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Survey: Recovering cryptographic keys from
partial information, by example
Gabrielle De Micheli and Nadia Heninger

University of California, San Diego, USA

Abstract. Side-channel attacks targeting cryptography may leak only partial or
indirect information about the secret keys. There are a variety of techniques in the
literature for recovering secret keys from partial information. In this work, we survey
several of the main families of partial key recovery algorithms for RSA, (EC)DSA,
and (elliptic curve) Diffie-Hellman, the classical public-key cryptosystems in common
use today. We categorize the known techniques by the structure of the information
that is learned by the attacker, and give simplified examples for each technique to
illustrate the underlying ideas.
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1 Introduction
In a side-channel attack, an attacker exploits side effects from computation or storage
to reveal ostensibly secret information. Many side-channel attacks stem from the fact
that a computer is a physical object in the real world, and thus computations can
take different amounts of time [Koc96], cause changing power consumption [KJJ99],
generate electromagnetic radiation [QS01], or produce sound [GST14], light [FH08], or
temperature [HS14] fluctuations. The specific character of the information that is leaked
depends on the high- and low-level implementation details of the algorithm and often
the computer hardware itself: branch conditions, error conditions, memory cache eviction
behavior, or the specifics of capacitor discharges.

The first work on side-channel attacks in the published literature did not directly
target cryptography [EL85], but since Kocher’s work on timing and power analysis in
the 90s [Koc96, KJJ99], cryptography has become a popular target for side-channel work.
However, it is rare that an attacker will be able to simply read a full cryptographic secret
through a side channel. The information revealed by many side channel attacks is often
indirect or incomplete, or may contain errors.

Thus in order to fully understand the nature of a given vulnerability, the side-channel
analyst often needs to make use of additional cryptanalytic techniques. The main goal
for the cryptanalyst in this situation is typically: “I have obtained the following type of
incomplete information about the secret key. Does it allow me to efficiently recover the
rest of the key?” Unfortunately there is not a one-size-fits-all answer: it depends on the
specific algorithm used, and on the nature of the information that has been recovered.

The goal of this work is to collect some of the most useful techniques in this area
together in one place, and provide a reasonably comprehensive classification on what is
known to be efficient for the most commonly encountered scenarios in practice. That
is, this is a non-exhaustive survey and a concrete tutorial with motivational examples.
Many of the algorithmic papers in this area give constructions in full generality, which can
sometimes obscure the reader’s intuition about why a method works. Here, we aim to give
minimal working examples to illustrate each algorithm for simple but nontrivial cases. We
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restrict our focus to public-key cryptography, and in particular, the algorithms that are
currently in wide use and thus the most popular targets for attack: RSA, (EC)DSA, and
(elliptic curve) Diffie-Hellman.

Throughout this work, we will illustrate the information known for key values as follows:

Most significant bits Least significant bits

Known bits

The organization of this survey is given in Table 1.

2 Motivation
While this survey is mostly operating at a higher level of mathematical abstraction than
the side-channel attacks that we are motivated by, we will give a few examples of how
attackers can learn partial information about secrets.
Modular exponentiation. All of the public-key cryptographic algorithms we discuss
involve modular exponentiation or elliptic curve scalar addition operating on secret values.
For RSA signatures, the victim computes s = md mod N where d is the secret exponent.
For DSA signatures, the victim computes a per-signature secret value k and computes
the value r = gk mod p, where g and p are public parameters. For Diffie-Hellman key
exchange, the victim generates a secret exponent a and computes the public key exchange
value A = ga mod p, where g and p are public parameters.

Naive modular exponentiation algorithms like square-and-multiply operate bit by bit
over the bits of the exponent: each iteration will execute a square operation, and if that
bit of the exponent is a 1, will execute a multiply operation. More sophisticated modular
exponentiation algorithms precompute a digit representation of the exponent using non-
adjacent form (NAF), windowed non-adjacent form (wNAF) [Möl03], sliding windows, or
Booth recoding [Boo51] and then operate on the precomputed digit representation [Gor98].
Cache attacks on modular exponentiation. Cache timing attacks are one of the
most commonly exploited families of side-channel attacks in the academic literature [Pag02,
TTMH02, TSS+03, Per05, Ber05, OST06]. There are many variants of these attacks, but
they all share in common that the attacker is able to execute code on a CPU that is
co-located with the victim process and shares a CPU cache. While the victim code executes,
the attacker measures the amount of time that it takes to load information from locations in
the cache, and thus deduces information about the data that the victim process loaded into
those cache locations during execution. In the context of the modular exponentiation or
scalar addition algorithms discussed above, a cache attack on a vulnerable implementation
might reveal whether a multiply operation was executed at a particular bit location if
the attacker can detect whether the code to execute the multiply instruction was loaded
into the cache. Alternatively, for a pre-computed digit representation of the number,
the attacker may be able to use a cache attack to observe the digit values that were
accessed [ASK07, AS08, BvSY14].
Other attacks on modular exponentiation. Other families of side channels that have
been used to exploit vulnerable modular exponentiation implementations include power
analysis and differential power analysis attacks [KJJ99, KJJR11], electromagnetic radia-
tion [QS01], acoustic emanations [GST14], raw timing [Koc96], photonic emission [FH08],
and temperature [HS14]. These attacks similarly exploit code or circuits whose execution
varies based on secrets.
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Table 1: Visual table of contents for key recovery methods for public-key cryptosystems.

Scheme Secret information Bits known Technique Section

RSA p ≥ 50% most significant
bits

Coppersmith’s method §4.2.2

RSA p ≥ 50% least significant
bits

Coppersmith’s method §4.2.3

RSA p middle bits Multivariate Coppersmith §4.2.4

RSA p multiple chunks of bits Multivariate Coppersmith §4.2.4

RSA > log log N chunks of p Open problem

RSA d mod (p − 1) MSBs Coppersmith’s method §4.2.7

RSA d mod (p − 1) LSBs Coppersmith’s method §4.2.7 and §4.2.3

RSA d mod (p − 1) middle bits Multivariate Coppersmith §4.2.7 and §4.2.4

RSA d mod (p − 1) chunks of bits Multivariate Coppersmith §4.2.7 and §4.2.4

RSA d most significant bits Not possible §4.2.8

RSA d ≥ 25% least significant
bits

Coppersmith’s method §4.2.9

RSA ≥ 50% random bits of p and
q

Branch and prune §4.3.1

RSA ≥ 50% of bits of d mod (p −
1) and d mod (q − 1)

Branch and prune §4.3.2

(EC)DSA MSBs of signature nonces Hidden Number Problem §5.2

(EC)DSA LSBs of signature nonces Hidden Number Problem §5.2

(EC)DSA Middle bits of signature
nonces

Hidden Number Problem §5.2

(EC)DSA Chunks of bits of signature
nonces

Extended HNP §5.2.4

EC(DSA) Many bits of nonce Scales poorly

Diffie-Hellman Most significant bits of
shared secret gab

Hidden Number Problem §6.2

Diffie-Hellman Secret exponent a Pollard kangaroo method §6.3
Diffie-Hellman Chunks of bits of secret ex-

ponent
Open problem
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Cold boot and memory attacks. An entirely different class of side-channel attacks
that can reveal partial information against keys include attacks that may leak the contents
of memory. These include cold boot attacks [HSH+08], DMA (Direct Memory Access),
Heartbleed, and Spectre/Meltdown [LSG+18, KHF+19]. While these attacks may reveal
incomplete information, and thus serve as theoretical motivation for some of the algorithms
we discuss, most of the vulnerabilities in this family of attacks can simply be used to read
arbitrary memory with near-perfect precision, and cryptanalytic algorithms are rarely
necessary.

Length-dependent operations. A final vulnerability class is implementations whose
behavior depends on the length of a secret value, and thus variations in the behavior
may leak information about the number of leading zeros in a secret. A simple example is
copying a secret key to a buffer in such a way that it reveals the bit length of a secret key.
In another example, the Raccoon attack observes that TLS versions 1.2 and below strips
leading zeros from the Diffie-Hellman shared secret before applying the key derivation
function, resulting in a timing difference depending on the number of hash input blocks
required for the length of the secret [MBA+21].

3 Mathematical background
Lattices and lattice reduction algorithms Several of the algorithms we present make
use of lattices and lattice algorithms.

For the purposes of this survey, we will specify a lattice by giving a basis matrix B
which is an n × n matrix of linearly independent row vectors with rational (but in our
applications usually integer) entries. The lattice generated by B, written as L(B), consists
of all vectors that are integer linear combinations of the row vectors of B. The determinant
of a lattice is the absolute value of the determinant of a basis matrix: det L(B) = | det B|.

Geometrically, a lattice resembles a discrete, possibly skewed, grid of points in n-
dimensional space. This discreteness property ensures that there is a shortest vector in the
lattice: there is a non-infinitesimal smallest length of a vector in the lattice, and there is at
least one vector v1 that achieves this length. For a random lattice, the Euclidean length
of this vector is approximated using the Gaussian heuristic: |v1|2 ≈

√
n/(2πe)(det L)1/n.

We rarely need this much precision; for lattices of very small dimension we will often use
the approximation that |v1|2 ≈ (det L)1/n.

The shortest vector in an arbitrary lattice is NP-hard to compute exactly, but the
LLL algorithm [LLL82] will compute an exponential approximation to this shortest vector
in polynomial time: in the worst case, it will return a vector b1 satisfying ||b1||2 ≤
2(n−1)/4(det L)1/n. In practice, for random lattices, the LLL algorithm obtains a better
approximation factor ||b1||2 ≤ 1.02n(det L)1/n [NS06]. In fact, the LLL algorithm will
return an entire basis for the lattice whose vectors are good approximations for what are
called the successive minima for the lattice; for our purposes the only fact we need is that
these vectors will be fairly short, and for a random lattice they will be close to the same
length. Current implementations of the LLL algorithm can be run fairly straightforwardly
on lattices of dimension from a few hundred to a few thousand [RH23].

To compute a closer approximation to the shortest vector than LLL, one can use the
BKZ algorithm [Sch87, SE94]. This algorithm runs in time exponential in a block size,
which is a parameter to the algorithm that determines the quality of the approximation
factor. The theoretical guarantees of this algorithm are complicated to express; for our
purposes we only need to know that for lattices of dimension below around 100, one can
easily compute the shortest vector in the heuristically random-looking lattices we consider
using the BKZ algorithm, and can often find the shortest vector, or a “good enough”
approximation to it, by using smaller block sizes. Theoretically, the LLL algorithm is
equivalent to using BKZ with block size 2.
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4 Key recovery methods for RSA
4.1 RSA Preliminaries

Parameter Generation. To generate an RSA key pair, implementations typically
start by choosing the public exponent e. By far the most common choice is to simply fix
e = 65537. Some implementations use small primes like 3 or 17. Almost no implementations
use public exponents larger than 32 bits. This means that attacks that involve brute
forcing values less than e are generally feasible in practice.

In the next step, the implementation generates two random primes p and q such that
p − 1 and q − 1 are relatively prime to e. The public modulus is N = pq. The private
exponent is then computed as d = e−1 mod (p − 1)(q − 1).

The public key is the pair (e, N). In theory, the secret key is the pair (d, N), but
in practice many implementations store keys in a data structure including much more
information. For example, the PKCS#1 private key format includes the fields p, q,
dp = d mod (p − 1), dq = d mod (q − 1), and qinv = q−1 mod p to speed encryption using
the Chinese Remainder Theorem.
Encryption and Signatures. In textbook RSA, Alice encrypts the message m to Bob
by computing c = me mod N . In practice, the message m is not a “raw” message, but
has first been transformed from the content using a padding scheme. The most common
encryption padding scheme in network protocols is PKCS#1v1.5, but OAEP [BR95] is
also sometimes used or specified in protocols. To decrypt the encrypted ciphertext, Bob
computes m = cd mod N and verifies that m has the correct padding.

To generate a digital signature, Bob first hashes and pads the message he wishes to
sign using a padding scheme like PKCS#1v1.5 signature padding (most common) or PSS
(less common); let m be the hashed and padded message of this form. Then Bob generates
the signature as s = md mod N . Alice can verify the signature by computing the value
m′ = se mod N and verifying that m′ is the correct hashed and padded value.

Since encryption and signature verification only use the public key, decryption and
signature generation are the operations typically targeted by side-channel attacks.
RSA-CRT. To speed up decryption, instead of computing cd mod N directly, implemen-
tations often use the Chinese remainder theorem (CRT). RSA-CRT splits the exponent d
into two parts dp = d mod (p − 1) and dq = d mod (q − 1).

To decrypt using the Chinese remainder theorem, Alice would compute mp = cdp mod p
and mq = cdq mod q. The message can be recovered with the help of the pre-computed
value qinv = q−1 mod p by computing

m = mpqqp + mq(1 − qqp) = (mp − mq)qqinv + mq mod N.

