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1 Introduction
As fully homomorphic encryption (FHE) allows any computation over encrypted data, it can
be applied to secure outsourced computation where a server which has strong computational
resources do (requested) computation over a client’s data keeping the client’s privacy.
It unlocked many real-world applications recently such as privacy preserving machine
learning [TBK20, ZS21, CDPP22, BPM22, KJL+22, SFB+23] and secure outsourced
storage [CCR19, CDNP23].

While the latency of this protocol is deemed sufficiently practical for prototype ap-
plications, the associated network cost remains undesirable due to the considerable size
of FHE ciphertexts. In fact, FHE suffers from a large ciphertext expansion, resulting in
the client needing to upload data to the server that is voluminous to the extent of several
orders of magnitude, compared to the original data. For example, in the worst case, an
FHE ciphertext encrypting one single bit costs 2.5KB, if we use a small TFHE [CGGI20]
ciphertext achieving 128 bits of security.

To solve this problem, the transciphering (a.k.a. Hybrid Homomorphic Encryption
(HHE)) approach has been proposed [NLV11]: a client encrypts the data using some block
or stream cipher Π, and sends the ciphertexts to the server. Because these ciphers have
ciphertext expansion close to one or exactly one, now the upload size is almost the same as
the size of the data itself. The server then runs the decryption of Π homomorphically, using
an FHE scheme, obtains FHE.Enc(m), and can then proceed with the usual homomorphic
computation.

One way of implementing transciphering is by simply asking the client to encrypt the
data using some well-known cipher, like AES. However, it is generally very expensive to
evaluate the decryption of such ciphers using FHE. Hence, multiple works have proposed
transciphering strategies by first constructing FHE-friendly ciphers [ARS+15, CCF+16,
MJSC16, DEG+18, HL20, DGH+23, MCJS19, HKC+20, CHK+21, HKL+22, AMT22,
CHMS22], whose decryption function can be evaluated homomorphically using little
memory and time. However, all of these FHE-friendly ciphers fix a plaintext space (denoted
by M) to obtain efficiency gains during the FHE evaluation or to fit with the constraints
of the security analysis. For example, most of them [ARS+15, DEG+18, MCJS19, HL20]
are designed for M = F2. For larger space, PASTA [DGH+23] requires M = Fk

p, for a
positive integer k and a prime p such that p−1 is not divisible by 3, and HERA [CHK+21]
requires M = Zt where t ≥ 216.

These natural strategies incur some inconveniences for the versatility of the computa-
tions to evaluate, since each application has its ideal plaintext space, that can also evolve
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based on the client requests. For example, if we want to evaluate binary circuits, we set
M = F2, if we want to work with bytes, we set M = Z28 , etc. Thus, to use transciphering
without relying on a sole model of computation, the client would have to be able to imple-
ment several different ciphers, depending on each application. For illustration we consider
the following scenario: medical doctors/researchers handling patients’ private data want to
study a relation between certain diseases and a specific human genome sequence via secure
machine learning algorithm, keeping individual patient’s privacy. Patients’ data is already
stored up to certain number of bits (let’s say 32 bits). Depending on which algorithm the
computing party uses and accuracy rate they want to achieve, the input precision differs.
For example, the recent secure neural network instantiation [SFB+23] uses 8-bit integer
for their inputs which is enough to achieve over 90% accuracy, and [CDPP22, TBK20]
uses 11-16 bits for private decision tree evaluation. We discuss the complexities and
inconveniences that would arise for both the server and client from employing distinct
ciphers for various computations.

First, it means that the client would have to generate and manage several keys and
run the setup of the transciphering for each plaintext space appropriate for the desired
computations. The setup part of a transciphering is expensive (it is the bottleneck in
bandwidth for the HHE protocol e.g. [DGH+23]) and this cost is amortized because the
setup is run only once in the full protocol. However, this is no longer true if the client
has to run several different setups. Then, working with multiple different ciphers is far
from optimal from the security point of view, because the security of the full protocol
relies on the security of all these ciphers. The full protocol is secure only if all of them are
secure, alone and combined, since the same data is encrypted with the different schemes.
Assuming the security of multiple ciphers alone and combined is a stronger assumption
than relying on the security of a sole cipher.

Finishing on the downside of fixed plaintext space for transciphering, the aforementioned
message spaces of existing FHE-friendly ciphers do not always match the most common
plaintext spaces and structures used by applications. Namely, since general purpose CPUs
use bytes, 32-bit or 64-bit integers, we expect to use these data types most of the times
in our applications. Thus, the FHE schemes would have to use the rings Z28 , Z232 , and
Z264 as message spaces. Moreover, FHE-friendly symmetric ciphers are designed to fit the
particularities of one FHE scheme, and the best performances in terms of latency and
throughput of one transciphering are obtained for the transciphering standing alone. One
downside is that getting these best transciphering performances impacts the choice of
parameters of the chosen FHE scheme, which focuses the optimization on the symmetric
cipher rather than on the evaluation of the functions that the server will have to compute
later on.

Therefore, it would be ideal if there were an efficient transciphering technique which
does not require FHE scheme’s message space as a parameter on the client’s side, so that
the server can transform client’s given data into any FHE ciphertext of which message
space fits into various applications on the fly.

1.1 Our Contributions
In this article, we introduce a possible solution to achieve the aforementioned ideal case for
the first time. Our solution is to “compose” bits into an integer homomorphically. In more
detail, a client encrypts each bit of its input data separately1 using an FHE-friendly cipher
for Z2, then upload those ciphertexts. The server homomorphically transforms them into
FHE ciphertexts encrypting bits (where by bits we refer to 0 and 1 integer values, without

1Note that since the symmetric encryption encrypts one bit into a ciphertext whose size is also one bit,
it is optimal in terms of communication. In the full protocol the communication is almost optimal since,
only once, the homomorphic encryption of the symmetric key is sent to the server.
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the structure of F2) and homomorphically composes them into an integer, by taking some
of given encrypted bits, depending on the precision that a target application requires.

Since a client only sends the bit representation of its data, regardless of its original
data size, message space for applications based on FHE is not specified beforehand. Let’s
assume that the client’s input data size is initially set to t bits. If an application which
the client targets requires M = Zp, where log p ≤ t, the server grabs the upper log p bits
from given client’s data stored as FHE-friendly cipher, and transforms them into an FHE
ciphertext encrypting message in M via our transciphering technique.

In our instantiation, we use FiLIP cipher [MCJS19] for the client’s side since its
homomorphic decryption is already optimized by [CDPP22] for a practical application,
which only takes 2.6 milliseconds per bit. Therefore, their little computational overhead is
still preserved in our case. Moreover, we tweak their approach to directly produce an FHE
ciphertext encrypting a bit scaled with a corresponding power of 2, instead of computing
2j · FHE.Enc(bj) = FHE.Enc(2j · bj), where bj ∈ {0, 1}, after transciphering, to minimize
additional computation overhead.

We implement our result as a proof of concept by using FINAL [BIP+22] for the
underlying FHE scheme and choose message precision log p in the range from 2 to 8
bits. The corresponding running time of server is in the range from 6.5ms to 18ms per
bit by only using single thread, for the full transciphering over Zp. Since we cannot
directly use [CDPP22]’s optimization for efficient compositing technique, we have more
computational overhead than their result. Moreover, the choice of parameters differs for
different log p to manage the noise growth, which affects on computation time. Compared
to the most recent transciphering result (Elisabeth-4 [CHMS22] which is designed for 4-bit
integer only) of which best performance is 371 ms per bit without parallel computation,
our method is faster and easier to adapt to different use-cases.

1.2 Technical Overview
We start with a bit representation of integer data elements. In the client side, an integer
µ ∈ Z+

2t is decomposed into t bits b0, . . . , bt−1 such that
∑t−1

j=0 bj · 2j = µ. Then, each bj is
encrypted with FiLIP cipher, generating a ciphertext cj , which is sent to the server. On
the server side, depending on the target application, a precision log p is chosen, and the
log p most significant bits of µ are considered. The goal is to generate an FHE ciphertext
encrypting µ̄ := µ − (µ mod 2t−log p). To do so, we proceed in two steps: Firstly, we
homomorphically evaluate a modified version of FiLIP’s decryption so that instead of
just generating FHE.Enc(bj) for the desired bits, we generate FHE.Enc(2j · bj), where the
message space is Zp. This is the main step. Second, it just remains to homomorphically
add all those ciphertexts, so that we obtain

t−1∑
j=t−log p

FHE.Enc(2j · bj) = FHE.Enc(µ̄).

