
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 1, 23 pages.

https://doi.org/10.62056/aksdkp10
Check for updates

Proximity Testing with Logarithmic Randomness
Benjamin E. Diamond and Jim Posen

Ulvetanna, United States

Abstract. A fundamental result dating to Ligero (Des. Codes Cryptogr. ’23)
establishes that each fixed linear block code exhibits proximity gaps with respect to
the collection of affine subspaces, in the sense that each given subspace either resides
entirely close to the code, or else contains only a small portion which resides close to
the code. In particular, any given subspace’s failure to reside entirely close to the
code is necessarily witnessed, with high probability, by a uniformly randomly sampled
element of that subspace. We investigate a variant of this phenomenon in which
the witness is not sampled uniformly from the subspace, but rather from a much
smaller subset of it. We show that a logarithmic number of random field elements
(in the dimension of the subspace) suffice to effect an analogous proximity test, with
moreover only a logarithmic (multiplicative) loss in the possible prevalence of false
witnesses. We discuss applications to recent noninteractive proofs based on linear
codes, including Brakedown (CRYPTO ’23).
Keywords: proximity testing · succinct arguments · error-correcting codes

1 Introduction
Proximity testing of linear block codes is an important target of many reductions, for
example throughout the literature on succinct noninteractive proofs. In the basic version
of this problem, a claimed codeword is tested for proximity to some given fixed linear block
code, by means of an interactive protocol (or more generally, an interactive oracle proof).
The resulting protocol should accept genuine codewords with probability one; conversely,
it should reject non-codewords with a probability closely related to the initial vector’s
distance from the code. It should also feature efficiency—say, measured in the number of
oracle queries, or rounds of interaction—which grows favorably as a function of the code’s
block length (say, logarithmically).

In many applications, it is necessary to test whether a list of vectors consists entirely
of words which are close to the code. This task is made precise as a proximity test for the
code’s interleaved code, defined as the set of matrices whose rows are all codewords, where
the distance between two matrices is defined to be the number of columns at which the two
matrices don’t entirely agree. Indeed, proximity tests for interleaved linear codes reside at
the heart of many recent zero-knowledge proof protocols, including Ames, Hazay, Ishai
and Venkitasubramaniam’s Ligero [AHIV23] and Golovnev et al.’s Brakedown [GLS+23].

Interleaved proximity tests are typically effected by random linear combinations. In
this paradigm, the verifier samples a uniformly random coefficient vector as long as the
list is, requests the corresponding combination of the list elements, and finally subjects the
combination to a standard proximity test. (Other tests use powers of a single element, as
we discuss below.) In order for this reduction to be sound, it should hold that the linear
subspace generated by the list feature related maximal and average distances from the
code. More precisely, it should hold that the failure of the subspace’s farthest element to
be close to the code implies in turn that of the vast majority of the subspace’s elements.

E-mail: bdiamond@ulvetanna.io (Benjamin E. Diamond), jposen@ulvetanna.io (Jim Posen)

This work is licensed under a “CC BY 4.0” license.
Received: 2023-12-11 Accepted: 2024-03-05

https://doi.org/10.62056/aksdkp10
https://crossmark.crossref.org/dialog/?doi=10.62056/aksdkp10&domain=pdf&date_stamp=2024-03-27
mailto:bdiamond@ulvetanna.io
mailto:jposen@ulvetanna.io
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Proximity Testing with Logarithmic Randomness

This property is established for general linear codes by Ligero [AHIV23]. In this setting,
the notion of “closeness” is given meaning by means of a so-called proximity parameter
(whose value, as we explain below, cannot be completely arbitrary).

A drawback of this approach stems from its communication and randomness complexity.
Indeed, it requires that the verifier sample and send as many coefficients as there are
elements in the list. Even in the random oracle model, this requirement can induce practical
consequences, as it does, for example, in the setting of proof composition, in which the
verifier’s check must necessarily be encoded into a circuit. In fact, below, we explain
how this issue impacts the zero-knowledge proof protocol Orion of Xie, Zhang and Song
[XZS22, Fig. 4], and invalidates that protocol’s stated polylogarithmic verifier complexity.

1.1 Our Contribution
We introduce a batching process for proximity tests of general linear codes—that is, a
reduction from the interleaved code’s proximity testing problem to the standard proximity
testing problem—which consumes only logarithmically many random coefficients in the
size m of the initial list of vectors. Moreover, our procedure’s error parameter—which, by
definition, upper-bounds the probability with which the verifier selects a proximal element
despite testing a non-proximal subspace—exceeds by only a logarithmic multiplicative
factor the “base” error parameter applicable to the standard affine parameter test (this
latter parameter is given by the proximity-gap result of [AHIV23, Lem. A.1]).

In the particular setting of Reed–Solomon codes, a result of Ben-Sasson et al. [BSCI+23,
Thm. 1.5] achieves a proximity test with sublinear randomness; indeed, that result uses
just a single random parameter to test an m-generator subspace for proximity. Its error
parameter, however, exceeds by a multiplicative factor of m− 1 that of the affine case. In
the setting of general linear codes, Ben-Sasson, Kopparty, and Saraf [BSKS18, Thm. 12]
describe a single-parameter proximity test, which, on the other hand, incurs exponential
soundness loss in the list size m. In view of these previous results, our protocol achieves a
favorable randomness–soundness tradeoff; it requires only logarithmically many parameters,
and incurs only logarithmic multiplicative soundness loss. Our test is the first that we know
of which achieves a practical soundness error bound, and consumes sublinear randomness,
in the setting of general linear codes.

An interleaved test’s proximity parameter, by definition, captures the degree of proximity
the test detects. Our result works only for proximity parameters smaller than a third
of the code’s distance. We inherit this range restriction from the state-of-the-art for
standard (i.e., linear-complexity) proximity testing. This state-of-the-art—whose proof,
attributed to Roth and Zémor, appears in a recent update to Ligero [AHIV23, § A] (see
also Theorem 1 below)—establishes proximity gaps for affine lines for those proximity
parameters smaller than a third of the code’s distance. (Various strengthenings of this
result in the Reed–Solomon setting have been attained by [BSCI+23].) We note that the
analogue of this latter result for more general proximity parameters—say, smaller than
half of the code’s distance (i.e., up to its unique decoding radius)—remains an important
open problem; our work would immediately profit upon its hypothetical future resolution.

Our construction entails, roughly, that the verifier, given the initial list u0, . . . , um−1
of vectors, sample logarithmically many random scalars r0, . . . , rlog m−1, send these to the
prover, and finally request the combination of the vectors u0, . . . , um−1 whose coefficient
vector is given by the tensor product (or Kronecker product) expansion (1− r0, r0)⊗ · · · ⊗
(1− rlog m−1, rlog m−1). The verifier then subjects this latter combination to a standard
proximity test. As above, in order for this maneuver to be sound, it should hold that, for
each initial list for which the subspace ⟨u0, . . . , um−1⟩ does not consist entirely of elements
which are close to the code, most tuples (r0, . . . , rlog m−1) ∈ Flog m

q yield tensor-products
whose corresponding combinations are themselves far from the code. This is essentially
what we prove in our main result, given in Section 3.

Benjamin E. Diamond, Jim Posen 3

Besides its attractive asymptotic profile and its simplicity, our construction is moreover
strongly motivated by its applications to polynomial commitment schemes, as we now
explain. Indeed, a certain approach to the problem of multilinear polynomial commitment—
which appears to date to Ligero [AHIV23], and is explicitly isolated in the subsequent
work Brakedown [GLS+23]—makes use of a suitable error-correcting code. This scheme,
which we call the Brakedown multilinear polynomial commitment scheme, proceeds by
collating the coefficients of a given multilinear polynomial into the rows of a matrix,
and then encoding this matrix row-wise (under the particular linear block code chosen
for use). Crucially, if the resulting matrix is close to an interleaved codeword, then the
committed polynomial is well-defined, and may be extracted. The Brakedown scheme thus
subjects the encoded matrix to an interleaved proximity test (the “testing” phase), before
finally requesting its underlying polynomial’s evaluation (the “evaluation” phase). The
observation underlying our work is that if our batching procedure is used for the interleaved
proximity test—and if the verifier’s evaluation point is random (a minor condition which
holds in all applications we’re aware of)—then the testing and evaluation phases of the
Brakedown scheme become identical, and can be consolidated. The resulting gains in
simplicity and efficiency are substantial. For example, we reduce the proof size of the
Brakedown scheme—regardless of the code used—by a factor of

√
2. In the special case

that a linear-time-encodable code is used (as it is in Brakedown [GLS+23] and Orion
[XZS22]), we moreover improve both the prover’s and verifier’s respective runtimes by a
factor of 2, up to lower-order terms. We provide further details in Section 4.

We briefly sketch our proof (see also Theorem 2 below). Our proof makes blackbox
use of the proximity gaps result for affine lines due to Roth and Zémor (see Theorem
1 below, in which we present a thorough, and somewhat simpler, proof of this result).
Essentially, we observe that the tensor product exhibits a recursive substructure, whereby,
when a ℓ-variable tensor product is used as a combination vector, the resulting combination
is itself an interpolation, over an affine line, of two ℓ − 1-variable tensor combinations.
Under the hypothesis whereby many among the initial ℓ-tensor combinations are close to
the code, we manage to deduce that many ℓ − 1-tensor combinations yield lines which
contain large close-to-the-code subsets. Applying Theorem 1 to these lines, we conclude
that both ℓ − 1-combinations themselves frequently reside close to the code, thereby
“pushing down” the initial hypothesis to two half-sized instances of the problem. Inducting,
we reach the base case, which is once again simply Theorem 1. Finally, we show that
two half-dimensional subspaces which individually exhibit correlated agreement may be
“reconciled”, so as to yield correlated agreement on their sum. We isolate a condition under
which this reconciliation can be performed, whereby both ℓ− 1-tensors are simultaneously
as far as is possible from the code (in that they disagree with the code everywhere outside
of the correlated agreement set of the subspace in which they reside). The difficult part is
to produce an appropriate such ℓ− 1-tensor (i.e., for which both combinations are far from
the code). To achieve this, we bound the sizes of the “bad” sets within which the relevant
ℓ− 1-tensors become spuriously close to the code; this in turn entails a union bound over
the vanishing loci of ℓ−1-variate polynomials, each bounded in size by the Schwartz–Zippel
lemma. This latter technique can be viewed as a multivariate generalization of an idea
which, in univariate form, appears throughout several prior works (see e.g. Roth and
Zémor [AHIV23, § A] and Ben-Sasson, Kopparty, and Saraf [BSKS18, Lem. 8]). The idea
whereby a maximally far element of a subspace can, in a sense, “force agreement” between
words appears, implicitly, in a proof of Ben-Sasson et al. [BSCI+23, § 6.3].

Section 4—in which, applying our new proximity test, we describe a certain improved
scheme for multilinear polynomial commitment—also presents technical difficulties. The
difficult part is to show that our polynomial commitment scheme features witness-extended
emulation. We note that emulation is trivial for codes which admit efficient decoders, like
the Reed–Solomon codes used by Ligero [AHIV23, § A]; we, however, treat general codes.

