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Abstract. The LowMC family of block ciphers was proposed by Albrecht et al. in
[ARS+15], specifically targeting adoption in FHE and MPC applications due to its
low multiplicative complexity. The construction operates a 3-bit quadratic S-box as
the sole non-linear transformation in the algorithm. In contrast, both the linear layer
and round key generation are achieved through multiplications of full rank matrices
over GF(2). The cipher is instantiable using a diverse set of default configurations,
some of which have partial non-linear layers i.e., in which the S-boxes are not applied
over the entire internal state of the cipher.
The significance of cryptanalysing LowMC was elevated by its inclusion into the
NIST PQC digital signature scheme PICNIC in which a successful key recovery using
a single plaintext/ciphertext pair is akin to retrieving the secret signing key. The
current state-of-the-art attack in this setting is due to Dinur [Din21a], in which a
novel way of enumerating roots of a Boolean system of equation is morphed into a
key-recovery procedure that undercuts an ordinary exhaustive search in terms of time
complexity for the variants of the cipher up to five rounds.
In this work, we demonstrate that this technique can efficiently be enriched with a
specific linearization strategy that reduces the algebraic degree of the non-linear layer
as put forward by Banik et al. [BBDV20]. This amalgamation yields new attacks on
certain instances of LowMC up to seven rounds.
Keywords: LowMC · Block Cipher · Cryptanalysis

1 Introduction
The block cipher LowMC has been quite popular in the cryptographic community ever
since it was proposed in 2015. The straightforward nature of the construction and its
various configurations lend themselves well to a broad range of attack techniques. The
announcement of the LowMC cryptanalysis challenge in 2020 (https://lowmcchallenge
.github.io/) further incentivized the efforts across the community with the competition
having been renewed twice since then.

The structure of LowMC is unique due to its simple component functions, solely
consisting of a non-linear 3-bit S-box and a matrix multiplication over GF(2) that represents
the linear layer. Note that, unlike some other block ciphers which apply S-boxes over the
entire internal state, some instances of LowMC allow a partial application of the non-linear
layer further lowering its multiplicative complexity. Henceforth, we will refer to these two
design philosophies as LowMC instances with complete and partial non-linear layers.

Although the large canon of cryptanalytic results on LowMC is partly due to its broad
range of possible instantiations, it was its integration into the NIST PQC digital signature
scheme PICNIC that made the single plaintext/ciphertext pair setting an important attack
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target. This is because a successful key recovery attack on LowMC using only a single
plaintext and ciphertext is equivalent to retrieving the signing key of PICNIC. Below, we
give a brief overview of existing attacks in the single data-point setting. For a survey of
other key recovery techniques, we refer the reader to [GKRS].

1.1 Previous Work
The first successful key recovery that only relies on a single plaintext/ciphertext pair was
proposed by Banik et al. [BBDV20]. The authors used the fact that after guessing the
value of any balanced quadratic Boolean function on the inputs of the LowMC S-box
the transformation becomes completely linear. The authors chose the 3-variable majority
function for this purpose, but they show that any balanced quadratic function can be
used. Using this, they demonstrated various attacks on 2-round LowMC with complete
non-linear layer, and 0.8 · ⌊n

s ⌋-round LowMC with partial non-linear layers. Here, n denotes
the blocksize of the LowMC instance, and s denotes the number of S-boxes in each round
(with 3s ≤ n).

The linearization method was used in [BBVY21] to extend the attack to 3-round
variants with complete non-linear layer and 1 · ⌊n

s ⌋-round variants with partial non-linear
layers, using two applications of a meet-in-the-middle procedure. Further in [LIM21], the
authors proposed an algebraic attack on 3-round LowMC. The current state-of-the-art
method was proposed by Dinur [Din21a] in which a newly devised scheme of finding roots
to Boolean systems of equations is transformed into a cryptanalytic attack. In fact, given
a plaintext/ciphertext pair, the paper transforms the problem of recovering the secret
key into the problem of finding the common root of a set of n equations in n variables
over GF(2). This attack is particularly well-suited for low-degree systems and thus was
successfully applied to {2, 3, 4, 5}-round versions of LowMC where the S-box is performed
over the entire internal state. However, the method is not suitable for LowMC instances
with partial non-linear layers, since the number of rounds in such instances is generally
considerably higher, and the degree of the internal state variables (as a function of the
key) doubles every round. Recently, [LMSI22] used a variant of this technique to attack
upto 4 rounds of LowMC in the single data setting, but their technique is not possible
to extend to any higher number of rounds, as it would be well above the complexity of
exhaustive search.

1.2 Contributions
In this paper, we combine the linearization techniques of [BBDV20, BBVY21] and the
equation solving methods of [Din21a] to cryptanalyze LowMC instances with complete non-
linear layers. The principal technique in the attack that we propose is to use linearization
to transform the problem of finding the secret key into an equivalent problem of finding
the common roots of an equation system with only around 2n/3 variables. Thus, although
our method requires time complexity of the same order as reported by [Din21a], we do it
with significantly less memory than reported in [Din21a]. Our method, for all instances
of LowMC, requires around 22n/3 bits of memory, which is roughly the space required to
solve an equation system over GF(2) in 2n/3 variables. We also report the first attacks on
LowMC instantiations upto 7 rounds in single data setting.

The main idea is as follows: we know that the LowMC S-box can be completely
linearized by guessing the value of any balanced quadratic function in its input bits. Since
the master key (xored with the known plaintext) is directly input to the S-box layer of the
first LowMC round, by guessing the values of some balanced quadratic equation in the key
bits we can directly linearize the first round, which serves to reduce the algebraic degree
of the polynomial equations relating the plaintext and ciphertext. What this also does is
partition the key space (which is {0, 1}n for complete LowMC instances with blocksize
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equal to n bits) into disjoint sets, depending on the value of the guessed function. For
example, if the key space is of size 12 bits and we use the 3-variable majority function (maj)
for linearization, i.e. by guessing the 12/3 = 4 values of gi = maj(k3i, k3i+1, k3i+2) (for
i = 0, 1, 2, 3), then note that we have partitioned the key space into 24 disjoint sets, each of
which is indexed by the guess vector [g3, g2, g1, g0] ∈ {0, 1}4 and has size 28. Generalizing
this, we can say that this process of linearizing, partitions the key space into 2n/3 disjoint
sets each of size 22n/3 (which we call “partial sets/space” interchangeably throughout the
paper).

Much of the technical content in the paper deals with how to perform efficient arithmetic
over these partial sets. It is well known that to evaluate the truth table of a Boolean
function in n variables and algebraic degree d ≤ n, then we need the evaluation of the
function on

∑d
i=0

(
n
i

)
points of its input space. One of the main results in this paper, is to

show that if we needed to evaluate the function on any one of these partial sets then we
need the function evaluation on a much smaller set of points. Most of the optimizations
that we have derived in the paper in terms of time and space complexity, stems from this
key observation. As a result, we were able to attack some 5, 6 and 7 round instances
of LowMC, with essentially memory less than or around 22n/3 bits. A complete list of
results is presented in Table 1. We also compare our results with that of [BCC+10], which
outlines a method of finding a common root of an equation system in n unknowns and
degree d over GF (2) using a Gray-code based traversal of the solution space, and requires
polynomial memory to execute. This method takes around 2d · log2 n · 2n bit-operations
and nd bits of memory. Our method does not always outperform the Gray-code assisted
exhaustive search complexity (e.g. n = 129, R = 6, 7). We only report those instances when
our complexity is better than the gray-code assisted exhaustive search with a constant
probability of success (at least 0.5).

1.3 Organization of the Paper
In Section 2, we present some preliminary introduction to the algebraic structure of
LowMC, and the LowMC cryptanalysis challenge. Section 3 presents some initial ideas
about linearization, and how it helps set up the attack on the various LowMC instances
with both even and odd number of rounds. Section 4 relates to the problem of efficiently
evaluating a Boolean function over any one of the partial sets defined above. The remaining
part of Section 5 presents the mathematical details of the attack, and explicit derivations of
the time and space complexity. In Section 6 we study generic time-memory trade-offs that
can further decrease the memory complexity. We also compare how these type of trade-offs
affect our attack in comparison with [Din21a]. We conclude the paper in Section 7.

2 Preliminaries
The LowMC round function is a typical SPN construction given in Fig. 1. It consists of an
n-bit block undergoing either a partial or a complete substitution layer consisting of s 3-bit
S-boxes where 3s ≤ n. It is followed by an affine layer which consists of multiplication
of the block with an invertible n × n matrix over F2 and addition with an n-bit round
constant. Finally, the block is xored with an n-bit round key. If the master secret key K
is of size n-bits (which is true for all the instances in the LowMC challenge), then each
round key is obtained by multiplication of K with an n× n invertible matrix over GF(2).
As in most SPN constructions, the plaintext is first xored with a whitening key which
for LowMC is simply the secret key K, and the round functions are executed R times to
give the ciphertext. From the point of view of cryptanalysis, we note that the design is
completely known to the attacker, i.e., all the matrices and constants used in the round
function and key update are known. Note that in general instantiations of LowMC, the
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key size and block size are not the same. The whitening key and all the round keys are
extracted by multiplying the master key with full rank matrices over GF(2). However

Table 1: Summary of results. R denotes the number of rounds. Note the time complexity
(TC) and memory complexity (MC) are given in number of bit operations and bits
respectively. The complexity for exhaustive search is computed as per Lemma 1. We
further compare our results with the gray code assisted exhaustive search technique
proposed in [BCC+10], using the expression in Lemma 2. (n1, ℓ, N, θ) are parameters used
in the attack which are explained in Section 5. Success probability has been calculated as
per Equation (10).