First of all, notice that FiLIP’s decryption requires evaluating a Boolean function g
on a secret vector v derived2 from the secret key sk. Thus, it would be natural to work
with an FHE scheme whose message space is binary. However, we have to adapt the
decryption to work modulo p. More specifically for the instances of FiLIP we consider g(v)
consists of two main sub-functions: one that computes the XOR operation of the first k
bits of v, denoted by x := XOR(x1, . . . , xk), and the other is a Boolean threshold function,
denoted by y := Td,s(y), which outputs 1 if the Hamming Weight (HW, denoted by WH)
of y= (y1, . . . , ys), the last s bits of v, is equal to or greater than d. The results of these
two subfunctions are them xored.

2The transformation from sk to v is simple homomorphically, with no impact on the error, therefore
skipped in the overview
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IV

sk XOR T (X) ·XOR Lift T (X) ·XXOR

IV

sk
Hamming
Weight

T (X) ·XXOR+2HWExtract2j · g(v)Combine

cj

2j · bj

Figure 1: Main pieces of the first step of our homomorphic decryption, where we transform
a FiLIP ciphertext cj encrypting a bit bj with initialization vector IV and secret key sk
into an FHE encryption of 2j · bj. The red boxes represent values encrypted with FHE.

Since the threshold function involves a comparison, it is hard to evaluate it homomor-
phically. Thus, our strategy is to use homomorphic look-up-tables to evaluate it. In more
detail, we use the standard technique of mapping an encryption of a monomial Xm, for
some integer m, to an encryption of f(m) by multiplying by a so-called “test polynomial”
T (X) that depends on f . Thus, we define T (X) with respect to the function g of FiLIP’s
decryption and develop an arithmetic gate that computes the XORs already multiplied
by T (X), so that applying it k times, we have FHE.Enc(T (X) · XOR(x1, . . . , xk)), which
we can lift to the exponent of X, obtaining FHE.Enc(T (X) · XXOR(x1,...,xk)). Then, we
multiply this ciphertext by encryptions of X2yi , for each of the last s bits of v, denoted
yi. With this, we obtain FHE.Enc(T (X) · XXOR(x1,...,xk)+2·WH(y)). But, due to the way
T (X) is defined, this is basically the same as FHE.Enc(2j · g(v)), thus, we just have to
combine this result with the FiLIP ciphertext cj encrypting the bit bj , to finally produce
FHE.Enc(2j · bj). We illustrate this process in Figure 1. It is worth noting that the building
blocks presented in Section 3, such as the the homomorphic scaled XOR gate and the
homomorphic lifting operation including the test polynomial, are novel operations that
can be of independent interest.

1.3 Related works, alternatives for secure computations without
FHE ciphertext expansion

In this work we focus on the communication cost of FHE-based solutions for secure
computation in practice, other techniques such as multi party computation protocols can
be used. The baseline we are comparing is the size of communication or storing data when
encrypted using FHE encryption only (with high ciphertext expansion) and HHE where
symmetric encryption allows communication without ciphertext expansion. There are
orthogonal methods to circumvent the ciphertext expansion.

Rate-1 FHE. Recent works such as [GH19] and [BDGM19] propose FHE schemes with
smaller ciphertext expansion, referred as high-rate FHE schemes. These compressed FHE
schemes decrease the expansion factor close to 1 asymptotically and are called rate-1
FHE scheme. The first one gives a ratio between aggregate plaintext size and aggregate
ciphertext size of 1 – ε for any ε (assuming the aggregate plaintext is sufficiently large,
proportional to 1/ε3. ). This rate-1 scheme is used in [MW22] to get a better rate
( n2/(n2 + n) where n is the plaintext dimension) to perform a single-server private
information retrieval. The second one allows uses compression of many ciphertexts into a
compressed ciphertext reaching rate 1− 1/λ where λ is the security parameter.



Pierrick Méaux, Jeongeun Park, Hilder V. L. Pereira 5

Compact storage with homomorphic encryption retrieval. Recently, the study
in [AOSV23] introduced an alternative to FHE-based outsourced computation in a two-
server model. This approach is built around two protocols that depend on the collaboration
of two servers, which are designed not to collude. For data storage, a client—or multiple
clients—employs a two-out-of-two secret sharing scheme for their data. This entails that
one share is held by an auxiliary server, while the other is with a computing server. The
auxiliary server then homomorphically encrypts its share and forwards it to the computing
server. Utilizing its plaintext share in conjunction with the encrypted share from the
auxiliary server, the computing server is able to reconstruct an homomorphic encryption
of the secret. Consequently, the computing server can either return the homomorphically
encrypted data back to the client or apply homomorphic computations on it prior to doing
so. According to this protocol, the storage requirement for the client is double the size
of the original data (alternatively, it remains the same size, as described in [AOSV23]
through the on-the-fly generation of the second share). The burden of ciphertext expansion
is borne by the two servers during the retrieval of data rather than the client, as they are
the ones utilizing homomorphic encryption.

2 Preliminaries

2.1 Vectors, matrices, distributions

Notation: We use lower-case bold letters for vectors and upper-case bold letters for
matrices. A zero vector is denoted by 0. The inner product of two vectors a and b is
denoted by a · b (or ⟨a, b⟩). For any vector u, ∥u∥ denotes the infinity norm. We denote
the dot product of two vectors v, w by ⟨v, w⟩. For a vector x, x[i] or xi denotes the i-th
component scalar of x. We use the Euclidean norm as a default norm for a vector x.

Subgaussian distribution.

For the analysis of noise of each homomorphic operation, we need subgaussian random
variables over R.

Definition 1. A random variable V over R is σ-subgaussian if its moment generating
function satisfies

E[exp(t · V )] ≤ 1
2 exp(σ2 · t2)

for all t ∈ R.

From the definition, we can prove that the variance of V , denoted by Var(V ) is bounded by
σ2, i.e. Var(V ) ≤ σ2. Informally, the tails of V are dominated by a Gaussian function with
standard deviation σ. We use the property that a vector with subgaussian coordinates is
also subgaussian for our noise analysis, which is proved in [JLP23]. Subgaussian random
variables have an important property called Pythagorean additivity. Given two random
variables, α-subgaussian X and β-subgaussian Y , and a, b ∈ Z, the random variable
a ·X + b · Y is

√
a2 · α2 + b2 · β2-subgaussian. It implies that

Var(a ·X) + Var(b · Y ) ≤ a2 · Var(X) + b2 · Var(Y ) ≤ a2 · α2 + b2 · β2.

For a ∈ R (resp. x ∈ Zn), we denote by Var(a) (resp. Var(x)) the maximum variance
of each coefficient (resp. component) of a (resp. x). The variance of the product of
two polynomials a, b ∈ R is Var(a · b) = n · Var(a) · Var(b). Similarly, Var(X) denotes the
maximum variance of each column of X.
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2.2 Fully homomorphic encryption
Roughly speaking, we can divide fully homomorphic encryption (FHE) schemes in two
classes: one with large ciphertexts, packing and slow bootstrapping and the other with
small ciphertexts, no packing, but fast and programmable bootstrapping. The first family
contains schemes such as BGV [BGV12], FV [FV12], and CKKS [CKKS17], while the
second one is represented by schemes like FHEW [DM15], TFHE [CGGI16], FHE over the
integers [Per21], and FINAL [BIP+22]. In this work, we are only interested in the second
type of FHE, thus, in this section we present a general and abstract definition of an FHE
scheme that can be instantiated with any of those schemes.

There are three types of ciphertexts:

• Integer ciphertext, which is defined over the set Zq for some q ∈ N. We denote by
IntCtxtz(⌊q/p⌉ ·m, E) the set of integer ciphertexts encrypting m ∈ Zp, under key z,
and with E-subgaussian noise. They are the output format of our transciphering
and the input format of the subsequent homomorphic computation.

• Ring ciphertext, which is defined as a single element or a pair of elements of RQ :=
ZQ[X]/⟨XN + 1⟩ for some Q, N ∈ N, with N as a power of two. We denote by
RingCtxts(⌊Q/p⌉ ·m, E) the set of ring ciphertexts encrypting m ∈ Rp, under key
s ∈ R, and with E-subgaussian noise.

• Gadget ciphertext, which is defined as a vector or a matrix with entries in RQ. They
are parametrized by a decomposition base, say, Bg, and a dimension ℓ = O(logBg

Q).
We denote by GadgetCtxtQ,ℓ

s (m, E) the set of gadget ciphertexts encrypting m ∈ R
under key s ∈ R, with ciphertext modulus Q, dimension ℓ, and with E-subgaussian
noise.

Note that we omit the noise parameter when we define any ciphertext if it is not necessary
in the context.

Given the security parameter λ, we typically have q, Q ∈ Õ(λ1.5) and N ∈ O(λ). We
assume that all ciphertexts carry an estimation of their current noise, which increases as
we operate homomorphically with them.