4 Proximity Testing with Logarithmic Randomness

When efficient decoding is not assumed, emulation becomes much more difficult (and
requires rewinding). Indeed, our scheme imposes somewhat sophisticated demands on the
emulator, which must collect a sequence of passing proximity tests with linearly independent
combination vectors. We introduce a new emulation strategy, departing significantly from
Brakedown’s. Our emulator is actually quite simple, and is inspired by that of Bootle et
al.’s classic forking lemma [BCC+16, Lem. 1]. Its analysis, however, is challenging, and
introduces a handful of new ideas. The main technical issue is that a malicious prover could,
in principle, act in such a way as to thwart the emulator, by, say, outputting successful
proofs with vastly higher probability when the verifier’s challenge vector yields a tensor
belonging to some proper subspace. In particular, its conditional distribution of proofs—
that is, these proofs’ distribution, conditioned on success—may depart radically from
uniform, and may tend towards certain events which cause the emulator to fail. Our idea is
to show that if the prover’s success probability is sufficiently high—specifically, higher than
the square root of that of the failure events, a quantity which, though likewise negligible,
decays much more slowly—then this conditional distribution necessarily concentrates away
from the failure events. The idea is to “split the difference” in the exponent (the square
root operation has precisely the effect of halving the superlogarithmic decay function
implicit in the failure probability’s exponent). This square root is overwhelmingly higher
than the failure probability itself; on the other hand, it’s still negligible. We compare our
proof strategy to Brakedown’s [GLS+23, Lem. 3] at the end of Subsection 4.2 below.

In Subsection 4.3 below, we describe how our technique improves the efficiency of the
Ligero-style scheme. Indeed, we exhibit a

√
2-factor improvement to that protocol’s proof

size, up to lower-order terms, for each input polynomial size. In the setting of a linear-time
encodable code, we also improve the protocol’s prover and verifier time by at least twofold,
up to lower-order terms, for each input polynomial size.

1.2 Prior Work
Ideas related to ours appear throughout several prior works. Ligero appears to have
initiated the study of proximity gaps; we use extensively that work’s proximity gap result
for affine spaces [AHIV23, § A]. In fact, the proof of that result resides in partial form
across the two stated results [AHIV23, Lem. 4.3] and [AHIV23, Lem. A.1]. The former is
due to Ames, Hazay, Ishai and Venkitasubramaniam, and appears in the original, 2017
conference version of that work; the latter, on the other hand, is attributed by the authors
to Roth and Zémor, and was added in a subsequent update. We observe that the former
result—that is, [AHIV23, Lem. 4.3]—in fact already contains most of the techniques
required to make the proof go through. Roth and Zémor’s [AHIV23, Lem. A.1], on the
other hand, introduces the idea of replacing both generators of the line with elements
which are close to the code (though in an unnecessarily complicated form, in which the
elements are assumed moreover to reside close to the origin). We synthesize and simplify
these various ideas in our treatment below, given in Theorem 1.

A further conceptual predecessor to Brakedown [GLS+23] appears in the form of
Bootle et al. [BCC+16, § 3]; that work presents a univariate polynomial commitment
scheme, which, nonetheless, arranges the polynomial’s coefficients into a square matrix, and
commits to its rows. That work doesn’t use an error-correcting code or Merkle hashing,
and admits square-root-sized—as opposed to constant-sized—commitments. Moreover, it
doesn’t invoke a proximity test at all, so that our topic is inapplicable to it.

The work Bootle, Chiesa and Groth [BCG20] bears some resemblance to ours, though
differs fundamentally. That work presents a protocol for R1CS in the tensor IOP model,
as well as a compiler from tensor IOPs to standard IOPs. The latter compiler invokes
a proximity test for so-called tensor codes. In that protocol, over the course of multiple
rounds, the prover repeatedly “folds” an initial tensor, using verifier-supplied randomness,
and, in each round, sends the resulting intermediate tensor to the verifier. While the

Benjamin E. Diamond, Jim Posen 5

security proof of that protocol invokes the proximity-gaps result [AHIV23, § A], that
result is applied “fold-wise” to the prover’s successive intermediate tensors. That proof’s
structure thus differs importantly from ours; our prover performs log m folds “in one shot”,
sending only the final result, and our protocol is constant-round.

Our polynomial commitment scheme, again, exploits the setting in which the verifier’s
point query is random. The insight whereby a polynomial commitment scheme suitable
only for random points can be made more efficient than one suitable for arbitrary points
appears to date to the work Marlin of Chiesa et al. [CHM+20, § 6], though that work
treats univariate polynomials.

1.3 Technical Overview

In this subsection, we discuss in further detail how our proximity gap result allows a certain
well-known polynomial commitment scheme to be simplified and improved. Several recent
constructions of succinct proofs—such as Brakedown [GLS+23], Orion [XZS22], and Vortex
[BS22]—make use of a particular subprotocol for multilinear polynomial commitment,
which we call the Brakedown multilinear polynomial commitment scheme. The Brakedown
scheme—like polynomial commitment schemes in general—allows the prover to commit to
a polynomial, and later, given an evaluation point supplied by the verifier, to evaluate the
polynomial at the given point, and finally to produce a proof attesting to its evaluation’s
correctness.

We observe that—in all of the above protocols—the verifier evaluates each committed
polynomial only a random point, as opposed to at an arbitrary point. This latter fact is
itself explained by the sum-check reduction, as we briefly explain. That protocol reduces
the problem of obtaining the sum of a multivariate polynomial’s respective evaluations
over the unit cube to the problem of evaluating the polynomial once at a single point in
its domain, which, crucially, is random (sampled throughout the course of the sum-check
protocol). We refer to [Set20, § 3] for further details. In other words, these succinct
proof protocols employ a tool which is more powerful than necessary. Capitalizing on
this observation, we isolate a special sort of multilinear polynomial commitment scheme,
suitable only for random queries (see Definition 3). Our restricted notion serves as a
drop-in replacement for the standard scheme in all of the above applications.

We moreover introduce a new commitment scheme—suitable only for random samplers—
which significantly simplifies Brakedown’s protocol, as we now explain. We observe that,
in that variant of the Brakedown scheme which uses our batching procedure in lieu of
the standard, linear-complexity proximity test (and where, once again, we assume that
the verifier’s evaluation point is random), the resulting “testing” and “evaluation” phases
become identical, and can be consolidated. This measure yields gains in both simplicity
and efficiency. Indeed, our approach reduces the Brakedown commitment scheme’s proof
size by a

√
2 factor, and also significantly improves the prover’s and verifier’s concrete

computational costs in the random-evaluation setting.
This observation—i.e., whereby a polynomial commitment scheme suitable only for

random evaluation points may be made more efficient than one suitable for arbitrary
evaluation points—dates back to Chiesa et al.’s Marlin [CHM+20, § 6], in which the
polynomial commitment schemes at hand are proven secure only for so-called “admissible
query samplers” (we note, separately, that that work treats commitments to arbitrary-
degree, and univariate, polynomials). In that setting, a query sampler is, by definition, an
efficient algorithm which determines where the polynomials at hand are to be evaluated;
a query sampler is said to be admissible if (roughly) it necessarily requests that each
polynomial at hand be evaluated at least once on some point drawn uniformly from a
superpolynomially-sized set (with additional queries also permissible).

6 Proximity Testing with Logarithmic Randomness

The case of Orion. Beyond its efficiency advantages, our approach moreover resolves a
more serious obstacle in the setting of proof composition. Indeed, in typical applications—
which assume the random oracle model—the verifier need not send its combination
coefficients explicitly to the prover, as both parties may generate them locally by the means
of queries to the random oracle. The generation and transmission of these coefficients, in
this setting, thus do not impact the protocol’s verifier or communication complexity. In
contrast, in the setting of proof composition—in which the verifier’s check is necessarily
encoded into a circuit—the random oracle introduces problems. For one, it must be
instantiated concretely, so that it ceases to be a (true) random oracle. This fact may
affect the security analysis of the inner protocol. Separately, hash function evaluations
are expensive to encode in circuits. To evade these issues, many protocols extract the
inner verifier’s generation of the relevant random coefficients from the relevant circuit, and
stipulate that the outer verifier instead populate them directly, as public inputs to the
outer proof.

This latter strategy may impact the computational complexity of the outer verifier,
particularly when, say, the inner verifier uses a proximity test in the style of [AHIV23, § A]
or [BSCI+23, Thm. 1.6] (with linear randomness complexity in the list size). For example,
the Orion zero-knowledge proof protocol of Xie, Zhang and Song [XZS22, Prot. 4] proves
satisfiability of a size-N arithmetic circuit by recursively invoking a linear-randomness
batched proximity test on a list of Θ(

√
N) vectors, and moreover delegates the randomness-

generation required by this latter task to the outermost verifier. This strategy makes
the computational complexity of its outermost verifier Ω(

√
N), and invalidates its stated

O(log2 N) complexity.
The approach whereby single-parameter batching—i.e., using powers of a single random

parameter—is instead used does not resolve the issue. Indeed, that approach would
prohibitively increase the protocol’s soundness error, by a factor linear in the list length
Θ(
√

N) in the Reed–Solomon case [BSCI+23, Thm. 1.5], and—what is much worse—by
an exponential factor in the case of general codes [BSKS18, Thm. 12].

Our protocol. We now sketch slightly more thoroughly how our batching procedure
allows the Brakedown multilinear polynomial commitment scheme to be simplified (in the
random-evaluation setting). We recall that the Brakedown scheme begins by collating the
m2 coefficients of a given multilinear polynomial in 2 · log m variables (say), expressed
moreover with respect to the Lagrange basis over the unit cube {0, 1}2·log m, into the rows
of an m×m matrix. This matrix is then encoded row-wise, using some fixed linear block
code; the resulting matrix is finally committed to. (In Ligero [AHIV23], as well as in
Shockwave [GLS+23], the Reed–Solomon code is used; in Brakedown [GLS+23, § 4.2], a
newly introduced linear-time-encodable code is used instead.) Crucially, if the committed
matrix is close to an interleaved codeword, then the committed polynomial is well-defined,
and may be extracted.

The Brakedown-style scheme thus proceeds in two phases. In the testing phase, the
verifier applies an interleaved proximity test to the committed matrix. Specifically, the
verifier reduces the interleaved proximity problem given by the initial matrix to a standard
proximity testing problem, by means of a random combination of its rows. It then solves the
latter by directly requesting the message underlying the combination (which is well-defined
if the prover is honest), encoding the supplied message, and finally probabilistically testing
it for equality with the combination by means of queries at random columns.

Having established the matrix’s proximity to the interleaved code, the verifier initiates
the evaluation phase, in which the committed polynomial is evaluated at the verifier’s chosen
point. In light of the of committed polynomial’s assumed structure, this latter phase may be
effected by means of a further combination of the committed rows (and a further proximity
test), where—this time—the coefficient vector is a tensor. Indeed, it is straightforward to

Benjamin E. Diamond, Jim Posen 7

check that for each multilinear polynomial t(X0, · · · , X2·log m−1) ∈ Fq[X0, · · · , X2·log m−1]
and each point (r0, . . . , r2·log m−1) ∈ F2·log m

q , we have that t (r0, . . . , r2·log m−1) equals:

[⊗2·log m−1
i=log m (1− ri, ri)

]
·

 t0
...

tm−1

 · [⊗log m−1
i=0 (1− ri, ri)

]T

,

where both vectors above contain tensor products in the sense of Section 2 below, and
where the length-m rows t0, . . . , tm−1 contain t’s collated Lagrange coefficients. It follows
that if the verifier requests the message t′ :=

⊗2·log m−1
i=log m (1 − ri, ri) · (ti)m−1

i=0 during
the evaluation phase, then it may calculate t’s value at (r0, . . . , r2·log m−1) by means of
the further local calculation t′ ·

⊗log m−1
i=0 (1 − ri, ri) = t(r0, . . . , r2·log m−1). If the point

(r0, . . . , r2·log m−1) ∈ F2·log m
q is random, then this latter evaluation procedure becomes

identical to our batched proximity test, and can supplant the testing phase altogether.