R n s (n1, ℓ, N, θ) Success TC MC Exhaustive Gray code Reference
Prob. Search [BCC+10]

2 129 43 1.00 2107 O(1)∗∗ 2145 2134 [BBDV20]∗
129 43 1.00 297 253 [BBVY21]∗
129 43 0.68† 2118 292 [Din21a]
129 43 (18, 15, 14, 10) 0.91 2125.9 278.3 This paper
192 64 1.00 2151 O(1) 2209 2197 [BBDV20]
192 64 1.00 2139 275 [BBVY21]
192 64 0.68 2170 2126 [Din21a]
192 64 (30, 23, 24, 15) 1.00 2182.8 2113.1 This paper
255 85 1.00 2194 O(1) 2273 2260 [BBDV20]
255 85 1.00 2182 297 [BBVY21]
255 85 0.68 2222 2173 [Din21a]
255 85 (39, 30, 16, 11) 1.00 2238.9 2148.4 This paper

3 129 43 1.00 2140 253 2146 2135 [BBVY21]
129 43 0.68 2125 2104 [Din21a]
129 43 0.83 2127.2 216.9 [LMSI22]
129 43 (12, 10, 20, 14) 0.62 2130.5 282.7 This paper
192 64 1.00 2204 275 2210 2198 [BBVY21]
192 64 0.68 2180 2150 [Din21a]
192 64 0.83 2186.2 218.6 [LMSI22]
192 64 (21, 16, 32, 23) 0.59 2188.9 2119.3 This paper
255 85 1.00 2267 297 2274 2261 [BBVY21]
255 85 0.68 2235 2197 [Din21a]
255 85 0.83 2246.8 219.8 [LMSI22]
255 85 (27, 21, 12, 10) 0.55 2246.9 2156.1 This paper

4 129 43 0.68 2130 2113 2146 2135 [Din21a]
129 43 0.83 2133.8 236.7 [LMSI22]
129 43 (6, 7, 14, 8) 1.00 2133.9 286.2 This paper
192 64 0.68 2188 2164 2210 2198 [Din21a]
192 64 0.83 2195.0 253.4 [LMSI22]
192 64 (12, 11, 10, 8) 0.64 2192.9 2123.8 This paper
255 85 0.68 2245 2218 2274 2261 [Din21a]
255 85 0.83 2255.8 268.0 [LMSI22]
255 85 (18, 15, 14, 10) 0.91 2252.9 2162.2 This paper

5 129 43 (3, 5, 12, 8) 0.95 2135.7 288.0 2146 2136 This paper
192 64 0.68 2192 2173 2210 2199 [Din21a]
192 64 (9, 8, 32, 19) 0.96 2196.9 2127.2 This paper
255 85 0.68 2254 †† 2228 2274 2262 [Din21a]
255 85 (12, 11, 12, 9) 0.82 2256.9 2166.0 This paper

6 192 64 (6, 6, 18, 13) 0.52 2198.0 2128.5 2211 2199 This paper
255 85 (9, 8, 18, 13) 0.52 2259.7 2168.51 2275 2262 This paper

7 255 85 (6, 6, 17, 12) 0.57 2262.0 2170.5 2275 2263 This paper

*The papers [BBDV20] and [BBVY21] report complexities in number of encryptions. We recalculate them in terms
of number of bit-operations using the estimate in Lemma 1.

**O(1) refers to constant memory required for only storing intermediate variables and running loops.
†The success probability in [Din21a] depends on a probability 1

2 event occurring at least twice in 4 trials, the
probability of which is around 0.68. †† Recomputed using additional S1 + S2 term in Sec 6.1.
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Figure 1: LowMC Round Function

for all the instances of LowMC used in the LowMC challenge the block size and key size
are the same. This being so, the lengths of the master key, whitening key and all the
subsequent round keys are the same. Effectively, this makes all these keys related to each
other by multiplication with an invertible matrix over GF(2). Thus all round keys can be
extracted by multiplying the whitening key with an invertible matrix. So for all practical
purposes used in this paper, the whitening key can also be seen as the master secret key.
This is true since given any candidate whitening key, all round keys can be generated
from it, and thus given any known plaintext-ciphertext pair, it is possible to verify if that
particular candidate key has been used to generate the corresponding plaintext/ciphertext
pair. As such we use the terms master key/whitening key interchangeably.

The LowMC challenge specifies 9 challenge scenarios for key recovery given only 1
plaintext-ciphertext pair, i.e., for single-data complexity.

• 1. [n = 128, s = 1] 2. [n = 128, s = 10] 3. [n = 129, s = 43]

• 4. [n = 192, s = 1] 5. [n = 192, s = 10] 6. [n = 192, s = 64]

• 7. [n = 256, s = 1] 8. [n = 256, s = 10] 9. [n = 255, s = 85]

The number of rounds R for instances with complete S-box layer is either 2, 3, or 4 and
for instances with a partial S-box layer can vary between 0.8× ⌊n

s ⌋, ⌊
n
s ⌋ and 1.2× ⌊n

s ⌋.
When these are not integers, the number of rounds is taken as the next higher integer.
The key length k for all instances is n bits. PICNIC v3.0 [Zav] incidentally uses LowMC
instances with the parameter sets [n, s, R] given by [128, 10, 20], [192, 10, 30], [256, 10, 38]
(partial S-box layer) and [129, 43, 4], [192, 64, 4], [255, 85, 4] (complete S-box layer) for
use under different security levels. It should be noted that our attack only targets the
LowMC instances with complete non-linear layers, since all instances of partial non-linear
layer based constructions have high algebraic degree due to the large number of rounds it
executes.

3 Attack Preliminaries
Before we begin let us establish the number of bit operations required to perform an
exhaustive search on an R-round instance of LowMC with complete non-linear layers given
a single plaintext/ciphertext pair. Note that since the paper focuses solely on LowMC
instances with complete S-box layers, for conciseness we will no longer use this term, and
henceforth any mention of a LowMC instance should be understood as being with complete
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non-linear layers. The following lemma was proven in [BBVY21], but we restate it for
completeness.

Lemma 1. [BBVY21] Performing one encryption with any R round instance of LowMC
requires around 2Rn2 bit-operations. And thus the cost of exhaustive search is around
Rn2 · 2n+1 bit-operations.

Proof. Although this was shown in [BBVY21], we give a brief proof sketch for completeness.
Any one round of LowMC requires 2 matrix-vector multiplications (between an n × n
matrix and an n× 1 vector) over GF(2): one to perform the linear layer on the state, and
the second to generate the round key from the master key. This needs n2 bit-operations
each. One round key addition takes n bit-operations. One 3-bit s-box requires around 8
operations (see below) and so the entire substitution layer needs around 8n/3 operations.

(1) P0=P1*P2, (2) S0=X0+P0, (3) T1=X0+X1, (4) P1=X0*X2.
(5) S1=X1+P1, (6) T2=T1+X2, (7) P2=X0*X1, (8) S2=T2+P2

Thus the total number of bit-operations for R-round LowMC is around R(2n2 +n+8n/3) ≈
2Rn2 bit-operations, and so exhaustive search which requires 2n encryptions needs Rn2·2n+1

bit-operations

Lemma 2. Accelerating exhaustive search for any R round instance of LowMC using
Gray code based search of [BCC+10] takes around 2D · log2 n · 2n bit-operations, where
D = 2⌈R/2⌉.

Proof. It was shown in [BCC+10] that a system of n Boolean polynomials of degree d
in n variables can be solved using 2d · log2 n · 2n bit-operations. All that’s left to show
that the R round instance of LowMC can be written as n polynomials of degree 2⌈R/2⌉.
Given any plaintext-ciphertext pair, computing forward, the state bits after ⌈R/2⌉ rounds
can be written as polynomials in the key variables of degree 2⌈R/2⌉. Similarly computing
backwards from the ciphertext, the state bits after the ⌈R/2⌉-th forward round can be
written as polynomials of degree 2R−⌈R/2⌉ = 2⌊R/2⌋ 1. Equating these yields n polynomials
of the required degree.

The starting point of the attack in [BBDV20] was the following lemma that helps
linearize the LowMC S-box by guessing only one balanced quadratic expression on its
input bits.

Lemma 3. [BBDV20] Consider the LowMC S-box S defined over the input bits x0, x1, x2.
If we guess the value of any 3-variable quadratic Boolean function f which is balanced over
the input bits of the S-box, then it is possible to re-write the S-box as affine function of its
input bits.

The authors used the majority function f = x0x1 + x1x2 + x0x2 for this purpose which
is both quadratic and balanced. This is true since the LowMC S-box output bits can be
written as:

s0 = x0 + x1 · x2 = f · (x1 + x2 + 1) + x0,

s1 = x0 + x1 + x0 · x2 = f · (x0 + x2 + 1) + x0 + x1,

s2 = x0 + x1 + x2 + x0 · x1 = f · (x0 + x1 + 1) + x0 + x1 + x2.

1This follows since both the forward and inverse S-box of LowMC are quadratic.
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Figure 2: The attack setup for even and odd rounds for LowMC instances. The first round
shown in green is linearized.

Using the above fact, the first attack proposed in [BBDV20] used only the linearization
technique to obtain affine equations relating plaintext and ciphertext. The idea is as follows.
The values of the majority function at the input of all the S-boxes in the encryption circuit
were guessed: this made expression relating the plaintext and ciphertext completely linear
in the key variables, i.e., of the form:

A · [k0, k1, . . . , kn−1]T = const, (1)

where A is an n×n matrix over GF(2). Thereafter the key could be found by using Gaussian
elimination. A wrong key found by this method could be discarded by recalculating the
encryption and checking if the given plaintext mapped to the given ciphertext.

The above method would work if the total number of S-boxes in the encryption circuit
is strictly less than the size of the key in bits. This happens for a) 2-round LowMC with
complete non-linear layers and b) 0.8× ⌊n

s ⌋-round LowMC with partial non-linear layers.
For higher round instances of LowMC, this approach obviously takes complexity more than
exhaustive search of the key and so becomes infeasible. In [BBVY21], the authors had
shown how to combine meet-in-the-middle techniques along with linearization to extend
the attack to 3-round LowMC with complete non-linear layers and 1× ⌊n

s ⌋-round LowMC
with partial non-linear layers. In this paper, we look to combine linearization with the
equation solving techniques suggested by Dinur and show that we can attack up to 7 round
instances of LowMC.

3.1 Attack Setup after Linearization

Let us outline the basic steps of the attack. Without loss of generality, consider the
plaintext to be the all zero string, due to which the input to the first round s-box is the
master key itself. We try to guess the values of some balanced quadratic expression in the
keybits before it is input to the first round S-boxes. As a result of this the first round can
be completely linearized, and the output bits S1 of the first round are essentially affine
expressions of the keybits.
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3.1.1 Odd Number of Rounds:

For an arbitrary instance of LowMC with R = 2ρ + 1, i.e., odd number of rounds, we can
form n equations of degree 2ρ as follows:

1. Consider rounds 2 to ρ + 1 of LowMC. The function that maps the round 2 input
to the ρ + 1-th round output is essentially a map of algebraic degree 2ρ in the key,
since there are ρ rounds in the map, each of degree 2.

2. Consider the inverse rounds 2ρ + 1 down to ρ + 2. Again, there are ρ inverse rounds.
The function that maps the round 2ρ + 1 output (which is essentially the ciphertext)
to the ρ + 2-th round input is also therefore a map of algebraic degree 2ρ.

3. Since the algebraic degree of S1 is 1, we can get n algebraic equations of degree 2ρ

by executing rounds 2 to ρ + 1 on S1 to get SF (see Figure 2). Each of the n bits
of SF is a Boolean polynomial in the key bits of degree 2ρ. Similarly by executing
the inverse rounds 2ρ + 1 to ρ + 2 over the ciphertext, we get the state SB. Each
bit of SB gives us another set of n equations of degree 2ρ. Equating these 2 sets of
expressions yields n equations of degree 2ρ each.

