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Abstract. The problem of Broadcast Encryption (BE) consists in broadcasting an
encrypted message to a large number of users or receiving devices in such a way that
the emitter of the message can control which of the users can or cannot decrypt it.
Since the early 1990s, the design of BE schemes has received significant interest and
many different concepts were proposed. A major breakthrough was achieved by Naor,
Naor and Lotspiech (CRYPTO 2001) by partitioning cleverly the set of authorized
users and associating a symmetric key to each subset. Since then, while there have
been many advances in public-key based BE schemes, mostly based on bilinear maps,
little was made on symmetric cryptography.
In this paper, we design a new symmetric-based BE scheme, named ΣΠBE, that relies
on logic optimization and consensual security assumptions. It is competitive with the
work of Naor et al. and provides a different tradeoff: the bandwidth requirement is
significantly lowered at the cost of an increase in the key storage.
Keywords: Broadcast Encryption · Boolean Functions

1 Introduction

Broadcast Encryption
The problem of Broadcast Encryption consists in broadcasting an encrypted message to a
large number of users or receiving devices in such a way that the emitter of the message
can control which of the users can or cannot decrypt it. A typical setting is the case of
access control to a service such as pay-per-view TV, satellite Internet service, etc. In
this case, one or several emitting facilities can distribute access keys through a Broadcast
Encryption Scheme (BES or BE scheme) so that only the legitimate users (e.g. the ones
who are still paying for the service) are able to recover keys while the revoked users (e.g.
those who did not renew their subscription) are not. The advantage of a BE scheme is that
the status of a user (i.e. revoked or authorized) can be modified at each new broadcast,
which means that a user who stopped paying for the service can easily re-subscribe to it
later on.

In the literature, Broadcast Encryption is often associated to Traitor Tracing which is
a slightly different problem motivated by copyright issues in the context of digital media
such as CD/DVD/Blu-Rays. In this context, no one can prevent a legitimate user (e.g.
the purchaser of a DVD) to disseminate the content of the media, but a Traitor Tracing
Scheme ensures that such a user cannot mask his identity and will therefore have to face
the subsequent legal procedures. The present paper focuses on Broadcast Encryption and
does not further explore the context of Traitor Tracing.
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Since the early 1990s, the design of BE schemes has received significant interest and
many different concepts were proposed. We give an overview of the literature on the subject
in the next paragraph but let us first give a few criteria that are of importance in order to
compare the relative performance of BE schemes. An obvious criterion is security: robust
BE schemes offer full collusion resilience, meaning that no matter how many revoked
users gather their credentials, they remain unable to decrypt the broadcast message. On
the other hand, some BE schemes only resist to collusions of up to k revoked users and
are thus called k-collusion resistant while some are probabilistic, meaning that there is
a slim chance that a receiver or a collusion might still be able to decrypt the broadcast
message. Another important distinction is between static schemes where credentials are
initially generated once and for all by the emitter (meaning that beyond a certain number
of users the emitter will have to re-run a potentially costly setup procedure in order to
accommodate for new users) and dynamic schemes for which new users’ credentials can
be generated on the fly. Although it was not a concern at the time most of the BE schemes
were invented, it is now particularly relevant to distinguish them based on their resistance
to a quantum attacker, in which case we write that a BE scheme is postquantum. Finally,
the other criteria are related to the performance of the BE schemes and are often subject
to a trade-off:

• Bandwidth consumption (and in particular its dependence on the number of revoked
users)

• Key storage both at emitter and receiver level

• Amount of computations performed both at emitter and receiver level (the latter
usually being the most critical)

State of the art on Broadcast Encryption
A naive approach to BE consists in giving each user a symmetric key also stored by the
emitter and encrypt the broadcast message with the key of each authorized user. This has
unrealistic bandwidth requirements when there are too many users. The opposite extreme
is to affect a symmetric key to each subset of the set of users and use the corresponding key
to broadcast a message to any set of authorized users. While this is bandwidth-optimal, the
key-storage is exponential in the total number of users and becomes unpractical even for
100 users. The seminal approach to BE [FN93] used an approach based on combinatorics
which offers only probabilistic revocation at the price of heavy bandwidth requirements.
This approach was later improved using code-based constructions [KRS99] but the resulting
scheme still performs poorly and does not have full collusion resilience.