2 Background and Notation
We generally adopt the notation of [AHIV23] and [BSCI+23]. A code of length n over the
alphabet Σ is a subset of Σn. We write q for a prime power, Fq for the finite field of order q,
and C ⊂ Fn

q for a linear [n, k, d]-code over Fq. We write w(u) for the Hamming weight of a
vector, d for the Hamming distance, and d(u, C) := minv∈C d(u, v) for the distance from a
point to a code. We finally write ∆(u, v) ⊂ {0, . . . , n− 1} for the disagreement set between
u and a codeword v. The puncturing of a code C at an index set M ⊂ {0, . . . , n− 1} is
the projection of C onto the set of components indexed {0, . . . , n− 1} \M .

Given a linear code C ⊂ Fn
q and an integer m ≥ 1, we have its corresponding m-

fold interleaved code, defined as the subset Cm ⊂
(
Fn

q

)m ∼=
(
Fm

q

)n. We understand this
latter set as a length-n block code over the alphabet Fm

q . In particular, its elements are
naturally identified with matrices in Fm×n

q , where two such matrices differ at a column
if they differ at any of that column’s components. We write matrices (ui)m−1

i=0 ∈ Fm×n
q

row-wise. That a matrix (ui)m−1
i=0 ∈ Fm×n

q is within distance e to the code Cm—in
which event we write dm

(
(ui)m−1

i=0 , Cm
)
≤ e—entails precisely that there exists a subset

D := ∆m
(

(ui)m−1
i=0 , Cm

)
, say, of {0, . . . , n − 1}, of size at most e, for which, for each

i ∈ {0, . . . , m − 1}, the row ui admits a codeword vi ∈ C for which ui|{0,...,n−1}\D =
vi|{0,...,n−1}\D. We emphasize that the subset D ⊂ {0, . . . , n−1} is fixed, and does not vary
as the row-index i ∈ {0, . . . , m− 1} varies. In this circumstance, following the terminology
of [BSCI+23], we say that the vectors (ui)m−1

i=0 feature correlated agreement outside of the
set D, or that they feature e-correlated agreement. We note that the condition whereby
the vectors (ui)m−1

i=0 feature e-correlated agreement with Cm implies a fortiori that every
element in (ui)m−1

i=0 ’s row-span is itself within distance at most e from C.
We define the tensor product of vectors inductively on length-two vectors of the

form (1 − r, r), where r ∈ Fq; that is, we stipulate that (s0, . . . , sm/2−1) ⊗ (1 − r, r) :=
(1− r) ·

(
s0, . . . , sm/2−1

)
∥ r ·

(
s0, . . . , sm/2−1

)
. In particular, we thereby give meaning to

iterated expressions of the form (1− r0, r0)⊗ · · · ⊗ (1− rℓ−1, rℓ−1) by left-association (the
natural extension of this definition to operands of arbitrary length is associative). We note
that the tensor product operation is not commutative. For notational purposes, we use the
abbreviation

⊗ℓ−1
i=0(1− ri, ri) to refer to the above expression (where the left-to-right order

is again understood), which is a length-2ℓ vector. We note that this vector in fact consists
precisely of the evaluations at the fixed point (r0, . . . , rℓ−1) ∈ Fℓ

q of the 2ℓ Lagrange basis
polynomials in Fq[X0, . . . , Xℓ−1], taken with respect to the evaluation set {0, 1}ℓ ⊂ Fℓ

q.

8 Proximity Testing with Logarithmic Randomness

Indeed, this latter basis is precisely the list of polynomials
⊗ℓ−1

i=0(1 −Xi, Xi). We note
that these polynomials are Fq-linearly independent elements of Fq[X0, . . . , Xℓ−1], where
we view the latter ring as an Fq-vector space.

The probability distributions we consider are exclusively uniform over sets of the form
Fℓ

q. We write µ(R) for the probability mass of the subset R ⊂ Fℓ
q; that is, µ(R) := |R|

qℓ .
We recall certain notions related to Merkle trees. We fix parameters m and n, which we

assume to be powers of 2; throughout, we write (ui)m−1
i=0 for an m× n matrix with entries

in Fq. For each j ∈ {0, . . . , n− 1}, we write (ui,j)m−1
i=0 for the jth column of (ui)m−1

i=0 .
For our purposes, a Merkle tree on the data (ui)m−1

i=0 is a tree whose leaves take the
form H

(
(ui,j)m−1

i=0

)
, for j ∈ {0, . . . , n− 1}, and where each internal node is the hash of

the concatenation of its children. A Merkle opening or Merkle path is the data of a column
(ui,j)m−1

i=0 , for some j ∈ {0, . . . , n− 1}, together with the respective siblings of those nodes
contained in the path from the jth leaf to the root. For each j ∈ {0, . . . , n− 1}, the Merkle
opening

(
(ui,j)m−1

i=0 , h0, . . . , hlog n−1

)
is valid against the Merkle root c if the following

algorithm returns true:
1: procedure ValidateMerkleOpening

(
j, (ui,j)m−1

i=0 , h0, . . . , hlog n−1, c
)

2: initialize h := H
(

(ui)m−1
i=0

)
.

3: write j = (jlog n−1, . . . , j0) for the bits of j ∈ {0, . . . , n− 1}.
4: for i ∈ {0, . . . , log n− 1} do overwrite h := H (h ∥ hi) if ji = 0 else H (hi ∥ h).
5: return c

?= h.
Figure 1a below illustrates a Merkle opening. We shade in grey the actual contents of

the Merkle opening (i.e., the data it explicitly supplies). We moreover enclose in a solid
border those nodes whose values are “determined” by the Merkle opening. Figure 1b below
depicts a collection of distinct Merkle openings. In that figure, we shade in grey those
nodes explicitly included in some Merkle path; moreover, as before, we enclose in a solid
line those nodes collectively determined by the tree’s Merkle paths.

c

h1

h0

(u
i,

3)
m

−
1

i=
0

h2

(a) A Merkle path.

c

(u
i,

2)
m

−
1

i=
0

(u
i,

3)
m

−
1

i=
0

(u
i,

5)
m

−
1

i=
0

(b) A collection of Merkle openings.

Figure 1: Merkle trees.

2.1 The Proximity Gap for Affine Lines
We now recapitulate a key result due to Ames, Hazay, Ishai and Venkitasubramaniam
[AHIV23, Lem. 4.3] and Roth and Zémor [AHIV23, § A]. For completeness, we record a
thorough proof of this result. We closely follow [AHIV23, Lem. 4.3] and [AHIV23, § A],
though we manage to significantly simplify those proofs.

Benjamin E. Diamond, Jim Posen 9

Theorem 1 (Roth–Zémor [AHIV23, § A]). Fix an arbitrary [n, k, d]-code C ⊂ Fn
q , and a

proximity parameter e ∈
{

0, . . . ,
⌊

d−1
3

⌋}
. If given elements u0 and u1 of Fn

q satisfy

Pr
r∈Fq

[d ((1− r) · u0 + r · u1, C) ≤ e] >
e + 1

q
,

then d2
(

(ui)1
i=0 , C2

)
≤ e.

Proof. We write R∗ := {r ∈ Fq | d ((1− r) · u0 + r · u1, C) ≤ e}. The theorem’s hypothesis
clearly implies that |R∗| > e + 1 ≥ 1. We thus write r∗

0 and r∗
1 for two distinct elements

of R∗; we moreover write u′
0 := (1 − r∗

0) · u0 + r∗
0 · u1 and u′

1 := (1 − r∗
1) · u0 + r∗

1 · u1.
Since u′

0 and u′
1 span the same affine line as u0 and u1 do, the theorem’s hypothesis is

certainly fulfilled with respect to u′
0 and u′

1. On the other hand, if d2
(

(u′
i)

1
i=0 , C2

)
≤ e,

then d2
(

(ui)1
i=0 , C2

)
≤ e also holds, as we presently argue. Indeed, fixing codewords

v′
0 and v′

1 for which d2
(

(u′
i)

1
i=0 , (v′

i)
1
i=0

)
≤ e, as well as constants s0 and s1 in Fq for

which u0 = (1 − s0) · u′
0 + s0 · u′

1 and u1 = (1 − s1) · u′
0 + s1 · u′

1 both hold, we define
v0 := (1 − s0) · v′

0 + s0 · v′
1 and v1 = (1 − s1) · v′

0 + s1 · v′
1. Trivially, v0 and v1 are

both codewords; we moreover argue that ∆2
(

(ui)1
i=0 , (vi)1

i=0

)
⊂ ∆2

(
(u′

i)
1
i=0 , (v′

i)
1
i=0

)
.

Indeed, for each j ̸∈ ∆2
(

(u′
i)

1
i=0 , (v′

i)
1
i=0

)
, u′

0,j = v′
0,j and u′

1,j = v′
1,j both hold, by

definition. These latter equalities imply that u0,j = v0,j and u1,j = v1,j themselves hold,
since u0 and u1 relate to u′

0 and u′
1 just as v0 and v1 relate to v′

0 and v′
1. We conclude

that j ̸∈ ∆2
(

(ui)1
i=0 , (vi)1

i=0

)
. It thus suffices to prove the theorem for u′

0 and u′
1. Our

construction of these latter elements implies that d (u′
0, C) ≤ e and d (u′

1, C) ≤ e hold. We
write v′

0 and v′
1 for codewords for which d(u′

0, v′
0) ≤ e and d(u′

1, v′
1) ≤ e, respectively, hold.