The concrete structure of the ciphertexts is not relevant for the general description
of our transciphering, thus, we present them and the their corresponding homomorphic
operations only abstractly, by the following algorithms. For some concrete instantiations
of this abstract scheme, we refer to [CGGI16], where the gadget ciphertexts are 2ℓ × 2
matrices, and to [BIP+22], where the gadget ciphertexts are ℓ-dimensional vectors.

• FHE.ParamGen(1λ, p): generate parameters params that achieve λ bits of security
and allow us to work with plaintext space Zp. The parameters also include the ring
R an integer Bg, called the decomposition base, and ℓ := ⌈logBg

Q⌉, which defines
the dimension of the gadget ciphertexts.

• FHE.KeyGen(params): generate the secret key sk := (z, s), a key-switching key ksk
from s to z, where s is the vector of coefficients of s, and the bootstrapping key bk.

• FHE.EncInt(z, m): using params, output c ∈ IntCtxtz(⌊q/p⌉ ·m, Ein) for some Ein =
O(q/(2p)).

• FHE.DecInt(z, c): output the message m ∈ Zp encrypted by c under the secret key z.

• FHE.EncRing(s, m): using params, output c ∈ RingCtxts(⌊Q/p⌉ ·m, Ein) for some
Ein = O(q/(2p)).

• FHE.EncGadget(s, m): using params, output C ∈ GadgetCtxtQ,ℓ
s (m, Ein) for some

Ein = O(q/(2p)).
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• Trivial-noiseless ciphertext: any FHE ciphertext defined above where all randomness
and the noise are set to 0. We call it a trivial-noiseless ciphertext in this paper.

• FHE.Add: homomorphically add two ciphertexts of the same type, e.g., maps
RingCtxts(⌊Q/p⌉ ·m0, E0)× RingCtxts(⌊Q/p⌉ ·m1, E1) to
RingCtxts

(
⌊Q/p⌉ · (m0 + m1),

√
E2

0 + E2
1

)
.

• FHE.AddPtxt: given a ciphertext of any type, encrypting some message m0, and
a plaintext m1, this operation outputs a ciphertext of the same type encrypting
m0 + m1. The noise is unchanged, i.e., both input and output have the same noise.

• FHE.MultPtxt: given a message m0 ∈ Rp and a ciphertext c1 ∈ RingCtxts(⌊Q/p⌉ ·
m1, E1), outputs c ∈ RingCtxts(⌊Q/p⌉ ·m0 ·m1, E). If instead of a ring ciphertext,
we have C1 ∈ GadgetCtxtQ,ℓ

s (m1, E1), it outputs C ∈ GadgetCtxtQ,ℓ
s (m0 ·m1, E). In

both cases, E = ∥m0∥2 · E1.

• FHE.ExtProd: given ciphertexts c0 ∈ RingCtxts(⌊Q/p⌉ ·m0, E0) and
C1 ∈ GadgetCtxtQ,ℓ

s (m1, E1), it outputs c ∈ RingCtxts(⌊Q/p⌉·m0 ·m1, E) where E ≤√
ℓN · B2

g · E2
1 + ∥m1∥2

2 · E2
0 , where Bg is the decomposition base. For succinctness,

we can write c0 �k
i=1 Ci to denote FHE.ExtProd(...(FHE.ExtProd(c0, C1), C2), ..., Ck).

In this case, assuming that ∥mi∥2 = 1 for 1 ≤ i ≤ k, the resulting ciphertext has
E-gaussian noise with E ≤

√∑k
i=1 ℓ ·N · B2

g · E2
i + E2

0 ,

• FHE.Extract: Given c ∈ RingCtxts(⌊Q/p⌉ · m, E) and i ∈ J0, N − 1K, output c ∈
IntCtxts(⌊Q/p⌉ · mi, E), where mi is the i-th coefficient of m. We note that this
algorithm is defined as SampleExtract in [CGGI20] and it does not add any noise to
the ciphertext. Moreover, it is almost for free in practice since it only rearranges the
order of components of input vector/polynomial, which is by far much cheaper than
the other operations.

• FHE.ModSwt: Given ĉ ∈ IntCtxts(⌊Q/p⌉·m, Ê) and q ∈ N, output c ∈ IntCtxts(⌊q/p⌉·
m, E), with E ≤

√
(Ê · (q/Q))2 + (∥s∥2 /2)2.

• FHE.KeySwt: Given ĉ ∈ IntCtxts(⌊q/p⌉ ·m, Ê), and a key-switching key ksk from s ∈
ZN to z ∈ Zn, output c ∈ IntCtxtz(⌊q/p⌉·m, E), with E ≤

√
Ê2 + N · logBksk

q · B2
ksk · E2

k,
where Bksk is the decomposition base used during the key-switching.

• FHE.bootstrap: Given c′ ∈ IntCtxtz(⌊q/p⌉·m, E′), and a function f : Zp → Zp̂, output,
c ∈ IntCtxtz(⌊q̂/p̂⌉ · f(m), Ein) where Ein < E′. Notice that the bootstrapping allow
us to change the ciphertext modulus from q to q̂ and the plaintext modulus from p
to p̂, but in most of the cases, one chooses q = q̂ and p = p̂.

To analyze the noise growth of a sequence of homomorphic operations, we can iteratively
apply the noise bounds of each operations. For example, to homomorphically compute
3 · (m0 + m1), we could have c′ = FHE.Add(c0, c1) and the final ciphertext as c =
FHE.MultPtxt(c′, 3). Then, assuming that ci has noise with parameter Ei, the noise of c′

would have parameter Ē =
√

E2
0 + E2

1 , and the final noise would be E-subgaussian where
E = ∥3∥2 · Ē = 3 ·

√
E2

0 + E2
1 . Most of the time, deriving the noise like the above is good

enough, however, there is a special case, that will be used to construct our homomorphic
XOR gate modulo p presented in Section 3.1, where we can have better bounds by analyzing
the final noise more carefully (See Lemma 1). Notice that the final noise in the lemma
just has E0 itself, while a naive computation would give us noise including 2 · E0. This
would be problematic because applying this homomorphic computation iteratively k times
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would introduce a factor of 2k to the noise, thus, the estimation would be far from the
actual noise.

Lemma 1. Let ∆ = ⌊Q/p⌉, c0 ∈ RingCtxts(∆ ·m0, E0), and C1 ∈ GadgetCtxtQ,ℓ
s (m1, E1),

with m1 ∈ {0, 1}. Now, consider the following homomorphic computation:

1. c′ = FHE.MultPtxt(c0,−2)

2. ĉ = FHE.ExtProd(c′, C1)

3. c̃ = FHE.Add(c0, ĉ).

Then, it holds that c̃ ∈ RingCtxts(∆ · (m0 − 2 ·m0 ·m1), E) and

E ≤
√

ℓN · B2
g · E2

1 + E2
0

Proof. For any ciphertext c, denote by Err(c) the noise term included in c. Let y be the
vector with the decomposition in base Bg of c′. Then, we have

Err(c̃) = Err(c0) + Err(ĉ)
= Err(c0) + y · Err(C1) + m1 · Err(c′)
= Err(c0) + y · Err(C1)− 2 ·m1 · Err(c0)
= y · Err(C1)± Err(c0)

Thus, assuming that Err(C1) and Err(c0) are independent, we have that y · Err(C1) is
(
√

ℓN · Bg ·E1)-subgaussian, then, by Pythagorean inequality for subgaussians, it gives us
E ≤

√
ℓN · B2

g · E2
1 + E2

0 .
The correctness of the encrypted message follows directly from the definition of the

homomorphic operations.

Corollary 1. Instead of the homomorphic computation presented in Lemma 1, if we
compute

c̃ = c0 + (m2 − 2 · c0) � C1

for any plaintext m2, then E is still bounded as E ≤
√

ℓN · B2
g · E2

1 + E2
0 .

Proof. This follows directly from the fact that FHE.AddPtxt does not add any noise to the
ciphertexts.

2.3 FiLIP cipher
FiLIP is a binary stream cipher based on the improved filter permutator paradigm [MCJS19].
The encryption and decryption algorithms work as follows: Let K ∈ {0, 1}Z be the secret
key; for each bit mi of the message, we use a forward secure PRNG to sample

• Si: a subset of z out of Z,

• Pi: a z to z permutation,

• wi: an z-dimensional binary vector called whitening.

Then, for a filter function f : {0, 1}z → {0, 1} fixed beforehand, we compute ci :=
mi ⊕ f(Pi(Si(K))⊕wi) ∈ {0, 1}. The paradigm of FiLIP is recalled in Figure 2.

