s output always contains one or more valid ciphertexts.

Below we will choose parameters for the random subset method applied to different
proof systems, in the interactive case. The adversary P∗, is a cheating prover who knows
the witness, and tries to create a verifiable ciphertext where decryption fails. Then the
general form of P∗’s success probability is

Pr
[
C selects n of s bad ctexts ∧ V accepts a proof with s bad ctexts

]
= #subsets with n bad ctexts

# of subsets · Pr
[
V accepts a proof with s bad ctexts

]
=

(
s
n

)(
τ
n

) · (ϵsle-iop(s) + ϵcext)

where ϵsle-iop(s) is the probability that an IOP prover wins the SLE-IOP game with s
parallel repetitions, and “ctexts” is short for ciphertexts. A more formal analysis is given
in [TZ21], where we prove the following theorem.

Theorem 2. Let MPCitH-IOPR be an MPC-in-the-head-based IOP in the class described
by Protocol 1 with SLE knowledge error ϵsle-iop. Let ECOM be an extractable commitment
scheme with ϵcext-extractability. Then MPCitH-VER is ϵval-valid with validity error

ϵval(τ, n) = max
n≤s≤τ

(
s
n

)(
τ
n

) · (ϵsle-iop(s) + ϵcext) .

Generally, the amount of compression possible is larger when τ is larger, as demonstrated
by the ZKB++ example (where τ = 219 for 128-bit security). The DKGitH example
requires much smaller τ (in the range 16–32), and compression is limited, or none at all.
However, we can increase τ to larger values than strictly necessary, in order to compress
the ciphertext further, see fig. 1 for a range of options with fixed N and the first row of
table 1 for a concrete example. This reduces ciphertext size at the expense of proof size,
which can be beneficial in applications that check the proof then discard it, but store the
ciphertext.
Application to IKOS/ZKBoo/ZKB++ We consider interactive IKOS-style protocols,
such as ZKBoo and ZKB++. For each repetition of the protocol, they have

(
N
2
)
-consistency,
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where N is the number of parties. As ZKBoo and ZKB++ have N = 3 and Ch = {1, 2, 3}
they have 3-consistency and thus are SLE with knowledge error ϵsle-iop(s) ≤ 2/3. In fig. 1
we show the costs of breaking validity − log2(ϵval(τ, n)) for different combinations of τ and
n assuming ϵcext is negligible. We see that n = 70 provides 128-bit security with τ = 219
repetitions, meaning we can compress ciphertexts by a factor 3 at no cost. If we increase
τ slightly to 250 (meaning proof size and prover/verifier time increase by roughly 1.14x)
then we can set n = 50 and compress ciphertexts by a factor 4.4.
Application to DKGitH This is similar to IKOS, except that the default soundness error
is different. Because the corresponding MPC protocol uses a broadcast functionality, the
prover reveals N−1 parties’ views and thereby the knowledge error is at most 1/N , instead
of 1− 1/

(
N
2
)
. In fig. 1 we show the costs of breaking validity for different combinations

of τ and n assuming ϵcext is negligible. As τ is smaller, the amount of compression we
get for free is limited to only 2 ciphertexts (i.e., we can set n = 20 when τ = 22). The
option of increasing τ is again possible, but provides less compression and at a higher cost.
In addition to the choices of (n, τ) given in fig. 1, table 1 gives some concrete examples
showing proof and ciphertext size along with estimates of the prover and verifier times.

5 Concrete Instantiations
In this section we give some instantiations of our transform. We implement verifiable
encryption of AES keys, and three schemes for discrete logarithms (suitable for encrypting,
e.g., ECDSA, ECDH and Ed25519 private keys) and provide performance benchmarks.
We also describe how our scheme for discrete logs can be adapted to verifiably encrypt
RSA private keys and plaintexts.
Interactivity All of the benchmarks are given for the non-interactive versions of proofs.
However, we note that it is also possible in many applications (such as in verifiable key
backup) where the verifier will only accept a small number of failed attempts by a prover,
to use an interactive proof with 40–64 bits of interactive security (analogous to the case
of interactive identification schemes [FS87, Section 2.3]). For the MPCitH protocols we
consider that use parallel repetition, this reduces number repetitions significantly, in turn
reducing the prover and verifier time, proof size and ciphertext size by a factor 2–3.