This is called Garner’s formula [Gar59].
Relationships Between RSA Key Elements. For the purpose of secret key recovery,
we typically assume that the attacker knows the public key.

RSA keys have a lot of mathematical structure that can be used to relate the different
components of the public and private keys together for key recovery algorithms. The RSA
public and private keys are related to each other as

ed ≡ 1 mod (p − 1)(q − 1)

The modular equivalence can be removed by introducing a new variable k to obtain an
integer relation

ed = 1 + k(p − 1)(q − 1) = 1 + k(N − (p + q) + 1)
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We know that d < (p − 1)(q − 1), so k < e. The value of k is not known to the attacker,
but since generally e ≤ 65537 in practice it is efficient to brute force over all possible values
of k.

For attacks against the CRT coefficients dp and dq, we can obtain similar relations:

edp = 1 + kp(p − 1) and edq = 1 + kq(q − 1) (1)

for some integers kp < e and kq < e. Brute forcing over two independent 16-bit values can
be burdensome, but we can relate kp and kq as follows:

Rearranging the two relations, we obtain edp − 1 + kp = kpp and edq − 1 + kq = kqq.
Multiplying these together, we get

(edp − 1 + kp)(edq − 1 + kq) = kpkqN

Reducing the above modulo e, we get

(kp − 1)(kq − 1) ≡ kpkqN mod e (2)

Thus given a value for kp, we can solve for the unique value of kq mod e, and for applications
that require brute forcing values of kp and kq we only need to brute force at most e
pairs [IGA+15].

The multiplier k also has a nice relationship to these values. Multiplying the relations
from Equation 1 together, we have

(edp − 1)(edq − 1) = kp(p − 1)kq(q − 1)

Substituting (p−1)(q−1) = (ed−1)/k and reducing modulo e, we can relate the coefficients
as

k ≡ −kpkq mod e

Any of the secret values p, q, d, dp, dq, or qinv suffices to compute all of the other
values when the public key (N, e) is known.

From either p or q, computing the other values is straightforward.
For small e, N can be factored from d by computing

ed = 1 + k(p − 1)(q − 1) = 1 + k(N − (p + q) + 1) (3)

The integer multiplier k can be recovered by rounding ⌈(ed − 1)/N⌋. Once k is known,
then Equation 3 can be rearranged to solve for s = p + q. Once s is known, we have
(p + q)2 = s2 = p2 + 2N + q2 and s2 − 4N = p2 − 2N + q2 = (p − q)2. Then N can be
factored by computing gcd((p + q) − (p − q), N).

When e is small, p can be computed from dp as

p = gcd((edp − 1)/kp + 1, N)

where kp can be brute forced from 1 to e.
If kp is not known and is too large to brute force, with high probability for a random a,

p = gcd(aedp−1 − 1, N).

Factoring from qinv is more complex. As noted in [HS09], qinv satisfies qinvq2 − q ≡
0 mod N , and q can be recovered using Coppersmith’s method, described below.
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4.2 RSA Key Recovery with Consecutive bits known

This section covers techniques for recovering RSA private keys when large contiguous
portions of the secret keys are known. The main technique used in this case is lattice basis
reduction.

For the key recovery problems in this section, we can typically recover a large unknown
chunk of bits of an unknown secret key value (p, d mod (p − 1), or d). We typically assume
that the attacker has access to the public key (N, e) but does not have any other auxiliary
information (about q or d mod (q − 1), for example.

Knowledge of large contiguous portions of secret keys is unlikely to arise in side channels
that involve noisy measurements, but could arise in scenarios where secrets are being read
out of memory that got corrupted in an identifiable region. They can also help make
attacks more efficient if a high cost is paid to recover known bits.

4.2.1 Warm-up: Lattice attacks on low-exponent RSA with bad padding.

The main algorithmic technique used for RSA key recovery with contiguous bits is to
formulate the problem as finding a small root of a polynomial modulo an integer, and then
to use lattice basis reduction to solve this problem.

In order to introduce the main tool of using lattice basis reduction to find roots of
polynomials, we will start with an illustrative example for the concrete application of
breaking small-exponent RSA with known padding. In later sections we will show how to
modify the technique to cover different RSA key recovery scenarios.

The original formulation of this problem is due to Coppersmith [Cop96]. Howgrave-
Graham [HG97] gave a dual approach that we find easier to explain and easier to implement.
May’s survey [May10] contains a detailed description of the Coppersmith/Howgrave-
Graham algorithm.

To set up the problem, we have an integer N , and a polynomial f(x) of degree k that
has a root r modulo N , that is, f(r) ≡ 0 mod N . We wish to find r. Finding roots of
polynomials can be done efficiently modulo primes [LLL82], so this problem is easy to
solve if N is prime or the prime factorization of N is known. The Coppersmith/Howgrave-
Graham methods are generally of interest when the prime factorization of N is not known:
it gives an efficient algorithm for finding all small roots (if they exist) modulo N of
unknown factorization.

Problem setup. For our toy example, we will use the 96-bit RSA modulus

N = 0x98664cf0c9f8bbe76791440d

and e = 3. Consider a broken PKCS#1v1.5-esque RSA encryption padding scheme that
pads a message m as

pad(m) = 0x01FFFFFFFFFFFFFFFF00 || m

Now imagine that we have obtained a ciphertext

c = 0xeb9a3955a7b18d27adbf3a1

and we wish to recover the unknown message m.
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pad(m)

c

a m

N

Figure 1: Illustration of low-exponent RSA message recovery attack setup. The attacker
knows the public modulus N , a ciphertext c, and the padding a prepended to the unknown
message m before encryption. The attacker wishes to recover m.

Cast the problem as finding roots of a polynomial. Let

a = 0x01FFFFFFFFFFFFFFFF0000

be the known padding string, offset to the correct byte location. We also know the length
of the message; in this case m < 216. Thus we have that c = (a+m)3 mod N , for unknown
small m. Let f(x) = (a + x)3 − c; we have set up the problem so that we wish to find a
small root m satisfying f(m) ≡ 0 mod N for the polynomial

f(x) =x3 + 0x5fffffffffffffffd0000x2 + 0x6f1c485f406ba1c069460efex

+ 0x203211880cdc43afe1c5c5f9

(We have reduced the coefficients modulo N so that they will fit on the page.)
Construct a lattice. Let the coefficients of f be f(x) = x3 + f2x2 + f1x + f0. Let
M = 216 be an upper bound on the size of the root m. We construct the matrix

B =


M3 f2M2 f1M f0
0 NM2 0 0
0 0 NM 0
0 0 0 N


We then apply the LLL lattice basis reduction algorithm to the matrix. The shortest

vector of the reduced basis is

v =(-0x66543dd72697M3, −0x35c39ac91a11c04M2, 0x3f86f973d67d25eae138M,

− 0x10609161b131fd102bc2a8)

Extract a polynomial from the lattice and find its roots. We then construct the
polynomial

g(x) = − 0x66543dd72697x3 − 0x35c39ac91a11c04x2

+ 0x3f86f973d67d25eae138x − 0x10609161b131fd102bc2a8

The polynomial g has one integer root, 0x42, which is the desired solution for m.

This specific 4 × 4 lattice construction works to find roots up to size N1/6. For the
small key size we used in our example, this is only 16 bits, but since it scales directly with
the modulus size, this same lattice construction would suffice to learn 170 unknown bits of
message for a 1024-bit RSA modulus, or 341 bits of message for a 2048-bit RSA modulus.
Lattice reduction on a 4 × 4 lattice basis with entries that have a few thousand bits is
essentially instantaneous on a modern laptop.
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More detailed explanation. Why does this work? The rows of this matrix correspond
to the coefficient vectors of the polynomials f(x), Nx2, Nx, and N . We know that each
of these polynomials evaluated at x = m will be 0 modulo N . Each column is scaled
by a power of M , so that the ℓ1 norm of any vector in this lattice is an upper bound
on the value of the corresponding (un-scaled) polynomial evaluated at m. For a vector
v = (v3M3, v2M2, v1M, v0) in the lattice and corresponding polynomial gv,

|gv(m)| = |v3m3 + v2m2 + v1m + v0| ≤ |v3M3| + |v2M2| + |v1M | + |v0| = |v|1

for any |m| ≤ M .
We have constructed the lattice so that every polynomial g we extract from it has

the property that g(m) ≡ 0 mod N . We have also constructed our lattice so that the
length of the shortest vector in a reduced basis will be less than N . The only integer
multiple of N less than N is 0, so by construction the polynomial corresponding to this
short vector satisfies g(m) = 0 over the integers, not just modulo N . Since finding roots
of polynomials over the integers, rationals, reals, and complex numbers can be done in
polynomial time, we can compute the roots of this polynomial and check which of them is
our desired solution.

This method will always work if the lattice is constructed properly. That is, we need
to ensure that the reduced basis will contain a vector of length less than N . For this
example, det B = M6N3. Heuristically, the LLL algorithm will find a vector of ℓ2 norm
|v|2 ≤ 1.02n(det B)1/ dim B . We ignore the 1.02n factor, and the difference between the ℓ2
and ℓ1 norms for the moment. Then the condition we wish to satisfy is

g(m) ≤ |v|2 ≤ (det B)1/n < M

For our example, we have (det B)1/ dim L = (M6N3)1/4 < N . Solving for M , this will be
satisfied when M < N1/6. In this case, N has 96 bits, and m is 16 bits, so the condition is
satisfied.

This can be extended to N1/e, where e is the degree of the polynomial f by using a larger
dimension lattice. Howgrave-Graham’s dissertation [HG98] and May’s survey [May10] give
detailed explanations of this method and improvements.

4.2.2 Factorization from consecutive bits of p.

In this section we show how to use lattices to factor the RSA modulus N if a large portion
of contiguous bits of one of the factors (without loss of generality p) is known.

q

p

2ℓb r

N

Figure 2: Factorization of N = pq given contiguous known most significant bits of p.

Coppersmith solves this problem in [Cop96] but we find the reformulation from
Howgrave-Graham as “approximate integer common divisors” [HG01] simpler to apply,
and will give that construction here.
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Problem setup. Let N = pq be an RSA modulus with equal-sized p and q. Choosing
an example with numbers small enough to fit on the page, we have a 240-bit RSA modulus

N = 0x4d14933399708b4a5276373cb5b756f312f023c43d60b323ba24cee670f5.

We assume N is known. Assume we know a large contiguous portion of the most
significant bits b of p, so that p = a + r, where we do not know r but do know the value
a = 2ℓb. Here ℓ = 30 is the number of unknown bits, or equivalently the left shift of the
known bits.

In our example, we have

a = 0x68323401cb3a10959e7bfdc0000000

Cast the problem as finding the roots of a polynomial. Let f(x) = a + x. We
know that there is some value r such that f(r) = p ≡ 0 mod p. We do not know p, but we
know that p divides N and we know N .

We know that the unknown r is small, and in particular |r| < R for some bound R
that is known. Here, R = 230.
Construct a lattice. We can form the lattice basis

B =

R2 Ra 0
0 R a
0 0 N


We then run the LLL algorithm on our lattice basis B. Let v = (v2R2, v1R, v0) be the
shortest vector in the reduced basis. In our example, we get the vector

v =(−0x0x17213d8bc94R2, −0x1d861360160a4f86181R,

0xf9decdc1447c3f3843819a5d)

Extract a polynomial and find the roots. We form a polynomial f(x) = v2x2 +
v1x + v0. For our example,

f(x) =−0x17213d8bc94x2 − 0x1d861360160a4f86181x

+ 0xf9decdc1447c3f3843819a5d

We can then calculate the roots of f . In this example, f has one integer root, r = 0x873209.
We can then reconstruct a + r and verify that gcd(a + r, N) factors N .

This 3×3 lattice construction works for any |r| < p1/3, and directly scales as p increases.
In our example, we chose p and q so that they have 120 bits, and r has 30 bits. However,
this same construction will work to recover 170 bits from a 512-bit factor of a 1024-bit
RSA modulus, or 341 bits from a 1024-bit factor of a 2048-bit RSA modulus.
More detailed explanation. The rows of this matrix correspond to the coefficient
vectors of the polynomials x(x + a), x + a, and N . We know that each of these polynomials
evaluated at x = r will be 0 modulo p, and thus every polynomial corresponding to a
vector in the lattice has this property. As in the previous example, each column is scaled
by a power of R, so that the ℓ1 norm of any vector in this lattice is an upper bound on
the value of the corresponding (un-scaled) polynomial evaluated at r.

If we can find a vector in the lattice of length less than p, then it corresponds to a
polynomial g that must satisfy g(r) < p. Since by construction, g(r) = 0 (mod p), this
means that g(r) = 0 over the integers.