3.1.2 Even number of rounds:

If the number of rounds R = 2ρ is even, then we proceed as follows:

1. Consider rounds 2 to ρ of LowMC. The function that maps the round 2 input to the
ρ-th round output is a map of algebraic degree 2ρ−1 in the key, for obvious reasons.

2. The function that maps the round 2ρ output (which is the ciphertext) to the ρ + 2-th
round input is also therefore a map of algebraic degree 2ρ−1.

3. We take SF as the state after executing the substitution layer in round ρ + 1 (see
Figure 2). Since S1 is linear and a total of ρ substitution layers are executed to get
SF , we have that each bit of SF is a Boolean polynomial in the keybits of degree 2ρ.

4. We take SB as the state just before the affine layer in round ρ + 1. Again, a total
of ρ − 1 inverse substitution layers are executed to reach SB from the ciphertext.
Hence each bit in SB is of degree 2ρ−1.

5. Equating each bit of SF with the corresponding bit of SB gives us n equations of
degree 2ρ each.

Although each equation is of degree 2ρ, [Din21a] had pointed out an interesting property
of these equations. Consider pi(k) to be the Boolean polynomial representing the ith bit
of SB. Similarly let ai(k) represent the Boolean polynomial for the ith bit of the state
at the input of round ρ + 1, i.e., one substitution layer before SF . Note that, due to the
linearization step, each pi, ai have algebraic degree equal to 2ρ−1. It can be seen that the
equation obtained after equating SF and SB , for any 3 consecutive bits aligned under the
same S-box are as follows:

pi(k) + ai(k) + ai+1(k)ai+2(k) = 0
pi+1(k) + ai(k) + ai+1(k) + ai(k)ai+2(k) = 0

pi+2(k) + ai(x) + ai+1(k) + ai+2(k) + ai(k)ai+1(k) = 0

If we multiply the polynomials in the left side of three equations together, we get a
polynomial whose degree is 4 · 2ρ−1. This is much lower than 3 · 2ρ which is the expected
degree of the product of 3 degree 2ρ polynomials. We further observe that if only any 2 of
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these polynomials are multiplied together then the algebraic degree of the product is again
only 3 · 2ρ−1 which is again much lower than 2 · 2ρ.

Since in the LowMC instances with complete non-linear layers, the keysize/blocksize is
a multiple of 3, let n = 3t. Let h : {0, 1}3 → {0, 1} be any 3-variable balanced quadratic
Boolean function. Note that for all such h, we can linearize the first round if we guess
h(k3i, k3i+1, k3i+2) for all i ∈ [0, t− 1]. We have already seen that after doing this we can
derive n algebraic equations over GF(2) of degree 2ρ each. Cryptanalysis of LowMC would
essentially be equivalent to finding a common root of these equations.

4 Finding roots of an equation system over partial
space

We can now solve the n equations obtained by linearizing the first round of LowMC, to
find its roots and thus find the key, however with some caveat. Note that the equations
were obtained by initially restricting the value of the master key to a specific subset of
{0, 1}3t. For example let B1 be the set of four 3-bit vectors over which h is 1, and B0 be
the complement of B1. If the initial guess of h over the 3t bits of the key, is some vector
G = [gt−1, gt−2, . . . , g0] ∈ {0, 1}t (i.e., h(k3i, k3i+1, k3i+2) = gi), then it only makes sense
if the exhaustive search is done over the space BG = Bgt−1 ×Bgt−2 × · · ·Bg0 . The latter
is a set of size 4t = 22n/3. Also note that there are exactly 2t = 2n/3 (one for each value of
G) of such sets and these sets partition {0, 1}n.

Consider the function h for which B0 = {000, 010, 100, 111} and B1 = {001, 011, 101,
110}. It is clear that h is balanced, and it is easily verifiable that it is also quadratic. In fact
it can be verified that h = s0, the first output bit of the LowMC s-box. For convenience
we write B0 = {0, 2, 4, 7} and B1 = {1, 3, 5, 6}. With this background in hand, we will
now discuss the finer details of the attack. Before we describe our technique, it would be
instructive (at least for the completeness of the paper) to look at a few preliminary tools
we will use to perform the attack.

Note that this section is devoted to the problem of efficiently evaluating a Boolean
function over any one of the partial sets BG defined above. It develops tools and also
establishes bounds with respect to time and space complexity, that will be used when the
attack is finally described in Section 5.

4.1 Evaluating a function over a partial space
So to begin, we guess the values of some balanced quadratic equation in all the key-triples
before it is input to the first round S-boxes, and obtain n equations of degree d = 2ρ

for any R = 2ρ or R = 2ρ + 1-round instance of LowMC, as explained in the previous
section. Since we can choose any balanced quadratic function for linearizing the S-box,
let us choose the function h for which B0 = {0, 2, 4, 7} and B1 = {1, 3, 5, 6}, as defined
above. The reason we choose this function will be clear in a moment. Note that when B0

is expressed as the following 4× 3 matrix over GF(2),

B0 :

ui ui

00
01
10
11

→
→
→
→


0 0 0
0 1 0
1 0 0
1 1 1

 B1 :

ui ui

00
01
10
11

→
→
→
→


0 0 1
0 1 1
1 0 1
1 1 0


and each column is seen as a truth table of a 2 variable function, then the 3 functions
corresponding to each column are given as y1, y0, y0y1. Similarly the corresponding
functions for B1 are y1, y0, y0y1 ⊕ 1.
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Theorem 1. Let the function h be as described above, i.e. h = s0 function of the LowMC
S-box. For any guess G = [gt−1, gt−2, . . . , g0], consider the following 3t Boolean Functions
in 2t variables y0, y1, . . . , y2t−1.

P3i+2 = y2i+1, P3i+1 = y2i, P3i = y2iy2i+1 ⊕ gi, ∀ i ∈ [0, t− 1]

Then by evaluating these 3t functions over all the points y0, y1, . . . , y2t−1 ∈ {0, 1}2t, one
can generate all of the space BG. In other words, the 3t-bit vectors

Vj = P3t−1(vj)||P3t−2(vj)|| . . . ||P0(vj), for j ∈ [0, 4t − 1]

are all the vectors in BG, where vj is just the 2t-bit binary representation of the integer j.
Also there is a one-to-one correspondence between Vj and vj.

Proof. To prove this, we only need to show that for every V ∈ BG there exists a unique
j and therefore vj such that V = P3t−1(vj)||P3t−2(vj)|| . . . ||P0(vj) = Vj . Let V be an
arbitrary vector in BG. V is therefore of the form ut−1, ut−2, . . . , u0 where each ui is any
one of the four 3-bit vectors in Bgi . For each ui, we can see that a unique 2-bit vector ui that
generates it. For example if gi = 0, and ui = [1, 0, 0], then it can be easily seen (by looking
at the 4× 3 matrix above) that for ui = [1, 0], we have ui = P3i+2(ui)||P3i+1(ui)||P3i(ui)
(by a slight abuse of notation). This can easily be verified for all other elements of B0/B1.
So the unique vj that generates V is given as ut−1||ut−2|| . . . ||u0 as described above.

4.2 Evaluation over all points of BG

Given an oracle O that given an n-bit input vector X, evaluates an n-variable Boolean
function F over X, and returns F (X), how many accesses to the oracle are necessary to
evaluate the algebraic expression of F? For arbitrary functions, where we have no prior
information about its properties, it is well-known that we need the evaluate F over all
2n points in its input space. After this, it is equally well-known that we need to run the
Möbius transform on the evaluations of F to generate the algebraic expression. Note that
the Möbius transform is a completely linear operation which is involutive. Executing the
same transform on the vector of coefficients in the algebraic expression, returns back the
truth table of F .

However, if it is known apriori that the algebraic degree of the Boolean function is
some d < n, then it is also well known that only

(
n
↓d

)
=

∑d
i=0

(
n
i

)
evaluations of F are

required. Indeed, the algebraic expression of a Boolean function F is written as

F =
⊕

v∈{0,1}n

avxv,

where if v = [vn−1, vn−2, . . . , v0] then xv implies x
vn−1
n−1 x

vn−2
n−2 · · ·x

v0
0 . Then it is well known

that the coefficient av is computed as av = ⊕u⪯vF (u). Here u ⪯ v, implies that ui ≤ vi

for all i, which also implies that the hamming weight of u is less than or equal to that
of v. Since any degree d coefficient av can be computed with evaluations of F at points
u ⪯ v, thus

(
n
↓d

)
accesses to the oracle are sufficient to compute av and therefore the

entire algebraic expression. Thereafter, one can use the Möbius transform to automatically
generate evaluation of F over all the points of its input space. This is an interesting
property of degree d functions: an evaluation over only

(
n
↓d

)
points is sufficient to generate

its evaluations over all of its input space.
The next question is as follows: given oracle access to a random n-variable Boolean

function F of algebraic degree d, where n = 3t is a multiple of 3. For any G, how many
evaluations of F are required to evaluate F over the entire of BG, where BG is the set
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defined for the function h in the previous subsection? Certainly
(

n
↓d

)
evaluations are

sufficient, since it allows us to evaluate F over its entire space and not just BG.
Note that when we are enumerating BG as explained in Theorem 1, i.e., when the jth

vector in BG is generated as Vj = P3t−1(vj)||P3t−2(vj)|| . . . ||P0(vj), and then evaluating
F over these 4t points, we get a list of 4t evaluations of F . This can also be seen as the
truth table of another Boolean function F over 2t = 2n

3 variables. Thus we have that

F(y2t−1, y2t−2, . . . , y0) = F (x3t−1 = P3t−1, x3t−2 = P3t−2, . . . , x0 = P0).

Example 1. Let us say that F is a Boolean function over 9 bits of degree 3 given as
x0x1 ⊕ x2x3 ⊕ x4x5 ⊕ x7x8 ⊕ x0x3x6. If G = [0, 0, 0], then from Theorem 1, we know that
P8 = y5, P7 = y4, P6 = y5y4, P5 = y3, P4 = y2, P3 = y3y2, P2 = y1, P1 = y0, P0 = y1y0.
Thus we can see that

F = y1y0 · y0 ⊕ y1 · y2y3 ⊕ y2 · y3 ⊕ y4 · y5 ⊕ y1y0 · y3y2 · y5y4

= y0y1 ⊕ y1y2y3 ⊕ y2y3 ⊕ y4y5 ⊕ y0y1y2y3y4y5

Note that in this case, F is of degree 3 · 2 = 6, double that of F . However for any arbitrary
choice of F , this is not always so. For the degree of F to be twice that of F , the algebraic
expression of F must contain one term of the form x3i1 · x3i2 · · ·x3id

.