5.1 Verifiable Encryption of Discrete Logs in Prime Order Groups
Perhaps the most fundamental relation in cryptography is the discrete logarithm in a
prime order group G, i.e., (y, x) such that y = gx where ⟨g⟩ = G. As an application our
transform, we give a new protocol to verifiably encrypt a discrete logarithm. We construct
an MPC protocol to compute y from shares of x, which naturally gives an MPCitH protocol
to prove knowledge of x. When compared to the most efficient proof of knowledge for
discrete logarithms, the Schnorr proof, our new protocol is much less efficient, but it is
amenable to our transform, and can therefore be used to verifiably encrypt discrete logs.
We can then verifiably encrypt DH, ECDH, DSA and ECDSA keys directly as key pairs
for these algorithms are discrete log instances, and in section 5.1.3 we explain how this
scheme can also be used to encrypt RSA keys.

As an aside, we remark that our new proof protocol has a tight reduction to the discrete
logarithm problem in the random oracle model. This feature is of theoretical interest as it
implies a signature scheme based on the discrete logarithm problem with a tight security
reduction.
Baselines for Comparison We compare to two protocols from the literature. The first is
the Camenisch-Damgård protocol [CD00] for a generic Σ protocol, combined with Schnorr’s
Σ-protocol [Sch91] for discrete logs with binary challenges. This is the only verifiable
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encryption scheme we are aware of that works for discrete logarithms in any cyclic group,
and allows a flexible choice of PKE (as our protocol does). It also requires the random
oracle assumption to make the proof non-interactive.

The second, more efficient, protocol in [CD00] has k parallel repetitions, and the verifier
selects a subset to form the output, and audits the encryption step of the k − u other
repetitions (and the verifier checks all repetitions have a valid transcript for the Σ protocol
with one challenge). No parameters are given for concrete, non-interactive security – we
found that for λ-bit security, (k, u) must be chosen so that

(
k
u

)
≥ 2λ. Then there are

multiple possible choices for (k, u), which trade ciphertext size for computation: we can
have a small decrease in ciphertext size, for a large increase in computation and proof size.
Our comparison in table 1 gives some of the options.

Another VE scheme we compare to is from [NRSW20], which can encrypt a discrete
logarithm in an elliptic curve group, using a special PRF called Purify. The scheme does
allow, e.g., encryption of an ECDSA private key, but requires that encryption be done
with an Elgamal-like PKE. A complication related to implementation of the Purify PRF is
that one must choose an additional pair of elliptic curves, related to the group order of the
curve where the discrete logarithm is defined, such that the DDH assumption holds. In
addition to making these additional parameter choices, we must also make an assumption
beyond the DLP + PKE assumptions in G (as in [CD00] and our scheme).

We omit a detailed comparison to [CS03] since it only works for discrete logarithms in
a group suitable for Paillier’s encryption scheme, and the PKE is fixed to Paillier’s scheme.
The scheme is not suitable for encrypting an ECDSA private key, one of our motivating
examples. That said, due to the high cost of arithmetic mod Zn2 where n is 3072–4096
bits, we estimate that our DKGitH proof always outperforms [CS03] in terms of prover
time, verifier time and ciphertext size. To support these conclusions, our software package
provides some detailed estimates for [CS03], along with the software used to benchmark
Zn2 arithmetic.

We chose [NRSW20] and [CS03] as baselines for comparison for encrypting discrete
logarithms rather than a zkSNARK since SNARKs generally require significantly stronger
assupmptions when compared to our protocol. An exception in this regard is Spartan [Set20],
instantiated in the group where the discrete log is defined. In this case the assumptions are
comparable to our scheme and [CS03], however VE with Elgamal would require proving two
scalar multiplications “non-natively”, i.e., as an arithmetic circuit modulo the group order,
which would require at least two million R1CS constraints. An R1CS instance of this size
would require tens of seconds to prove and have proofs over 100 KB in size [Set20, Figures
7-10].