We compute the determinant of the lattice to verify that it contains a sufficiently
small vector. For this example, det B = R3N . This means we need (det B)1/ dim L =
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(R3N)1/3 < p. Solving for R, this gives R < p1/3. For an RSA modulus we have p ≈ N1/2,
or R < N1/6.

This method works up to R < p1/2 at the limit by increasing the dimension of the lattice.
This is accomplished by taking higher multiples of f and N . See Howgrave-Graham’s
dissertation [HG98] and May’s survey [May10] for details on how to do this.
4.2.3 RSA key recovery from least significant bits of p

It is also straightforward to adapt this method to deal with a contiguous chunk of unknown
bits in the least significant bits of p: if the chunk begins at bit position ℓ, the input
polynomial will have the form f(x) = 2ℓx + a. This can be multiplied by 2−ℓ mod N and
solved exactly as above.

q

p

N

Figure 3: Factorization of N = pq given contiguous known least significant bits of p.

4.2.4 RSA key recovery from middle bits of p

RSA key recovery from middle bits of p is somewhat more complex than the previous
examples, because there are two unknown chunks of bits in the most and least significant
bits of p.

q

p

2trm rℓa

N

Figure 4: Factorization of N = pq given contiguous known bits of p in the middle.

Problem setup. Assume we know a large contiguous portion of the middle bits of p, so
that p = a + rℓ + 2trm, where a is an integer representing the known bits of p, rℓ and rm

are unknown integers representing the least and most significant bits of p that we wish to
solve for, and t is the starting bit position of the unknown most significant bits. We know
that |rℓ| < R and |rm| < R for some bound R.

As a concrete example, let

N =0x3ab05d0c0694c6bd8ee9683d15039e2f738558225d7d37f4a601bcb9

29ccfa564804925679e2f3542b

be a 326-bit RSA modulus. Let

a = 0xc48c998771f7ca68c9788ec4bff9b40b80000

be the middle bits of one of its factors p; there are 16 unknown bits in the most and least
significant bit positions. Thus we know that R = 216 in our concrete example. We wish to
recover p.
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Cast the problem as finding solutions to a polynomial. In the previous examples,
we only had one variable to solve for. Here, we have two, so we need to use a bivariate
polynomial. We can write down f(x, y) = x + 2ty + a, so that f(rℓ, rm) = p.

In our concrete example, p has 164 bits, so we have f(x, y) = x + 2148y + a. We hope to
construct two polynomials g1(x, y) and g2(x, y) satisfying g1(rℓ, rm) = 0 and g2(rℓ, rm) = 0
over the integers. Then we can solve the system for the simultaneous roots.

Construct a lattice. As before, we will use our input polynomial f and the public RSA
modulus N to construct a lattice. Unfortunately for the simplicity of our example, the
smallest polynomial that is guaranteed to result in a nontrivial bound on the solution size
for our desired roots has degree 3, and results in a lattice of dimension 10.

As before, each column corresponds to a monomial that appears in our polynomials,
and each row corresponds to a polynomial that evaluates to 0 mod p at our desired solution.
In our example, we will use the polynomials f3, f2y, fy2, y3N, f2, fy, y2N, f, yN , and N ;
the monomials in the columns are x3, x2y, xy2, y3, x2, xy, y2, x, y, and 1. Each column is
scaled by the appropriate power of R.

B =



R3 3 · 2tR3 3 · 22tR3 23tR3 3aR2 6 · 2taR2 3 · 22taR2 3a2R 3 · 2ta2R a3

0 R3 2 · 2tR3 22tR3 0 2aR2 2 · 2taR2 0 a2R 0
0 0 R3 2tR3 0 0 aR2 0 0 0
0 0 0 R3N 0 0 0 0 0 0
0 0 0 0 R2 2 · 2tR2 22tR2 2aR 2 · 2taR a2

0 0 0 0 0 R2 2tR2 0 aR 0
0 0 0 0 0 0 R2N 0 0 0
0 0 0 0 0 0 0 R 2tR a
0 0 0 0 0 0 0 0 RN 0
0 0 0 0 0 0 0 0 0 N


We reduce this matrix using the LLL algorithm, and reconstruct the bivariate polyno-

mials corresponding to each row of the reduced basis. Unfortunately, these are too large
to fit on a page.

Solve the system of polynomials to find common roots. Heuristically, we would
hope to only need two sufficiently short vectors and then compute the resultant of the
corresponding polynomials or use a Gröbner basis to find the common roots, but in our
example the two shortest vectors are not algebraically independent. In this case it suffices
to use the first three vectors. Concretely, we construct an ideal over the ring of bivariate
polynomials with integer coefficients whose basis is the polynomials corresponding to
the three shortest vectors in the reduced basis for L(B) above, and then call a Gröbner
basis algorithm on it. For this example, the Gröbner basis is exactly the polynomials
(x − 0x339b, y − 0x5a94), which reveals the desired solutions for x = rℓ and y = rm.

In this example, the nine shortest vectors all vanish at the desired solution, so we could
have constructed our Gröbner basis from other subsets of these short vectors.

More detailed explanation. The determinant of our lattice is det B = R20N4, and the
lattice has dimension 10. We hope to find two vectors v1 and v2 of length approximately
det B1/ dim B ; this is not guaranteed to be possible, but for random lattices we expect the
lengths of the vectors in a reduced basis to have close to the same lengths. The ℓ1 norms of
the vectors v1 and v2 are upper bounds on the magnitude of the corresponding polynomials
fv1(x, y), fv2(x, y) evaluated at the desired roots rℓ, rm. In order to guarantee that these
vanish, we want the inequality

|fvi
(rℓ, rm)| ≤ |vi|1 < p ≈

√
N

to hold.
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Thus the desired condition for success is

det B1/ dim B <
√

N

(R20N4)1/10 < N1/2

R20 < N

In our example, N was 326 bits long, and we chose R to have 16 bits.
This attack was applied in [BCC+13] to recover RSA keys generated by a faulty random

number generator that generated primes with predictable sequences of bits.

4.2.5 RSA key recovery from multiple chunks of bits of p

The above idea can be extended to handle more chunks of p at the cost of increasing the
dimension of the lattice. Each unknown “chunk” of bits introduces a new variable in the
linear equation that will be solved for p. At the limit, the algorithm requires 70% of the
bits of p divided into at most log log N blocks [HM08].

q

p

N

Figure 5: Factorization of N = pq given multiple chunks of p.

4.2.6 Open problem: RSA key recovery from many nonconsecutive bits of p

The above methods scale poorly with the number of chunks of known bits. It is an open
problem to develop a subexponential-time method to recover an RSA key or factor the
RSA modulus N with more than log log N unknown chunks of bits, if these bits are only
known about, say, one factor p of N . If information is known about both p and q or other
fields of the RSA private key, then the methods of Section 4.3.1 may be applicable.

N

q

p

Figure 6: Efficient factorization of N = pq given many chunks of p and no information
about p is an open problem.

4.2.7 Partial recovery of RSA dp

Recovering the CRT coefficient dp = d mod (p − 1) from a large contiguous bits can be
done using the approach given in Sections 4.2.2, 4.2.3 and 4.2.4. We illustrate the method
in the case of known most significant bits.
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dq

dp

2ℓb r

N

Recovering RSA dp = d mod (p − 1) given many contiguous bits of dp.

Problem setup. Let

N = 0x4d14933399708b4a5276373cb5b756f312f023c43d60b323ba24cee670f5

be a 240-bit RSA modulus. We will use public exponent e = 65537.
In this problem, we are given some of the most significant bits b of dp, and we want

to recover the rest. As before, let ℓ be the number of least significant bits of dp we need
to recover, so that there is some value a = 2ℓb with a + r = dp for some r < 2ℓ. For our
concrete example, we have

a = 0x25822d06984a06be5596fcc0000000.

Cast the problem as finding the roots of a polynomial. We start with the relation
edp ≡ 1 mod (p − 1) and rewrite it as an integer relation by introducing a new variable kp:

edp = 1 + kp(p − 1). (4)

The integer kp is unknown, but we know that kp < e since dp < (p−1). In our example,
and typically in practice, we have e = 65537, so we will run the attack for all possible
values of 1 ≤ kp < 65537. With the correct parameters, we are guaranteed to find a
solution for the correct value of kp. For other incorrect guesses of kp, in practice the attack
is unlikely to result in any solutions found, but any spurious solutions that arise can be
eliminated because they will not result in a factorization of N .

We can rearrange Equation 4, with e−1 computed modulo N :

e(a + r) − 1 + kp ≡ 0 mod p

a + r + e−1(kp − 1) ≡ 0 mod p

Let A = a + e−1(kp − 1). Then we wish to find a small root r of the polynomial
f(x) = A + x modulo p, where |r| < R.

For our concrete example, we have R = 230 and kp = 23592, so

A = 0x8ffe9143aa4c189787058057a0784576848f3f28d79a83169f72a0550699112

Construct a lattice. Since the form of the problem is identical to the previous section,
we use the same lattice construction:

B =

R2 RA 0
0 R A
0 0 N


We apply the LLL algorithm to this basis and take the shortest vector in the reduced

basis. For our example, this is
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v = (−1306dd0a37ecR2, 52955e433295de64273R, −31db63ed6f29f4d8f4d1501c47)

We construct the corresponding polynomial

f(x) = −1306dd0a37ecx2 + 52955e433295de64273x − 31db63ed6f29f4d8f4d1501c47

Computing the roots of f , we discover that r = 0x39d9b141 is among them, and that
gcd(A + r, N) = p.

At the limit, this technique can work up to R < p1/2 [BM03] by increasing the dimension
of the lattice with higher degree polynomials and higher multiplicities of the root.

4.2.8 Partial recovery of RSA d from most significant bits is not possible

Partial recovery for d varies somewhat depending on the bits that are known and the size
of e. Since e is small in practice, we will focus on that case here.

d

N

Figure 7: For small exponent e, the most significant bits of d do not allow full key recovery.

Most significant bits of d. When e is small enough to brute force, the most significant
half of bits of d can be recovered easily with no additional information. This implies that
if full key recovery were possible from only the most significant half of bits of d, then small
public exponent RSA would be completely broken. Since small public exponent RSA is
not known to be insecure in general, this unfortunately means that no such key recovery
method is possible for this case.

Consider the RSA equation

ed = 1 mod (p − 1)(q − 1)
ed = 1 + k(p − 1)(q − 1)
ed = 1 + k(N − (p + q) + 1)
d = kN/e − (k(p + q − 1) − 1)/e

Since p + q ≈
√

N , the second term affects only the least significant half of the bits of
d, so the value kN/e shares approximately the most significant half of its bits in common
with d.

On the positive side, this observation allows the attacker to narrow down possible
values for k if the attacker knows any most significant bits of d for certain. See Boneh,
Durfee, and Frankel [BDF98] for more details.

4.2.9 Partial recovery of RSA d from least significant bits

For low-exponent RSA, if an adversary knows the least significant t bits of d, then this
can be transformed into knowledge of the least significant t bits of p, and then the
method of Section 4.2.3 can be applied. This algorithm is due to Boneh, Durfee, and
Frankel [BDF98].
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d

d0

N

Figure 8: Recovering RSA p given contiguous least significant bits of d.

Assume the adversary knows the t least significant bits of d; call this value d0. Then

ed0 ≡ 1 + k(N − (p + q) + 1) mod 2t

Let s = p + q. The adversary tries all possible values of k, 1 < k < e to obtain e candidate
values for the t least significant bits of s.

Then for each candidate s, the least significant bits of p are solutions to the quadratic
equation

p2 − sp + N ≡ 0 mod 2t.

Let a be a candidate solution for the least significant bits of p. Putting this in the
context of Section 4.2.3, the attacker wishes to solve f(x) = a + 2tx ≡ 0 mod p. This
can be multiplied by 2−t mod N and the exact method of Section 4.2.3 can be applied to
recover p. Since at the limit, the methods of Section 4.2.3 work to recover N1/4 bits of p,
this method will work when as few as N1/4 bits of d are known.

There are more sophisticated lattice algorithms that involve different tradeoffs, but for
very small e, which is typically the case in practice, they require nearly all of the least
significant bits of d to be known [BM03].

4.3 Non-consecutive bits known with redundancy
This section covers key recovery in the case that many non-consecutive bits of secret values
are known or need to be recovered. The lattice methods covered in the previous section
can be adapted to recover multiple chunks of unknown key bits, but at a high cost: the
lattice dimension increases with the number of chunks, and when a large number of bits is
to be recovered, the running time can be exponential in the number of chunks.

In this section, we explore a different technique that allows a different tradeoff. In this
case, the attacker has knowledge of many non-contiguous bits of secret key values, and
knows these for multiple secret values of the key. The attacker might have learned parts of
both p and q, or d mod (p − 1) and d mod (q − 1), for example.
4.3.1 Random known bits of p and q

q

p

Figure 9: Factorization of N = pq given non-consecutive bits of both p and q.