We implemented the variant that is called FiLIP-144 in [HMR20], which consists in
setting Z = 214, z = 144 and f as the XOR-THR function XTHR[81,32,63] (that we recall
in Definition 2). We note that those parameters of FiLIP-144 yield 128 bit security,
following the analysis in [MCJS19]. The cryptographic parameters of XOR-THR functions
are studied in details in [CM22].
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K

Si

Pi

wi 0 1 1 0 1 0

f

m

c

IV PRNG

Subset

Permutation

Whitening

Figure 2: FiLIP’s paradigm.

Definition 2 (Threshold Function). Let s ∈ N∗. For any positive integer d ≤ s + 1, the
Boolean function Td,s is defined as:

∀x = (x1, . . . , xs) ∈ Fs
2, Td,s(x) =

{
1 if WH(x) ≥ d,

0, otherwise

where WH(x) is the Hamming weight of a binary vector x.

Definition 3 (XOR-THR Function (e.g. [HMR20], Definition 11 )). For any positive
integers k, d, and s such that d ≤ s + 1, and for all z = (x1, . . . , xk, y1, . . . , ys) ∈ Fk+s

2 ,
XTHR[k,d,s] is defined as:

XTHR[k,d,s](z) = XORk(x) + Td,s(y) ∈ F2,

where XORk(x) = x1 + · · ·+ xk.

3 Ad hoc homomorphic building blocks
In this section we define new homomorphic operations that will be used in our transciphering.
They are constructed using the operations defined in Section 2.2, thus, they can also be
instantiated with any FHEW-like scheme.

3.1 Homomorphic XOR modulo p

We start with the simplest scenario where the ciphertexts only encrypt bits, but using Zp

as the message space. Given m0, m1 ∈ {0, 1}, we can see that

XOR(m0, m1) = m0 + m1 − 2 ·m0 ·m1 (mod p)

Thus, we can easily compute an encryption of XOR(m0, m1) given encryptions of m0 and
m1, as we show in Appendix A. And, in fact, one could implement FiLIP modulo p using
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XOR XORm0

m1 m2 T (X)

⊗

XOR’ XOR’T (X) ·m0

m1 T (X) m1 T (X)

Figure 3: Two strategies to compute a sequence of XOR gates multiplied by a polynomial.
In both cases, the output is T (X) · XOR(m2, XOR(m1, m0)), but the second computation
inserts T (X) right in the beginning and carries it until the end, reducing thus the final
noise when evaluated homomorphically.

Algorithm 1: FHE.XOR
Input: c0 ∈ RingCtxts(∆ · u ·m0, E0), C1 ∈ GadgetCtxtQ,ℓ

s (m1, E1), and
c2 ∈ RingCtxts(∆ · u ·m1, E2), where u ∈ Rt, m0, m1 ∈ {0, 1}, and
∆ = ⌊Q/p⌉.

Output: c ∈ RingCtxts(∆ · u · XOR(m0, m1), Eout)
Noise growth: Eout ≤

√
ℓN · B2

g · E2
1 + E2

0 + E2
2

1 c′ = FHE.MultPtxt(c0,−2) ; ▷ RingCtxts(−∆ · 2 · u ·m0)
2 c′′ = FHE.ExtProd(c′, C1) ; ▷ RingCtxts(−∆ · 2 · u ·m0 ·m1)
3 ĉ = FHE.Add(c′′, c0) ; ▷ RingCtxts(∆u ·m0(1− 2m1), Ê)
4 c = FHE.Add(c2, ĉ) ; ▷ RingCtxts(∆ · u · XOR(m0, m1)), Eout)
5 return c

such simple homomorphic XOR, however, at the very end of the main loop, after all the
external products, one would obtain an encryption of a power of X and would have to
multiply it by the test polynomial T (X)3 to extract XTHR[k,d,s]. But, multiplying by T (X)
introduces an extra factor of

√
N in the final noise. Thus, as it was done originally in the

bootstrapping of TFHE [CGGI16], we would like to start the loop with T (X) already, so
that it is always multiplied on the left and does not impact the noise.

For this, we introduce another homomorphic XOR gate modulo p that outputs an
encryption of u·XOR(m0, m1) for any polynomial u, so that we can carry the test polynomial
T (X) from the beginning of the computation and we do not need to multiply it at the
end, thus, reducing the final noise. This is illustrated in Figure 3.

In more detail, let m0, m1 ∈ {0, 1} and u be a polynomial, let c0 ∈ RingCtxts(∆ · u ·
m0, E0), C1 ∈ GadgetCtxtQ,ℓ

s (m1, E1), and c2 ∈ RingCtxts(∆ · u ·m1, E2). We define this
gate as follows

FHE.XOR(c0, C1, c2) := c0 + c2 − (2 · c0) � C1.

We show it in thoroughly in Algorithm 1. From Lemma 1, it holds that Ê ≤√
ℓN · B2

g · E2
1 + E2

0 . Then, by the properties of FHE.Add, we have Eout ≤
√

Ê2 + E2
2 ≤√

ℓN · B2
g · E2

1 + E2
0 + E2

2 .

3We use two terms, a test polynomial and a test vector, to refer to T (x) interchangeably.
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Moreover, one can see that the output of FHE.XOR is composable as

FHE.XOR(FHE.XOR(c0, C1, c1), C2, c2)).

Thus, if we execute k consecutive compositions of this gate with ci ∈ RingCtxts(∆·u·mi, Ei)
for 0 ≤ i ≤ k and Cj ∈ GadgetCtxtQ,ℓ

s (mj , Êj) for 1 ≤ j ≤ k, we obtain an encryption
XORk(m0, m1, . . . , mk). Additionally, we can verify that the final noise is E-subgaussian
with

E ≤

√√√√ k∑
i=1

ℓN · B2
g · Ê2

i +
k∑

i=0
E2

i . (1)

3.1.1 Homomorphically lifting a bit to the exponent

Let u be a polynomial and b ∈ {0, 1}. This homomorphic operation takes an encryption of
u · b and outputs an encryption of u ·Xb. Suppose we have c ∈ RingCtxts(∆ · u · b, E), we
just compute the following

FHE.LiftExp(c, u) := (X − 1) · c + u.

The correctness and noise growth follow directly from the properties of the plaintext-
ciphertext addition and multiplication. We show it in detail in Algorithm 2.

Algorithm 2: FHE.LiftExp
Input: c ∈ RingCtxts(∆ · u · b, E), where u ∈ Rp, b ∈ {0, 1}, and ∆ = ⌊Q/p⌉.
Output: ĉ ∈ RingCtxts(∆ · u ·Xb, Eout)
Noise growth: Eout = 2 · E

1 c′ = FHE.MultPtxt(X − 1, c) ; ▷ RingCtxts(∆ · (ubX − ub), 2 · E)
2 ĉ = FHE.AddPtxt(u, c′) ; ▷ RingCtxts(∆ · (ubX + u(1− b)), 2 · E)
3 return ĉ

4 Transciphering for Zp from transciphering for {0, 1}
In this part we detail the transciphering protocol for Zp from a transciphering for {0, 1}
using the example of FiLIP cipher. First, in Section 4.1 we elaborate on the setup phase,
on the generation of the homomorphic ciphertext of the symmetric key that will be used
in the HHE protocol. Then, in Section 4.2 we specify the different steps of the online
phase. We detail the two main algorithms BinaryTranscipher and ZpTranscipher. Finally,
we prove the correctness and a bound of the error growth for ciphertexts obtained from
these algorithms.

4.1 Setup for homomorphic FiLIP
This phase starts with the client generating the secret keys for FiLIP and for the FHE
scheme, then encrypting FiLIP’s key under the FHE key and sending it to the server. This
is called client’s setup and it is shown in Algorithm 3, where we assume that the noise of
fresh ciphertexts is sampled from a σ-subgaussian distribution.
Then, the server expands the FHE encryptions by running a global setup which is inde-
pendent of the FHE plaintext space p. This is shown thoroughly in Algorithm 4.