Definition 1. Henceforth, we will call FG the associated function of F (or simply F if BG

is clear from the context). Note that given any G, there is a 1-1 mapping between the
n = 3t-bit vector x = [x3t−1, x3t−2, . . . , x0] and the 2t-bit vector y = [y2t−1, y2t−2, . . . , y0],
such that on BG, we have F (x) = F(y) for all x ∈ BG and y ∈ {0, 1}2t. We have seen that
this map is given by

x3i−1 = y2i−1, x3i−2 = y2i−2, x3i = y2i−1 · y2i−2 ⊕ gi, ∀i ∈ [0, t− 1] (2)

So y is essentially a shorter description of x in BG. Hence, we will call y the associated
vector of x in BG.

Since the Pi’s are at most of degree 2, the above example makes clear that if F has
degree d, then the degree of F can be at most 2d. So one can try to compute the whole
truth table of F, which is equivalent to evaluating F on all of BG. Since the degree of F is
bounded by 2d, from the previous analysis we know that we need a total of

( 2t
↓2d

)
=

(2n/3
↓2d

)
evaluations of F for this purpose. We can use the same F oracle for this purpose: to
evaluate F on any point 2t-bit vector vj , we first map it to the corresponding Vj and then
query the oracle with it; the response is recorded as F(vj). Now

(2n/3
↓2d

)
<

(
n
↓d

)
does not

always hold.
Consider n = 21. When d = 5 say, we have

(21
↓5

)
= 27896 > 214 >

( 14
↓10

)
. However when

d = 2, we have 232 =
(21

↓2
)

<
(14

↓4
)

= 1471. Hence translating the problem to F does not
always yield minimal number of evaluations. However F has some structure, which can be
exploited, as will be seen in the following example.

Example 2. Let us say that F is a Boolean function over 12 bits of degree 2 given
as x0x1 ⊕ x2x3 ⊕ x4x5 ⊕ x7x8 ⊕ x0x3 ⊕ x9 ⊕ x10x11. If G = [0, 0, 0, 1], we know that
P11 = y7, P10 = y6, P9 = y7y6, P8 = y5, P7 = y4, P6 = y5y4, P5 = y3, P4 = y2, P3 =
y3y2, P2 = y1, P1 = y0, P0 = y1y0 ⊕ 1. Thus we can see that

F = (1⊕ y1y0) · y0 ⊕ y1 · y2y3 ⊕ y2 · y3 ⊕ y4 · y5 ⊕ (1⊕ y1y0) · y3y2 ⊕ y7y6 ⊕ y7y6

= y0 ⊕ y0y1 ⊕ y1y2y3 ⊕ y4y5 ⊕ y0y1y2y3

Note that in this case, F is of degree 4, but has only one degree 4 term, whereas an arbitrary
degree 4 Boolean function in 8-bits can have upto

(8
4
)

= 70 such terms.
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Although the above is a slightly extreme example of a sparse function, one can generalize
the above example as follows. Note that if F is of degree d, the corresponding F certainly
does not contain all the

(2n/3
2d

)
terms of degree 2d. We have seen that only the monomials

of form x3i1 ·x3i2 · · ·x3id
in F lead to full degree terms in F. This means that the maximum

degree terms must be clustered with respect to the variables, i.e., F can have maximum
degree terms of type y0y1 ·y2y3, y0y1 ·y4y5 but not y0y1y2y4. Since F can have a maximum
of

(
n/3

d

)
terms of form x3i1 · x3i2 · · ·x3id

, this is also the maximum number of degree 2d
terms F can have.

Now we make 2 observations. First since av = ⊕u⪯vF (u), the total number of
evaluations of a function required to interpolate only the coefficient av are all the binary
strings u ⪯ v, the total number of which is 2hw(v). This also tells us that to interpolate
some coefficient av∗ such that v∗ ⪯ v, we do not need any additional evaluations. So, for
example, if we have the function evaluation at all the points needed to interpolate the
coefficient of y0y1, we do not require additional points to interpolate the coefficients of y0
or y1 or the constant term, which are all sub-monomials of y0y1. Secondly consider all the(

n/3
d

)
possible maximum degree monomials of F. All other lower degree monomials of F

must also be sub-monomials of at least one of these maximum degree monomials. To see
why this is so, let there be a monomial yj1yj2 · · · yj2d−1 in F of degree 2d− 1 or less that is
not a sub-monomial of any of the maximum degree monomials. Now group the integers ji

in the following manner: if two of them are of the form 2k, 2k + 1 put them in the same
group or else put them in a different group. After this if we have m ≤ d such groups, then
by definition it is a sub-monomial of one of the max degree monomials of F. Else if the
number m > d, it must have been produced by a monomial of degree larger than d in F ,
which contradicts the fact that the algebraic degree of F is d.
Remark 1. The above observation does not mean that for any arbitrary F , all lower degree
terms of F must be a sub-monomial of some maximum degree term present in F itself.
Instead it means that all lower degree terms are sub-monomials of the

(
n/3

d

)
max degree

terms that could be potentially present in F. For example, the function F in Example 2
contains y4y5 which is not a sub-monomial of y0y1y2y3. However, for F of 12 variables and
degree 2, there can be

(4
2
)

= 6 max degree terms in F, i.e. y0y1y2y3, y0y1y4y5, y0y1y6y7,
y2y3y4y5, y2y3y6y7, y4y5y6y7. It can be seen that y4y5 is a sub-monomial of one of these.

The above two observations tell us that to interpolate F we only need its evaluations
over points that are required to compute the coefficients of its maximum degree terms.
We determine the evaluations of F are necessary to only find the coefficients of its

(
n/3

d

)
maximum degree terms, in the following theorem.

Theorem 2. Let F be a Boolean function of degree d over n = 3t variables. Let F be the
equivalent algebraic expression in 2t variables obtained by evaluating F over the set BG

for some G. The number of evaluations of F required to interpolate its complete algebraic
expression is given as

J(n, d) =
{ ∑d

i=0
(

n/3
i

)
· 3i, ∀d ≤ n/3

22n/3 if d > n/3

It also holds that J(n, d) ≤
(

n
↓d

)
and J(n, d) ≤

(2n/3
↓2d

)
for all n, d.

Proof. We prove this by induction on d. Note that for d = 0, we only need the evaluation
of F at one point 02t. For d = 1, F can only have the maximum terms of the form y2ky2k+1
for k = 0 to t− 1. There are

(
t
1
)

=
(

n/3
1

)
such terms. For the y0y1 term for example, along

with 02t we need the 3 points 02t−2||p, where p = 01, 10, 11. So for all the
(

n/3
1

)
terms we

need 3 ·
(

n/3
1

)
points plus the single point 02t. Thus the base case d = 1 is proven.

Let the assertion hold for any arbitrary d > 1. For d + 1, consider the maximum degree
term y2i1y2i1+1 · y2i2y2i2+1 · · · y2id+1y2id+1+1 We certainly need to evaluate F at the 3d+1
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points given by y2it
y2it+1 = 10, 01, 11 for each of t ∈ [1, d + 1]. All other points for which

one of the y2it
y2it+1 = 00 are already included in the calculation of J(n, d) i.e. the number

of points for degree d. Hence we have

J(n, d + 1) = J(n, d) +
(

n

d + 1

)
3d+1 =

d+1∑
i=0

(
n/3

i

)
· 3i.

This completes the first part of the proof. Note that if d ≥ n/3, then F potentially can be
of full degree and so all the 22t = 22n/3 evaluations are necessary.

Note that all points included in the set of J(n, d) have a special form. Let L(n, d) be the
set of binary strings of length t = n/3 and Hamming weight up to d. Then by a slight abuse
of notation all the strings in the set J(n, d) can be written as ∪d

i=0L(n, i)⊗ {01, 10, 11}i.
For example if 1001 ∈ L(12, 2), then 1001⊗ [11, 01] is defined as 11 00 00 01.

The second part of the theorem can be proven thus. Note that for d = 0, J(n, d) =(
n
↓d

)
= 1 and for d = 1, J(n, d) =

(
n
↓d

)
= n + 1. For larger d, we have the ith term of αi of

J(n, d) is

αi =
(

n/3
i

)
3i = (n/3) · · · (n/3− i + 1)

i! · 3i = (n) · (n− 3) · · · (n− 3i + 3)
i!

On the other hand the ith term of βi of
(

n
↓d

)
is βi =

(
n
i

)
= (n)·(n−1)···(n−i+1)

i! By inspecting
αi and βi term by term it is clear that αi < βi and so J(n, d) ≤

(
n
↓d

)
follows. For d > n/3,

J(n, d) becomes constant whereas
(

n
↓d

)
continues to increase and so the inequality holds for

d > n/3 too. For the second inequality, note that for d = 0 we have J(n, d) =
(2n/3

↓2d

)
= 1,

and for d ≥ n/3 we have J(n, d) =
(2n/3

↓2d

)
= 22n/3. For other values of d, instead of

a mathematical proof, this inequality can be understood intuitively:
(2n/3

↓2d

)
is the total

number of binary strings of length 2n/3 and Hamming weight up to 2d. Whereas we have
just shown by construction that J(n, d) is just the size of a small subset of all such strings
of length 2n/3 and Hamming weight up to 2d.

4.3 Efficient Algorithms for Evaluation
There are two tasks we need to consider here: first given the evaluation on J(n, d) points,
how to evaluate the algebraic normal form (i.e., vector of coefficients of algebraic expression)
of F, and second given the algebraic normal form of F how to evaluate the truth table on
all its points. Note that if we had the evaluation of all the points in the input space of F,
then both the above tasks can be achieved by a simple in place execution of the Möbius
transform that requires 22n/3 bits of space and O(n · 22n/3) bit operations.

The first algorithm requires that the attacker be able to map (a) each of the J(n, d)
vectors v ∈ {0, 1}2t that is into an index j ∈ [0, J(n, d) − 1] and (b) an operation that
computes the inverse map efficiently. Thereafter, each evaluation F(v) is stored in the
array location j. After this we can apply an algorithm similar to one iteration of the
standard Möbius transform a total of 2t = 2n/3 times. We prove in Appendix A, that
this takes around 2n

3 · J
′(n, d) bit-operations, where J ′(n, d) = 2 ·

∑d−1
i=0

(
n/3−1

i

)
· 3i. The

total space required in this algorithm apart from the J(n, d) bits required to store the
evaluation array are a few pre-computed tables to speedup the routine. In Appendix A,
we prove that the additional space is bounded by

( 2n
3 · log2 J(n, d)

)
· J(n, d) bits.

The second algorithm is the efficient Möbius transform that was already proposed in
[DS11, Sec 3.2]. Specifically, the co-efficients of the algebraic normal form are redistributed
into an array of length 22n/3. Thereafter, at the i-th step (0 ≤ i < 2n/3), the array
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is divided into 2i+1 sub-arrays and only the indices whose hamming weight is ≤ 2d in
the least significant g = 2n/3 − i − 1 bits in one-half of the sub-arrays are updated. In
Appendix A, it is shown that the total time complexity of this step is around O(2d · 22n/3)
xor operations.