We begin by analyzing a case that is less likely to arise in practice, the case of random
erasures of bits of p and q, in order to give the main ideas behind the algorithm in the
simplest setting.

The main technique used for these cases is a branch and prune algorithm. The idea
behind the branch and prune algorithm is to write down an integer relationship between
the elements in the secret key and the public key, and progressively solve for unknown bits
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of the secret key, starting at the least significant bits. This produces a tree of solutions:
every branch corresponds to guesses for one or more unknown bits at a particular solution,
and branches are pruned if the guesses result in incorrect relationships to the public key.

This algorithm is presented and analyzed in [HS09].
Problem setup. Let N = 899. Imagine we have learned some bits of p and q, in an
erasure model: for each bit position, we either know the bit value, or we know that we do
not know it. For example, we have

p = ⊔11 ⊔ 1,

and
q = ⊔1 ⊔ 0⊔.

Defining an integer relation. The integer relation that we will take advantage of for
this example is N = pq.
Iteratively solve for each bit. The main idea of the algorithm is to iteratively solve
for the bits of the unknowns p and q, starting at the least significant bits. These can then
be checked against the known public value of N .

At the least significant bit, the value is known for p and is unknown for q. There
are two options for the value of q, but only the bit value 1 satisfies the constraint that
pq = N mod 2. The algorithm then proceeds to the next step, where the value of the
second bit is known for q but not for p. Only the bit value 1 satisfies the constraint
pq = N mod 22, so the algorithm continues down this branch. Since this generates a tree,
the tree can be traversed in depth-first or breadth-first order; depth-first will be more
memory efficient. This is illustrated in Figure 10.

p = . . . 1
q = · · · ⊔

p = . . . 1
q = . . . 0

p = · · · ⊔ 1
q = . . . 01

p = . . . 01
q = . . . 01

p = . . . 111
q = · · · ⊔ 01

p = . . . 111
q = . . . 001

p = · · · ⊔ 111
q = · · · ⊔ 101

p = 1111
q = 1101

p = ⊔1111
q = ⊔1101

p = 11111
q = 01101

p = 01111
q = 11101

p = 01111
q = 01101X

p = 11111
q = 11101

p = 31
q = 29

XXXX

X

X

Figure 10: The branch and prune tree for our numeric example. The algorithm begins at
the right-hand node representing the least significant bits, and iteratively branches and
prunes guesses for successive bits moving towards the most significant bits.

The algorithm works because N = pq mod 2i for all values of i. Additionally, we want
some assurance that an incorrect guess for a value at a particular bit location should
eventually lead to that branch being pruned. Heuristically, when the ith bits of both p and
q are unknown, the tree will branch; when bit i is known for one but not the other, there
will be a unique solution; and when the ith bits of both p and q are known, an incorrect
solution has around a 50% probability of being pruned. Thus the algorithm is expected to
be efficient as long as there are not long runs of simultaneous unknown bits. We assume
the length of p and q is known. Once the algorithm has traversed this many bits, the final
solution pq = N can be checked without modular constraints.

When random bits are known from p and q, the analysis of [HS09] shows that the tree
of generated solutions is expected to have polynomial size when 57% of the bits of p and
q are revealed at random. This algorithm can still be efficient if the distribution of bits
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known is not random, as long as it allows efficient pruning of the tree. An example would
be learning 3 out of every 5 bits of p and q, as in [YGH16].

Paterson, Polychroniadou, and Sibborn [PPS12] give an analysis of the required infor-
mation for different scenarios, and observe that doing a depth-first search is more efficient
memory-wise than a breadth-first search.
4.3.2 Random known bits of the Chinese remainder coefficients d mod (p − 1)

and d mod (q − 1)
The description in Section 4.3.1 can be extended to recover the Chinese remainder exponents
dp = d mod (p − 1) and dq = d mod (q − 1) using the same technique as the previous
section. This is the most common case encountered in RSA side channel attacks.

dq

dp

Factorization of N = pq given non-consecutive bits of dp, dq.

Problem setup. Let N = 899 be the RSA public modulus, and e = 17 be the public
exponent. Imagine that the adversary has recovered some bits of the secret Chinese
remainder exponents dp = d mod (p − 1) and dq = d mod (q − 1).

dp = ⊔0 ⊔ ⊔1, dq = ⊔ ⊔ ⊔0⊔

We wish to recover the missing unknown bits of dp and dq, which will allow us to
recover the secret key itself.
Define integer relations. We know that edp ≡ 1 mod (p − 1) and edq ≡ 1 mod (q − 1).
We rewrite these as integer relations

edp = 1 + kp(p − 1), edq = 1 + kq(p − 1).

We have no information about the values of p and q, but their values are uniquely
determined from a guess for dp or dq.

We also know that
pq = N.

The values kp and kq are unknown, so we must brute force them by running the
algorithm for all possible values. We expect it to fail for incorrect guesses, and succeed for
the unique correct guess. Equation 2 in Section 4.1 shows that there is a unique value of
kq for a given guess for kp. Since kp < e we need to brute force at most e pairs of values
for kp and kq.

In our example, we have kp = 13 and kq = 3, although this won’t be verified as the
correct guesses until the solution is found.
Iteratively solve for each bit. With our integer relations in place, we can then use
them to iteratively solve for each bit of the unknowns dp, dq, p, and q, starting from the
least significant bit. We check guesses for each value against our three integer relations,
and at bit i we prune those that do not satisfy the relations mod 2i. We have three
relations and four unknowns, so we generate at most two new branches at each bit.

edp − 1 + kp ≡ kpp mod 2i,

edq − 1 + kq ≡ kqq mod 2i,

pq ≡ N mod 2i.
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dp = . . . 1
dq = · · · ⊔
p = · · · ⊔
q = · · · ⊔

dp = . . . 1
dq = . . . 0
p = . . . 1
q = . . . 0

dp = · · · ⊔ 1
dq = . . . 01
p = · · · ⊔ 1
q = · · · ⊔ 1

dp = . . . 01
dq = . . . 01
p = . . . 01
q = . . . 01

dp = · · · ⊔ 11
dq = · · · ⊔ 01
p = · · · ⊔ 11
q = · · · ⊔ 01

dp = . . . 0011
dq = · · · ⊔ 001
p = · · · ⊔ 011
q = · · · ⊔ 001

dp = ⊔0011
dq = ⊔1001
p = ⊔1011
q = ⊔1001

dp = 00011
dq = 01001
p = 11011
q = 01001

dp = 00011
dq = 11001
p = 11011
q = 11001

X

dp = 10011
dq = 01001
p = 01011
q = 11001

X

dp = 10011
dq = 11001
p = 01011
q = 11001

dp = . . . 0011
dq = . . . 0001
p = . . . 1011
q = . . . 0001

dp = . . . 011
dq = . . . 101
p = . . . 011
q = . . . 101

dp = . . . 111
dq = . . . 001
p = . . . 111
q = . . . 001

dp = . . . 0111
dq = · · · ⊔ 101
p = · · · ⊔ 111
q = · · · ⊔ 101

dp = . . . 0111
dq = . . . 0101
p = . . . 1111
q = . . . 0101

dp = ⊔0111
dq = ⊔0101
p = ⊔1111
q = ⊔1101

dp = 00111
dq = 00101
p = 01111
q = 11101

dp = 00111
dq = 10101
p = 01111
q = 01101

X

dp = 10111
dq = 00101
p = 11111
q = 11101

dp = 23
dq = 5

dp = 10111
dq = 10101
p = 11111
q = 01101

XXX

X

X

X

X

XX

X

Figure 11: We give a sample branch and prune tree for recovering dp and dq from known
bits, starting from the least significant bits on the right side of the tree. At each bit
location, the value of p up to bit i is uniquely determined by the guess for dp up to bit i,
and the value of q up to bit i is uniquely determined by the buess for dq up to bit i. The
red X marks the branches that are pruned by verifying the relation pq = N mod 2i.

Since the values of p and q up to bit i are uniquely determined by our guess for dp and
dq up to bit i, the algorithm prunes solutions based on the relation pq ≡ N mod 2i. The
analysis of this case is then identical to the case of learning bits of p and q at random.

For incorrect guesses for the values of kp and kq, we expect the equations to act like
random constraints, and thus to quickly become unsatisfiable. Once there are no more
possible solutions in a tree, the guess for kp and kq is known to be incorrect. This is
illustrated by Figure 11.

4.3.3 Recovering RSA keys from indirect information

For this type of key recovery algorithm, it is not always necessary to have direct knowledge
of bits of the secret key values with certainty. It can still be possible to apply the branch-
and-prune technique to recover secret keys even if only “implicit” information is known
about the secret values, as long as this implicit information implies a relationship that
can be checked to prioritize or prune candidate key guesses from the least significant
bits. Examples in the literature include [BBG+17], which computes partial sliding window
square-and-multiply sequences for candidate guesses and compares them to the ground
truth measurements, and [MVH+20], which compares the sequence of program branches
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in a binary GCD algorithm implementation computed over the cryptographic secrets to a
ground truth measurement.
4.3.4 Open problem: Random known bits without redundancy
As mentioned in Section 4.2.6, it is an open problem to recover an RSA secret key when
many nonconsecutive chunks of bits need to be recovered, and the bits known are from
only one secret key field, with no additional information from other values. Applying the
branch-and-prune methods discussed in this secction to a single secret key value, say a
factor p of N , where random bits are known, would result in a tree with exponentially
many solutions unless additional information were available to prune the tree.

5 Key recovery methods for DSA and ECDSA
5.1 DSA and ECDSA preliminaries
From the perspective of partial key recovery, DSA and ECDSA are very similar, and
we will cover them together. We will use slightly nonstandard notation to describe each
signature scheme to make them as close as possible, so that we can use the same notation
to describe the attacks simultaneously.
5.1.1 DSA
The Digital Signature Algorithm [NIS13] (DSA) is an adaptation of the ElGamal Signature
Scheme [EG85] that reduces the amount of computation required and the resulting signature
size by using Schnorr groups [Sch90].
Parameter Generation. A DSA public key includes several global parameters specifying
the group to work over: a prime p, a subgroup of order n satisfying n | (p − 1), and an
integer g that generates a group of order n mod p, where n is typically much smaller than
p, for example 256 bits for a 2048-bit p. A single set of group parameters can be shared
across many public keys, or individually generated for a given public key.

To generate a long-term private signing key, an implementation starts by choosing the
secret key 0 < d < n and computing y = gd mod p. The public key is the tuple (y, g, p, n)
and the private key is (d, g, p, n).
Signature Generation. To sign a message m, implementations apply a collision-resistant
hash function H to m to obtain a hashed message h = H(m). To generate the signature,
the implementation generates an ephemeral secret integer 0 < k < n, and computes the
integers r = gk mod p mod n, and s = k−1(h + dr) mod n. The signature is the pair (r, s).
5.1.2 ECDSA
The Elliptic Curve Digital Signature Algorithm (ECDSA) is an adaptation of DSA to use
elliptic curves instead of Schnorr groups.
Parameter Generation. An ECDSA public key includes global parameters specifying
an elliptic curve E over a finite field together with a generator point g of a subgroup over
E of order n.

To generate a long-term private signing key, an implementation starts by choosing a
secret integer 0 < d < n, and computing the elliptic curve point y = dg on E. The public
key is the elliptic curve point y together with the global parameters specifying E, g, and
n. The private key is the integer d together with these global parameters.
Signature Generation. To sign a message m, implementations apply a collision-resistant
hash function H to m to obtain a hashed message h = H(m). To generate the signature,
the implementation generates an ephemeral secret 0 < k < n. The implementation
computes the elliptic curve point kg and sets the value r to be the x-coordinate of kg. The
implementation then computes the integer s = k−1(h + dr) mod n. The signature is the
pair of integers (r, s).
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5.1.3 Nonce recovery and (EC)DSA security.

The security of (EC)DSA is extremely dependent on the signature nonce k being securely
generated, uniformly distributed, and unique for every signature. If the nonce for one or
more signatures is generated in a vulnerable manner, then an attacker may be able to
efficiently recover the long-term secret signing key. Because of this property, side channel
attacks against (EC)DSA almost universally target properties of the signature nonces.

Key recovery from signature nonce. For a DSA or ECDSA key, if the nonce k is
known for a single signature, it is simple to compute the long-term private key. Rearranging
the expression for s, the secret key d can be recovered as

d = r−1(ks − h) mod n (5)

5.2 (EC)DSA key recovery from most significant bits of the nonce
k

There are two families of techniques for (EC)DSA key recovery from most significant bits
of the nonce k. Both techniques require knowing information about the nonce used in
multiple signatures from the same secret key. We assume that the attacker knows the
long-term public signature verification key, and has access to multiple signatures generated
using the corresponding secret signing key. The attacker also needs to know the hash of
the messages that the signatures correspond to.

k1

k2

...