Moreover, for any given p, the server also has to run, only once, a setup step. We call
this p−Setup and show it in detail in Algorithm 5. It depends on the following function
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Algorithm 3: ClientSetup
Input: FHE’s secret key s, FiLIP’s secret key k = (k0, ..., kZ−1) ∈ {0, 1}Z

Output: Ci ∈ GadgetCtxtQ,ℓ
s (ki, σ)

1 for 0 ≤ i < Z do
2 Ci = FHE.EncGadget(s, ki)
3 return (C0, ..., CZ−1)

Algorithm 4: GlobalSetup
Input: For 0 ≤ i < Z, Ci ∈ GadgetCtxtQ,ℓ

s (ki, σ)
Output: Z triples of gadget ciphertexts (C̄i, Ĉi, C̃i)

1 for 0 ≤ i < Z do
2 C̄i = FHE.Add(1,−Ci) ; ▷ GadgetCtxtQ,ℓ

s (NOT(ki), σ)
3 Ĉi = FHE.Add(1, (X2 − 1) ·Ci) ; ▷ GadgetCtxtQ,ℓ

s (X2·ki , 2 · σ)
4 C̃i = FHE.Add(1, (X2 − 1) · C̄i) ; ▷ GadgetCtxtQ,ℓ

s (X2·NOT(ki), 2 · σ)
5 return (C̄i, Ĉi, C̃i)Z−1

i=0

Fd, which is used to map a value of the form b + 2 ·w to b + y mod 2, where y = 1 if w ≥ d
and y = 0 otherwise. That is, we define

Fd(u) :=
{

u + 1 mod 2 if ⌊u/2⌋ ≥ d

u mod 2 otherwise
(2)

In the online phase, we will compute b as the XOR of some bits of FiLIP’s secret key
and w as the Hamming weight of some other bits, then Fd(b + 2 · w) is applied to those
bits. After that, the server is ready to apply the transciphering as many times as needed
to transform FiLIP’s ciphertexts into FHE ciphertexts with Zp as the plaintext space.

4.2 Online phase
In this step, the server transforms groups of L := ⌈log p⌉ FiLIP’s ciphertexts into integer
ciphertexts (e.g., LWE ciphertexts) encrypting integers modulo p. Thus, consider FiLIP’s
ciphertexts c0, ..., cL−1 ∈ {0, 1} encrypting bits b0, ..., bL−1, respectively. It holds that
cj = bj + F(k, IVj) mod 2, where k is FiLIP’s secret key and F is FiLIP encryption
function, as explained in Section 2.3. Our goal is to describe a method to output c ∈
IntCtxtz(⌊q/p⌉ · m, E) where m =

∑L−1
j=0 bj · 2j and E = O(q/(2p)), allowing thus any

subsequent homomorphic computation via programmable bootstrapping.
To do so, we proceed by generating ciphertexts c(j) ∈ RingCtxts(⌊Q/p⌉ · µj , E/

√
p),

such that the first coefficient of µj is equal to 2j · F(k, IVj).
Then, by using FiLIP’s ciphertexts cj ’s, we can generate encryptions of 2j · bj and

add them together to obtain an encryption of m, as desired. Notice that each c(j) can
be computed in parallel. This first step is described in Algorithm 6 and it is similar to
the homomorphic evaluation of FiLIP presented in [CDPP22], but the XOR is no longer
computed with homomorphic additions and the whole computation carries the power of
two and the test vector T (X). In Lemma 2, we prove the correctness of Algorithm 6 and
analyze the noise of its output.

Lemma 2. [Correctness and noise analysis of BinaryTranscipher] Let k = (k0, ..., kZ−1) ∈
{0, 1}Z be the secret key of FiLIP. Fix integers j and IV. Let F be FiLIP encryption function,
i.e., FiLIP’s ciphertexts are of the form c = b + F(k, IV) mod 2. Let uj := 2j ·T (X), where
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Algorithm 5: p−Setup
Input: p ∈ N, the function Fd defined in Equation (5), and for 0 ≤ i < Z,

Ci ∈ GadgetCtxtQ,ℓ
s (ki, σ) and C̄i ∈ GadgetCtxtQ,ℓ

s (NOT(ki), σ)
Output: (ci,j , c̄i,j) for 0 ≤ i < Z and 0 ≤ j < ⌈log2(p)⌉.
Noise growth: Eout =

√
ℓN · Bg · σ

1 ∆ := ⌊Q/p⌉
2 T (X) :=

∑N−1
i=0 Fd(i) ·X2N−i mod XN + 1

3 for 0 ≤ j < ⌈log2(p)⌉ do
4 uj := 2j · T (X)
5 c(j) := trivial-noiseless ring encryption of ∆ · uj

6 for 0 ≤ i < Z do
7 ci,j = FHE.ExtProd(c(j), Ci) ; ▷ RingCtxts(∆ · uj · ki, Eout)
8 c̄i,j = FHE.ExtProd(c(j), C̄i) ; ▷ RingCtxts(∆ · uj · NOT(ki), Eout)

9 return (ci,j , c̄i,j)

T (X) is the test vector defined in p−Setup. Let ∆ := ⌊Q/p⌉. For i ∈ J0, Z − 1K, consider
the following input ciphertexts:

• Generated by ClientSetup

– Ci ∈ GadgetCtxtQ,ℓ
s (ki, σ)

• Generated by GlobalSetup

– C̄i ∈ GadgetCtxtQ,ℓ
s (NOT(ki), σ)

– Ĉi ∈ GadgetCtxtQ,ℓ
s (X2·ki , 2 · σ)

– C̃i = GadgetCtxtQ,ℓ
s (X2·NOT(ki), 2 · σ)

• Generated by p−Setup

– ci,j ∈ RingCtxts(∆ · uj · ki,
√

ℓN · Bg · σ)
– c̄i,j ∈ RingCtxts(∆ · uj · NOT(ki),

√
ℓN · Bg · σ)

Then, if c is the output of BinaryTranscipher, it holds that c ∈ RingCtxts(⌊Q/p⌉·µ, Eout)
where µ ∈ Rt with µ0 = 2j · F(k, IV), and

Eout ≤ 15
√

ℓN · Bg · σ.

Proof. Let k′
0, ..., k′

143 be the bits of FiLIP’s secret key after taking the subset and ap-
plying the permutation and the whitening. Notice that F(k, IV) = XOR(k′

0, ..., k′
80) +

T32,63(k′
81, ..., k′

143) mod 2, as in Definition 3.
Since the whitening corresponds to negating the bit when wi = 1, it holds that at

the end of the first loop of BinaryTranscipher, the ciphertexts ci,j , C(i), and Ĉ(i) encrypt
uj · k′

i, k′
i, and X2·k′

i , respectively.
Thus, from the correctness of FHE.XOR, at the end of the second for loop, we have

cXOR ∈ RingCtxts(∆ · ujXOR(k′
0, ..., k′

80), Ê), for some Ê.
Then, from the correctness of FHE.LiftExp, it holds that c ∈ RingCtxts(∆ · uj ·

XXOR(k′
0,...,k′

80), EXOR), for some EXOR.
Finally, each iteration of the last loop adds 2 · k′

i to the exponent of X encrypted in c.
But notice that since k′

i ∈ {0, 1}, it holds that the Hamming weight is equal to the sum,
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Algorithm 6: BinaryTranscipher
Input: An integer IV, an integer j, and, for i ∈ J0, Z − 1K, the ciphertexts ci,j

and c̄i,j computed in p−Setup, C̄i, Ĉi, and C̃i computed in GlobalSetup,
and Ci generated by ClientSetup.

Output: c ∈ RingCtxts(⌊Q/p⌉ · µ, Eout) where µ ∈ Rt with µ0 = 2j · F (k, IV), k
is FiLIP’s secret key, and F FiLIP’s encryption.

Noise growth: Eout ≤ 15
√

ℓN · Bg · σ
1 Sample the subset S := {s1, ..., sz} ⊆ {1, ..., Z}
2 Sample the permutation P : S → S.
3 Sample thewhitening vector w ∈ {0, 1}z

4 for 0 ≤ i < 144 do
5 r ← P [si] if wi = 0 then

▷ Select encryptions of 2j · T (X) · kr, kr, and X2·kr

6 c(i) := cr,j , C(i) := Cr, Ĉ(i) := Ĉr,
7 else

▷ Select 2j · T (X) · NOT(kr), NOT(kr), and X2·NOT (kr)

8 c(i) := c̄r,j , C(i) := C̄r, Ĉ(i) := C̃r,

▷ Now compute XOR(k′
1, . . . , k′

80) where k′
i are the permuted and whitened

bits of FiLIP’s secret key
9 cXOR = c(0)

10 for 1 ≤ i < 81 do
11 cXOR = FHE.XOR(cXOR, C(i), c(i))
12 uj := 2j · T (X) ; ▷ Scaled test vector as in p−Setup
13 c = FHE.LiftExp(cXOR, uj) ; ▷ RingCtxts(∆ · uj ·XXOR(k′

0,...,k′
80), EXOR)

▷ Now accumulate 2 · HW(k′
81, . . . , k′

143) in the exponent
14 for 81 ≤ i < 144 do
15 c = FHE.ExtProd(c, Ĉ(i))
16 return c ; ▷ RingCtxts(∆ · uj ·XXOR(k′

0,...,k′
80)+2·HW(k′

81,...,k′
143), Eout)

thus, at the end, we have c ∈ RingCtxts(∆ · uj ·XXOR(k′
0,...,k′

80)+2·HW(k′
81,...,k′

143), Eout), for
some Eout. Now, recall that the test vector T (X) encodes the function Fd from Equation 5,
thus, T (X) ·Xk results in a polynomial µ whose constant term is m0 = Fd(k). Hence, c
encrypts µ such that

µ0 = 2j · Fd(XOR(k′
0, ..., k′

80) + 2 · HW(k′
81, . . . , k′

143)) = 2j · F(k, IV)

as desired.