In Appendix A, we further present complete algorithms for both subroutines. Note
that if Toracle is the time required to evaluate F at one point then the above operation
requires J(n, d) · Toracle bit operations to generate the evaluations. Furthermore, the two
routines to generate the algebraic expression for F and then its truth table takes

T (n, d) = 2n

3 · J
′(n, d) + 2d · 22n/3 bit operations. (3)

The total space required is around

M(n, d) = 2n

3 · J(n, d) · log2 J(n, d) + 22n/3 ≈ 22n/3 bits. (4)

4.4 Finding F on BG and BG′ when hw(G⊕G′) = 1
Given two guess vectors with G and G′ with Hamming difference one, i.e., hw(G⊕G′) = 1,
we can observe that there is some similarity between FG and FG′ . Without loss of generality,
let G = b0, b1, . . . , bt−1 and G′ = 1 ⊕ b0, b1, . . . , bt−1, where all bi ∈ {0, 1}. Let F be the
derivative of F over the coordinate x0, i.e. F = F (. . . , x0)⊕ F (. . . , x0 ⊕ 1). Consider the
associated function of FG of F . We have

FG = F (. . . , y1, y0, y0y1 ⊕ b0)
= F (. . . , y1, y0, y0y1 ⊕ b0)⊕ F (. . . , y1, y0, y0y1 ⊕ b0 ⊕ 1)
= FG ⊕ FG′ .

Thus the difference between FG and FG′ , is equal to the associated function of the derivative
F on BG. Since F is a derivative it is of degree d− 1, and hence FG is of degree 2d− 2.
Since it is an associated function, its algebraic expression has the same sparse structure.
Let us say we have already the truth table for FG. When trying to evaluate F in the
set BG′ , we can only interpolate up to the degree 2d− 2 terms of FG. This reduces the
number of evaluations to J(n, d− 1) in place of J(n, d).

In practice, in order to evaluate FG, we actually need evaluations of both F (. . . , x0)
and F (. . . , x0 ⊕ 1) over J(n, d − 1) points. The former are the evaluations of F on BG

which are already stored in the truth table of FG. The latter are the evaluations of F
on BG′ which we additionally need. Thereafter the difference of the evaluations on these
set of J(n, d− 1) points is used to interpolate the algebraic expression and thereafter the
truth table of FG. We then find FG′ = FG ⊕ FG. This does not require any additional
memory except the space required to store the truth tables of successive FG’s. Thus when
we need the truth tables of F over multiple partial sets BG, if possible it is more efficient
to traverse the guess space in a Gray code like manner, in which each successive guess
vector has a Hamming distance 1 from the immediately previous guess vector. This way,
each successive evaluation takes J(n, d− 1) points. The algorithm is explained formally in
Algorithm 1.

4.5 Cube sum over partial space
We look at one final result connected with partial sets before moving on to the attack descrip-
tion. Let F be any Boolean function over n variables of degree d. Partition the n variables
x0, x1, . . . , xn−1 into 2 sets X1 = [x0, x1, . . . , xn1−1] and X2 = [xn1 , xn1+1, . . . , xn−1] of size
n1 and n−n1 respectively. We know that the Boolean function F ′ =

⊕
X1∈{0,1}n1 F (X2, X1)
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Algorithm 1: Evaluation of FG′ from FG assuming hw(G⊕G′) = 1.
Input: Number of variables n, degree of F = d, iteration number i
Input: Truth table for FG if i ̸= 0
Output: Truth table for FG′ if i ̸= 0 else FG

1 if i=0 then
2 /* First Iteration*/
3 Get J(n, d) evaluations of F on BG

4 Interpolate expression FG using Möbius2(2n/3) in Appendix A;
5 Evaluate truth table FG using Möbius3(2n/3, 2d) in Appendix A;
6 Store truth table in array Tab;
7 end
8 else
9 Get J(n, d− 1) evaluations of F on BG′ ;

10 /* Equivalent to evaluations of FG′ on all y ∈ {0, 1}2n/3*/
11 for Each x ∈ set of J(n, d− 1) do
12 Find associated vector y of x;
13 FG(y) = Tab(y)⊕ FG′(y);
14 end
15 Interpolate expression FG using Möbius2(2n/3) in Appendix A;
16 Evaluate truth table FG using Möbius3(2n/3, 2d− 2) in Appendix A;
17 Tab(y) = Tab(y)⊕ FG(y), ∀ y; /* Truth-table of FG′ is in Tab*/
18 end

which is a cube sum over the cube represented by n1 bits, is a function of degree at most
d− n1 over n− n1 variables.

Now consider a function F over n = 3t variables of degree d, and the function h for
which we defined the set B0/B1 for a guess vector in the previous sub-sections. Again
partition the n = 3t variables x0, x1, . . . , x3t−1 into 2 sets X1 = [x0, x1, . . . , x3t1−1] and
X2 = [x3t1 , x3t1+1, . . . , x3t−1] of size n1 = 3t1 and n− n1 = 3t− 3t1 respectively. Now for
some guess vector G1 ∈ {0, 1}t1 define the set BG1 = Bgt1−1 ×Bgt1−2 × · · · ×Bg0 of size
22t1 . Now consider the Boolean function F ′′ defined as F ′′ =

⊕
X1∈BG1 F (X2, X1). We

will try to determine algebraic degree of F ′′.
Note that the function h for which B0 = {0, 2, 4, 7} has the algebraic expression

x0 ⊕ x1x2. Let H be any 3-variable Boolean function: the sum of H over the set B0 can
be clearly seen as

⊕
x∈{0,1}3 H(x) · (1⊕ h(x)) and that over B1 is

⊕
x∈{0,1}3 H(x) · h(x).

Therefore we have

F ′′ =
⊕

X1∈BG1

F (X1, X2) =
⊕

X1∈{0,1}3t1

F (X1, X2) ·
t1−1∏
i=0

(gi ⊕ 1⊕ h(x3i, x3i+1, x3i+2))

Since h is quadratic, this is a cube sum over 3t1 bits of a function of degree d + 2t1, and
so its degree is at most d + 2t1 − 3t1 = d− t1 = d− n1/3.

5 Details of the attack
After linearizing the first round, the attacker can obtain n equations in the n-keybit
variables of degree d = 2ρ each for any arbitrary instance of 2ρ/2ρ + 1 round LowMC. Let
us denote the equations EG,i = 0, ∀ i ∈ [0, n− 1], where the suffix G denotes the guess
vector used to linearize and construct the equations. The central technique of equation
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solving popularized in [LPT+17, Din21a, Din21b] is formulating the Boolean polynomial
AG =

∏n−1
i=0 (1 + EG,i) in the keybit variables. Note that if and only if K∗ ∈ BG is a

common root of all the EG,i, then AG evaluates to 1 at the point K∗ (for convenience we
will call all points that evaluate to 1 with AG as its solution space). Note that if the EG,i’s
have a unique/odd number of roots in BG then the sum S =

⊕
x∈BG AG(x) will return 1.

S therefore serves as a decision oracle that returns if an underlying equation system has
a unique or odd number of roots. If on the other hand the given equation system does
have a unique root, and if given EG,i’s one can efficiently compute S, then it was shown
in [LPT+17], how to query this oracle a polynomial number of times to recover the unique
root.

However each EG,i has potentially
(

n
↓d

)
terms and multiplying n such equations to

get AG is computationally expensive and is unlikely to take time less than exhaustive
search of key, at least for the parameter sets we are interested in. So a little improvisation
is required to compute the polynomial efficiently. Note in all instances of LowMC with
complete non-linear layers the blocksize/keysize n = 3t is a multiple of 3. So We first
partition the key variables k3t−1, k3t−2, . . . , k0 into two sets K2 = [k3t−1, k3t−2, . . . , k3t1 ]
and K1 = [k3t1−1, k3t1−2, . . . , k0] of size n − n1 = 3t − 3t1 and n1 = 3t1 each. Since we
have used the function h to linearize the first round, (a) we need to repeat the root finding
process a total of 2t times, once for each G ∈ {0, 1}t, and (b) for any specific G we limit
all the arithmetic in the set BG instead of the whole of {0, 1}n, since we are only interested
to find roots in BG.

As a result of partitioning the key variables into X2, X1, this induces the natu-
ral partition of the bits of G = G2||G1, where G1 = [gt1−1, gt1−2, . . . , g0] and G2 =
[gt−1, gt−2, . . . , gt1 ]. The next idea is for some key vector in BG2 , we perform an exhaustive
search in BG1 . First we choose a parameter ℓ < n. Next we randomly choose ℓ out of the
n equations and try to find the common roots of these ℓ equations. Note this induces an
underlying random polynomial ÃG =

∏ℓ−1
i=0

(
1⊕ EG,r(i)

)
, where r(i) is the ith element in

the list of ℓ random integers chosen in [0, n− 1]. ÃG evaluates to 1 only at the common
roots of the ℓ random equations chosen above. As such ÃG is essentially a noisy version
of AG that is slightly easier to compute. Before we proceed further let us look at the
following lemma.

Lemma 4. Given a single plaintext and ciphertext produced by a LowMC instance, using
a key K∗ ∈ BG∗ for some G∗. After linearizing with the guess vector G ∈ {0, 1}t, let EG,i,
for i ∈ [0, n− 1] be the n equations, so obtained. Let the product polynomials AG, ÃG be
constructed as defined above after making a random selection of ℓ equations. Then under
the assumption that, for any G, half the points in BG take EG,i to 0 and the other half to
1, we have

a) For all G ̸= G∗, Pr[ÃG(K) = 1] ≈ 2−ℓ, ∀ K ∈ BG.

b) For G = G∗, ÃG(K∗) has to be 1 by construction for any choice of ℓ equations. For
all other K, we again have Pr[ÃG(K) = 1] ≈ 2−ℓ.

Note that all the above probabilities are computed for all random choices of ℓ of the n
equations.

Proof. Under the theorem assumption, the probability that any K ∈ BG( ̸= BG∗) is a
root of any single EG,i can be considered to be around 1

2 . Under the assumption of
independence, the probability that any K ∈ BG is a common root of ℓ equations is thus
approximately

( 1
2
)ℓ = 2−ℓ. This argument can also be extended to all points K ̸= K∗,

when the guess vector G = G∗ is correct. Since K∗ by construction has to be the common
root of all EG∗,i, we must have ÃG∗(K∗) = 1, for all random choices of ℓ equations. This
also tells us that the expected solution space of ÃG in the set BG, for all choices of G, has
cardinality around 22n/3−ℓ.
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Note that we assume that EG,i’s are balanced and independent in BG to arrive at the
proof. It is a reasonable assumption to make for large values of n. We verified by computer
simulations for smaller LowMC instances with blocksize up to 24, that the EG,i’s are close
to balanced and independent on the partial sets.