We suppose for contradiction that the conclusion of the theorem is false with respect
to u′

0 and u′
1, so that d2

(
(u′

i)
1
i=0 , C2

)
> e. We note that (u′

i)
1
i=0 clearly has correlated

agreement with C outside of ∆(u′
0, v′

0)∪∆(u′
1, v′

1); our supposition thus implies in particular
that |∆(u′

0, v′
0) ∪∆(u′

1, v′
1)| > e. For each j ∈ ∆(u′

0, v′
0) ∪∆(u′

1, v′
1), we write

Rj :=
{

r ∈ Fq

∣∣∣ ((1− r) · u′
0 + r · u′

1)|{j} = ((1− r) · v′
0 + r · v′

1)|{j}

}
for the set of parameters r ∈ Fq at which (1 − r) · u′

0 + r · u′
1 and (1 − r) · v′

0 + r · v′
1

“spuriously agree” at the index j. For each j ∈ ∆(u′
0, v′

0)∪∆(u′
1, v′

1), |Rj | ≤ 1, as Rj ⊂ Fq

is the zero locus of a nonzero affine-linear function. By the guarantees |∆(u′
0, v′

0)| ≤ e and
|∆(u′

1, v′
1)| ≤ e, and because |∆(u′

0, v′
0) ∪∆(u′

1, v′
1)| > e (by the above argument), applying

the identity |∆(u′
0, v′

0) ∪∆(u′
1, v′

1)| = |∆(u′
0, v′

0)|+ |∆(u′
1, v′

1)|− |∆(u′
0, v′

0) ∩∆(u′
1, v′

1)|, we
conclude that |∆(u′

0, v′
0) ∩∆(u′

1, v′
1)| < e. We finally observe that for each j outside

of this intersection, the set Rj is either {0} or {1}. Specifically, for j ∈ ∆(u′
0, v′

0) \
∆(u′

1, v′
1), Rj = {1}, while for j ∈ ∆(u′

1, v′
1) \∆(u′

0, v′
0), Rj = {0}. It thus follows that∣∣∣⋃j∈∆(u′

0,v′
0)∪∆(u′

1,v′
1) Rj

∣∣∣ ≤ e + 1.
We fix an element r∗ ∈ R∗, and write v∗ ∈ C, say, for the (uniquely de-

termined) codeword for which d ((1− r∗) · u′
0 + r∗ · u′

1, v∗) ≤ e. We note that
d ((1− r∗) · u′

0 + r∗ · u′
1, (1− r∗) · v′

0 + r∗ · v′
1) ≤ 2 · e, since these two vectors agree

outside of ∆(u′
0, v′

0) ∪ ∆(u′
1, v′

1). The triangle inequality thus implies that d((1 −
r∗) · v′

0 + r∗ · v′
1, v∗) ≤ 3 · e < d, so that v∗ = (1 − r∗) · v′

0 + r∗ · v′
1, and in

fact d ((1− r∗) · u′
0 + r∗ · u′

1, (1− r∗) · v′
0 + r∗ · v′

1) ≤ e holds. We conclude that r∗ ∈⋃
j∈∆(u′

0,v′
0)∪∆(u′

1,v′
1) Rj . It follows in turn that R∗ ⊂

⋃
j∈∆(u′

0,v′
0)∪∆(u′

1,v′
1) Rj , so that

|R∗| ≤ e + 1 and Prr∈Fq
[d ((1− r) · u′

0 + r · u′
1, C) ≤ e] ≤ e+1

q , and the theorem’s hypoth-
esis is false with respect to u′

0 and u′
1.

10 Proximity Testing with Logarithmic Randomness

Remark 1. A result exactly analogous to Theorem 1—with identical parameters—holds
for arbitrary-dimensional affine subspaces, and can moreover be proven using Theorem
1. In fact, precisely this reduction is carried out in [BSCI+23, § 6.3] (in the list-decoding
setting no less, though that work’s approach is straightforwardly specialized). Since we
don’t need this more general result below, we omit its treatment.
Remark 2. Theorem 1 is sharp, in the sense that its false witness probability e+1

q cannot
be decreased. This fact is demonstrated by the following example of Ben-Sasson et
al. [BSCI+23, Rem. 1.1]. We fix an [n, k, d]-code C ⊂ Fn

q , and set e ∈
{

0, . . . ,
⌊

d−1
3

⌋}
arbitrarily. We assume that q > e + 1 and d > 1. We fix distinct elements x0, . . . , xe of
Fq, and set u0 := (x0, . . . , xe, 0, . . . , 0) and u1 := (x0 − 1, . . . , xe − 1, 0, . . . , 0). Writing
again R∗ := {r ∈ Fq | d ((1− r) · u0 + r · u1, C) ≤ e}, we claim that R∗ = {x0, . . . , xe}.
Indeed, for each i ∈ {0, . . . , e}, we clearly have d ((1− xi) · u0 + xi · u1, C) ≤ e. On
the other hand, for each r ̸∈ {x0, . . . , xe}, we claim that d ((1− r) · u0 + r · u1, C) > e.
Indeed, d ((1− r) · u0 + r · u1, 0) = e + 1 clearly holds; on the other hand, for each nonzero
codeword v ∈ C, we have by the reverse triangle inequality that

d((1− r) · u0 + r · u1, v) ≥ |d(v, 0)− d((1− r) · u0 + r · u1, 0)| ≥ d− (e + 1) > e,

where, in the final step, we use the guarantee 2 ·e+1 < d (a consequence of 3 ·e < d if e > 0,
or else of d > 1 in the case e = 0). We see that Prr∈Fq

[d ((1− r) · u0 + r · u1, C) ≤ e] = e+1
q .

On the other hand, the conclusion d2
(

(ui)1
i=0 , C2

)
≤ e of Theorem 1 certainly fails to

hold, since it would imply that R∗ = Fq, whereas we have instead that |R∗| = e + 1.
In the Reed–Solomon setting, Ben-Sasson et al. [BSCI+23, Thm. 1.4] achieve an

analogue of Theorem 1 for e as high as the unique decoding radius, albeit with an upper-
bound n

q on the false witness probability somewhat worse than that of e+1
q attained by

Theorem 1. (They also present results beyond the unique decoding radius, which feature,
on the other hand, much-more-complicated bounds.) We record the following analogue of
this statement in our setting:

Conjecture 1. We wonder whether Theorem 1 holds even for proximity parameters
e ∈

{
0, . . . ,

⌊
d−1

2
⌋}

.

3 Main Result
We now describe our new interleaved-to-standard reduction for proximity testing. We
assume in what follows that the list length m is a power of 2. In our test, we use the
tensor product expression (1− r0, r0)⊗ · · · ⊗ (1− rlog m−1, rlog m−1), where the elements
r0, . . . , rlog m−1 of Fq are independently random, as a combination vector over the input
list; our error parameter exceeds that of the affine case by a multiplicative factor of 2 · log m.
We make blackbox use of Theorem 1 throughout. We abbreviate ℓ := log m.

Theorem 2. Fix an arbitrary [n, k, d]-code C ⊂ Fn
q , and a proximity parameter e ∈{

0, . . . ,
⌊

d−1
3

⌋}
. If given elements u0, . . . , um−1 of Fn

q satisfy

Pr
(r0,...,rℓ−1)∈Fℓ

q

d

[⊗ℓ−1
i=0(1− ri, ri)

]
·

 u0
...

um−1

 , C

 ≤ e

 > 2 · ℓ · e + 1
q

,

then dm
(

(ui)m−1
i=0 , Cm

)
≤ e.

Proof. In the base case ℓ = 1, the result follows immediately from Theorem 1, since
2 · e+1

q ≥
e+1

q .

Benjamin E. Diamond, Jim Posen 11

We now let ℓ > 1 be arbitrary, and assume the hypothesis of the theorem. By
way of induction, we construct two smaller instances of the problem, each of size ℓ− 1,
and establish the theorem’s hypothesis on these instances. We prepare the process by
introducing notation. For each tuple (r0, . . . , rℓ−2) ∈ Fℓ−1

q and each b ∈ {0, 1}, we record
the following abbreviation, involving an appropriate half-list of the initial list (ui)2ℓ−1

i=0 :

Mb :=
[⊗ℓ−2

i=0(1− ri, ri)
]
·

 ub·2ℓ−1

...
ub·2ℓ−1+2ℓ−1−1

 .

We emphasize that each combination Mb := Mb(r0, . . . , rℓ−2) depends on a fixed choice of
tuple (r0, . . . , rℓ−2) ∈ Fℓ−1

q ; we slightly abuse notation by omitting this tuple.
Our recursive approach relies on the following identity, valid for each (r0, . . . , rℓ−1) ∈ Fℓ

q:

[⊗ℓ−1
i=0(1− ri, ri)

]
·

 u0
...

u2ℓ−1

 =
[
1− rℓ−1 rℓ−1

]
·
[

M0
M1

]
.

This identity follows directly from the definition of the tensor product, and is easily verified
by means of an explicit calculation. We finally define various loci in Fℓ−1

q . We write R0 :={
(r0, . . . , rℓ−2) ∈ Fℓ−1

q

∣∣ d(M0, C) ≤ e
}

and R1 :=
{

(r0, . . . , rℓ−2) ∈ Fℓ−1
q

∣∣ d(M1, C) ≤ e
}

for the loci consisting of those ℓ− 1-tuples for which M0 and M1 (respectively) are at most
e-far from the code. We finally write, for each (r0, . . . , rℓ−2) ∈ Fℓ−1

q ,

p(r0, . . . , rℓ−2) := Pr
rℓ−1∈Fq

[
d

([
1− rℓ−1 rℓ−1

]
·
[

M0
M1

]
, C

)
≤ e

]
,

and set R∗ :=
{

(r0, . . . , rℓ−2) ∈ Fℓ−1
q

∣∣∣ p(r0, . . . , rℓ−2) > e+1
q

}
. In words, R∗ ⊂ Fℓ−1

q is that
locus consisting of those ℓ− 1-tuples whose resulting combinations M0 and M1 (with the
initial matrix’s lower and upper halves, respectively) span a line a substantial proportion
of whose elements reside close to the code.

Lemma 1. R∗ ⊂ R0 ∩R1.

Proof. Indeed, that (r0, . . . , rℓ−2) ∈ R∗ holds entails, by definition, that the hypothesis
of Theorem 1 holds with respect to the affine line spanned by the relevant combinations
M0 and M1. That theorem implies that d(M0, C) ≤ e (so that (r0, . . . , rℓ−2) ∈ R0) and
d(M1, C) ≤ e (so that (r0, . . . , rℓ−2) ∈ R1).

Lemma 2. µ(R∗) > 2 · (ℓ− 1) · e+1
q .

Proof. The result follows from a probability decomposition argument, as we explain below:

2 · ℓ · e + 1
q

< Pr
(r0,...,rℓ−1)∈Fℓ

q

d

[⊗ℓ−1
i=0(1− ri, ri)

]
·

 u0
...

u2ℓ−1

 , C

 ≤ e


= Pr

(r0,...,rℓ−1)∈Fℓ
q

[
d

([
1− rℓ−1 rℓ−1

]
·
[

M0
M1

]
, C

)
≤ e

]
≤ e + 1

q
+ Pr

(r0,...,rℓ−2)∈Fℓ−1
q

[(r0, . . . , rℓ−2) ∈ R∗] .

12 Proximity Testing with Logarithmic Randomness

The first step is the hypothesis of the theorem; the second step follows from the recursive
substructure explained above. To achieve the final step, we upper-bound the second-to-last
expression slice-wise, either by e+1

q or by 1, depending on whether the slice (r0, . . . , rℓ−2)
?
∈

R∗. In this way, we obtain the upper-bound e+1
q ·Pr(r0,...,rℓ−2)∈Fℓ−1

q

[
p(r0, . . . , rℓ−2) ≤ e+1

q

]
+

Pr(r0,...,rℓ−2)∈Fℓ−1
q

[
p(r0, . . . , rℓ−2) > e+1

q

]
≤ e+1

q + Pr(r0,...,rℓ−2)∈Fℓ−1
q

[(r0, . . . , rℓ−2) ∈ R∗].
From the entire inequality, we conclude finally that µ(R∗) ≥ 2 · ℓ · e+1

q −
e+1

q = (2 · ℓ− 1) ·
e+1

q ≥ 2 · (ℓ− 1) · e+1
q , as desired. This completes the proof of the lemma.