Now it remains to analyze the noise. By Inequality 5, it holds that

EXOR ≤
√

80 · ℓN · B2
g · σ2 + 81 · ℓN · B2

g · σ2 =
√

161 · ℓN · Bg · σ.
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Finally, the 63 consecutive external products in the last loop give us

Eout ≤
√

63ℓN · B2
g · σ2 + E2

XOR

≤
√

63ℓN · B2
g · σ2 + (

√
161 · ℓN · Bg · σ)2

≤
√

63ℓN · B2
g · σ2 + 161 · ℓN · (Bg · σ)2

≤
√

224ℓN · B2
g · σ2

≤ 15
√

ℓN · Bg · σ

The full transciphering procedure is shown in Algorithm 7 and it works by calling L
times BinaryTranscipher, then combing the ciphertexts and finally using key- and modulus-
switching procedures to output an integer ciphertext with the right format.

Lemma 3. [Correctness and noise analysis of ZpTranscipher] Consider the same notation
and inputs used in Lemma 2. Let L := ⌈log p⌉. Assume that the key-switching key ksk has
σksk-subgaussian noise for some σksk. For j ∈ J0, L− 1K, let cj = bj + F(k, IVj) mod 2 be
a FiLIP ciphertext.

Then, if c is the output of ZpTranscipher, it holds that c ∈ IntCtxtz(⌊q/p⌉ · m, Eout)
where m =

∑L−1
j=0 2j · bj and

Eout ≤
√

N · (152 · log p · ℓ · (Bg · σ · q/Q)2 + ℓksk · (Bksk · σksk)2) + ∥s∥2
2 /4

where ℓksk = logBksk
q.

Proof. From Lemma 2, we know that the constant term of the message encrypted by c(j) is
equal to 2j ·F(k, IV). Notice that if cj = 0, then bj = F(k, IV) ∈ {0, 1}, thus, this constant
term is already equal to 2j · bj . If cj = 1, then bj = 1− F(k, IV) ∈ {0, 1}, and line 4 turns
the constant term into 2j − 2j · F(k, IV) = 2j · (1− F(k, IV)). Therefore, at the end of the
for loop, each c(j) encrypts 2j · bj in the constant term. It follows that c encrypts m in
the constant term.

Hence, from the correctness of FHE.Extract, FHE.ModSwt, and FHE.KeySwt, c ∈
IntCtxtz(⌊q/p⌉ ·m, Eout), for some Eout, as desired.

Now it remains to prove the noise bound. Again from Lemma 2 and using the fact
that FHE.AddPtxt does not change the noise, at the end of the for loop, each c(j) has
E-subgaussian noise with E ≤ 15

√
ℓN · Bg · σ.

In line 5, we apply log p times FHE.Add, thus, the we obtain (
√

log p · E)-subgaussian
noise.

Then, FHE.Extract does not change the noise distribution and FHE.ModSwt gives us(√
log p · E2 · (q/Q)2 + (∥s∥2 /2)2

)
-subgaussian noise.

Finally, the after FHE.KeySwt, we have

Eout ≤
√

log p · E2 · (q/Q)2 + ∥s∥2
2 /4 + N · logBksk

q · (Bksk · σksk)2

≤
√

log p · (15 ·
√

ℓ ·N · Bg · σ)2 · (q/Q)2 + ∥s∥2
2 /4 + N · logBksk

q · (Bksk · σksk)2

≤
√

152 · log p · ℓ ·N · (Bg · σ)2 · (q/Q)2 + ∥s∥2
2 /4 + N · logBksk

q · (Bksk · σksk)2
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Algorithm 7: ZpTranscipher
Input: Key-switching key ksk. All the ciphertexts generated by ClientSetup,

GlobalSetup, and p−Setup. For 0 ≤ j < L := ⌈log p⌉, FiLIP ciphertext
cj = bj + F(k, IVj) mod 2 and the initialization vector IVj .

Output: c ∈ IntCtxtz(⌊q/p⌉ ·m, Eout) where m =
∑L−1

j=0 2j · bj .
Noise growth: Eout ≤√

N(152 · log p · ℓ · (Bgσ · q/Q)2 + ℓksk(Bksk · σksk)2) + ∥s∥2
2 /4

1 for 0 ≤ j < L do
2 c(j) = BinaryTranscipher(IVj) ; ▷ Constant term: 2j · F(k, IVj)
3 if cj = 1 then
4 c(j) = FHE.AddPtxt(2j ,−c(j)) ; ▷ Constant term: 2j · bj

▷ Now combine the L ciphertexts
5 c =

∑L−1
j=0 c(j)

6 c′ = FHE.Extract(c, 0) ; ▷ IntCtxts(⌊Q/p⌉ ·m)
7 ĉ = FHE.ModSwt(c′, q) ; ▷ IntCtxts(⌊q/p⌉ ·m)
8 c = FHE.KeySwt(ĉ, ksk) ; ▷ IntCtxtz(⌊q/p⌉ ·m)
9 return c

5 Experimental Results and Comparisons
5.1 Instantiation and implementation
We show implementation results of our approach as a proof of concept. One can use
different third-generation FHE schemes to instantiate our transciphering. To obtain our
practical results, we used FINAL [BIP+22], as it allows us to represent gadget ciphertexts
with a vector of ℓ := ⌈logBg

Q⌉ elements of RQ, which tends to be smaller than the GSW
ciphertexs used by TFHE, that are 2× 2ℓ′ matrices (although usually ℓ′ < ℓ). Thus, the
three ciphertexts types presented in Section 2.2 are shown in Table 1. The extraction
procedure generates a vector that is still encrypted under NTRU, thus, FINAL offers
a NTRU-to-LWE key switching that we use to obtain the output of the transciphering.
When we compare with other algorithms instantiated with TFHE in the later section, the

Table 1: Actual ciphertext types and parameters when our transciphering is instantiated
with FINAL.

Ciphertext type Hard problem Parameters Ciphertext space
Integer LWE n, q, σLWE Zn+1

q

Ring NTRU N, Q, σNTRU RQ

Gadget NTRU N, Q, σNTRU, ℓ, Bg Rℓ
Q

term GSW ciphertext corresponds to the output of FHE.EncGadget, and RLWE ciphertext
corresponds to the output of FHE.EncRing.

We extended the implementation of homomorphic FiLIP provided in [CDPP22] to
obtain our proof of concept. Our source code is publicly available4. For this, we used two
sets of parameters, presented in Table 2, both offering 128 bits of security (LWE from
[APS15], NTRU from [DvW21]).

We ran all our experiments on a single core of an Intel Xeon Gold 6248R CPU at
3.00GHz, in a machine with 500 GB of RAM memory. We summarize all the practical

4https://github.com/hilder-vitor/source_transciphering_ptxt_independent

https://github.com/hilder-vitor/source_transciphering_ptxt_independent
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Table 2: The parameters of NTRU gadget ciphertexts, the decomposition base of the
NTRU-to-LWE key-switching, and the parameters of the LWE ciphertexts. An upper bound
to σLWE is presented in Lemma 3.

N Q σNTRU Bg ℓ Bksk σksk n q

Set-I 210 912829 ≈ 219.8 1/
√

2 24 5 23 1/
√

2 610 92683 ≈ 216.5

Set-II 211 1073741827 ≈ 230 1/
√

2 24 8 25 1/
√

2 768 9209716 ≈ 221

results in Table 3. Since the client has to encrypt each bit of the FiLIP’s secret key
k ∈ {0, 1}214 into one gadget ciphertext, the total upload, in bits, is 214 · ℓ ·N · log Q plus
the size of the key-switching key. “On-line phase” shows the running time of executing
ZpTranscipher, and the next column shows this time divided by the number of bits, i.e.,
log p. We note that the running times are already very low, although we have a non-
optimized proof of concept (for example, one could speed it up by using a dedicated FFT
library for the cyclotomic rings used in FHE instead of the general library FFTW that we
used). We stress that the first loop of our transciphering is composed by log p independent
calls to BinaryTranscipher, therefore, it can be easily parallelized, which should divide the
total time, and thus, also the amortized time per bit, by almost log p, since the step where
the outputs of BinaryTranscipher are combined is very cheap compared to the running time
of BinaryTranscipher itself.