Now the main idea is as follows: we fix some constant u ∈ BG2 , and try to find all
common roots of the reduced equation system EG,r(i)(u, K1), for i ∈ [0, ℓ− 1]. This is an
equation system in only n1 = 3t1 variables, and therefore we can exhaustively search for
common roots of this reduced system.

5.0.1 Data Generation

In this part we describe how the attacker collects data to proceed with the attack. The
first step is obviously to find a truth table for ÃG(u, K1) for some fixed u ∈ BG2 . We
proceed as follows.

a) We will not compute the algebraic expression for any equation EG,r(i) for any G, i.
Instead what we do is as follows. Choose any u ∈ BG2 . For all v ∈ BG1 , for the
vector u||v we need to evaluate EG,r(i)(u, v). There are 22n1/3 of such points.

b) For each of the 22n1/3 points (u, v) = k (say), consider k to be the LowMC key. If R
is odd, execute the first ρ + 1 rounds with k as key with the given plaintext to get
the state SF . Then execute the inverse of last ρ rounds with k as key on the given
ciphertext, to get the state SB. If R is even, then execute the first ρ rounds and
the Substitution layer of the ρ + 1-th round to get SF (see Fig 2). Then execute
the inverse of the last ρ− 1 rounds and the inverse round key addition and affine
layer of round ρ + 1 to get SB. If the r(i)-th bits SF and SB are equal, then k is
obviously a root of EG,r(i) i.e. EG,r(i)(u, v) = 0. If not we have EG,r(i)(u, v) = 1.
Note that this also allows us to evaluate EG,i(u, v) for all i ∈ [0, n − 1] by simply
checking whether i-th bits SF and SB are equal.

c) (u, v) is a common root of the system of equations EG,r(i)(u, v), for i ∈ [0, ℓ − 1] if
r(i)-th bits SF and SB are equal for all i.

d) The method requires 2 · (2ρ + 1)n2 = 2Rn2 operations for each point and so the
total number of bit operations required for this operation for any one u ∈ BG2 is
2Rn2 · 22n1/3.

In fact, finding the common roots of EG,r(i)(u, K1) is equivalent to finding the truth-table
of the n1-variable Boolean polynomial ÃG(u, K1) over the points in BG1 . This is true
since ÃG(u, K1) evaluates to 1 only at these common roots and 0 otherwise. Define the
polynomials FG =

⊕
v∈BG1 AG(K2, v) and F̃G =

⊕
v∈BG1 ÃG(K2, v), both of which are of

n− n1 variables, and by the arguments in Section 4.5, F̃G has an algebraic degree at most
dℓ− n1/3. If we now find the sum of all the points in the truth table of ÃG(u, K1) over
BG1 that we have just found, we will be essentially evaluating F̃G at the point u ∈ BG2 .
Remark 2. Note that we have seen that the number of operations needed to evaluate F̃G

at the single point u ∈ BG2 is Toracle = 2Rn2 · 22n1/3. And from the analysis in Section
4.2, we know that we need evaluations of F̃G at J(n− n1, dℓ− n1/3) points u to fully find
its truth table over BG2 . Note that, as we will see later, since the method is probabilistic,
we will need to perform this operation multiple (say N) times: each time for a different
combination of ℓ equations EG,i in [0, n− 1]. Whereas we have seen that performing the
steps a-d allows us to evaluate EG,i(u, v) for all i ∈ [0, n− 1] for any u and all v ∈ BG1 .
Note that for each u, if we store EG,i(u, v) in a table (for all i ∈ [0, n− 1], v ∈ BG1), this
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saves us the trouble of having to re-evaluate these values when we repeat the process for a
different set of ℓ equations in [0, n− 1]. The total memory required for this will be

Meval = J(n− n1, dℓ− n1/3) · n · 22n1/3 bits. (5)

Since the process is needed to be done once for the J(n− n1, dl − n1/3) points, the time
required is given as

Teval = J(n− n1, dℓ− n1/3) · Toracle. (6)

Just as ÃG is a noisy version of AG, F̃G is a noisy version of FG. We now make 2
observations. Note that for the correct guess G = G∗ = G∗

2||G∗
1, and the correct root

K∗ = K∗
2 ||K∗

1 , we always have FG∗(K∗
2 ) = 1, since of the 22n1/3 terms AG∗(K∗

2 , v) we
use to construct this sum, the term evaluates to 1 only when v = K∗

1 (assuming that
there is a unique solution). Similarly (under the same unique root assumption) we will
have FG(u) = 0, for all a) G ̸= G∗ and b) G = G∗ and u ̸= K∗

2 . This follows since: AG

evaluates to 1 only at G = G∗, K = K∗, at all other points it will evaluate to 0, and so
the expression for FG(u) for the above 2 cases simply sums evaluations of AG at which it
is always 0.

In [Din21a], it was proven that F̃G∗(K∗
2 ) also is 1 with high probability if ℓ is properly

chosen. In fact, [Din21a] had proven that if z = z2||z1 is an isolated solution of a complete
equation system identified by the product polynomial A with respect to the given partition
of bits, (which means that z is a root and any other z2||z′

1 for z1 ̸= z′
1 is not a root) then z

is also an isolated solution of the noisy equation system Ã, with high probability, provided
ℓ is chosen judiciously.

5.0.2 Evaluating F̃G:

Note that F̃G has maximum algebraic degree dℓ− n1/3. So F̃G can be interpolated using
the set of J(n− n1, dℓ− n1/3) evaluations of ÃG. After this we use the Möbius transform
algorithm described in Sec 4.3 to evaluate its truth table. This takes time and memory
proportional to T (n− n1, dℓ− n1/3) and M(n− n1, dℓ− n1/3) for any random choice of
ℓ equations. We have already seen that since this algorithm of is probabilistic, for every
guess vector G, we may need to repeat it N times (for some integer N) to obtain the
correct solution with high probability. Hence the complexities need to be multiplied by N .

However if we went about traversing the guess space in Gray code like manner, i.e. in
the i-th step the Guess vector is Gi = i⊕ (i≫ 1), then we have already seen in Section
4.4 and Algorithm 1, that F̃Gi+1 can be computed more efficiently from the knowledge of
F̃Gi . We know that each additional step takes

1. Only around J(n− n1, dℓ− n1/3− 1) points to evaluate and hence Teval becomes
J(n − n1, dℓ − n1/3 − 1) · Toracle for every successive guess vector. Hence over all
the 2n/3 guess vectors we have

Teval,total = Toracle · (J(n − n1, dℓ − n1/3) + (2n/3 − 1) · J(n − n1, dℓ − n1/3 − 1))

≈ 2n/3 · J(n − n1, dℓ − n1/3 − 1)
(7)

2. Time proportional to T (n− n1, dℓ− n1/3− 1) by using Algorithm 1. Thus the total
time required to evaluate the truth tables over all the 2n/3 guess spaces is

Tint = N ·
(

T (n− n1, dℓ− n1/3) + (2n/3 − 1) · T (n− n1, dℓ− n1/3− 1)
)

≈ N · 2n/3 · T (n− n1, dℓ− n1/3− 1)
(8)

To take advantage of this reduction we have to use the same set of ℓ random equations
EG,i (for each of the N instances) over all the guess vectors G. Therefore the idea is to
populate a set of N random lists rj (for j = 0→ N − 1) of length ℓ and each with integers
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from 0 to n − 1. For each guess vector G, we repeat compute ÃG, F̃G for each of these
fixed lists rj . Thus for each list rj and each successive guess vector Gi+1 in the Gray
code order, this helps us compute F̃Gi+1 using lesser evaluations of ÃGi+1 and lesser time
complexity using the already computed F̃Gi as per Algorithm 1. As we have seen this does
not require additional memory but we do have to store the N truth tables for each F̃G,
which takes Mstore = N · 2(2n−2n1)/3 bits of memory.

5.0.3 Calculating probabilities and total complexity:

We have already seen that if we assume that the underlying LowMC encryption algorithm
admits a unique solution, then both FG(u), ∀u ∈ BG2 , G ̸= G∗ and FG∗(u) ∀u ∈
BG2 − {K∗

2} should be 0. We will try to find the corresponding values for F̃G in the
following lemma.

Lemma 5. Let FG and F̃G be as defined above. Assuming that the underlying LowMC
encryption admits a unique root K∗ = K∗

2 ||K∗
1 ∈ BG∗ , then we have for all G = G2||G1,

Pr[F̃G(u) = FG(u)] ≈ 1− 22n1/3−ℓ, ∀ u ∈ BG2 .

Note that all the above probabilities are computed for all random choices of ℓ of the n
equations.

Proof. We know that F̃G(u) =
⊕

v∈BG1 ÃG(u, v). Note that under the assumption of
unique root, we have AG∗(K∗

2 , K∗
1 ) = 1 and for all other combinations of G, u, v we have

AG(u, v) = 0. Lemma 4 essentially therefore tells us that Pr[ÃG(K∗
2 , K∗

1 ) = AG(K∗
2 , K∗

1 )] =
1 and Pr[ÃG(u, v) = AG(u, v)] ≈ 1− 2−ℓ for all other G, u, v. Now we have

Pr[F̃G(u) = FG(u)] = Pr

 ⊕
v∈BG1

ÃG(u, v) =
⊕

v∈BG1

AG(u, v)


= Pr

 ⊕
v∈BG1

ÃG(u, v)⊕AG(u, v) = 0


For G ̸= G∗ or G = G∗, u ̸= K∗

2 , this is the probability that 22n1/3 noisy bits sum to 0,
where each bit is 0 with probability 1− 2−ℓ. Assuming that the bits are i.i.d we can use
the piling-up lemma to arrive at the given result. For G = G∗, u = K∗

2 , this the probability
that 22n1/3 − 1 noisy bits sum to 0, where each bit is 0 with probability 1− 2−ℓ. Again
using the piling-up lemma we arrive at the given result. This implies that if we take
2n1/3 = ℓ− 1, then the corresponding probability is around 1

2 .

Corollary 1. The above lemma essentially proves that, we have Pr[F̃G∗(K∗
2 ) = 1] = 1−

22n1/3−ℓ. And similarly for G ̸= G∗ or G = G∗, u ̸= K∗
2 we have Pr[F̃G(u) = 1] = 22n1/3−ℓ.

So the plan would be to evaluate F̃G at all points u ∈ BG2 or equivalently F̃G over all
of {0, 1}(2n−2n1)/3. With some probability we can therefore uncover the first n− n1 bits
of the root i.e., K∗

2 as the value that takes F̃G to 1 for the correct G. The overheads that
the attacker must factor in are the following:

1. The attacker does not know the correct value of G∗ apriori.

2. Even for the correct G∗, K∗
2 , F̃G(K∗

2 ) may not necessarily evaluate to 1.