Upon combining Lemmas 1 and 2, we immediately conclude that the probabilities
µ(R0) and µ(R1) are both themselves greater than 2 · (ℓ− 1) · e+1

q . In other words, the
hypothesis of the theorem is fulfilled with respect to the parameter ℓ− 1 and to both of
the half-sublists (ui)2ℓ−1−1

i=0 and (ui)2ℓ−1
i=2ℓ−1 . This justifies our inductive use of the theorem

with respect to these half-sublists.
We thus conclude the consequence of the theorem with respect to the sublists

(ui)2ℓ−1−1
i=0 and (ui)2ℓ−1

i=2ℓ−1 . We write e0 := d2ℓ−1
(

(ui)2ℓ−1−1
i=0 , C2ℓ−1

)
and e1 :=

d2ℓ−1
(

(ui)2ℓ−1
i=2ℓ−1 , C2ℓ−1

)
for these sublists’ interleaved distances, as well as D0 and D1 for

their corresponding (correlated) disagreement subsets of {0, . . . , n− 1}. We finally write
(vi)2ℓ−1−1

i=0 and (vi)2ℓ−1
i=2ℓ−1 for their corresponding lists of close codewords. By analogy with

M0 and M1, for each (r0, . . . , rℓ−2) ∈ Fℓ−1
q and each b ∈ {0, 1}, we moreover write:

Nb :=
[⊗ℓ−2

i=0(1− ri, ri)
]
·

 vb·2ℓ−1

...
vb·2ℓ−1+2ℓ−1−1

 .

We define further loci in Fℓ−1
q , for b ∈ {0, 1}:

Bb :=
{

(r0, . . . , rℓ−2) ∈ Fℓ−1
q

∣∣ d (Mb, Nb) < eb

}
.

We understand these loci as the subsets of the parameter space at which M0 and M1
(respectively) become closer to N0 and N1 than correlated agreement demands.

The following lemma shows that the loci B0 and B1 are not too large:

Lemma 3. µ(B0) ≤ (ℓ− 1) · e
q and µ(B1) ≤ (ℓ− 1) · e

q .

Proof. We let b ∈ {0, 1} be arbitrary, and prove the result for Bb. For each index j ∈ Db,
we write

Rb,j :=
{

(r0, . . . , rℓ−2) ∈ Fℓ−1
q

∣∣∣ Mb|{j} = Nb|{j}

}
for the locus in Fℓ−1

q on which Mb and Nb “spuriously agree” at the index j. We note that
each Rb,j ⊂ Fℓ−1

q is precisely the vanishing locus of a certain combination of the ℓ − 1-
variate multilinear Lagrange basis polynomials, where the combination vector—because
j ∈ Db—is not identically zero. We conclude that the combination is itself nonzero; the
Schwartz–Zippel lemma in turn implies that µ(Rb,j) ≤ ℓ−1

q . These sets’ union thus has
mass at most µ

(⋃
j∈Db

Rb,j

)
≤ |Db| · ℓ−1

q ≤ (ℓ− 1) · e
q , where, in the last step, we exploit

the inductive hypothesis |Db| = eb ≤ e. On the other hand, Bb =
⋃

j∈Db
Rb,j . This

completes the proof.

For the following lemma, we recall the set R∗ ⊂ Fℓ−1
q introduced above.

Lemma 4. R∗ ̸⊂ B0 ∪B1.

Benjamin E. Diamond, Jim Posen 13

Proof. Indeed, by Lemma 2, µ(R∗) > 2 · (ℓ− 1) · e+1
q ; on the other hand, Lemma 3 gives

that the masses µ(B0) and µ(B1) are each at most (ℓ− 1) · e
q .

By Lemma 4, there necessarily exists some element (r∗
0 , . . . , r∗

ℓ−2) ∈ R∗ \ (B0 ∪ B1).
We write M∗

0 and M∗
1 for the corresponding values of M0 and M1, and moreover define

N∗
0 and N∗

1 analogously. Because (r∗
0 , . . . , r∗

ℓ−2) ∈ R∗, an application of Theorem 1 to the
line spanned by M∗

0 and M∗
1 yields a subset D∗ ⊂ {0, . . . , n− 1}, satisfying |D∗| = e∗, say,

where e∗ ≤ e, together with codewords O0 and O1 which respectively agree with M∗
0 and

M∗
1 outside of D∗.
For each b ∈ {0, 1}, because (r∗

0 , . . . , r∗
ℓ−2) ̸∈ Bb moreover holds, we have in fact the

disagreement set equality ∆(M∗
b , N∗

b) = Db (as opposed to a proper inclusion). We write
∆(M∗

b , Ob) for the disagreement set of M∗
b and Ob. By definition of D∗, ∆(M∗

b , Ob) ⊂ D∗

clearly holds; on the other hand, because d(M∗
b , N∗

b) ≤ eb ≤ e and d(M∗
b , Ob) ≤ e∗ ≤ e

simultaneously hold, unique decoding implies that N∗
b = Ob, and that in fact ∆(M∗

b , Ob) =
Db. We conclude that Db ⊂ D∗.

It follows that D0 ∪D1 ⊂ D∗. We conclude that (ui)2ℓ−1−1
i=0 and (ui)2ℓ−1

i=2ℓ−1 have mutual
correlated agreement outside of the set D0 ∪D1 of size at most e∗ ≤ e. This completes
the proof of the theorem.

Remark 3. The false witness probability 2 · ℓ · e+1
q of Theorem 2 seems not to be sharp; for

example, we wonder whether the factor of 2 can be eliminated.

4 Polynomial Commitment
In this section, we present our main multilinear polynomial commitment scheme, and
analyze its efficiency.

4.1 Definitions and Notions
We begin by defining multilinear polynomial commitment schemes, following Setty [Set20,
§ 2.4].

Definition 1. A multilinear polynomial commitment scheme is a tuple of algorithms
Π = (Setup, Commit, Open, Prove, Verify), with the following syntax:

• params← Π.Setup(1λ, ℓ). On input the security parameter λ and a size parameter
ℓ = O(log λ), Π.Setup samples params, which includes (possibly among other things)
a finite field order q = 2O(λ).

• (c, u) ← Π.Commit(params, t). On input a multilinear polynomial
t(X0, . . . , X2·ℓ−1) ∈ Fq[X0, . . . , X2·ℓ−1], Π.Commit returns a commitment c to
t, together with an opening hint u.

• b ← Π.Open (params, c; t, u). On input a commitment c, a multilinear polynomial
t(X0, . . . , X2·ℓ−1) ∈ Fq[X0, . . . , X2·ℓ−1], and an opening hint u, Π.Open verifies the
claimed decommitment t of c, using u.

• π ← Π.Prove (params, c, s, (r0, . . . , r2·ℓ−1); t, u). On input a commitment c, a pur-
ported evaluation s ∈ Fq, an evaluation point (r0, . . . , r2·ℓ−1) ∈ F2·ℓ

q , a multilinear
polynomial t(X0, . . . , X2·ℓ−1) ∈ Fq[X0, . . . , X2·ℓ−1], and an opening hint u, Π.Prove
generates an evaluation proof π.

• b← Π.Verify (params, c, s, (r0, . . . , r2·ℓ−1), π). On input a commitment c, a purported
evaluation s, an evaluation point (r0, . . . , r2·ℓ−1) ∈ F2·ℓ

q , and a proof π, Π.Verify
outputs a success bit b ∈ {0, 1}.

14 Proximity Testing with Logarithmic Randomness

The demand ℓ = O(log λ) is necessary, lest the number of coefficients m2 = 22·ℓ of
each multilinear t(X0, . . . , X2·ℓ−1) be superpolynomial in λ. Similarly, the requirement
q = 2O(λ) ensures that Fq-elements are efficiently representable.

The scheme Π is complete if the obvious correctness properties hold. That is,
for honestly generated params ← Π.Setup(1λ, ℓ), each honestly generated commit-
ment (c, u) ← Π.Commit(params, t) to some multilinear polynomial t(X0, . . . , X2·ℓ−1) ∈
Fq[X0, . . . , X2·ℓ−1] should satisfy Π.Open(params, c; t, u) = 1; moreover, each honestly
generated proof π ← Π.Prove (params, c, s, (r0, . . . , r2·ℓ−1); t, u)—for (r0, . . . , r2·ℓ−1) ∈ F2·ℓ

q

given arbitrarily—should satisfy Π.Verify (params, c, s, (r0, . . . , r2·ℓ−1), π) = 1 with proba-
bility 1.

We say that Π is moreover efficient if the size of each commitment satisfies |c| = O(λ),
the size of each proof satisfies |π| = o(λ ·m2), the routines Π.Commit, Π.Open, and Π.Prove
all run in time Õ(λ ·m2), and Π.Verify runs in time o(λ ·m2).

We now give security definitions for multilinear polynomial commitment schemes,
closely following both Marlin [CHM+20, Def. 6.2] and Setty [Set20, Def. 2.11].

Definition 2. For each multilinear polynomial commitment scheme Π, size parameter ℓ,
and PPT adversary A, we define the binding experiment BindingΠ,ℓ

A (λ) as follows:

1. The experimenter samples params← Π.Setup(1λ, ℓ), and gives params to A.

2. The adversary outputs (c, t0, t1, u0, u1) ← A(params), where c is a commit-
ment, t0(X0, . . . , X2·ℓ−1) and t1(X0, . . . , X2·ℓ−1) are multilinear polynomials in
Fq[X0, . . . , X2·ℓ−1], and u0 and u1 are opening hints.

3. The output of the experiment is defined to be 1 if Π.Open
(
params, c; t0, u0)

,
Π.Open

(
params, c; t1, u1)

, and t0 ̸= t1 all hold; otherwise, it is defined to be 0.

The multilinear polynomial commitment scheme Π is said to be binding if, for each PPT
adversary A, there exists a negligible function negl(λ) for which, for each λ ∈ N and
ℓ = O(log λ), Pr

[
BindingΠ,ℓ

A (λ)
]
≤ negl(λ).

Definition 3. For each multilinear polynomial commitment scheme Π, security parameter
λ, size parameter ℓ, PPT query sampler Q, stateful PPT adversary A, expected PPT
emulator E , and PPT distinguisher D, we define two random variables RealΠ,ℓ

Q,A,E,D(λ) and
EmulΠ,ℓ

Q,A,E,D(λ), each valued in {0, 1}, as follows:

1. The experimenter samples params← Π.Setup(1λ, ℓ), and gives params to A, Q and
E .

2. The adversary outputs a commitment c← A(params).

3. The query sampler outputs (r0, . . . , r2·ℓ−1)← Q(params).

4. The experimenter proceeds in one of two separate ways:

• RealΠ,ℓ
Q,A,E,D(λ): Run (s, π)← A(r0, . . . , r2·ℓ−1). Output the single bit D(c, s, π).

• EmulΠ,ℓ
Q,A,E,D(λ): Run (s, π; t, u) ← EA(r0, . . . , r2·ℓ−1). Output the

single bit D(c, s, π) ∧ (Π.Verify (params, c, s, (r0, . . . , r2·ℓ−1), π) =⇒
(Π.Open(params, c; t, u) ∧ t(r0, . . . , r2·ℓ−1) = s)).