Table 3: Running times and upload depending on different parameter sets
Client’s
upload

Client’s
setup

Global
setup p p−Setup On-line

phase Per bit

Set-I 215 MB 3.4 s 2 s
22 2.6 s 13 ms 6.5 ms

23 3.74 s 18.8 ms 6.3 ms
24 5.26 s 25.2 ms 6.3 ms

Set-II 1 GB 11 s 6.5 s

22 7.4 s 36 ms 18 ms
23 11 s 54 ms 18 ms
24 14.7 s 71 ms 17.7 ms
25 17.7 s 84.6 ms 17 ms
26 21.2 s 101 ms 16.8 ms
27 24.8 s 117 ms 16.7 ms
28 29.7 s 137 ms 17.1 ms

5.1.1 Failure probabilities

As it is done in virtually all FHE schemes that use subgaussian noise analysis [DM15,
CGGI16, BIP+22], we use the central limit heuristic to model as a Gaussian the final
error in the LWE ciphertexts output by ZpTranscipher. Moreover, based on Lemma 3, we
assume the following variance:

σ2
LW E := 152 · log p · ℓ̂ ·N · (B′

g · σ)2 · (q/Q)2 + ∥s∥2
2 /4 + N · ℓ̂ksk · (B′

ksk · σksk)2

where ℓ̂ := logBg
(Q/2) and ℓksk := logBksk

(q/2), since in practice before decomposing the
values, we can put them in the centered representation, e.g., in J−q/2, ..., q/2K, instead of
in J0, ..., q − 1K. Also, B′

g := Bg − 1 and B′
ksk := Bksk − 1, since when we decompose integers



18 Towards Practical Transciphering for FHE with Setup Independent of the Ptxt Space

Table 4: Failure probability of output of ZpTranscipher.
p log(σLWE) Upper bound on failure probability

Set-I
22 ≈ 10 2−150

23 ≈ 10.5 2−30

24 ≈ 11 2−8

Set-II

22 ≈ 11.03 2−215347

23 ≈ 11.04 2−53842

24 ≈ 11.04 2−13382

25 ≈ 11.05 2−3329

26 ≈ 11.05 2−831

27 ≈ 11.06 2−209

28 ≈ 11.05 2−54

in some base B, we actually obtain values less than or equal to B − 1. And since we used
ternary keys for the NTRU secret, the value ∥s∥2 was replaced by

√
N .

Notice that σLW E grows very slowly as we increase p (assuming other parameters
fixed), as it is just proportional to

√
log p. However, the failure probability is computed

as 1− erf(q/(2 · p · σLWE ·
√

2)), thus, increasing p increases the probability exponentially
(this is the case for any FHE scheme). In Table 4, we present all the values σLW E and the
corresponding probabilities. We stress that this is the probability that an LWE ciphertext
output by ZpTranscipher does not encrypt the correct value, but the failure probability of
the programmable bootstrapping executed afterwards is independent of this and can be
chosen by setting accordingly the parameters of the FHE scheme used to the computation

— which is not necessarily the same scheme and parameters used for the transciphering.

5.2 General comparisons
Since our transciphering is adapted for so-called third generation schemes, we do com-
parisons with the other transcipherings performed with this type of schemes. Namely,
we compare our performances to the transcipherings with FiLIP performed with TFHE
in [HMR20, CHMS22] and FINAL in [CDPP22], and Elisabeth with TFHE in [CHMS22].
For a further extension to other types of schemes which require batched ciphertexts, we
discuss the possibility and the limitation in Section 6.1.

Since no previous work discuss plaintext-independent setup, we use this section to
compare our solution with the the naive strategy one would have to apply to obtain
plaintext-independent transciphering. Namely, to obtain transciphering for arbitrary
plaintext space Zp, one would run a binary transciphering, such as FiLIP, k := ⌈log(p)⌉
times to obtain LWE ciphertexts of each bit in Z2, then run a bootstrapping on Zp on
each of the k ciphertexts to change their message space from modulo 2 to modulo p, and
finally combine them into a single ciphertext as we do. Thus, in Table 5, we compare
our strategy with this naive one for 3- and 7-bit message spaces. For this, we used the
fastest implementation of TFHE bootstrappings that we know of for the required number
of bits5, and estimate the transciphering time per bit as tB + ts, where tB is the time to
run functional bootstrapping modulo p and ts, which is extracted from each paper, is the
time of on-line computation required by the sever to obtain an homomorphic ciphertext
encrypting a single bit. Notice that we are ignoring the composition step where all the k
ciphertexts are combined (while the running times corresponding to our results include

5https://docs.zama.ai/tfhe-rs/getting-started/benchmarks
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Table 5: Comparison of running time (in milliseconds) of transcipherings with FiLIP. For
previous works, we present the latency as t0, t1 corresponding to the latency for plaintext
space p = 23 and the latency for p = 27, respectively. The time per bit is presented in the
same way.

Work Cipher Scheme Latency Time per bit
FiLIP-1280 TFHE 6624, 16254 2208, 2322

[HMR20] FiLIP-1216 TFHE 5724, 14154 1908, 2022
FiLIP-144 TFHE 7524, 18354 2508, 2622
FiLIP-1280 TFHE 1905, 5243 635, 749

[CHMS22] FiLIP-1216 TFHE 1782, 4956 594, 708
FiLIP-144 TFHE 426, 1792 142, 256

[CDPP22] FiLIP-144 FINAL 31.86, 872.34 10.64, 124.64

This work, Set-I, p = 23 FiLIP-144 FINAL 18.8 6.3
This work, Set-II, p = 27 FiLIP-144 FINAL 117 16.7

them). The latency is just the time per bit multiplied by k. All the timings correspond to
monothreaded computations.

We use the most efficient transcipherings generating 3rd-generation ciphertexts with
Z2 as message space [HMR20, CHMS22, CDPP22] to benchmark this naive strategy, since
it relies on evaluating k times a binary transciphering. That is, we extracted from those
papers the value ts of a single execution of the binary transciphering. We notice that all
of them use FiLIP, which is expected, as FiLIP is an FHE-friendly cipher that encrypts
bit by bit. We defer the comparison with Elisabeth to the next subsection, since each
ciphertext contains 4 bits of information, which makes it comparable with ours for p with
4 bits.

As expected, our results faster than applying the naive strategy to existing binary
transcipherings, especially for larger message precision, as the bootstrapping becomes
much more expensive as we increase the message space p.

We note that the parameters that all the works introduced in Table 5 used parameters
yielding 128 bits of security. Especially, [HMR20], [CDPP22], and our work with Set-I used
the same polynomial degree N = 1024, however the works implemented with TFHE used
larger ciphertext size q which is 232 than FINAL. To achieve larger precision of message,
[CHMS22], and our work with Set-II used N = 2048, and [CHMS22] used larger q = 264,
compared to 230 in our work. Noise variance per work is chosen accordingly to achieve the
desired security level.

5.3 Comparison with Elisabeth-4
In [CHMS22], an HHE scheme is presented combining the symmetric cipher Elisabeth-
4 6 and TFHE as FHE scheme. Since it generates ciphertexts of 3rd-generation FHE
ciphertexts, more specifically, TFHE ciphertexts, and Elisabeth-4 works with plaintext
over Z16, this work is a directly comparable with our method when we fix p = 24.

Their algorithm uses homomorphic additions modulo 16 and evaluations of Negacyclic
Look up Tables (NLUT) from Z16 to Z16 using the Programmable Bootstrapping (PBS). To

6The recent cryptanalysis presented in [GHBJR23] reduces the security of Elisabeth-4 to 288. Three
patches of Elisabeth-4 have been presented in [HMS24], two of them compatible with a similar evaluation
of TFHE, namely Elisabeth-4b and Gabriel-4. Both use more layers of NLUTs and more NLUTs than the
original cipher, hence we advocate that the numbers in Table 7 would be even more in favor of our new
method considering taking it into consideration.
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Table 6: TFHE parameters for Elisabeth-4.
Mode n log(σLW E) k N log(σGLW E) PBS log(B) PBS ℓ

2 KS 784 13.3342 3 512 25.5003 19 1
Single KS 863 11.2506 3 512 25.5003 19 1

produce each ciphertext, their evaluation requires 96 PBS corresponding to 96 · n external
products where n is the size of the LWE key and 203 LWE ciphertext additions. The
error constraints to enter in the PBS require to use key switching during the evaluations,
therefore the authors present two evaluations with different sets of parameters, with one or
two key switchings. The parameters for these two modes are shown in Table 6, where their
evaluation corresponds to 75264 external products for the mode with 2 key switchings and
82848 for the mode with a single key switching.