3. For both the cases (a) G = G∗, u ̸= K∗
2 , and (b) G ̸= G∗, we may get F̃G(u) = 1.
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The attacker needs to repeat the procedure multiple times (let’s say N times), each time
for a new set of ℓ random equations, in order to filter out the root by some probabilistic
analysis. We have already seen in Remark 2 that this does not cost additionally in terms of
evaluations to generate the polynomials F̃G each time we need to select ℓ random equations.
If F̃

(i)
G (u) is the value of F̃G(u) obtained at the ith such step, consider the integer sum

CG(u) =
∑N

i=1 F̃
(i)
G (u). Naturally CG acts essentially as a counter and is a map from

BG2 → Z.

Lemma 6. The expected value of CG(u) for (a) G = G∗, u ̸= K∗
2 , and (b) G ̸= G∗ is

N · 22n1/3−ℓ. However the expected value of CG∗(K∗
2 ) is N · (1− 22n1/3−ℓ)

Proof. Since CG is an integer sum, from the observation in Corollary 1, it can be
seen that CG∗(K∗

2 ) ∼ Binomial (N, 1 − 22n1/3−ℓ) and for all other G, u we have
CG(u) ∼ Binomial(N, 22n1/3−ℓ) and so the result follows.

The idea is to run the algorithm a total of N times for each G so that the 2nd error
probability (that of an incorrect key being identified as correct) is a sufficiently small value,
let’s say ϵ2. This way for each G, around ϵ2 · 22(n−n1)/3 incorrect candidates are identified
on average. We can test these incorrect candidates, by running the encryption algorithm.
We do this by fixing a threshold θ < N , and rejecting a solution u if CG(u) ≤ θ. The error
probability may then be calculated as

ϵ2 =
N∑

i=θ+1

(
N

i

)
· piqN−i, (9)

where p = 22n1/3−ℓ and q = 1− p. Once we fix a θ, the success probability is given as the
probability that CG∗(K∗

2 ) > θ, and is therefore given as

ϵ1 =
N∑

i=θ+1

(
N

i

)
· qipN−i. (10)

The full algorithm in the form of a subroutine is presented in Algorithm 2.

5.1 Time and Space Complexity
5.1.1 Odd rounds:

For an odd number of rounds R = 2ρ + 1, we have d = 2ρ. The attack needs to be repeated
2n/3 times once for each guess of G, however it is noteworthy that the memory complexity
remains M(n− n1, dℓ− n1/3) + Meval, where M(n, d), Meval are as defined in Equations
(4) and (5) respectively. Add to that log2 N · 2(2n−2n1)/3 bits to store the counters CG(u)
for each u. So the total memory complexity in terms of number of bits is

MC = log2 N · 2(2n−2n1)/3 + M(n− n1, dℓ− n1/3) + Meval + Mstore. (11)

For each G, we get around ϵ2 · 22(n−n1)/3 candidates to test for correctness on average
for the first n − n1 bits of the key. Appending the 22n1/3 candidates in BG1 , we get
ϵ2 · 22n/3 candidates for each guess of G. Thus testing solutions requires around Ttest =
ϵ2 · 2(2n)/3 · (2Rn2) bit operations for each guess of G. The total time complexity in terms
of number of bit operations is given as

TC = Teval,total + Tint + 2n/3 · Ttest, (12)

where Teval,total, Tint are as defined in Equations (7),(8). For n = 255, R = 5, we have
d = 4 after linearization. If we choose n1 = 12, ℓ = 2n1/3 + 3, and N = 12 and θ = 9,
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Algorithm 2: The algorithm for solving for the key.
Input: (pt, ct), n1: Internal partition, ℓ: #Equations to construct ÃG

Input: N : #Instances algorithm per guess of G, R: #LowMC rounds.
Input: θ: Counter Threshold
Output: The key K∗ such that EncK∗(pt) = ct

19 for j = 0→ N − 1 do
20 Populate array rj(·) with ℓ random integers from [0, n− 1];
21 /* For R even, the random list is chosen as per Sec 5.1 */
22 end
23 Set i← 0;
24 for Each guess vector G = G2||G1 = i⊕ (i≫ 1) do
25 if i = 0 then
26 Set d′ = dℓ− n1/3 else d′ = dℓ− n1/3− 1;
27 end
28 for Each of the J(n− n1, d′) points u ∈ BG2 do
29 for Each of the 22n1/3 points v ∈ BG1 do
30 Compute EG,i(u, v) as explained in Remark 2 and store in table;
31 end
32 end
33 /* Evaluation complete */
34 for j = 0→ N − 1 do
35 for Each of the J(n− n1, d′) points u ∈ BG2 do
36 F̃G(u)← 0;
37 for Each of the 22n1/3 points v ∈ BG1 do
38 ÃG(u, v)← 1 if all EG,rj(t)(u, v) = 0 else ÃG(u, v)← 0;
39 F̃G(u)← F̃G(u)⊕ ÃG(u, v);
40 end
41 end
42 Evaluate F̃G on all points in BG2 ;
43 /* Use the Algorithm 1 for this purpose*/
44 CG(u)← CG(u) + F̃G(u), ∀u ∈ BG2

45 end
46 /* Now testing of solutions begins */
47 for Each u ∈ BG2 do
48 if CG(u) > θ then
49 for Each of the 22n1/3 points v ∈ BG1 do
50 k ← u||v;
51 if Enck(pt) = ct then
52 return k;
53 end
54 end
55 end
56 end
57 Update i← i + 1;
58 end
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we get ϵ2 = 2−24. We get TC ≈ 2257 and MC ≈ 2166 bits and a success probability of
ϵ1 ≈ 0.82. The brute force complexity for the same is around 2274 bit-operations. Note
that [Din21a] had reported TC = 2251 operations (however we show that this complexity
of around 2254.4 in Sec 6.1) with MC = 2228 bits with success probability 11

16 ≈ 0.68. The
attack depended on a probability 1

2 event occurring at least twice in 4 iterations (this is
the probability that probabilistic equation system admits an isolated root which turned
out to be 0.5 for the values of n1, ℓ chosen in the paper). The probability of this is given
as

∑4
i=2

(4
i

)
2−4 = 11

16 .
For n = 255, R = 7, we have d = 8 after linearization. If we choose n1 = 6, ℓ = 2n1/3+2,

and N = 17 and θ = 12, we get TC ≈ 2262 and MC ≈ 2170 bits and a success probability
of ϵ1 ≈ 0.57.

5.1.2 Even rounds:

If the number of rounds R = 2ρ is even, we still have d = 2ρ, but as already pointed out in
Section 3.1, we can take advantage of the fact that the products of the EG,i’s have lower
degree if the equations are chosen carefully. If ℓ ≡ 0 mod 3, we can choose the ℓ random
equations in sets of 3, such that in each set the equations are aligned under the same S-box.
This reduces the algebraic degree of ÃG to dÃG

= 4 · 2ρ−1 · ℓ
3 from 2ρ · ℓ. If ℓ ≡ 2 mod 3,

then we can again apply the above strategy of grouping the equations in sets of 3. However,
we need to choose one set of cardinality 2, and we can select these which are aligned under
some randomly chosen S-box. In that case, dÃG

= 4 · 2ρ−1 · ⌊ ℓ
3⌋+ 3 · 2ρ−1. If ℓ ≡ 1 mod 3,

then we have to choose one set of cardinality 1, which makes dÃG
= 4 · 2ρ−1 · ⌊ ℓ

3⌋+ 2ρ.
Thus the degree of F̃G can be made to be around dÃG

− n1/3 by judiciously choosing
the random set of equations. In that case we need J(n−n1, dÃG

−n1/3) points to evaluate
F̃G on all points in BG2 . Thus we need the following adjustments to the time and memory
complexity:

1. We need to adjust Meval to J(n − n1, dÃG
− n1/3) · n · 2n1/3 and Teval,total to

2n/3 · J(n− n1, dÃG
− n1/3− 1) · Toracle.

2. Thus the adjusted memory complexity is given as:

MC = log2 N · 2(2n−2n1)/3 + M(n− n1, dÃG
− n1/3) + Meval + Mstore (13)

3. Thus the adjusted time complexity is given as:

TC = Teval,total + Tint + 2n/3 · Ttest. (14)

where Tint is adjusted to N · 2n/3 ·T (n−n1, dÃG
−n1/3− 1). For n = 255, R = 6, we have

d = 8 after linearization. If we choose n1 = 9, ℓ = 2n1/3 + 2 = 8, we get dÃG
= 44. Again

choosing N = 18 and θ = 13, we get ϵ2 = 2−18. We get TC ≈ 2259.7 and MC ≈ 2168.57

bits and a success probability of ϵ1 ≈ 0.52.

6 Time-Memory Tradeoffs
6.1 A note on testing solutions
In [Din21a, Appendix B], the author tests candidate solutions using a Horner-like method
shown as follows. Note that the cryptosystem is described by n multivariate polynomials
Pj of n variables and of some degree d. The main idea is to test together all candidates
that share the same value for the t msbs χt = k0, k1, . . . , kt−1. Then the attacker can use
of each the 2t values of χt to reduce the above polynomials to just n − t variables. For
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each value of χt, this takes around
(

n
↓d

)
bit operations per polynomial. The attacker does

the same for around e such polynomials Pj to get a reduced system R of e polynomials in
n− t variables each of degree d. If Q is the original number of candidates to be tested,
then on average there are Q · 2−t candidates per distinct value of χt.

Since each of these Q · 2−t candidates has the same value in the t-msbs, they can be
reference by the respective n− t lsbs. Evaluating one of the equations of R for one of these
candidates would require around

(
n−t
↓d

)
bit-operations. Hence the complexity for all the

candidates, for evaluating all e polynomials in R should take Q · 2−t · e ·
(

n−t
↓d

)
. For each

of these candidates the attacker can evaluate each polynomial in the reduced system and
eliminate it if all polynomials are not satisfied. So the total complexity to do the above for
all values of the t msbs is S1 = 2t ·

[
e ·

(
n
↓d

)
+ Q · 2−t · e ·

(
n−t
↓d

)]
.

The number of candidates that remain after testing only e equations is Q1 = Q · 2−e

on average. The parameters are selected so that this figure is small enough to search
exhaustively. For example, the attacker can test another equation using Q1 ·

(
n
↓d

)
operations,

which brings the number of candidates down to Q1/2. Thus repeating the procedure
for around log2 Q1 steps reduces the solution space to 1. So this procedure takes S2 =(

n
↓d

)
·
[∑

i=0
Q1
2i

]
≈ 2 ·Q1 ·

(
n
↓d

)
. In [Din21a], the author shows that the complexity S1 + S2

can be ignored for 4-round LowMC, however we find that this value can no longer be
ignored for 5-round LowMC onwards. For example, using the parameters in [Din21a], in
5-round LowMC with blocksize n = 255, the optimal value of S1 + S2 is around 2254.4 (for
e = 18, t = 199).