The multilinear polynomial commitment scheme Π is said to be extractable with respect to
the query sampler Q if, for each PPT adversary A, there exists an expected PPT emulator
E for which, for each PPT distinguisher D, the distributions

{
RealΠ,ℓ

Q,A,E,D(λ)
}

ℓ,λ∈N
and{

EmulΠ,ℓ
Q,A,E,D(λ)

}
ℓ,λ∈N

are statistically close.

Benjamin E. Diamond, Jim Posen 15

The following definition is a simplification of [CHM+20, Def. 6.5], which requires that
Q sample uniformly randomly ([CHM+20, Def. 6.5] permits Q to instead sample uniformly
from a superpolynomially large set).

Definition 4. The query sampler Q is admissible if, for each λ and ℓ, and each parameter
set params← Π.Setup(1λ, ℓ), containing the field size q say, it holds that (r0, . . . , r2·ℓ−1)←
Q(params) is uniform over F2·ℓ

q .

4.2 Our Construction
We now instantiate our concrete scheme Π in the random oracle model. We use Merkle
tree commitments, in a manner which evokes Ben-Sasson, Chiesa and Spooner [BSCS16]’s
transformation from interactive oracle proofs to non-interactive random oracle proofs.

CONSTRUCTION 3 (Main polynomial commitment scheme).
We define Π = (Setup, Commit, Open, Prove, Verify) as follows.

• params← Π.Setup(1λ, ℓ). On input 1λ and ℓ, set m := 2ℓ, and return a prime
power q ≥ 2ω(log λ), an [n, m, d]-code C ⊂ Fn

q for which n = 2O(ℓ) and d = Ω(n),
and a repetition parameter γ = Θ(λ).

• (c, u)← Π.Commit(params, t). On input t(X0, . . . , X2·ℓ−1) ∈ Fq[X0, . . . , X2·ℓ−1],
express t = (t0, . . . , tm2−1) in coordinates with respect to the Lagrange basis
on {0, 1}2·ℓ, collate the resulting vector into an m × m matrix (ti)m−1

i=0 , and
encode (ti)m−1

i=0 row-wise, so obtaining a further matrix (ui)m−1
i=0 . Output a

Merkle commitment c to (ui)m−1
i=0 and the opening hint u := (ui)m−1

i=0 .

• b← Π.Open (params, c; t, u). On input the root c, opening t(X0, . . . , X2·ℓ−1) ∈
Fq[X0, . . . , X2·ℓ−1], and opening hint a collection of distinct Merkle paths against
c, missing the columns M ⊂ {0, . . . , n− 1}, say, write t into a matrix (ti)m−1

i=0

and check
∣∣∣∆m

(
(ui)m−1

i=0 , (Enc(ti))m−1
i=0

)
∪M

∣∣∣ ?
< d

2 .

We define Π.Prove and Π.Verify by applying the Fiat–Shamir heuristic to the following
interactive protocol, where P has t(X0, . . . , X2·ℓ−1) and (ui)m−1

i=0 , and P and V have
c, s, and (r0, . . . , r2·ℓ−1) ∈ F2·ℓ

q .

• P sends V t′ :=
⊗2·ℓ−1

i=ℓ (1− ri, ri) · (ti)m−1
i=0 in the clear.

• For each i ∈ {0, . . . , γ − 1}, V samples ji ← {0, . . . , n− 1}. V sends P the set
J := {j0, . . . , jγ−1}.

• P sends V the columns
{

(ui,j)m−1
i=0

}
j∈J

, each featuring an accompanying Merkle
path against c.

• V computes Enc(t′). For each j ∈ J , V verifies the Merkle path attesting to
(ui,j)m−1

i=0 , and moreover requires that
⊗2·ℓ−1

i=ℓ (1− ri, ri) · (ui,j)m−1
i=0

?= Enc(t′)j .
Finally, V requires s

?= t′ ·
⊗ℓ−1

i=0(1− ri, ri).

In the last step of Construction 3 above, we write Enc : Fm
q → Fn

q for C’s encoding function.
Our scheme is clearly complete. We note that the requirement n = 2O(ℓ) is necessary

merely for C to be efficiently encodable. The requirement d = Ω(n) entails that C has
constant relative distance.

We moreover have the following security guarantees:

16 Proximity Testing with Logarithmic Randomness

Theorem 4. The scheme of Construction 3 is binding.

Proof. We fix an adversary A who outputs a commitment c and pairs (t0, u0) and (t1, u1).
Assuming that Π.Open

(
params, c; t0, u0)

and Π.Open
(
params, c; t1, u1)

both hold, we argue
as follows. We write M0 and M1 for the subsets of {0, . . . , n − 1} respectively missing
from the hints u0 and u1. We moreover write:

X := ∆m
((

u0
i

)m−1
i=0 ,

(
Enc(t0

i)
)m−1

i=0

)
∪M0 ∪∆m

((
u1

i

)m−1
i=0 ,

(
Enc(t1

i)
)m−1

i=0

)
∪M1.

On the one hand, our hypothesis immediately implies that |X| < d. On the other
hand, we claim that ∆m

((
Enc(t0

i)
)m−1

i=0 ,
(
Enc(t1

i)
)m−1

i=0

)
⊂ X. Indeed, proceeding by

contraposition, we fix an index j ̸∈ X. Since j ̸∈M0 ∪M1, we see that the hints u0 and u1

respectively Merkle-open the columns
(
u0

i,j

)m−1
i=0 and

(
u1

i,j

)m−1
i=0 against c, so that—barring

an oracle collision on the part of A—these columns are necessarily identical. On the other
hand, since j ̸∈ ∆m

((
u0

i

)m−1
i=0 ,

(
Enc(t0

i)
)m−1

i=0

)
∪∆m

((
u1

i

)m−1
i=0 ,

(
Enc(t1

i)
)m−1

i=0

)
, we see that(

Enc(t0
i)j

)m−1
i=0 =

(
u0

i,j

)m−1
i=0 and

(
Enc(t1

i)j

)m−1
i=0 =

(
u1

i,j

)m−1
i=0 . Combining these facts, we

see that
(
Enc(t0

i)j

)m−1
i=0 =

(
Enc(t1

i)j

)m−1
i=0 , so that j ̸∈ ∆m

((
Enc(t0

i)
)m−1

i=0 ,
(
Enc(t1

i)
)m−1

i=0

)
,

as desired. We conclude that
(
Enc(t0

i)j

)m−1
i=0 =

(
Enc(t1

i)j

)m−1
i=0 . Since Enc is injective, we

conclude finally that t0 = t1.

Theorem 5. If the query sampler Q is admissible, then the scheme of Construction 3 is
extractable.

Proof. We define an extractor E in the following way. Given access to A, and on inputs
params, c and (r0, . . . , r2·ℓ−1), E operates as follows:

1. Having observed and collected A’s queries up until the point of its outputting c, E
initializes the empty matrix (ui)m−1

i=0 . E defines the following algorithm, which is
essentially a slight simplification of an algorithm, called Valiant’s extractor, given in
Ben-Sasson, Chiesa and Spooner [BSCS16, § A.1].

1: procedure TreeBuilder (h, i, j)
2: if i = 0 and h

?= H
(

(xi)m−1
i=0

)
arises as some oracle output then

3: overwrite the value of the jth column (ui,j)m−1
i=0 := (xi)m−1

i=0 .
4: else if i > 0 and h

?= H (h0 ∥ h1) arises as some oracle output then
5: run TreeBuilder(h0, i− 1, 2 · j) and TreeBuilder(h1, i− 1, 2 · j + 1).

2. E internally runs A on the further input (r0, . . . , r2·ℓ−1) in a straight-line manner,
until A outputs s and π. If Π.Verify (params, c, s, (r0, . . . , r2·ℓ−1), π) = 0, then E
outputs (s, π;⊥,⊥) and terminates.

3. E moreover defines:
1: procedure ExtractProof ()
2: while true do
3: rewind A to its initial point (i.e., immediately after outputting c).
4: freshly sample (r0, . . . , r2·ℓ−1)← Q(params).
5: run A on (r0, . . . , r2·ℓ−1), with fresh randomness, until it outputs (s, π).
6: if Π.Verify (params, c, s, (r0, . . . , r2·ℓ−1), π) then
7: return t′ and (r0, . . . , r2·ℓ−1).

E writes (r0,0, . . . , r0,2·ℓ−1) for the randomness it used in A’s initial proof above and
t′
0 for the message sent by A during the course of its initial proof. By running the

routine ExtractProof () above m− 1 further times, E extends these quantities to
matrices (t′

i)
m−1
i=0 and (ri,0, . . . , ri,2·ℓ−1)m−1

i=0 .

Benjamin E. Diamond, Jim Posen 17

4. E checks if the m×m matrix
(⊗2·ℓ−1

j=ℓ (1− ri,j , ri,j)
)m−1

i=0
is invertible. If it’s not, E

outputs (s, π;⊥, u).

5. Otherwise, E performs the matrix operation: t0
...

tm−1

 :=


⊗2·ℓ−1

j=ℓ (1− r0,j , r0,j)
...⊗2·ℓ−1

j=ℓ (1− rm−1,j , rm−1,j)


−1

·

 t′
0
...

t′
m−1

 ,

sets as t(X0, · · · , X2·ℓ−1) ∈ Fq[X0, · · · , X2·ℓ−1] the polynomial whose coefficients (in
the multilinear Lagrange basis) are given by the concatenation of (ti)m−1

i=0 ’s rows,
and outputs (s, π; t, u).

In the algorithm TreeBuilder, we understand the conditions 2 and 4 as demanding
that the relevant preimages be well-formed. That is, in case h does arise as the output of
a prior query, whose input, however, is malformed (in that it doesn’t match the format
demanded), we understand the relevant condition as failing to be fulfilled. If h arises as
the output of multiple, distinct, well-formed preimages, then we stipulate that E select
arbitrarily among these preimages (this event can only occur if A finds an oracle collision).

We now argue that E runs in expected polynomial time in λ. We write ε for the
probability that A passes, conditioned on its state as of the point at which it first outputs c
(this probability is taken over the coins of both Q and V , and over the further coins of A).
We note that, for each fixed c, E proceeds beyond step 2 above with probability exactly ε.
Moreover, each execution of ExtractProof terminates in expected time exactly 1

ε , since
that algorithm’s line 6 passes with probability exactly ε per iteration of that algorithm.
Finally, TreeBuilder is straight-line and polynomial time. We conclude that E ’s total
expected runtime is at most that of TreeBuilder plus 1 + ε · m−1

ε = m times the time it
takes to run Construction 3 once; this total time is thus polynomial in λ (and independent
of c and ε).

We now analyze the distribution returned by E . We note that the outputs (c, s, π)
upon which D runs are identically distributed in the distributions RealΠ,ℓ

Q,A,E,D(λ) and
EmulΠ,ℓ

Q,A,E,D(λ). It thus suffices to show that it holds in at most a negligible proportion of
executions of A, Q and E that, simultaneously, Π.Verify (params, c, s, (r0, . . . , r2·ℓ−1), π) = 1
and either Π.Open(params, t; c, u) = 0 or t(r0, . . . , r2·ℓ−1) ̸= s. We write Q(λ) for a
polynomial upper bound on the number of random oracle queries A makes. We recall from
[BSCS16, § A.1] that it holds with probability at most Q(λ)2+1

2λ , which is negligible, that
A outputs—during any particular among its executions—either a valid Merkle path on a
missing column j ∈M or, for some j ̸∈M , a valid Merkle opening (ui,j)m−1

i=0 inconsistent
with the matrix extracted by E in step 1 above.