A major breakthrough was achieved by Naor, Naor and Lotspiech [NNL01], introducing
the Subset-Cover paradigm. The main idea is to associate symmetric keys to specific
subsets of users so that any set S of authorized users can be expressed as a partition
involving such subsets. This framework is highly versatile as it offers a trade-off: increasing
the number of special subsets will increase the storage requirement but on average reduce
the bandwidth (more sets means that less sets should be used to partition S). While
such a construction is not very practical on pure combinatorial grounds, [NNL01] cleverly
organizes the users as leaves of a complete binary tree in order to turn this concept into
an efficient BE scheme. Two instantiations are proposed in [NNL01]: the well-named
Complete Subtree (CS) where the special sets correspond to complete subtrees of the
initial tree and the Subset Difference (SD) where the special sets are differences of subtrees
(i.e. a complete subtree T minus a complete subtree of T). Both constructions are fully
collusion resilient and rely on simple and consensual security assumptions (resilience of
the underlying blockcipher and PRF). The main differences between CS and SD is that
the first option requires less storage at the price of a heavier bandwidth consumption.
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These two schemes were customized and refined into other BE schemes in order to address
a wider range of trade-offs between storage and bandwidth, such as the Layered Subset
Difference [HS02]. Note that the LSD scheme follows the opposite purpose to our work as
it increases the bandwidth consumption in order to reduce the storage requirements at
user level. The consequence is that LSD never outperforms SD in terms of bandwidth and
this is why we preferably compare our work to SD rather than LSD. Another customizable
variant of the SD was proposed by [BS16]. In the extreme customization, it becomes
equivalent to a naive solution where each possible subset of users is assigned a key. We
have analyzed that it needs an important key storage per user (> 106 keys for 1000 users)
to outperform our scheme in terms of bandwidth, although it will scale better when the
number of users becomes very large (n ≥ 106).

While we only mentioned BE schemes relying on symmetric cryptography, many public-
key BE schemes were also proposed in the past decades, such as [TT01, DF03, AWY20].
Most of these schemes mimic classical public-key constructions such as Diffie-Hellman
or RSA. Among them, a very interesting construction relies on bilinear maps [BGW05],
which can be instantiated using pairings [PPSS13], yielding a very efficient BE scheme.
Indeed, although it may be a bit hard on storage or on the computations to be performed
by receiving devices, it is the only practical construction offering a constant overhead,
meaning that the broadcast message sent by the emitter contains the necessary information
(i.e. the list of revoked or authorized users and the message) plus an overhead whose
size is constant (in practice it consists of two points on elliptic curves). A practical
implementation is described in [DGB12]. The main weakness of such schemes is that they
rely on number-theoretic problems that can be solved in polynomial time using quantum
computers. Finding postquantum public-key BE schemes is an active topic of research
but the currently available options [Wee22, SDSP23] are not competitive compared to the
CS and SD schemes. Indeed, Table 2 of [SDSP23] shows that for n the total number of
users, the size of the ciphertext is proportional to n9 while the bandwidth consumption
of the SD is linear in the number of revoked users. It is harder to assess the bandwidth
requirements of [Wee22] since no cryptographic parameters are provided in the paper.
However, although the growth of the ciphertext is shown to be polynomial in log n, the
constants hidden in the O() are likely to make the scheme competitive only for very large
n. By extrapolating the parameters recommended in FrodoKEM, a KEM relying on LWE,
we assess that the ciphertext would always be greater than a megabit, regardless of the
number of (denied) users. In our experiments, our scheme has a ciphertext smaller by one
to two orders of magnitude.

Summary of our contribution
In this paper, we present a new BE scheme that offers various advantages: just like the
ones from [NNL01], it relies on simple and consensual security assumptions (resilience of a
blockcipher and PRF) with lower bandwidth requirements, at the price of a significant
increase in key storage and potentially heavy computations at the emitter facility. While
our BE scheme can be seen as an adaptive CS where the binary tree structure is re-
generated at every broadcast in order to optimize bandwidth, we emphasize that this BE
scheme does not follow the philosophy of the Subset-Cover because we do not compute
a partition of the set S. Indeed, we rather see S as a Boolean function and compute a
ΣΠ-factorization yielding subgroups Si that cover S but we do not preclude one user from
belonging to two distinct Si’s as this does not affect the security of our scheme.

Considering only postquantum BE schemes, the most bandwidth-efficient to our knowl-
edge is the SD introduced in [NNL01] as shown in Table 1. We report implementation
results showing that our BE scheme can easily accommodate for thousands of users even
when the emitter consists in a single laptop, and that it quickly outperforms the SD in
terms of bandwidth when the number of revoked users grow: in our test scenarios the
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Table 1: Performance comparisons for n users of which r are revoked

Key storage Average
Emitter Receiver overhead

[NNL01] CS n − 1 log(n) + 1 O(r log2(n/r))
[NNL01] SD n − 1 1

2 log(n)2 1.25r
This work 2 log(n) n ≤ r + log2(n) (empirical)

turning point is between 1 and 2% of revoked users and for more than 5% of revoked users
it already provides a 25% decrease in bandwidth compared to the SD.

This makes our BE scheme particularly suitable to the setting where bandwidth is
expensive or limited, such as space transmissions or communications with several layers of
protection. We also emphasize that the constraints on the receiving devices are more than
reasonable even for hand-held devices such as smartphones or radios: they only need to
support a block cipher and PRF and the key-storage requirements are kept below 1 GB
even for 226 (i.e. > 67 million) users when using 128-bit symmetric keys.