5.1.1 Encrypting Discrete Logs with DKG-in-the-head

We first describe the base non-interactive ZK proof system DKGitH for relation R ={
(y, x) : y = gx

}
.2 The core idea of the protocol is based on the additive homomorphism

of private keys, under multiplication of public keys, and may be folklore (an early reference
describing it is [Ped92]). To compute f(x) = gx =? y in a distributed manner, the prover
P provides shares of x to the N parties such that x =

∑N
i=1 xi (mod p). Then P emulates

a simple distributed key generation (DKG) protocol Πf that proceeds as follows.
1. Each party i computes yi = gxi , and broadcasts yi.
2. Output the public key y =

∏N
i=1 yi

P commits to the shares of the parties, and the yi values (together these two values
makeup party Pi’s view), then the verifier P selects one party to remain unopened, having

2We present the final VE scheme to illustrate our implementation details. The IOP implicit in DKGitH
is sketched in the validity analysis in [TZ21].
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index ī. In the response, the prover sends the views of the other N−1 parties, along with y ī,
and a commitment to x ī. Based on the revealed values, V checks that y = y ī

∏
i∈[N ],i̸=ī gxi

and that each yi is computed correctly.
To realize VE, P encrypts xi’s in the committing phase, which allows a receiver R

to reconstruct the DLog of y by decrypting an unopened share xī. Along with the core
idea, the full protocol in [TZ21] uses two ideas (originating in [KKW18]) that are now
standard in protocols of this type. First, the shares of the parties are computed by reading
random values from their tapes, and the first share is corrected with an auxiliary value
that depends on the secret. Second, the tapes are derived from a seed with a binary tree
construction, so that the N − 1 revealed seeds can be communicated more efficiently by
revealing ⌈log2(N)⌉ seeds.

In [TZ21], we provide the full protocol, prove security, describe how to chose parameters
for 128-bit concrete security, describe the hashed Elgamal PKE we use, and describe the
optimizations we apply once these choices are fixed. We then explain how we obtained the
size and speed benchmarks used in this section.

5.1.2 Encrypting Discrete Logs with Robust DKG-in-the-head

One can consider a variant of the above protocol by having a prover P run Feldman’s VSS
protocol in-the-head [Fel87]:

1. Party 0 (dealer), upon receiving the witness (DLOG) x as input, samples uniformly
random ai ∈ F for i = 1, . . . , t and lets a0 = x. Define a degree-t polynomial
a(X) = a0 + a1X + . . . + atX

t.
2. For i = 1, . . . , N , send to party i a Shamir secret share xi = a(i) of x. Moreover,

broadcast a commitment to the polynomial A0 = gx, A1 = ga1 , . . . , At = gat .
3. Each party i checks the validity of its share: gxi =?

∏t
j=0 Aij

j .
The corresponding VE protocol instantiated with the hashed Elgamal PKE is detailed

in [TZ21]. At a high-level, P encrypts the N shares separately, and upon receiving a
challenge I ⊂ [N ] with |I| = t from V, she opens xi for i ∈ I. Then V checks the validity
of revealed shares. At this point, the receiver R could take the t opened shares and the
remaining ciphertexts as input, and run Lagrange interpolation to recover the witness.
But by exploiting the additive homomorphism (over Zp) of hashed Elgamal, we observe
that one can delegate this task to the compression algorithm. Our optimized instantiation
entirely avoids interpolation within the recovery algorithm.

5.1.3 Verifiable Encryption of RSA Keys

There are two natural ways to generalize the DKG-in-the-head idea to the RSA setting.
First, we can verifiably encrypt an RSA private exponent d, by using the above proof of a
discrete logarithm to prove knowledge of d such that (me)d = m (mod n), where (e, n) is
an RSA public key and m is an arbitrary value. Thus we can efficiently verifiably encrypt
RSA encryption and signing keys.