In the following lemma, we write C for the puncturing of C at M .

Lemma 5. If E’s matrix satisfies dm
(

(ui)m−1
i=0 , C

m
)
≥ d

3 − |M |, then A passes with
negligible probability.

Proof. We first argue that we may freely assume that |M | < d
3 . Indeed, if |M | ≥ d

3 , then
J ∩M = ∅ holds with probability at most

(
1− d

3·n
)γ , which is negligible, since d = Ω(n)

and γ = Θ(λ). On the other hand, A can pass in case J ∩M ̸= ∅ only by submitting
valid a Merkle opening against a missing column.

We thus assume that |M | < d
3 , and moreover write e :=

⌊
d−1

3
⌋
− |M |. Since the

distance, say d, of C is at least d − |M |, which itself satisfies
⌊

d−1
3

⌋
≥

⌊
d−|M |−1

3

⌋
≥⌊

d−1
3

⌋
− |M | = e, we see that e ∈

{
0, . . . ,

⌊
d−1

3

⌋}
. On the other hand, by our hypothesis,

18 Proximity Testing with Logarithmic Randomness

dm
(

(ui)m−1
i=0 , C

m
)

> e. We abbreviate u′ :=
⊗2·ℓ−1

i=ℓ (1 − ri, ri) · (ui)m−1
i=0 . Applying the

contraposition of Theorem 2 to the code C, we conclude that, provided that the second
half (rℓ, . . . , r2·ℓ−1) ∈ Fℓ

q of the verifier’s random point resides outside a set of mass at
most 2 · ℓ · e+1

q in Fℓ
q, we have d

(
u′, C

)
> e. In particular, for each such (rℓ, . . . , r2·ℓ−1),

|∆ (u′, Enc(t′)) ∪M | > e + |M | =
⌊

d−1
3

⌋
in fact holds, since Enc(t′) is a codeword. We

conclude that J ∩ (∆ (u′, Enc(t′)) ∪M) = ∅ holds with probability at most
(
1− d

3·n
)γ .

On the other hand, if J ∩ (∆ (u′, Enc(t′)) ∪M) ̸= ∅, then we claim that V accepts with
negligible probability. Indeed, A can pass on an index j ∈M only by Merkle-opening a
missing column, and on an index j ∈ ∆ (u′, Enc(t′)) \M only by Merkle-opening a column
inconsistent with that extracted by E .

Putting the pieces together, we see that A’s chance of passing is at most Q(λ)2+1
2λ + 2 ·

ℓ · d
q +

(
1− d

3·n
)γ (here, we crudely upper-bound 2 · ℓ · e+1

q ≤ 2 · ℓ · d
q). As q ≥ 2ω(log λ) holds

by construction, and d and ℓ are polynomial in λ, 2 · ℓ · d
q is negligible. On the other hand,

we again have that
(
1− d

3·n
)γ is negligible. This completes the proof of the lemma.

Applying Lemma 5, we assume henceforth that dm
(

(ui)m−1
i=0 , C

m
)

< d
3 −

|M |. We conclude immediately that there exists an interleaved message (ti)m−1
i=0

for which
∣∣∣∆m

(
(ui)m−1

i=0 , (Enc(ti))m−1
i=0

)
∪M

∣∣∣ < d
3 . We note that, a fortiori,

dm
(

(ui)m−1
i=0 , (Enc(ti))m−1

i=0

)
< d

3 too holds. The following lemma shows that we
may further restrict our attention to the case in which A correctly outputs t′ =⊗2·ℓ−1

i=ℓ (1− ri, ri) · (ti)m−1
i=0 during its initial proof.

Lemma 6. If its message t′ ̸=
⊗2·ℓ−1

i=ℓ (1− ri, ri) · (ti)m−1
i=0 , then A passes with negligible

probability.

Proof. We write e :=
⌊

d−1
3

⌋
, and abbreviate u′ :=

⊗2·ℓ−1
i=ℓ (1− ri, ri) · (ui)m−1

i=0 ; we moreover
write v′ :=

⊗2·ℓ−1
i=ℓ (1− ri, ri) · (Enc(ti))m−1

i=0 . By the argument just given, we may freely
assume that dm

(
(ui)m−1

i=0 , Cm
)
≤ e holds; in particular, d (u′, v′) ≤ e. On the other hand,

our hypothesis implies that Enc(t′) ̸= v′. By the reverse triangle inequality, we thus have:

d (u′, Enc(t′)) ≥ |d (Enc(t′), v′)− d (u′, v′)| ≥ d− e.

We see that J∩∆(u′, Enc(t′)) = ∅ holds with probability at most
(
1− d−e

n

)γ ≤
(
1− 2·d

3·n
)γ ,

which is negligible. On the other hand, if V queries any position j ∈ ∆(u′, Enc(t′)), then
either j ∈M or j ∈ ∆(u′, Enc(t′)) \M ; in these cases, A can pass only by exhibiting an
oracle collision (on a missing or on an existing column, respectively). This again completes
the proof, in light of the guarantees d = Ω(n) and γ = Θ(λ).

We thus restrict our attention to the case in which A’s initial proof π passes and
there exists a message (ti)m−1

i=0 for which both
∣∣∣∆m

(
(ui)m−1

i=0 , (Enc(ti))m−1
i=0

)
∪M

∣∣∣ < d
3

and t′ =
⊗2·ℓ−1

i=ℓ (1− ri, ri) · (ti)m−1
i=0 hold. We denote:

δ := Q(λ)2 + 1
2λ

+
(

1− 2 · d
3 · n

)γ

+ ℓ

q
.

Since δ is negligible in λ,
√

δ also is. In this light, we may simply ignore each execution for
which A’s probability of success ε ≤

√
δ, since in that case E proceeds into step 3 in the

first place with negligible probability. We thus assume that ε >
√

δ in what follows. In
the following technical lemma, we write V for the event in which A submits an accepting
proof, and E for a further, arbitrary event.

Benjamin E. Diamond, Jim Posen 19

Lemma 7. Assuming as above that Pr[V] >
√

δ, if Pr[V ∧E] ≤ δ moreover holds, then
Pr [E | V] ≤

√
δ.

Proof. Assuming the hypotheses of the lemma, we see that

Pr [E | V] = Pr [V ∧ E]
Pr [V] <

δ√
δ

=
√

δ,

as required.

Lemma 8. The probability that t′
i ̸=

⊗2·ℓ−1
j=ℓ (1−ri,j , ri,j)·(ti)m−1

i=0 for any i ∈ {1, . . . , m−1}
is negligible.

Proof. For each i∗ ∈ {1, . . . , m− 1}, we write Ei∗ for the event in which A’s i∗th message
t′
i∗ ̸=

⊗2·ℓ−1
j=ℓ (1− ri∗,j , ri∗,j) · (ti)m−1

i=0 . By the argument of Lemma 6, Pr[V | Ei∗] is at most
Q(λ)2+1

2λ +
(
1− 2·d

3·n
)γ ≤ δ. We thus see that Pr[V ∧Ei∗] = Pr[V | Ei∗] ·Pr[Ei∗] ≤ δ, so that

the hypothesis of Lemma 7 is fulfilled, and Pr[Ei∗ | V] ≤
√

δ holds. The probability that
any among the events E1, . . . , Em−1 holds is thus at most 1−

(
1−
√

δ
)m−1

≤ (m−1) ·
√

δ,
which is negligible (here, we use a standard binomial approximation).

Lemma 9. The probability that the rows
(⊗2·ℓ−1

j=ℓ (1− ri,j , ri,j)
)m−1

i=0
are linearly dependent

is negligible.

Proof. We first argue that for A ⊂ Fm
q an arbitrary proper linear subspace, and S :={

(rℓ, . . . , r2·ℓ−1) ∈ Fℓ
q

∣∣∣ ⊗2·ℓ−1
i=ℓ (1− ri, ri) ∈ A

}
its preimage under the tensor map, we

have µ(S) ≤ ℓ
q . It suffices to prove the result only in case A is a hyperplane. We write a =

(a0, . . . , am−1) for a vector of coefficients, not all zero, for which A =
{

u ∈ Fm
q

∣∣ u · a = 0
}

holds. By construction, (rℓ, . . . , r2·ℓ−1) ∈ S if and only if
⊗2·ℓ−1

i=ℓ (1 − ri, ri) · a = 0. We
see that S ⊂ Fℓ

q is nothing other than the vanishing locus of that combination of the
ℓ-variate multilinear Lagrange polynomials given by the coefficient vector a. Because a is
not identically zero and these polynomials are linearly independent, the combination is
itself nonzero. Applying Schwartz–Zippel, we see that the vanishing locus S ⊂ Fℓ

q is of
mass at most µ(S) ≤ ℓ

q , as desired.
We note that

⊗2·ℓ−1
j=ℓ (1 − r0,j , r0,j) is not the zero vector, since its components nec-

essarily sum to 1. For each i∗ ∈ {1, . . . , m − 1}, we set as Ai∗ ⊂ Fm
q the span of(⊗2·ℓ−1

j=ℓ (1− ri,j , ri,j)
)i∗−1

i=0
, and write Ei∗ for the event in which

⊗2·ℓ−1
j=ℓ (1− ri∗,j , ri∗,j) ∈

Ai∗ . The argument above implies exactly that Pr[Ei∗] ≤ ℓ
q ≤ δ; we conclude in particular

that Pr[V ∧ Ei∗] = Pr[V | Ei∗] · Pr[Ei∗] ≤ δ, and the hypothesis of Lemma 7 is again
fulfilled. Applying Lemma 7 repeatedly, we conclude again that the probability that any of
the events Ei∗ holds, for i∗ ∈ {1, . . . , m− 1}, is at most 1−

(
1−
√

δ
)m−1

≤ (m− 1) ·
√

δ,
which is negligible.

We finally argue that the values t and u = (ui)m−1
i=0 extracted by E satisfy

Π.Open(params, c; t, u) and t(r0, . . . , r2·ℓ−1) = s. Indeed, under the condition guaran-
teed by Lemma 5, a matrix (ti)m−1

i=0 for which
∣∣∣∆m

(
(ui)m−1

i=0 , (Enc(ti))m−1
i=0

)
∪M

∣∣∣ < d
3

exists. Under the conditions guaranteed by Lemmas 8 and 9, E extracts precisely this ma-
trix (ti)m−1

i=0 in steps 3 and 5. Finally, Lemma 6 guarantees that A’s first message satisfies
t′ =

⊗2·ℓ−1
i=ℓ (1−ri, ri) · (ti)m−1

i=0 ; on the other hand, Π.Verify (params, c, s, (r0, . . . , r2·ℓ−1), π)
implies that s = t′ ·

⊗ℓ−1
i=0(1− ri, ri). We conclude that s =

⊗2·ℓ−1
i=ℓ (1− ri, ri) · (ti)m−1

i=0 ·⊗ℓ−1
i=0(1− ri, ri) = t(r0, . . . , r2·ℓ−1). This completes the proof of the theorem.