An implementation of our solution is available at:
https://github.com/88abaa99/SPBE

2 Preliminaries
2.1 Broadcast encryption
A typical symmetric BE scheme needs four procedures:

• Setup(n, λ, $) → kmaster: using a security parameter λ, some source of randomness
$ and the number of users n (or an upper-bound), the emitter derives some key
material kmaster.

• Join(u, kmaster) → ku: the emitter derives and sends the key material ku of user u
(0 ≤ u < n).

• Encrypt(m, A, kmaster) → (h, c): using its key material kmaster, the emitter encrypts
the message m so that only users in the set of authorized users A are able to decrypt.
It outputs the ciphertext c and some header h containing decryption instructions. It
can be as simple as h = A.

• Decrypt(h, c, ku) → m: the user u uses the header h and its key ku to decrypt c to
obtain m. In the event that the decryption fails because user u is not authorized,
the output of the procedure is null.

Symmetric-based BE schemes generally relies on one or two block cipher modes of
operation (that provides confidentiality and optionally authenticity), that we denote by
(E, D) and (Epayload, Dpayload). The output of the Encrypt procedure can often be seen as
follows:

h = i1∥i2∥ · · · ∥il

c = E(k1, ke)∥E(k2, ke)∥ · · · ∥E(kl, ke)︸ ︷︷ ︸
overhead

∥Epayload(ke, m)

where h encodes which keys are to be used (it can be as simple as the list of revoked users
or be a more evolved construction) and ke is an ephemeral key used to encrypt m. The
key ke is then encrypted several times with the keys kj(1 ≤ j ≤ l) that are possessed or
that can be derived by authorized users. Note that this paradigm is slightly different from
the traditional one of Naor et al. [NNL01]:

https://github.com/88abaa99/SPBE


Aurélien Dupin, Simon Abelard 5

• the intermediate encryptions of the ephemeral key are part of the ciphertext c instead
of the header h. We prefer to merge the elements that must be indistinguishable
from random in c.

• the information ij(1 ≤ j ≤ l) are not necessarily indexes that refer to disjoint subsets.
It may contain more general information that helps authorized users to decrypt. In
particular, an authorized user may have several ways of decrypting the ciphertext.

• we add that notion of overhead for performance comparison. It contains all c but
the encrypted message.

Most BE schemes focus on generating as few encryptions of ke as possible, thus reducing
the overhead.

2.2 Boolean functions
Definition 1 (Boolean Function - “don’t care” values). A Boolean function in l variables
is of the form f : Fl

2 → F2. Its evaluation in the vector x = (x1, · · · , xl) may equivalently
be referred to as f(x) or f(x1, · · · , xl).

Optionally, f may have “don’t care” values, denoted by a star ∗ (for example f(0, 1, 1) =
∗). This fictive third value represents the case where we are not interested in some
evaluations of f .

With the notion of “don’t care” values, we need to redefine the concept of support and
introduce the one of strict support.

Definition 2 (Support - Strict support). Let f be a Boolean function in l variables. The
support of f is the set of inputs x ∈ Fl

2 such that f(x) = 1 or ∗.
The strict support of f is the set of inputs x ∈ Fl

2 such that f(x) = 1. “Don’t care”
values do not belong to the strict support.

The cornerstone of our BE schemes relies on representing a Boolean function as a sum
of products.

Definition 3 (Sum of products - Product term - ΣΠ-form). Let f be a Boolean function
in l variables x1 to xl. A product term is a conjunction of variables or negation of variables
(e.g. x1, x2x̄3, x̄1x̄2x4).

A sum of products is a disjunction of product terms (e.g. x1 ∨ x2x̄3 ∨ x̄1x̄2x4). A
ΣΠ-form of a function f refers to a sum of products representing f .

Any function f has a ΣΠ-form. A naive solution would be to define a product term for
each element of the support of f (for example if f(0, 1, 1) = 1, then define x̄1x2x3). The
function f can clearly be expressed as the sum of these terms. For instance, taking the
example of Section 4 where f(u) = 0 for u ∈ {1, 3, 5} and 1 anywhere else for u a 3-bit
number, one can naively express f = x̄1x̄2x̄3 ∨ x̄1x2x̄3 ∨ x1x̄2x̄3 ∨ x1x2x̄3 ∨ x1x2x3 because
f(u) = 1 if and only if u ∈ {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)}.

A ΣΠ-form of f is generally not unique and we are interested in ΣΠ-forms having
a small number of products in order to minimize the overhead. The Quine-McCluskey
algorithm allows to solve the problem of finding the smallest sum of products, which
appears to be an NP-hard problem. Any alternative algorithm would fit our needs. In
particular, the ESPRESSO algorithm should be considered when dealing with a large
number of variables, at the cost of finding a good but possibly non-optimal solution.