Table 7: Timings comparison between the evaluation of Elisabeth-4 with TFHE
from [CHMS22], and FiLIP recombining 4 bits with our transciphering. Multithreaded
versions of Elisabeth-4 were probably executed on 12, or 48, or 64 threads, but this infor-
mation is not explicitly written in [CHMS22].

Evaluation Mode Latency (ms) Time per bit (ms)
Elisabeth-4 2 KS, multithreaded 91.143 22.786
Elisabeth-4 Single KS, multithreaded 103.810 25.953
Elisabeth-4 2 KS, monothreaded 1485.0 371.25
Elisabeth-4 Single KS, monothreaded 1648.6 412.15
Ours Set-I, monothreaded 25.2 6.3
Ours Set-II, monothreaded 71 17.7

The comparison of the running time of Elisabeth-4 in [CHMS22] and ours when setting
p = 24 is given in Table 7, from which we can conclude that our transciphering (for 4 bits)
is much faster than the one with Elisabeth-4. Comparing to monothreaded computations,
our implementations is more than 20 times faster, for the different sets of parameters. The
latency we obtain is smaller but of the same order of the timings of the multithreaded
evaluation of Elisabeth-47), since most of the operations in our transciphering are performed
independently on the 4 bits we could expect a latency close to the current time per bit
with 4 threads. The main reason for such efficiency for our transciphering is that we have
far smaller number of external products, namely, executing a single PBS requires more
external products than transciphering one bit with our method.

On the downside, in our method, each bit of the FiLIP’s secret key is encrypted into
one gadget ciphertext, while in Elisabeth-4, the client sends LWE ciphertexts to the server,
which can be compressed with standard techniques. Namely, each LWE ciphertext is
composed by n + 1 elements of Zq, but n of them are uniformly distributed and only one
of them depends on the secret key. Thus, instead of sending those n + 1 elements, the
client can send the seed used to generate the n random elements together with one single
element of Zq, hence, drastically reducing the upload. In [CHMS22], it is reported that the
client just has to upload 8 KB or 20 KB, depending on the mode, to send the symmetric
key encrypted with compressed LWE ciphertexts. However, to evaluate Elisabeth-4, the
server also needs the bootstrapping keys, which corresponds to more than 12 MB. Thus,
depending on whether one considers that the bootstrapping keys are part of the setup step
of Elisabeth-4 or not, the client’s upload is estimated as a few kilobytes or a few megabytes.

7Elisabeth-4 has been designed to take advantage of the multiple PBS evaluable in parallel with
Concrete, ideally running on 48 threads.
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While in our case, the client’s upload ranges from megabytes to one gigabyte. We stress
that if the client wants to use applications with different values of plaintext modulus p,
then extra costly conversions of homomorphic ciphertexts and more uploads are needed,
since Elisabeth-4 is bent to use p = 24 only.

5.4 Further comparisons with transcipherings using TFHE
Recently, two new works proposing a transciphering with TFHE have been presented at
WAHC 2023.

In [BOS23] the authors evaluate the standardized cipher Trivium that has a security
claim of 80 bits, and its (non-standardized) variant with a security claim of 128 bits,
introduced in [CCF+16]. We can compare the timings obtained for the evaluation of
Kreyvium with the ones of Table 5 since the output are 64 TFHE ciphertexts encrypting
one bit. After a warm-up phase of 2883 ms their optimized transciphering produces 64
encrypted bits in 150 ms using 128 virtual CPUs (Table 2 in [BOS23]).

In [TCBS23] the authors evaluate AES scheme using TFHE and the programmable
bootstrapping using representation in basis 16. Since the blocs of 128 bits of AES are
obtained as 32 ciphers of 4 bits, we can compare the timings they obtain with the ones
with p = 24 of Table 7. The best timing is obtained with 16 threads, resulting in 28.73s
for 128 bits.

5.5 Comparison for neural networks evaluation
Our method can shine in neural network evaluation. The versatility of our non binary
transciphering allows to adapt the precision on the plaintexts, which fits well with Convolu-
tional Neural Networks (CNN) working on quantized data. For example, the transciphering
of [CHMS22] is followed by a CNN evaluating the classification of Fashion MNIST pictures
homomorphically. The Fashion MNIST picture database consists of images of 784 gray
pixels, each one of 8 bits of information. For a faster evaluation (taking advantage of the
4-bits PBS implemented in Concrete), the evaluation of [CHMS22] restrict the gray-scale
to only 3 bits of information and homomorphically evaluate the quantized CNN. The
advantage of ours is that from the encrypted data of the client, the server could choose
rather to evaluate a cheap CNN with data quantized over t bits with potentially relatively
low accuracy or a more costly CNN with data quantized over t′ > t bits with high accuracy,
depending on computing environment. The CNN choice does not requires the client to
re-encrypt data, and choosing the precision after client’s query allows the server to adapt
the cost and the precision for each functionality asked by the client.

For the particular CNN used in [CHMS22], the transciphering is considered with
parameters already compatible with the PBS used for the CNN, rather than the optimal
ones we recalled in Table 6. Moreover, only 3 of the 4 bits of each plaintext of Elisabeth-4
are used in the ciphertext with plaintext space Z16, since the CNN takes bootstrapped
LWE ciphertexts, that allow PBS on 3 bits of data, one bit being used for padding.
In [CHMS22] the transciphering with Elisabeth-4 and homomorphic inference takes 427
seconds, compared to 6 seconds without the transciphering. Using the optimal parameters
for Elisabeth-4 evaluation recalled in Table 6, it reduces the total time to 77 seconds,
without considering a keyswitching before entering the CNN. If we use our technique which
outputs LWE ciphertexts encrypting 3 bits of integer, in the same setting, we would expect
the total running time to be reduced to 15 seconds8 (with parameter Set-I), and 43 seconds
with parameter Set-II).

8With Set-I it leads to a transciphering with homomorphic inference in 28 ∗ 28 ∗ 18.8 ∗ 10−3 + 6 = 15
seconds
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6 Discussion and Conclusion
6.1 Discussion
Our idea which homomorphically composes {0, 1} elements into an integer can be naturally
extended to any FHE scheme which uses batching methods [BGV12, FV12, CKKS17].
The naive approach for server is to run our transciphering per coefficient, and homomor-
phically moves the coefficient message into the corresponding slot by computing a linear
transformation [HS21]. However, the complexity of this process is O(N), where N is the
number of slots, which would require more optimizations for practical uses.

Additionally, one might argue that the same property for general message precision
can be achieved by functional bootstrapping [CJP21]. However, our approach is much
cheaper than running one bootstrapping since our transciphering only requires 144 times
of external products (using log p-threads), whereas one bootstrapping requires at least 630
up to around 900 external products depending on the desired precision.

6.2 Conclusion
In this article, we have presented a new transciphering method which can be used for
any message precision for the first time. In other words, the client does not need to set
message precision before sending its data to the server. Therefore, the server can reuse
the given data for several application algorithms by taking only necessary upper bits of
data, depending on the target application, without running different setups with the client.
This approach gives more freedom to clients in cloud-based service, in terms of parameter
setting and communications with the server. Hence, a service provider can offer a more
user-friendly environment to the clients.
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A Homomorphic XOR modulo p

We start with the simplest scenario where the ciphertexts only encrypt bits, but using Zp

as the message space. Given m0, m1 ∈ {0, 1}, we can see that

XOR(m0, m1) = m0 + m1 − 2 ·m0 ·m1 (mod p)

Thus, let c0 ∈ RingCtxts(⌊Q/p⌉ ·m0, E0) and C1 ∈ GadgetCtxtQ,ℓ
s (m1, E1). Then, as

shown in Algorithm 8, on can compute the homomorphic XOR as

FHE.XOR(c0, C1) := c0 + (1− 2 · c0) � C1

By Corollary 1, it follows that FHE.XOR(c0, C1) ∈ RingCtxts(∆ · XOR(m0, m1), E)
where E ≤

√
ℓN · Bg · E1 + E0.

Algorithm 8: FHE.XORSimple
Input: c0 ∈ RingCtxts(∆ ·m0, E0) and C1 ∈ GadgetCtxtQ,ℓ

s (m1, E1) where
m0, m1 ∈ {0, 1} and ∆ = ⌊Q/p⌉.

Output: c ∈ RingCtxts(∆ · XOR(m0, m1), Eout)
Noise growth: Eout ≤

√
ℓN · Bg · E1 + E0

1 c′ = FHE.MultPtxt(−2, c0) ; ▷ RingCtxts(−2 ·∆ ·m0)
2 c′′ = FHE.AddPtxt(1, c′) ; ▷ RingCtxts(∆(1− 2 ·m0))
3 c = FHE.ExtProd(c′′, C1) ; ▷ RingCtxts(∆(m1 − 2 ·m0 ·m1))
4 return c
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