Figure 12: (EC)DSA key recovery from signatures where most significant bits of the nonces
are known.

The first technique is via lattices. This is generally considered more straightforward to
implement, and works well when more nonce bits are known, and information from fewer
signatures is available: we would need to know at least two most significant bits from the
nonces of dozens to hundreds of signatures. We cover this technique below.

The second technique is via Fourier analysis. This technique can deal with as little as
one known most significant bit from signature nonces, but empirically appears to require an
order of magnitude or more signatures than the lattice approach, and as many as 232–235

for record computations [ANT+20]. We leave a more detailed tutorial on this technique to
future work. Nice descriptions of the algorithm can be found in [DHMP13, TTA18].

5.2.1 Lattice attacks

The main idea behind lattice attacks for (EC)DSA key recovery is to formulate the
(EC)DSA key recovery problem as an instance of the Hidden Number Problem and then
compute the shortest vector of a specially constructed lattice to reveal the solution.

Below we give a simplified example that shows how to recover the key from a small
number of signatures when many of the most significant bits of the nonce are zero, and
then we will show how to extend the attack to more signatures with fewer bits known from
each nonce, and cover the case of arbitrary bits known from the nonce.
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Problem setup. Let p = 0xffffffffffffd21f be a 64-bit prime, and let E : y2 = x3+3
be an elliptic curve over Fp. Let g = (1, 2) be our generator point on E, which has order
n = 0xfffffffefa23f437.

We have two ECDSA signatures

(r1, s1) =(6393e79fbfb40c9c, 621ee64e65d1e938)
on message hash h1 = ae0f1d8cd0fd6dd1

and

(r2, s2) =(3ea8720afa6d03c2, 16fc6aa65bf241ea)
on message hash h2 = 8927e246fe4f3941

These signatures both use 32-bit nonces k; that is, we know that their 32 most significant
bits are 0.
Cast the problem as a system of equations. Our signatures above satisfy the
equivalencies

s1 ≡ k−1
1 (h1 + dr1) mod n

s2 ≡ k−1
2 (h2 + dr2) mod n

The values k1, k2, and d are unknown; the other values are known.
We can eliminate the variable d and rearrange terms as follows:

k1 − s−1
1 s2r1r−1

2 k2 + s−1
1 r1h2r−1

2 − s−1
1 h1 ≡ 0 mod n

Let t = −s−1
1 s2r1r−1

2 and u = s−1
1 r1h2r−1

2 − s−1
1 h1. We can then simplify the above as

k1 + tk2 + u ≡ 0 mod n (6)

We wish to solve for k1 and k2, and we know that they are both small. Let |k1|, |k2| < K.
For our example, we have K = 232.
Construct a lattice. We construct the following lattice basis:

B =

n 0 0
t 1 0
u 0 K


The vector v = (k1, k2, K) is in this lattice by construction, and we expect it to be

particularly short.
Calling the BKZ algorithm on B results in a basis that contains this short vector

v = (−0x270feca3, 0x4dbd2db0, 0x100000000)

as the third vector in the reduced basis. We can verify that the value r1 in our example
matches the x-coordinate of k1g, and we can use Equation 5 to compute the private key d.
More detailed explanation. In our example, we have constructed a lattice that is
guaranteed to contain our target vector. In order for this method to work, we hope that
it is the shortest vector, or close to the shortest vector in the lattice, and we solve the
shortest vector problem in the lattice in order to find it.

The vector v = (k1, k2, K) has length |v|2 ≤
√

3K by construction. Our lattice has
determinant det B = nK. Ignoring constants for the moment, if our lattice were truly
random, we would expect the shortest vector to have length ≈ det B1/ dim B. Thus if
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|v|2 < det B1/ dim B , we expect it to be the shortest vector in the lattice, and to be found
by a sufficiently good approximation to the shortest vector problem.

For our example, we expect this to be satisfied when K < (nK)1/3, or when K <
√

n.
The way we have presented this method may remind the reader of the flavor of the

methods in Section 4.2.1. The specific lattice construction used here is a sort of “dual” to
the constructions from Section 4.2.1, in that the target vector is the desired solution to
our system of equations. However, in contrast to Section 4.2.1, we are not guaranteed to
find the solution we desire once we find a sufficiently short vector: this method can fail
with probability that decreases the shorter our target vector d is compared to the expected
shortest vector length.

The Hidden Number Problem. The lattice-based algorithms we describe for solving
these problems are based on the Hidden Number Problem introduced by Boneh and
Venkatesan [BV96]. They applied the technique to show that the most significant bits of a
Diffie-Hellman shared secret are hardcore. Nguyen and Shparlinski showed how to use this
approach to break DSA and ECDSA from information about the nonces [NS02, NS03].
Various extensions of the technique can deal with different numbers of bits known per
signature [BvSY14] or errors [DDE+18].

There is another algorithm to solve this problem using Fourier analysis [Ble98, DHMP13]
originally due to Bleichenbacher; it requires more samples than the lattice approach but
can handle fewer bits known.

Scaling to many signatures to decrease the number of bits known. To decrease
the number of bits required from each signature, we can incorporate more signatures
into the lattice. If we have access to many signatures (r1, s1), . . . , (rm, sm) on message
hashes h1, . . . , hm, we use the same method above to write down equivalencies si ≡
k−1

i (hi + dri) mod n, then as above we rearrange terms and eliminate the variable d to
obtain

k1 + t1km + u1 ≡ 0 mod n

k2 + t2km + u2 ≡ 0 mod n

...
km−1 + tm−1km + um−1 ≡ 0 mod n

(7)

We then construct the lattice

B =



n
n

. . .
n

t1 t2 . . . tm 1
u1 u2 . . . um 0 K


In order to solve SVP, we must run an algorithm like BKZ with block size dim L(B) =

m + 1. Using BKZ to look for the shortest vector can be done relatively efficiently up
to dimension around 100 currently; beyond that it becomes increasingly expensive. In
practice, one can often achieve a faster running time for fixed parameters by using more
samples to construct a larger dimension lattice, and applying BKZ with a smaller block
size to find the target vector. This method can recover a secret key from knowledge of the
4 most significant bits of nonces from 256-bit ECDSA signatures using about 70 samples,
and 3 most significant bits using around 95 samples. For fewer bits known, either the
Fourier analysis technique or a more powerful application of these lattice techniques is
required, along with significantly more computational power.
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Known nonzero most significant bits. If the most significant bits of the ki are
nonzero and known, we can write ki = ai + bi, where the ai are known, and the bi are
small, so satisfy some bound |bi| < K. Then substituting into Equation 6, we obtain

(ai + bi) + ti(am + bm) + ui ≡ 0 mod n

bi + tibm + ui + ai + tiam ≡ 0 mod n

Thus we can let u′
i = ui + ai + tibm, and use the same lattice construction as above,

with u′
i substituted for ui.

Nonce rebalancing. The signature nonces ki take values in the range 0 < ki < n, but
the lattice construction bounds the absolute value |ki|. Thus if we know that 0 < ki < K
for some bound K, we can achieve a tighter bound by renormalizing the signatures. Let
k′

i = ki − K/2, so that |k′
i| < K/2. Then we can write Equations 7 as

ki + tikm + ui ≡ 0 mod n

(k′
i + K/2 + ti(k′

m + K/2) + ui ≡ 0 mod n

k′
i + tik

′
m + (ti + 1)K/2 + ui ≡ 0 mod n

Thus we have an equivalent problem with t′
i = ti, u′

i = (ti + 1)K/2 + ui, and K ′ = K/2,
and can solve as before. This optimization can make a significant difference in practice by
reducing the number of required samples.
5.2.2 (EC)DSA key recovery from least significant bits of the nonce k

The attack described in the previous section works just as well for known least significant
bits of the (EC)DSA nonce.

k1

k2

2ℓbi
ai

...

Figure 13: (EC)DSA key recovery from signatures where least significant bits of the nonces
are known.

Problem setup. We input a collection (EC)DSA signatures (ri, si) on message hashes
hi. For each signature, we know the least significant bits, so the signature nonces ki satisfy

ki = ai + 2ℓbi

for known ai, and bi unknown but satisfying |bi| < B.
Substituting these into Equations 7, we get

ai + 2ℓbi + ti(am + 2ℓbm) + ui ≡ 0 mod n

2ℓbi + 2ℓtibm + ai + tiam + ui ≡ 0 mod n

bi + tibm + 2−ℓ(ai + tiam + ui) ≡ 0 mod n

We have an equivalent instance of the problem with t′
i = ti, u′

i = 2−ℓ(ai + tiam + ui),
and B′ = B, and solve as above.
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5.2.3 (EC)DSA key recovery from middle bits of the nonce k

k1

k2

2ℓci biai

...

Figure 14: (EC)DSA key recovery from signatures where middle bits of the nonces are
known.

Recovering an ECDSA key from middle bits of the nonce k is slightly more complex than
the methods discussed above, because we have two unknown “chunks” of the nonce to
recover per signature. Fortunately, we can deal with these by extending the methods to
multiple variables per signature. The method we will use here is similar to the multivariate
extension in Section 4.2.4, but this case is simpler.
Problem setup. We will use the same elliptic curve group parameters as above. Let
p = 0xffffffffffffd21f be a 64-bit prime, and let E : y2 = x3+3 be an elliptic curve over
Fp. Let g = (1, 2) be our generator point on E, which has order n = 0xfffffffefa23f437.

We have two ECDSA signatures

(r1, s1) =(1a4adeb76b4a90e0, eba129bb2f97f7cd)
on message hash h1 = 608932fcfaa7785d

and

(r2, s2) =(c4e5bec792193b51, 0202d6eecb712ae3)
on message hash h2 = 4de972930ab4a534

We know some middle bits of the corresponding nonces. Let

a1 = 0x50e2fd5d8000

be the middle 34 bits of the signature nonce k1 used for the first signature above. The
first and last 15 bits are unknown. Let

a2 = 0x172930ab48000

be the middle 34 bits of the signature nonce k2 used for the second signature above.
Cast the problem as a system of equations. As above, our two signature nonces k1
and k2 satisfy the

k1 + tk2 + u ≡ 0 mod n (8)

where t = −s−1
1 s2r1r−1

2 and u = s−1
1 r1h2r−1

2 − s−1
1 h1.

Since we know the middle bits of k1 and k2 are a1 and a2 respectively, we can write

k1 = a1 + b1 + 2ℓc1 and k2 = a2 + b2 + 2ℓc2

where b1, c1, b2, and c2 are unknown but small, less than some bound K. In our example,
we have |b1|, |b2|, |c1|, |c2| ≤ 215 and ℓ = 64 − 15 = 49.
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Substituting and rearranging into Equation 8, we have

b1 + 2ℓc1 + tb2 + 2ℓtc2 + a1 + ta2 + u ≡ 0 mod n

Let u′ = a1 + ta2 + u. We wish to find the small solution x1 = b1, y1 = c1, x2 = b2, y2 = c2
to the linear equation

f(x1, y2, x2, y2) = x1 + 2ℓy1 + tx2 + 2ℓty2 + u′ ≡ 0 mod n (9)

Construct a lattice. We construct the following lattice basis:

B =


K K · 249 Kt Kt · 249 u′

Kn
Kn

Kn
n


If we call the BKZ algorithm on B, we obtain a basis that contains the vector

v = (0x6589e5fb1823K, −0x42b0986d3e11K, 0x8d3b91566f89K,

0x41be198fb49eK, −0x1dd626d2645d8f7e)

This corresponds to the linear equation

0x6589e5fb1823x1 − 0x42b0986d3e11y1 + 0x8d3b91566f89x2

+ 0x41be198fb49ey2 − 0x1dd626d2645d8f7e = 0

We can do the same for the next three short vectors in the basis, and obtain four linear
polynomials in our four unknowns. Solving the system, we obtain the solutions

x1 = 0x241c y1 = 0x39a2 x2 = 0x2534 y2 = 0x26f4

More detailed explanation. The row vectors of the lattice correspond to the weighted
coefficient vectors of the linear polynomial f in Equation 9, nx1, ny1, nx2, and ny2. Each
of these linear polynomials vanishes by construction modulo n when evaluated at the
desired solution x1 = b1, y1 = c1, x2 = b2, y2 = c2, and thus so does any linear polynomial
corresponding to a vector in this lattice. If we can find a lattice vector whose ℓ1 norm is less
than n, then the corresponding linear equation vanishes over the integers when evaluated
at the desired solution. Since we have four unknowns, if we can find four sufficiently short
lattice vectors corresponding to four linearly independent equations, we can solve for our
desired unknowns.