6.2 Tradeoffs
In the rest section we will study generic time-memory trade-offs that can be applied to
the algorithm to decrease the memory complexity even further. As mentioned in [Din21a,
Section 4.3], a generic time-memory trade-off can be done by guessing the values of g
variables and looking for roots of the equations for n − g remaining variables in the
subset induced by this guess. If T (n, n1, d) and M(n, n1, d) represent the time and memory
complexity of the algorithm (obtained after adding the S1+S2 expression derived above), the
complexities obtained by applying this trade-off would be T ′(n, n1, d, g) = 2gT (n− g, n1, d)
and M ′(n, n1, d, g) = M(n− g, n1, d).

In order to apply the same trade-offs for our algorithm there is only one detail that
should be taken care of. As we linearize the S-boxes based on a quadratic function in
the input, guessing some of the bits might induce inconsistencies with the value guessed
for this quadratic function. For instance if x0, x1 are assigned to be 1, and the quadratic
function in question is the majority function, the guess maj(x0, x1, x2) = 0 is inconsistent
with the assigned values.

Circumventing this issue is quite straight forward. The trick is to guess the values
of the inputs of t S-boxes from the first round (g = 3t guesses), instead of guessing g
variables arbitrarily. The time/memory complexity in this case would be T ′(n, n1, d, t) =
23tT (n− 3t, n1, d) and M ′(n, n1, d, t) = M(n− 3t, n1, d).

In order to compare our results with the ones given in [Din21a], we have computed and
plotted the time and memory complexities for both the algorithms with respect to different
configurations of g. We compare the complexities for n = 129, 192, 255 and all variants
with R ∈ {2, . . . , 5} rounds. We did not compare higher values of R as the complexity
computed in [Din21a] in these cases is worse than gray-code assisted exhaustive search
and therefore ours even with zero keybit guesses. For each of the instances, based on the
value of g, we pick the value of n1 which optimizes the time and memory complexity. The
result attests a significant decrease in memory complexity, without a significant penalty in
terms of time complexity. Fig. 3 demonstrates both time and memory complexities from
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Figure 3: This figure demonstrates the time and memory complexity of the attacks
presented in this work (solid lines) and [Din21a] (dotted lines) for different number of
key-bits guessed (g), for different variants of the cipher with block sizes 129, 192 and 255
and different number of rounds R = 2, 3, 4, 5. The figures on the left-hand side present the
logarithm of the memory complexities, and the figures on the right present the logarithm
of the time complexity of each attack. The thick yellow and purple lines denote the
complexity of simple and gray-code accelerated exhaustive search respectively.
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this work and [Din21a] side-by-side, for different number of key-bit guesses.
Upon the conclusion, we note that there are other generic time/memory tradeoffs that

can be applied to reduce the memory complexity. However, as the algorithm proposed
in this work and the algorithm proposed in [Din21a] use the same framework, unless a
tradeoff is specifically tailored to one of the algorithms, it can be applied to the other as
well.

7 Conclusion
In this paper we revisit key recovery attacks on the LowMC block cipher given a single
plaintext and ciphertext pair. This attack scenario is important as directly leads to the
retrieval of the signing key in the PICNIC digital signature scheme. We began the attack
by linearizing the first round by guessing the value of a balanced quadratic equation in the
master key bits. This tessellates the keyspace into numerous partial sets, and by limiting
our key search procedure to these partial sets we can limit the memory complexity of the
algorithm to just about 22n/3 bits, while attacking some 5, 6 and 7-round instances of
LowMC.
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Appendix A: Algorithms for Efficient Möbius Transform
In this section, we present the algorithms for memory efficient Möbius Transform described
in Section 4.3, and analyze its time complexity.

A.1 Algorithm 1
This algorithm interpolates the algebraic form of F given its evaluation on J(n, d) points of
its input space, where n = 3t is a multiple of 3, and d is the degree of F . The first algorithm
requires that the attacker be able to map (a) each of the J(n, d) vectors v ∈ {0, 1}2t that
is into an index j ∈ [0, J(n, d)− 1] and (b) an operation that computes the inverse map
efficiently.

We have already seen that all points included in the set of J(n, d) have a special form,
i.e., if L(n, d) is the set of binary strings of length t = n/3 and hamming weight upto
d. Then by a slight abuse of notation all the strings in the set J(n, d) can be written as
∪d

i=0L(n, i)⊗ {01, 10, 11}i. For example if 1001 ∈ L(12, 2), then 1001⊗ [11, 01] is defined
as 11 00 00 01. Then it can be seen that the following 32 strings that belong to the set
J(12, 2) are contributed by 1001:

(1) 01 00 00 01 (4) 10 00 00 01 (7) 11 00 00 01
(2) 01 00 00 10 (5) 10 00 00 10 (8) 11 00 00 10
(3) 01 00 00 11 (6) 10 00 00 11 (9) 11 00 00 11

Thus we first find a way to index all length n/3 strings of weight upto d. To do this we
define a function next(u), that returns the smallest integer larger than u that has the same
hamming weight as u (the authors found the subroutine at https://stackoverflow.co
m/questions/13542794/hamming-weight-based-indexing).

next(u)

lo = u & -u; // lowest one bit
int lz = (u + lo) & ~u; // lowest zero bit above lo
u |= lz; // add lz to the set
u &= ~(lz - 1); // reset bits below lz
u |= (lz / lo / 2) - 1; // put back right number of bits at end
return u;

Define 2 arrays Ind and Ind−1 of J(n, d) entries. We index the strings in the following
manner. Note we use Ind−1 as a hash table where the input 2n/3 strings u are mapped to
some value in [0, J(n, d)− 1].

index(n, d)

Ind[0] = 0, Ind−1[0] = 0, loc=1
for i = 1 → d

x = 2i -1 // smallest integer of weight i
do

for j = 0 → 3d-1
td−1, td−2 . . . t0 ← Ternary representation of j
u = x ⊗ (1 + td−1), (1 + td−2), . . . , (1 + t0)
Ind[loc] = u,
Ind−1[hash(u)] = loc
loc = loc+1

end for j

https://stackoverflow.com/questions/13542794/hamming-weight-based-indexing
https://stackoverflow.com/questions/13542794/hamming-weight-based-indexing
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x= next(x)
while x is of less than n/3 bits

end for i

Note that the runtime of the above algorithm is proportional to J(n, d) and since it has
to be performed only once and not for all G, this results in a small overhead which is
negligible when compared to the total time complexity TC of the algorithm. We do have to
store 2 additional arrays which results in a space overhead of J(n, d) · [2n/3 + log2 J(n, d)]
bits.

7.0.1 Möbius Transform for interpolation:

In general the in place Möbius transform has a simple and elegant structure given by
Möbius1(m) below, where A[j] is initially the evaluation of the underlying function at
point j. After the routine is executed A[j] stores the co-efficient of the algebraic expression
of the Boolean function indexed by the bits of j:

Möbius1(m = 2n/3)

for i = 0 to m-1
e = 1 << i
for j = 0 to 2m-1

if j & e != 0
A[j]=A[j]⊕A[j⊕e]

end if
end for j

end for i

Möbius2(m = 2n/3)

for i = 0 to m-1
e = 1 << i
for j = 0 to J(n,d)-1

j’ = Ind[j]
if j’ & e != 0

j’’= j’⊕e
k = Ind−1[hash(j’’)]
A[j]=A[j]⊕A[k]

end if
end for j

end for i

The algorithm Möbius2(m) is what we propose as Algorithm 1. The algorithm is ex-
actly the same except we account for the fact that A[j] now stores the evaluation of the
function at point Ind[j]. If both Ind[j] and Ind[j]⊕e are points in J(n, d) we proceed with
updating the array. Note that (a) the hash computations and hence computation of k
and, (b) the computation j’ & e can be performed one time and stored in a table using( 2n

3 · (1 + log2 J(n, d))
)
· J(n, d) ≈

( 2n
3 · log2 J(n, d)

)
· J(n, d) bits of memory (for each j

in the set of J(n, d), for each of the 2n/3 vectors e, we store k i.e log2 J(n, d) bits and the
value of j’ & e (1 bit) ). So these computations add only a small overhead to the time
complexity itself.

7.0.2 Total number of xors:

For each e, a location pointed to by j’ is only overwritten if corresponding it has 1 in the
location pointed to by the single one in the unit vectore. It can be seen that the number of
such strings is J ′(n, d) = 2 ·

∑d−1
i=0

(
n/3−1

i

)
· 3i. Since each such string produced by tensor

multiplication with strings from L(n/3− 1, d− 1) and inserting two of the three tuples
{01, 10, 11} at the location where e is 1. We claim that each such location pointed to
by these strings are overwritten. This is true since each such string s, has the property
that s⊕e belongs to the set of strings produced by tensoring from L(n/3− 1, d− 1) and
inserting 00, and hence these must be in J(n, d). Hence the total number of xors used in
the algorithm is 2n

3 · J
′(n, d).
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A.2 Algorithm 2
This algorithm will find the entire truth table of F given the vector of coefficients of its
algebraic expression. The first step would be to re-index the coefficients of the algebraic
expression into an array A of size 22n/3 according a natural canonical ordering, i.e. the
coefficient of the monomial

∏
xvi

i is written into the array index
∑

vi · 2i. If F is of degree
d, we have already established that the associated function F is of degree 2d. Thereafter,
at the i-th step (0 ≤ i < 2n/3), the array is divided into 2i+1 sub-arrays and only the
indices whose hamming weight is ≤ 2d in the least significant g = 2n/3 − i − 1 bits in
one-half of the sub-arrays are updated. Therefore the total number of xor operations for
0 ≤ i < 2n/3 − 2d is around 2i ·

∑2d
l=0

(2n/3−1−i
l

)
= 2i ·

(2n/3−1−i
↓2d

)
. For the remaining

2n/3− 2d ≤ i < 2n/3, the figure is exactly 22n/3−2d−1. In [Din21a, DS11], it was shown
that this sum is around 2d · 22n/3. The pseudo-code is given as follows:

Möbius3(m = 2n/3, deg = 2d)

ρ← 0; b ← 1≪ m − 1; // all one string of length m
for i = 0 → m− 1

g ← m− 1− i; e← 1≪ g;
ρ ← ρ ⊕ e; // cumulative sum of unit vectors
mask ← ∼ ρ & b; // mask set to 0 in i+1 MSBs i.e. 0i+11m−i−1

for j ← 0 → 2g − 1
for k ← 0 → 2i − 1

ind ← j + k ∗ (2g+1);
if hw(ind & mask) ≤ deg

A[ind⊕ e]← A[ind⊕ e]⊕ A[ind];
end if

end for k
end for j

end for i
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