Second, we can prove knowledge of a preimage of a one-way group homomorphism. For
example, if the homomorphism is ϕ : m 7→ me mod n with n = p ·q, one can design a simple
MPCitH protocol for knowledge of an RSA preimage: the parties share m multiplicatively,
m = m1 · · ·mN (mod n) then broadcast ϕ(mi) = me

i , and then check that c =
∏

me
i

(mod n). This can be used to prove knowledge of an RSA plaintext corresponding to a
given ciphertext (a more direct type of verifiable encryption), or knowledge of a message
corresponding to a given signature. The MPC protocol can be extended to prove additional
properties of m as well.
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5.2 Verifiable Encryption of AES Keys
With our transform applied to Banquet-IOP, one can verifiably encrypt an AES private
key used for generating a given public ciphertext. Concretely, since Banquet-IOP is
specialized for the relation R =

{
((ct, pt), K) : ct = AESK(pt)

}
, one can verifiably encrypt

K satisfying the relation R with any PKE. The compiled VE scheme Banquet-NIVE and
validity proof are detailed in [TZ21]. To the best of our knowledge, no prior work proposed
a verifiable encryption scheme for AES private keys. As AES keys are commonly stored in
hardware, this is also relevant for our verifiable backup scenario. Since AES is considered
PQ-secure, and encrypted data may have a long lifetime, in some systems it is important
that AES keys be exported with a matching level of security. If PKE is instantiated with a
quantum-resilient scheme, such as a lattice-based one, our verifiable encryption has PQ
security, in the sense that both the encryption scheme and relation to be proven about
the plaintext may withstand quantum attacks.

As we analyze in [TZ21], variants of the FO transform can be used for achieving unde-
niability and thus many efficient post-quantum PKE schemes, including Kyber [SAB+20]
and FrodoKEM [NAB+19], are compatible with our framework.

Our implementation, AES-VE, uses Kyber as a PKE and is based on the Helium-AES
proof system [KZ22], an IOP with the same structure as Banquet but further optimized
for the AES relation. table 1 gives benchmarks for our implementation, for three choices of
parameters, showing that one can trade larger proof and ciphertext sizes for speed of the
prover and verifier. In the parameters yielding the shortest proofs and ciphertexts (approx.
22 KB and 13 KB, respectively) the prover and verifier run in about 67 ms, compression is
about 2 ms and decryption (not shown) is below 1 ms.

5.3 Benchmarks and Comparison
In table 1 we present benchmarks from the four verifiable encryption schemes we imple-
mented, and one that we provide estimates from the literature.3 We implement both the
robust and normal variants of the DKG-in-the-head protocol for proving knowledge of
discrete logarithms in prime order groups. Our Rust implementation uses the secp256r1
elliptic curve group, via generic APIs of the arkworks library [ac22] allowing our code
to change to one of the many other curves arkworks supports. Then for comparison, we
implement the CD (Camenisch-Damgard [CD00]) scheme, as described above. We provide
sizes for the NRSW scheme from [NRSW20] scheme, and estimate the runtimes of their
proof generation and verification by scaling their reported runtimes to the frequency of
our processor. Note however that their implementation is optimized to use properties of
the secp256k1 elliptic curve and may not perform as well on other curves. Finally, our
AES-VE implementation is based on the C++ implementation of Helium-AES [Kal22] for
AES-128 and uses the AVX2 optimized Kyber implementation from PQClean [KSSW22].
All of the parameters were chosen to meet the 128-bit security level; for Kyber we use the
L1 parameter set which is expected to match the security of AES-128. Our benchmark
machine has an Intel Xeon W-2133 CPU @ 3.60GHz. The table gives the parameters we
use for each scheme, the size in bytes of the transcript tr, the VE ciphertext |C|, (also
with random subset (RS) compression, column |C|RS), as well as the computational costs
of the prover P, verifier V and the compression algorithm C. The final decryption cost by
the receiver R was always well below 1ms, so we omit it from the table.

All of the schemes in table 1 (except [NRSW20]) allow one to trade-off size of proof and
ciphertext for speed. We provide benchmarks for different combinations of parameters to
showcase the range of options available to applications. For instance, in a group signature
or identity escrow scheme the ciphertext size may be the most important metric to optimize.
When exporting an encrypted key from a constrained device (such as a YubiKey) prover

3Our implementations are available at https://github.com/akiratk0355/verenc-mpcith.

https://github.com/akiratk0355/verenc-mpcith
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Table 1: Parameters and benchmarks for verifiable encryption of discrete logarithm and AES
keys. Our new schemes are DKGitH (§5.1), RDKGitH (§5.1.2) and AES-VE (§5.2). CD is our imple-
mentation of the generic scheme from [CD00], followed by (estimates for) the NRSW [NRSW20]
construction. Sizes are given in bytes and run times in milliseconds.