The determinant of our example lattice is det B = K4n4, and the lattice has dimension
5. Thus, ignoring approximation factors and constants, we expect to find a vector of
length det B1/ dim B = (Kn)(4/5). This is less than n when K4 < n; in our example this is
satisfied because we have chosen a 15-bit K and a 64-bit n.

The determinant bounds guarantee that we will find one short lattice vector, but do
not guarantee that we will find four short lattice vectors. For that, we rely on the heuristic
that the reduced vectors of a random lattice are close to the same length.

5.2.4 (EC)DSA key recovery from many chunks of nonce bits

The above technique can be extended to an arbitrary number of variables.
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k1

k2

...

(EC)DSA key recovery from signatures where multiple chunks of the nonces are known.

The extension is called the Extended Hidden Number problem [HR07] and can be used
to solve for ECDSA keys when many chunks of signature nonces are known. Each unknown
“chunk” of nonce in each signature introduces a new variable, so the resulting lattice will
have dimension one larger than the total number of unknowns; if there are m signatures
and h unknown chunks of nonce per signature, the lattice will have dimension mh + 1. We
expect this technique to find the solution when the parameters are such that the system
of equations has a unique solution. If the size of each chunk is K, heuristically this will
happen when Kmh < nm−1. This technique has been used in practice in [FWC16] and
further explored in [DPP20].

6 Key recovery method for the Diffie-Hellman Key
Exchange

6.1 Finite field and elliptic curve Diffie-Hellman preliminaries
The Diffie-Hellman (DH) key exchange protocol [DH76] allows two parties to create a
common secret in a secure manner. We summarize the protocol in the context of finite
fields and elliptic curves.
Finite field Diffie-Hellman. Finite-field Diffie-Hellman parameters are specified by a
prime p and a group generator g. Common implementation choices are p a safe prime, i.e.,
q = (p − 1)/2 is prime, in which case g is often equal to 2, 3 or 4, or p is chosen such that
p − 1 has a 160, 224, or 256-bit prime factor q and g generates a subgroup of F∗

p of order q.
Key exchange is performed as follows:

1. Alice chooses a random private key a, where 1 ≤ a < q and computes a public key
A = ga mod p.

2. Bob chooses a random private key b, where 1 ≤ b < q and computes a public key
B = gb mod p.

3. Alice and Bob exchange the public keys.

4. Alice computes sA = Ba mod p.

5. Bob computes sB = Ab mod p.

Because Ba mod p = (gb)a mod p = (ga)b mod p = Ab mod p, we have sA = sB. The
latter is the secret that now Alice and Bob share.
Elliptic Curve Diffie-Hellman. The Elliptic Curve Diffie-Hellman (ECDH) protocol
is the elliptic curve counterpart of the Diffie-Hellman key exchange protocol. In ECDH,
Alice and Bob agree on an elliptic curve E over a finite field and a generator G of order q.
The protocol proceeds as follows:

1. Alice chooses a random private integer a, where 1 ≤ a < q and computes a public
key A = aG.
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2. Bob chooses a random private integer b, where 1 ≤ b < q and computes a public key
B = bG.

3. Alice and Bob exchange the public keys.

4. Alice computes sA = aB.

5. Bob computes sB = bA.

The shared secret is sA = aB = a(bG) = b(aG) = bA = sB .

6.2 Most significant bits of finite field Diffie-Hellman shared secret
The Hidden Number Problem approach we used in the previous section to recover ECDSA
or DSA keys from information about the nonces can also be used to recover a Diffie-Hellman
shared secret from most significant bits.

Bc

ri ki

s

sBc

Recovering Diffie-Hellman shared secret from most significant bits of s.

Problem setup. Let p = 0xffffffffffffffffffffffffffffc3a7 be a 128-bit prime
used for finite field Diffie-Hellman, and let g = 2 be a generator of the multiplicative group
modulo p.

Let s the Diffie-Hellman shared secret s between public keys

A = ga mod p = 0x3526bb85185259cd42b61e5532fe60e0

and
B = gb mod p = 0x564df0b92ea00ea314eb5a246b01ac9c.

We have learned the value of the first 65 bits of s: let

r1 = 0x3330422f6047011b8000000000000000,

so we know that s = r1 + k1 where k1 < K = 263.
Let c = 0x56e112dac14f4a4cc02951414aa43a38. We have also learned the most

significant 65 bits of the Diffie-Hellman shared secret between AC = ga+c = gagc mod p
and B. Let

r2 = 0x80097373878e37d20000000000000000.

We know that g(a+c)b = gabgbc = sBc mod p. Let t = Bc so st = r2 + k2 mod p where
k2 < K = 263.
Cast the problem as a system of equations. We have two relations

s = r1 + k1 mod p st = r2 + k2 mod p

where s, k1, and k2 are small and unknown, and r1, r2, and t are known. We can eliminate
the variable s to obtain the linear equation

k1 − t−1k2 + r1 − t−1r2 ≡ 0 mod p

We now have a linear equation in the same form as the Hidden Number Problem we
solved in the previous section.
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Construct a lattice. We construct the lattice basis

M =

 p
t−1 1

a1 − t−1a2 K


If we call the LLL algorithm on M , we obtain a basis that contains the vector

(−0x2ddb23aa673107bd, −0x216afa75f66a39d5, 0x10000000000000000)

This corresponds to our desired solution (k1, k2, K), although if the Diffie-Hellman
assumption is true we cannot verify its correctness.
More detailed explanation. This method is due to Boneh and Venkatesan [BV96],
and was the original motivation for their formulation of the Hidden Number Problem. The
Raccoon attack demonstrated an attack scenario using this technique in the context of
TLS [MBA+21].

This method can be adapted to multiple samples with the same number of bits required
as the attacks on ECDSA. Knowing the most significant bits of s is not necessary either;
we only need the most significant bits of known multiples ti of s.

6.3 Discrete log from contiguous bits of Diffie-Hellman secret
exponents

This section addresses the problem of Diffie-Hellman key recovery when the known partial
information is part of one or the other of the secret exponents. The technique we apply
in this section is Pollard’s kangaroo (also known as lambda) algorithm [Pol78]. Unlike
the techniques of the previous sections, which are generally efficient when the attacker’s
knowledge of the key is above a certain threshold, and either inefficient or infeasible
when the attacker’s knowledge of the key is below this threshold, this algorithm runs in
exponential time: square root of the size of the interval. Thus it provides a significant
benefit over brute force, but in practice is likely limited to 80 bits or fewer of key recovery
unless one has access to an unusually large amount of computational resources.

The Pollard kangaroo algorithm is a generic discrete logarithm algorithm that is
designed to compute discrete logarithms when the discrete logarithm lies in a small known
interval. It applies to both elliptic curve and finite field discrete logarithms. We will use
finite field discrete logarithms for our examples, but the algorithm is the same in the
elliptic curve context.
6.3.1 Known most significant bits of the Diffie-Hellman secret exponent.
Problem Setup. Using the same notation for finite fields as in Section 6.1, let A be a a
Diffie-Hellman public key, p be a prime modulus, and g a generator of a multiplicative
group of order q modulo p. These values are all public, and thus we assume that they are
known. Imagine that we have obtained a consecutive fraction of the most significant bits
of the secret exponent a, and we wish to recover the unknown bits of a to reconstruct the
secret.

a

2ℓm′ r

Figure 15: Recovering Diffie-Hellman shared secret with most significant bits of secret
exponent.

In other words, let a = m + r, where m = 2ℓm′ for some known integers m′ and ℓ, and
0 ≤ r < 2ℓ is unknown. Let w be the width of the interval that r is contained in: here we
have w = 2ℓ.
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For our concrete example, let p = 0xfef3 be a 16-bit prime, and let g = 3 be a
multiplicative generator of the group of order q = (p − 1)/2 = 0x7f79 modulo p. We know
a Diffie-Hellman public key A = 0xa163 and we are given the most significant bits of
the secret exponent a but the 8 least significant bits of a are unknown, corresponding to
m = 0x1400, ℓ = 8, and r < 28.
Take some pseudorandom walks. We define a deterministic pseudorandom walk
along values s0, s1, . . . , si, . . . in our multiplicative group modulo p (and the corresponding
exponents s0 = gxo mod p, . . . , when known) by choosing a set of random step lengths
for the exponents in [0,

√
w]. For our example, we pseudorandomly generated the lengths

(1, 3, 7, 10).

si+1 →


sig mod p if si ≡ 0 mod 4
sig

3 mod p if si ≡ 1 mod 4
sig

7 mod p if si ≡ 2 mod 4
sig

10 mod p if si ≡ 3 mod 4

This is a small sample pseudorandom walk generated to run our small example compu-
tation. Each step in the pseudorandom walk is determined by the representation of the
previous value as an integer 0 ≤ si < p.

We run two random walks. The first random walk, which is called “the tame kangaroo”,
starts in the middle of the interval of exponents to be searched, at s0 = gm+⌊ w

2 ⌋ mod p.
In our example, we have m = 0x1400 and w = 28 = 256, so the tame kangaroo begins at
s0 = g0x1480 mod p = 0x9581. We take

√
w steps along this deterministic pseudorandom

path, and store the values si together with the exponent xi that is computed at each step
so that gxi ≡ si mod p.

The second random walk is called the “wild kangaroo”. It begins at the target
s′

0 = A = 0xa163 and follows the same rules as above. We do not know the secret exponent
a, but at every step of the walk, we know that s′

i = Agx′
i mod p = ga+x′

i mod p. We take
at most

√
w steps along this deterministic pseudorandom path.

If at some point the wild kangaroo’s path intersects the tame kangaroo’s path, then we
are done and can compute the result.

m = 0x1400

m + w = 0x1500
a

0x1480
0x1483 0x148a 0x1494

0x1497

a+0xa
a+0xd a+0x17 a+0x21 a+0x28

a+0x2b
a+0x2e

a+0x2f
a+0x36

Compute the discrete log. We know that si = s′
j for si on the tame kangaroo’s path

and s′
j on the wild kangaroo’s path. Thus we have

si = s′
j mod p

gxi = ga+x′
j mod p

xi = a + x′
j mod q

xi − x′
j = a mod q

In our example, the kangaroos’ paths intersected at g0x1497 and ga+0x36; we can thus
compute a = 0x1461 and verify that g0x1461 ≡ 0xa163 mod p.
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More detailed explanation. Pollard gave the original version of this algorithm
in [Pol78]. Teske gives an alternative random walk in [Tes00] that should provide an
advantage in theory, but in practice, it seems that no noticeable advantage is gained from
it.

We expect this algorithm to reach a collision in O(
√

w) steps; this algorithm thus takes
O(

√
w) time to compute a discrete log in an interval of width w. Thus in principle, the

armchair cryptanalyst should be able to compute discrete logarithms within intervals of 64
to 80 bits, and those with more resources should be able to go slightly higher than this.

In order to scale to these larger bit sizes, several changes are necessary. First, one
typically uses a random walk with many more subdivisions: 32 might be a typical value.
Second, van Oorschot and Wiener [OW99] show how to parallelize the kangaroo algorithm
using the method of distinguished points. The idea behind this method is that storing the
entire tame kangaroo walk will require too much memory. Instead, one stores a subset of
values that satisfy some distinguishing property, such as starting with a certain number
of zeros. Then the algorithm launches many wild and tame kangaroo walks, storing
distinguished points in a central database. The algorithm is finished when a wild and a
tame kangaroo land on the same distinguished point.
Elliptic curves. This algorithm applies equally well to elliptic curve discrete logarithm.
One can gain a

√
2 improvement in the complexity of the algorithm as a by-product of

the efficiency of inversion on elliptic curves. Since the points P and −P share the same
x-coordinate, one can then do a pseudorandom walk on equivalence classes for the relation
P ∼ ±P .
6.3.2 Unknown most significant bits of the Diffie-Hellman secret exponent

a

2ℓr m

Figure 16: Recovering Diffie-Hellman shared secret with least significant bits

It is straightforward to extend the kangaroo method to solve for unknown most significant
bits of the exponent. As before, we have a known A = ga mod p for unknown a that we
wish to solve for. In the case of unknown most significant bits, we know an m such that
a = m + 2ℓr for some unknown r satisfying 0 ≤ r < w. The offset ℓ is known. Then
we can reduce to the previous problem by running the kangaroo algorithm on the value
A′ = g2−ℓ

A = g2−ℓ+m+2ℓr mod p.
6.3.3 Open problem: Multiple unknown chunks of the Diffie-Hellman secret

exponent

a

a

m2ℓr r′

Figure 17: Recovering Diffie-Hellman shared secret with multiple chunks of unknown bits.