20 Proximity Testing with Logarithmic Randomness

We record a few remarks about our proof. Theorem 5’s difficulty arises, roughly, from
the fact that the conditional distribution of the messages t′ and of the random vectors
(r0, . . . , r2·ℓ−1) ∈ F2·ℓ

q which E adds—that is, the distribution of these values, conditioned
on A passing—can be highly arbitrary; A could, for example, output a successful proof
with vastly higher probability when

⊗2·ℓ−1
i=ℓ (1−ri, ri) resides in some fixed low-dimensional

subspace A ⊂ Fm
q (let’s say) than when it doesn’t, thereby thwarting E ’s extraction. Our

proof thus argues that if A succeeds with high enough probability—specifically, with
probability greater than a certain cutoff which, crucially, is still negligible, but which
decays much more slowly than that of the relevant failure events—then the conditional
distribution of A’s outputs necessarily concentrates away from these bad events. The
key idea is that δ, by virtue of being negligible, necessarily admits an expression of the
form δ = 2−f(λ), for some f(λ) = ω(log(λ)); we thus have in turn that

√
δ takes the

form 2− 1
2 ·f(λ). This latter quantity is greater than δ by a factor of 2 1

2 ·f(λ), which is
superpolynomial; on the other hand, it is itself nonetheless still negligible. This maneuver,
whereby the exponent is halved, can be performed on any negligible function. Upon
excluding from our treatment those executions for which ε ≤

√
δ, we find that, in the

remaining executions, A’s success probability is sufficiently “high” that failure events
necessarily figure negligibly in it, regardless of A’s strategy. This latter step is made precise
by a Bayes-like argument.

Brakedown’s proof. We compare our proof strategy to that of Brakedown [GLS+23,
Lems. 2 and 3], which proves a similar result. Brakedown’s proof, essentially, handles the
non-uniformity of A’s conditional output distribution by stipulating that the emulator E
filter “actively”, using rejection sampling to curate an artificially uniform distribution over
some sufficiently large set of coefficient vectors. This procedure requires that E “know”
A’s success probability ε. Brakedown’s emulator brings about this state of affairs using
various techniques, including a procedure of Hazay and Lindell [HL10, Thm. 6.5.6] (which
these latter authors attribute to Goldreich). Informally, Brakedown’s approach makes the
independence analysis of the emulator’s coefficient vectors easier, since the relevant vectors
are, by fiat, drawn from a uniform distribution over some set (cf. our Lemma 9). On the
other hand, it makes the acquisition of these vectors more complicated, since it mandates
that the emulator evaluate their membership in the relevant set.

We record a few possible issues with that proof as written, which seem, by and large,
rectifiable. First of all, [GLS+23, Lem. 2] assumes a deterministic prover. This property
is indeed used by that proof, namely in its assertion that E ’s inspection of P’s response
u′ “enables E to determine whether r ∈ T”. Sure enough, the membership of each given
r ∈ Fm in T depends, in general, both on the coins P flips while constructing u and on
the coins V flips while selecting its challenge columns. It would thus fail to hold—for
randomized P—that E could even determine which among its candidates r reside in T ,
given these vectors’ accompanying responses u′ alone, let alone that those vectors r which
do belong to T moreover feature responses u′ which cause V to accept with probability ϵ/2
or more (over its choice of random columns). For randomized P, E may be able to rectify
this issue by extracting not just one response u′ from P, but many (running P with fresh
random tape each time), and testing each u′ for agreement with π vis-à-vis r. Alternatively,
the proof would need to justify its assumption whereby P is deterministic. Interestingly,
the most compelling strategy whereby this latter assumption might be justified appears to
encounter an identical obstacle. That strategy would, it seems, proceed by showing that
E may bootstrap any given random prover into a deterministic one, without excessively
impacting that prover’s probability of success. To do this, E would proceed by repeatedly
sampling candidate random tapes for its random prover P until finding one which causes
P to pass with “high” probability over V ’s coins. The problem of determining this suitable
random tape is essentially the same as that—just discussed—of determining whether r ∈ T .

Benjamin E. Diamond, Jim Posen 21

The proof’s claim that “if ϵ is not inverse-polynomial in m and λ, this expected
runtime is not polynomial in m and λ” seems unduly pessimistic. While the runtime of
E—conditioned on its entering the extraction phase in the first place—is certainly not
polynomial in λ in general, it is polynomial in λ and 1

ϵ . (In fact, that procedure will,
roughly, terminate in time either 36(m+λ)

ϵ or 36(m+λ)
2−λ/8 , whichever is smaller.) Since E only

enters this phase in the first place with probability ϵ, it is the latter condition, and not the
former, which is necessary to establish an expected polynomial-time emulator. We thus
question whether the simultaneous use both of Hazay and Lindell [HL10, Thm. 6.5.6] and
of the geometric decay technique is necessary.

We find that our proof strategy represents an interesting alternative to Brakedown’s,
as our emulator’s description and our estimation of its runtime are significantly simpler.

4.3 Complexity

We discuss the theoretical efficiency of Construction 3. Implemented naïvely, Construction
3 admits proofs consisting of exactly m · (γ + 1) Fq-elements (P must send the single
m-element message t′, as well as the γ m-element columns (ui,j)m−1

i=0). We recall an
optimization discussed in Brakedown [GLS+23, § 4], and attributed by that work to Ligero.
Construction 3 works even when the input matrix (ti)m−1

i=0 is not square, but rather of
size m0 ×m1, say, where m0 ·m1 = 22·ℓ. Moreover, the resulting variant of the protocol
has proof size exactly m1 + γ ·m0. To minimize this size, we choose m0 and m1 so that
m1 = γ ·m0 holds; in particular, we set m0 := 1√

γ ·m and m1 := √γ ·m (where m here
denotes 2l). The resulting proof clearly has size m1 + γ ·m0 = 2 · √γ ·m. This measure
thus improves the proof size quadratically in γ (compared to the naïve approach in which
a square matrix is used).

The standard Brakedown commitment scheme—that is, the variant in which the two
phases are not consolidated—features proofs containing 2 ·m1 + γ ·m0 elements, since
two messages must be sent (our improvement eliminates this factor of two). Brakedown’s
optimization thus seeks to achieve 2 ·m1 = γ ·m0, and accordingly sets m0 :=

√
2
γ ·m and

m1 :=
√

γ
2 ·m. The resulting proof is thus of size 2 ·

√
2 · γ ·m. We note the resulting

extra factor of
√

2, absent from our proof’s size.
We finally discuss Construction 3’s prover and verifier runtime efficiency. We write

Enc(λ) for the runtime of C’s encoding procedure. It is easy to see that P’s runtime is
1√
γ ·m · Enc(λ) during the commitment phase and 1√

γ ·m ·
√

γ ·m = m2 in the evaluation
phase, for a total of 1√

γ ·m · Enc(λ) + m2. In the special case that Enc is linear-time in
m—Brakedown’s code [GLS+23, § 5], e.g., satisfies this property—the total cost across
both phases becomes m2 + O

(
1√
λ
·m2

)
; since each polynomial t(X0, . . . , X2·ℓ−1) requires

m2 field elements to represent, this efficiency is essentially optimal. The prover cost of
the standard Brakedown scheme is 1√

γ · m · Enc(λ) + 2 · m2 (we note the extra factor
of 2). Specializing again to the linear-time-encodable case, we obtain a total cost of
2 ·m2 + O

(
1√
λ
·m2

)
for the standard scheme; we see that we improve the prover runtime

of Brakedown’s commitment scheme by a factor of 2, up to lower-order terms.
Construction 3’s verifier complexity is Enc(λ) + γ · 1√

γ ·m = Enc(λ) +√γ ·m. Assuming
again that Enc is linear-time in m, this cost becomes √γ ·m+O(m), which is of square-root
complexity in both λ and the size of t. The verifier complexity of the standard Brakedown
scheme is 2 · Enc(λ) + 2 ·

√
2 · γ ·m. We thus improve the verifier’s complexity as well by a

factor of more than two.

22 Proximity Testing with Logarithmic Randomness

References
[AHIV23] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasub-

ramaniam. Ligero: lightweight sublinear arguments without a trusted setup.
Designs, Codes and Cryptography, 2023. doi:10.1007/s10623-023-01222-8.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe
Petit. Efficient zero-knowledge arguments for arithmetic circuits in the discrete
log setting. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in
Cryptology – EUROCRYPT 2016, pages 327–357, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg. doi:10.1007/978-3-662-49896-5_12.

[BCG20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. Linear-time arguments
with sublinear verification from tensor codes. In Rafael Pass and Krzysztof
Pietrzak, editors, Theory of Cryptography, pages 19–46, Cham, 2020. Springer
International Publishing. doi:10.1007/978-3-030-64378-2_2.

[BS22] Alexandre Belling and Azam Soleimanian. Vortex: Building a lattice-based
snark scheme with transparent setup. Cryptology ePrint Archive, Paper
2022/1633, 2022. URL: https://eprint.iacr.org/2022/1633.

[BSCI+23] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi
Saraf. Proximity gaps for reed–solomon codes. Journal of the ACM, 70(5), 10
2023. doi:10.1145/3614423.

[BSCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle
proofs. In International Conference on Theory of Cryptography, volume 9986,
pages 31–60, Berlin, Heidelberg, 2016. Springer-Verlag. doi:10.1007/978-3
-662-53644-5_2.

[BSKS18] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. Worst-case to average
case reductions for the distance to a code. In Rocco A. Servedio, editor, 33rd
Computational Complexity Conference, pages 24:1–24:23. Dagstuhl Publishing,
2018.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,
and Nicholas Ward. Marlin: Preprocessing zkSNARKs with universal and
updatable SRS. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology – EUROCRYPT 2020, Lecture Notes in Computer Science, pages
738–768, Cham, 2020. Springer International Publishing. Full version. doi:
10.1007/978-3-030-45721-1_26.

[GLS+23] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S.
Wahby. Brakedown: Linear-time and field-agnostic SNARKs for R1CS. In
Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology
– CRYPTO 2023, pages 193–226, Cham, 2023. Springer Nature Switzerland.
doi:10.1007/978-3-031-38545-2_7.

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols.
Information Security and Cryptography. Springer, Berlin, Heidelberg, 2010.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without
trusted setup. In Daniele Micciancio and Thomas Ristenpart, editors, Ad-
vances in Cryptology – CRYPTO 2020, pages 704–737, Cham, 2020. Springer
International Publishing. doi:10.1007/978-3-030-56877-1_25.

https://doi.org/10.1007/s10623-023-01222-8
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-64378-2_2
https://eprint.iacr.org/2022/1633
https://doi.org/10.1145/3614423
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-031-38545-2_7
https://doi.org/10.1007/978-3-030-56877-1_25

Benjamin E. Diamond, Jim Posen 23

[XZS22] Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion: Zero knowledge proof
with linear prover time. In Yevgeniy Dodis and Thomas Shrimpton, editors,
Advances in Cryptology – CRYPTO 2022, pages 299–328, Berlin, Heidelberg,
2022. Springer-Verlag. doi:10.1007/978-3-031-15985-5_11.

https://doi.org/10.1007/978-3-031-15985-5_11

	Introduction
	Our Contribution
	Prior Work
	Technical Overview

	Background and Notation
	The Proximity Gap for Affine Lines

	Main Result
	Polynomial Commitment
	Definitions and Notions
	Our Construction
	Complexity

	References