Scheme Parameters |tr| |C| |C|RS P (ms) V (ms) C (ms)
DKGitH (64, 48, 15) 9 360 3 120 975 182.45 181.31 2.57
(N, τ, n) (85, 20, 20) 4 276 1 300 1 300 101.36 100.93 4.76

(16, 32, 30) 5 248 2 080 1 950 30.55 29.15 1.19
(4, 64, 48) 8 352 4 160 3 120 15.33 12.28 0.38

RDKGitH (132, 64, 67) 11 781 6 596 6 499 6.65 4.36 45.76
(N, t, n) (192, 36, 145) 15 265 15 132 14 065 8.46 2.81 42.90

(160, 80, 55) 14 337 7 760 5 335 9.03 5.34 54.99
(256, 226, 30) 26 017 2 910 2 910 16.93 16.60 242.92

CD [CD00] (712, 20) 52 968 1 300 42.29 37.88
(k, u) (250, 30) 20 524 1 950 15.22 12.61

(132, 64) 14 816 4 160 8.30 5.13
NRSW [NRSW20] 1100 64 759.64† 40.28†

AES-VE (16, 31) 40 396 24 894 12.41 12.13 0.31
(N, τ) (57, 22) 29 400 17 676 23.63 22.81 0.77

(256, 16) 21 920 12 864 67.24 66.43 2.16

time may be most important. The best parameter set depends on the importance assigned
to each of the metrics.

Despite the caveats mentioned above, it seems reasonable to conclude that the NRSW
scheme has the shortest ciphertext sizes and the slowest prover of the schemes compared.
For all schemes but NRSW, by selecting different parameters (at the same security level)
we can achieve various tradeoffs, and overall we find that no scheme is strictly better than
all others, across all metrics. The DKGitH scheme has the 2nd shortest proofs following
NRSW and modest timings. The RDKGitH scheme can achieve the fastest verification of all
schemes, since it scales only with the t parameter. However, this comes at the cost of larger
proofs and ciphertexts, and significant cost for compression (or decryption, depending on
where one does the interpolation step). Still, this tradeoff of shifting work from P and V
to decryption may be appealing in scenarios where decryption is done infrequently, and
higher latency is tolerable. The CD scheme provides good run times when compared to
DKGitH, but with significantly larger proof sizes.

Finally, we note that our AES-VE scheme proves knowledge of an AES key with respect
to a single block, and since this relation is not a binding commitment to the key, in practice
we would prove knowledge of a key relating the encryption of two plaintext blocks to two
ciphertext blocks. Since many parts of the proof are re-used in this larger circuit (e.g., the
seed tree and witness shares of each party), the resulting proof is easily seen to be at most
2x larger/slower than the benchmarks in table 1 and we estimate 1.5x is possible with a
direct implementation. Ciphertext sizes, compression and decryption time would remain
as reported.

6 Conclusion and Future Work
As our construction gives a practical way to verifiably encrypt ECC, DSA, DH, RSA and
AES keys, we have a complete and flexible solution to the verifiable backup problem for
the most common key types stored in hardware and cloud services. A notable exception
are keys for the HMAC algorithm. They can be handled with our transform and ZKB++
or KKW, but with larger proof sizes due to the larger circuit size of the SHA2 or SHA3
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hash function. Using Limbo [DOT21] with our transform (see section 3.3) would be the
best option as Limbo can create proofs for SHA-256 that are 100-200 KB in size.

The DKG-in-the-head design strategy proved useful here, and may be worth exploring
further, since there is a large literature on distributed (or threshold) key generation
upon which to draw inspiration. It is also an interesting open question whether our
approach to VE leads to interesting instantiations of group and ring signatures, especially
those targeting post-quantum security as was done in [BDK+22], or those based only on
symmetric-key primitives such as [KKW18,DRS18].
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