The case of recovering a Diffie-Hellman secret key in practice with multiple chunks of
unknown bits is still an open problem. In theory, finding the secret key in this particular
case can be done using a multi-dimensional variant of the discrete log problem. The
latter generalizes the discrete logarithm problem in an interval to the case of multiple
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intervals, see [Rup10, Chapter 6] for further details. In [Rup10], Ruprai analyzes the
multi-dimensional discrete log problem for small dimensions. This approach appears to
run into boundary issues for multi-dimensional pseudorandom walks when the dimension
is greater than five, suggesting that this approach may not extend to the case of recovering
many unknown chunks of a Diffie-Hellman exponent.

7 Conclusion
This work surveyed key recovery methods with partial information for popular public
key cryptographic algorithms. We focused in particular on the most widely-deployed
asymmetric primitives: RSA, (EC)DSA and Diffie-Hellman. The motivation for these
algorithms arises from a variety of side-channel attacks.

While the existence of key recovery algorithms for certain cases may determine whether
a particular vulnerability is exploitable or not, we emphasize that these thresholds for an
efficiently exploitable key recovery attack should not be used to guide countermeasures.
Instead, implementations should strive to have fully constant-time operations for all
cryptographic operations to protect against timing side-channel attacks.
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A Example code
The code can also be found at https://github.com/ucsd-hacc/partialkey-survey.

# Sect i on 4 . 2 . 1 : L a t t i c e a t tacks on low−exponent RSA
with bad padding

de f low_exp_rsa ( ) :

N = 0 x98664cf0c9f8bbe76791440d
a = 0x01FFFFFFFFFFFFFFFF0000
c = 0 xeb9a3955a7b18d27adbf3a1

R.<x> = ZZ [ ]

f = ( a + x ) ^3 − c
pr in t ( " polynomial i s " , expand ( f ) % N)
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# f_expand = x^3 + 0 x 5 f f f f f f f f f f f f f f f d 0 0 0 0 ∗x^2 + 0
x6f1c485 f406ba1c069460e fe ∗x

# + 0 x203211880cdc43afe1c5c5 f9

f2 = f [ 2 ] % N #0 x 5 f f f f f f f f f f f f f f f d 0 0 0 0
f1 = f [ 1 ] % N # 0 x6f1c485 f406ba1c069460e fe
f 0 = f [ 0 ] % N # 0 x203211880cdc43afe1c5c5 f9

M = matrix (4 )
X = 2^16
M[ 0 ] = [X^3 , X^2∗ f2 , X∗ f1 , f 0 ]
M[ 1 , 1 ] = N∗X^2
M[ 2 , 2 ] = N∗X
M[ 3 , 3 ] = N

A = M. LLL( )
g = A[ 0 ] [ 0 ] /X^3∗x^3 + A[ 0 ] [ 1 ] /X^2 ∗x^2 + A[ 0 ] [ 2 ] /X

∗x + A[ 0 ] [ 3 ]

r e turn hex ( g . r oo t s ( ) [ 0 ] [ 0 ] )

# Sect i on 4 . 2 . 2 : F a c t o r i z a t i o n from conse cu t i v e b i t s o f
p

de f facto_consec ( ) :

N = 0 x4d14933399708b4a5276373cb5b756f3
12 f023c43d60b323ba24cee670f5
a = 0 x68323401cb3a10959e7bfdc0000000

X = 2^30

M = matrix (3 )
M[ 0 ] = [X^2 , X∗a , 0 ]
M[ 1 ] = [ 0 , X, a ]
M[ 2 , 2 ] = N

A = M. LLL( )

R.<x> = ZZ [ ]
f = A[ 0 ] [ 2 ] + A[ 0 ] [ 1 ] /X ∗x + A[ 0 ] [ 0 ] /X^2∗x^2
pr in t ( " polynomial f i s " , f )

r = f . r oo t s ( ) [ 0 ] [ 0 ]

p r i n t ( " f has one p o s i t i v e i n t e g e r root " , hex ( r ) )

re turn N/gcd ( i n t ( a ) + r , N)
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# Sect i on 4 . 2 . 4 : RSA Key recovery from middle b i t s o f
p

de f b ivar iate_coppersmith ( ) :

R.<x , y> = ZZ [ ]
#p = random_prime (2^164 ,2^163)
#q = random_prime (2^164 ,2^163)
#N = p∗q
#a = l i f t (mod(p ,2^148) ) − l i f t (mod(p ,2^16) )

N = 0 x3ab05d0c0694c6bd8ee9683d15039e2f73855822
5 d7d37f4a601bcb929ccfea564804925679e2f3542b
a = 0 xc48c998771f7ca68c9788ec4bf f9b40b80000

X = 2^16
Y = 2^16

f = x + a + y∗2^148
monomial_list = ( f ^3) . monomials ( )
f u n c t i o n _ l i s t = [ f ^3 , f ^2∗y , f ∗(y ) ^2 , ( y ) ^3∗N, f ^2 , f

∗( y ) , ( y ) ^2∗N, f , ( y ) ∗N, N]

M = matrix (10)
f o r i in range (10) :

M[ i ] = [R( f u n c t i o n _ l i s t [ i ] ) ( x∗X, y∗Y) .
monomia l_coe f f i c i ent (m) f o r m in monomial_list ]

scaled_monomials = [m( x/X, y/Y) f o r m in
monomial_list ]

de f g e t f (M, i ) :
r e turn sum(b∗m f o r b ,m in z ip (M[ i ] ,

scaled_monomials ) )

A = M. LLL( )

p r i n t ( "N =" , hex (N) )
p r i n t ( " a =" , hex ( a ) )

I = i d e a l ( g e t f (A, 0 ) , g e t f (A, 1 ) )
p r i n t ( I . groebner_bas i s ( ) )
I = i d e a l ( g e t f (A, i ) f o r i in range (3 ) )
p r i n t ( I . groebner_bas i s ( ) )
I = i d e a l ( g e t f (A, i ) f o r i in range (9 ) )
p r i n t ( I . groebner_bas i s ( ) )
#pr in t ( g e t f (A, 0 ) )
#pr in t ( g e t f (A, 1 ) )

de f print_matrix ( ) :
RR.<x , y ,T, a ,R,N> = ZZ [ ]
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f = x + T ∗ y + a
monomial_list = ( ( x+y+1)^3) . monomials ( )
f u n c t i o n _ l i s t = [ f ^3 , f ^2∗y , f ∗(y ) ^2 , ( y ) ^3∗N, f ^2 , f

∗( y ) , ( y ) ^2∗N, f , ( y ) ∗N, N]

f o r i in range (10) :
f o r m in monomial_list :

s = s t r (RR( f u n c t i o n _ l i s t [ i ] ) ( x=x∗R, y=y∗R) .
c o e f f i c i e n t (m) ( x=0,y=0) ) . r e p l a c e ( " ∗ " , " " )

p r i n t ( s , end=" & " )
p r i n t ( " \ \ \ \ " )

proo f . a r i thmet i c ( Fa l se )

# Sect i on 4 . 2 . 7 : P a r t i a l r ecovery o f RSA dp

de f rsa_dp ( ) :

N = 0 x4d14933399708b4a5276373cb5b756f312
f023c43d60b323ba24cee670f5
a = 0 x25822d06984a06be5596fcc0000000
e = 65537
kp = 23592

A = a + inverse_mod ( e , N) ∗(kp−1)
p r in t ( "A i s " , hex (A) )

A = 0 x8f fe9143aa4c189787058057a078457684
8 f3 f28d79a83169f72a0550699112

X = 2^30

M = matrix (3 )
M[ 0 ] = [X^2 , X∗A, 0 ]
M[ 1 ] = [ 0 , X, A]
M[ 2 , 2 ] = N

B = M. LLL( )

R.<x> = ZZ [ ]
f = B [ 0 ] [ 2 ] + B [ 0 ] [ 1 ] /X ∗x + B [ 0 ] [ 0 ] /X^2∗x^2
pr in t ( " polynomial f i s " , f )

r = f . r oo t s ( ) [ 0 ] [ 0 ]

p r i n t ( " f has i n t e g e r root " , hex ( r ) )

re turn N/gcd ( i n t (A) + r , N)
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# Sect i on 5 . 2 . 1 : L a t t i c e a t tacks

de f l a t t i c e _ a t t a c k s ( ) :

p , F ,C, n ,G, x = ecdsa_params ( )

p r i n t ( " n " , hex (n) )
p r i n t ( " p " , hex (p) )
p r i n t ( "G" , G)

h1 = 0 xae0f1d8cd0fd6dd1
h2 = 0 x8927e246fe4 f3941

s i g 1 = ’6393 e79 fb fb40c9c 621 ee64e65d1e938 ’
r1 , s1 = [ In t eg e r ( f , 1 6 ) f o r f in s i g 1 . s p l i t ( ) ]
s i g 2 = ’3 ea8720afa6d03c2 16 fc6aa65bf241ea ’
r2 , s2 = [ In t eg e r ( f , 1 6 ) f o r f in s i g 2 . s p l i t ( ) ]

p r i n t ( hex ( r2 ) )

t = In t eg e r (−inverse_mod ( s1 , n) ∗ s2 ∗ r1 ∗ inverse_mod ( r2
, n) )

u = In t eg e r ( inverse_mod ( s1 , n) ∗ r1 ∗h2∗ inverse_mod ( r2 ,
n)−inverse_mod ( s1 , n) ∗h1 )

K = 2^32

M = matrix (3 )
M[ 0 , 0 ] = n
M[ 1 ] = [ t , 1 , 0 ]
M[ 2 ] = [ u , 0 , K]

A = M.BKZ( )

p r i n t (A)

k1 = A[ 2 ] [ 0 ]
k2 = A[ 2 ] [ 1 ]

p r i n t ( ( k1∗G) [ 0 ] == r1 )

re turn " vec to r ( k1 , k2 ) " , ( hex ( k1 ) , hex ( k2 ) )

# Sect i on 5 . 2 . 3 : (EC)DSA key recovery from middle b i t s
o f the nonce k

de f ecdsa_middle_bits ( ) :

p , F ,C, n ,G, x = ecdsa_params ( )

h1 = 0 x608932fc faa7785d
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h2 = 0 xe5f8eca48ac2a45c

k1 = 0 x734450e2fd5da41c
s i g 1 = ’1 a4adeb76b4a90e0 eba129bb2f97f7cd ’
r1 , s1 = [ In t eg e r ( f , 1 6 ) f o r f in s i g 1 . s p l i t ( ) ]
k2 = 0x4de972930ab4a534
s i g 2 = ’ c4e5bec792193b51 0202 d6eecb712ae3 ’
r2 , s2 = [ In t eg e r ( f , 1 6 ) f o r f in s i g 2 . s p l i t ( ) ]

a1 = l i f t (mod( k1 ,2^(64 −15) ) )− l i f t (mod( k1 ,2^15) )
a2 = l i f t (mod( k2 ,2^(64 −15) ) )− l i f t (mod( k2 ,2^15) )

p r i n t ( " a1=" , hex ( a1 ) )
p r i n t ( " a2=" , hex ( a2 ) )

b1 = l i f t (mod( k1 ,2^15) )
b2 = l i f t (mod( k2 ,2^15) )

c1 = 2^(−64+15) ∗( k1 − l i f t (mod( k1 ,2^(64 −15) ) ) )
c2 = 2^(−64+15) ∗( k2 − l i f t (mod( k2 ,2^(64 −15) ) ) )

t = In t eg e r ( r1 ∗ inverse_mod ( s1 , n) ∗ inverse_mod ( r2 , n) ∗
s2 )

u = In t eg e r (−inverse_mod ( s1 , n) ∗h1+r1 ∗ inverse_mod ( s1
, n) ∗ inverse_mod ( r2 , n) ∗h2 )

p r i n t (mod( b1+c1 ∗2^(64 −15)−t ∗b2−t ∗c2 ∗2^(64 −15)+a1−t ∗
a2+u , n) )

M = matrix (5 )
X = 2^15
M[ 0 ] = [X, X∗2^(64 −15) , −X∗t , −X∗ t ∗2^(64 −15) , a1−t ∗

a2+u ]
M[ 1 , 1 ] = n∗X
M[ 2 , 2 ] = n∗X
M[ 3 , 3 ] = n∗X
M[ 4 , 4 ] = n

A = M. LLL( )

R.<x1 , y1 , x2 , y2> = ZZ [ ]

de f g e t f (M, i ) :
r e turn M[ i , 0 ] /X∗x1+M[ i , 1 ] /X∗y1+M[ i , 2 ] /X∗x2+M[

i , 3 ] /X∗y2+M[ i , 4 ]

I = i d e a l ( g e t f (A, i ) f o r i in range (4 ) )
re turn I . groebner_bas i s ( )

# Sect i on 6 .2 : Most s i g n i f i c a n t b i t s o f f i n i t e f i e l d
D i f f i e −Hellman shared s e c r e t
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de f dh_msb( ) :

p , g = dh_params ( )

c = 0 x12d0dca5769537c3cd47d8f9042f7497
d = 0 x45fb9bfbdcbead5616aacc7b0f879ae4

DH1 = l i f t (mod(g , p) ^(d∗c ) )

r = 0 x56e112dac14f4a4cc02951414aa43a38

DH2 = l i f t (mod(g , p) ^((d+r ) ∗c ) )

a1 = DH1 − l i f t (mod(DH1,2^63) )
a2 = DH2 − l i f t (mod(DH2,2^63) )
b1 = DH1−a1
b2 = DH2−a2

t = l i f t (mod(g , p) ^( c∗ r ) )

M = matrix (3 )
M[ 0 , 0 ] = p
M[ 1 , 0 ] = inverse_mod ( t , p )
M[ 1 , 1 ] = 1
M[ 2 , 0 ] = a1 − inverse_mod ( t , p ) ∗a2
M[ 2 , 2 ] = 2^64

N = M. LLL( )

p r i n t ( " a1=" , hex ( a1 ) )
p r i n t ( " a2=" , hex ( a2 ) )

re turn " s o l u t i o n ( k1 , k2 ) i s g iven by " , ( hex ( b1 ) ,
hex ( b2 ) )

#pr in t (N)
#pr in t (mod( b1−inverse_mod ( t , p ) ∗b2+a1−inverse_mod ( t ,

p ) ∗a2 , p) )

# Other code : s e t t i n g parameters and other

de f gen_curve ( ) :

p = 0 x f f f f f f f f f f f f f f c 5
done = False
i = 1
whi le not done :

p r i n t ( i )
F = F i n i t e F i e l d (p)
C = E l l i p t i c C u r v e ( [ F(0 ) ,F(3 ) ] )
i f is_prime (C. c a r d i n a l i t y ( ) ) :

done = True
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re turn p
e l s e :

p = previous_prime (p)
i += 1

de f ecdsa_params ( ) :

p = 0 x f f f f f f f f f f f f d 2 1 f
F = F i n i t e F i e l d (p)
C = E l l i p t i c C u r v e ( [ F(0 ) ,F(3 ) ] )
n = 0 x f f f f f f f e f a 2 3 f 4 3 7
G = C. l i f t _ x (1 )# (1 , 2 )
x = 0 x34aad140ec2c3a3
return p , F ,C, n ,G, x

de f dsa_params ( ) :

g = 0 x17dfdbf2bbbae7d6c052c2fdc5d3288d
p = 0 x89524bfca958c9165a087cc4 f889a08f
q = 0 x f f f f f f f f f f f f f f c 5
y = 0 x2410f15634222d3300eabeb44226cea8
x = 0 x38dbefc062cd4c f3

de f dh_params ( ) :

p = 0 x f f f f f f f f f f f f f f f f f f f f f f f f f f f f c 3 a 7
g = 2
return p , g

de f safe_prime ( l =128) :

p = previous_prime (2^ l )
done = False
i = 0
whi le not done :

p r i n t ( i )
i f is_prime ( In t eg e r ( ( p−1)/2) ) :

done = True
return p

e l s e :
p = previous_prime (p)
i += 1

de f b to i (b) :

r e turn i n t . from_bytes (b , " b ig " )

de f i t ob ( i , base l en ) :

r e turn i n t . to_bytes ( i n t ( i ) , l ength=base len ,
byteorder="big " )
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de f s i gn (h , k len =32, return_k=False ) :

p , F ,C, n ,G, x = ecdsa_params ( )
d = x
hi = bto i (h)
k = ZZ . random_element (2 ∗∗ k len )
r = In t eg e r ( (G ∗ k ) . xy ( ) [ 0 ] )
s = l i f t ( inverse_mod (k , n) ∗ mod( h i + d ∗ r , n ) )
s i g = bytes . hex ( i t ob ( r , 8) ) +" "+ bytes . hex ( i t ob ( s ,

8) )
i f return_k :

re turn k , s i g
e l s e :

r e turn s i g

de f gen_dsa_prime ( ) :

p = 2∗q∗random_prime (2^64)+1
i = 1
whi le not is_prime (p) :

p = 2∗q∗random_prime (2^64)+1
i += 1
pr in t ( i )

r e turn p

de f gen_sig ( ) :

h = i tob (ZZ . random_element (2^64) ,64/8)
re turn bytes . hex (h) , s i gn (h)

# Generating p l o t s in the survey

de f kangaroo ( l s b s =97) :

p = 65267
q = 32633
g = 3
m = 0x1400
a = 5120+ l s b s
w = 256
A = l i f t (mod(g , p)^a )
c = 4
S = [ ( l i f t (mod(g , p)^s ) , s ) f o r s in [ 1 , 3 , 7 , 1 0 ] ]

a0 = m+w/2
x0 = l i f t (mod(g , p) ^( a0 ) )

y0 = A
b0 = 0
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tame_dict = {}

de f H( x ) :
r e turn l i f t (mod(x , c ) )

x i = x0 ; a i=a0
y i = y0 ; b i=b0

xmin = 1 . 5 ; xmax = 17
emax = m+w−a−100
de f c t ( e ) :

r e turn xmin+f l o a t ( e /(emax) ∗(xmax−xmin ) )

p r i n t ( "\\ draw [ | − ] (%.2 f , 4 . 0 ) −− (%.2 f , 4 ) ; "%(0 ,1 ) )
p r i n t ( "\\ draw [ dotted ] (%.2 f , 4 . 0 ) −− (%.2 f , 4 ) ; "%(1 , 1 . 5 )

)
p r i n t ( "\\ draw[−−] (%.2 f , 4 . 0 ) −− (%.2 f , 4 ) ; "%(1 . 5 , xmax

−2) )
p r i n t ( "\\ draw [ dotted ] (%.2 f , 4 . 0 ) −− (%.2 f , 4 ) ;"%(xmax

−2,xmax−1) )
p r i n t ( "\\ draw [ −| ] (%.2 f , 4 . 0 ) −− (%.2 f , 4 ) ;"%(xmax−1,

xmax) )
p r i n t ( "\\ node [ anchor=south west ] at (%.2 f , 5 ) {$m=\

mathtt{%s }$ }; "%(0 , hex (m) ) )
p r i n t ( "\\ node [ ] at (%.2 f , 3 . 5 ) {$m+w=\mathtt{%s }$ };"%(

xmax , hex (m+w) ) )

p r i n t ( "\\ node [ t ex t=blue ] at (%.2 f , 3 . 0 ) {$a$ };"%( ct ( b0 )
) ) ;

p r i n t ( "\\ node [ t ex t=red ] at (%.2 f , 5 ) {$\mathtt{%s }$
};"%( ct ( a0−a ) , s t r ( hex ( a0 ) ) ) ) ;

f o r i in range (4 ) :
x i = l i f t (mod( x0∗S [H( x0 ) ] [ 0 ] , p ) )
a i = l i f t (mod( a0+S [H( x0 ) ] [ 1 ] , q ) )
tame_dict [ x i ] = a i
p r i n t ( "\\ draw [ red ,−>,bend l e f t ] (%.2 f , 4 ) to [ out

=90, in =90] (%.2 f , 4 ) ;"%( ct ( a0−a ) , c t ( ai−a ) ) )
p r i n t ( "\\ node [ t ex t=red ] at (%.2 f , 5 ) {$\mathtt{%s }$

};"%( ct ( ai−a ) , s t r ( hex ( a i ) ) ) ) ;
x0 = x i
a0 = a i

p r i n t ( "\\ draw [ red ,−>,bend l e f t ] (%.2 f , 4 ) to [ out =90, in
=90] (%.2 f , 4 ) ;"%( ct ( ai−a ) , c t ( ai−a+1) ) )

p r i n t ( "\\ draw [ red ,−>,bend l e f t ] (%.2 f , 4 ) to [ out =90, in
=90] (%.2 f , 4 ) ;"%( ct ( ai−a+1) , c t ( ai−a+2) ) )

p r i n t ( "\\ draw [ red ,−>,bend l e f t ] (%.2 f , 4 ) to [ out =90, in
=90] (%.2 f , 4 ) ;"%( ct ( ai−a+2) , c t ( ai−a+4) ) )

f o r i in range (16) :
y i = l i f t (mod( y0∗S [H( y0 ) ] [ 0 ] , p ) )
b i = l i f t (mod( b0+S [H( y0 ) ] [ 1 ] , q ) )
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p r in t ( "\\ draw [ blue ,−>,bend l e f t ] (%.2 f , 4 ) to [ out
=270 , in =270] (%.2 f , 4 ) ;"%( ct ( b0 ) , c t ( b i ) ) )

#i f i in [ 1 , 3 , 4 , 5 , 7 , 8 ] :
p r i n t ( "\\ node [ t ex t=blue ] at (%.2 f , 3 . 0 ) {a+$\mathtt

{%s }$ };"%( ct ( b i ) , s t r ( hex ( b i ) ) ) ) ;
i f y i in tame_dict :

a i = tame_dict [ y i ]
candidate_a = l i f t (mod( ai−bi , q ) )
p r i n t ( " Success : " , i , candidate_a==a , candidate_a ,

a )
break

y0 = y i
b0 = bi

de f gen_tree_pq (N=899 ,p= ’?11?1 ’ , q = ’?1?0? ’) :

c and ida t e_ l i s t = [ ]
c and ida t e_ l i s t . push ( ’ ’ , ’ ’ , 0 )
whi l e c and ida t e_ l i s t :

pass

de f gen_children_pq ( pi , qi ,N=899 ,p= ’?11?1 ’ , q = ’?1?0? ’) :

i = l en ( p i )+1
cand ida t e_ l i s t = [ ( bp+pi , bq+q i ) f o r (bp , bq ) in

[ ( ’ 0 ’ , ’ 0 ’ ) , ( ’ 0 ’ , ’ 1 ’ ) , ( ’ 1 ’ , ’ 0 ’ ) , ( ’ 1 ’ , ’ 1 ’ ) ] ]
f o r new_pi , new_qi in cand ida t e_ l i s t :

i f l en ( new_pi ) <= len (p) and p[− i ] != ’? ’ and
p[− i ] != new_pi[− i ] :
cont inue

i f l en ( new_qi ) <= len ( q ) and q[− i ] != ’? ’ and
q[− i ] != new_qi[− i ] :

cont inue
i f mod(N,2^ i ) != mod( In t eg e r ( new_pi , 2 ) ∗ In t eg e r

( new_qi , 2 ) ,2^ i ) :
new_qi += ’x ’

p r i n t ( ’ p=’+new_pi , ’ q=’+new_qi )

de f gen_children_dpdq ( dpi , dqi , pi , qi ,N=899 ,dp = ’?0??1 ’ ,
dq = ’???0? ’ , kp = 13 , kq = 3 , e=17) :

i = l en ( dpi )+1
pr in t ( " i =" , i )
dpdq_candidates = [ ( bp+dpi , bq+dqi ) f o r (bp , bq ) in

[ ( ’ 0 ’ , ’ 0 ’ ) , ( ’ 0 ’ , ’ 1 ’ ) , ( ’ 1 ’ , ’ 0 ’ ) , ( ’ 1 ’ , ’ 1 ’ ) ] ]
pq_candidates = [ ( bp+pi , bq+q i ) f o r (bp , bq ) in

[ ( ’ 0 ’ , ’ 0 ’ ) , ( ’ 0 ’ , ’ 1 ’ ) , ( ’ 1 ’ , ’ 0 ’ ) , ( ’ 1 ’ , ’ 1 ’ ) ] ]
f o r new_dpi , new_dqi in dpdq_candidates :

i f l en ( new_dpi ) <= len (dp) and dp[− i ] != ’? ’ and dp
[− i ] != new_dpi[− i ] :
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cont inue
i f l en ( new_dqi ) <= len ( dq ) and dq[− i ] != ’? ’ and dq

[− i ] != new_dqi[− i ] :
cont inue

f o r new_pi , new_qi in pq_candidates :
i f mod( e∗ In t eg e r ( new_dpi , 2 )−1+kp ,2^ i ) != mod( kp∗

In t eg e r ( new_pi , 2 ) ,2^ i ) :
cont inue

i f mod( e∗ In t eg e r ( new_dqi , 2 )−1+kq ,2^ i ) != mod( kq∗
In t eg e r ( new_qi , 2 ) ,2^ i ) :
cont inue

i f mod(N,2^ i ) != mod( In t eg e r ( new_pi , 2 ) ∗ In t eg e r (
new_qi , 2 ) ,2^ i ) :

new_qi += ’x ’
p r i n t ( ’ dp=’+new_dpi , ’ dq=’+new_dqi , ’ p=’+new_pi , ’ q

=’+new_qi )
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