In Section 3, we describe (a close variant of) the Quine-McCluskey algorithm. A reader
only interested in the BE schemes may directly go to Section 4 and take this algorithm in
black-box.
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2.3 Pseudorandom functions
One of our constructions requires the use of pseudorandom functions.

Definition 4 (Pseudorandom Function [KL14]). Let F : K × X 7→ Y be an efficient keyed
function. F is a pseudorandom function (PRF) if for all polynomial-time distinguisher D,
there is a negligible function negl such that:

|Pr[DF (k,·)(1λ) = 1] − Pr[Df(·)(1λ) = 1]| ≤ negl(λ)

for some security parameter λ, where the first probability is taken over uniform choice of
k ∈ K and the second probability is taken over a random function f : X 7→ Y.

Informally, F is a pseudorandom function if any adversary having access to an oracle
F (k, ·) cannot distinguish F from a truly random function f .

In the rest of the paper, we actually require a weaker notion of pseudorandom function:
instead of being given access to the oracle F (k, ·), the adversary is only given a few known
(but not chosen) evaluations. Then, the adversary must not be able to evaluate F (k, ·) on
other points. This security notion is implied by the indistinguishability as described above.

3 The Quine-McCluskey algorithm
In this section, we detail the Quine-McCluskey algorithm, which allows to solve the problem
of finding the smallest sum of products, i.e. among all the ΣΠ-forms defined in Definition 3,
find one which minimizes the number of ∨ operands. We actually describe a close variant,
that allows to obtain a degraded solution when the number of variables becomes too large
to be solved in reasonable time.

3.1 Description
This approach tolerates that a Boolean function has “don’t care” values, introduced in
Definition 1. The Quine-McCluskey algorithm then solves the problem without being
constrained by these “don’t care” values.

First, the notions of implicant and prime implicant needs to be introduced.

Definition 5 (Implicant - Size-2α implicant). Let f be a Boolean function in l variables
and p be a product term. We say that p is an implicant of f if and only if p implies f (i.e.
for all vector x ∈ Fl

2, p(x) = 1 =⇒ f(x) = 1).
The implicant p is a size-2α implicant if its support contains 2α elements.

Property 1. Remark that since an implicant is a product term, its support necessarily
contains a power of two elements. Moreover an implicant is a size-2α implicant if and only
if it is a product of l − α variables (or negation of variables).

Definition 6 (Prime implicant). Let p be a product term. We say that p is a prime
implicant of the Boolean function f if:

• it is an implicant of f ,

• there exists no other implicant p′ ̸= p of f such that p is an implicant of p′.

Note that if p′ exists, then it is a “more general” implicant of f , and consists in a strict
subset of variables (or negation of variables) of p.

Let f be a Boolean function in l variables, the Quine-McCluskey algorithm is a 2-step
process which consists in:

1. generating all prime implicants of the Boolean function f .
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x0 x1 x2 x3 f Size-1 implicants Size-2 implicants Size-4 implicants
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0
0
0
0
1
0
0
0
1
∗
1
1
1
0
∗
1

x̄0x1x̄2x̄3

x0x̄1x̄2x̄3
x0x̄1x̄2x3
x0x̄1x2x̄3
x0x̄1x2x3
x0x1x̄2x̄3

x0x1x2x̄3
x0x1x2x3

x1x̄2x̄3

x0x̄1x̄2
x0x̄1x̄3
x0x̄2x̄3
x0x̄1x3
x0x2x̄3
x0x̄1x2

x0x2x3
x0x1x̄3
x0x1x2

x0x̄1

x0x̄3

x0x2

Figure 1: Generation of prime implicants with the QuineMcCluskey algorithm. Prime
implicants are in red.

4 8 10 11 12 15
p0 = x1x̄2x̄3 X X
p1 = x0x̄1 X X X
p2 = x0x̄3 X X X
p3 = x0x2 X X X

Petrick’s function: p′
0 ∧ (p′

1 ∨ p′
2) ∧ (p′

1 ∨ p′
2 ∨ p′

3) ∧ (p′
1 ∨ p′

3) ∧ (p′
0 ∨ p′

2) ∧ p′
3

Figure 2: Prime implicant chart and Petrick’s function

2. finding the smallest subset of prime implicants that describes f . This part is similar
to the set cover problem. The sum of the obtained implicants is the smallest ΣΠ-form
of f .

The algorithm starts from the naive solution stated earlier: for each element of the
support of f (i.e. f(x) = 1 or f(x) = ∗), create the size-1 implicant that is true only for
that element. An example is given in Figure 1. Using Property 1, such implicants all have
l variables.

Then, iteratively, the algorithm builds size-2α+1 implicants by combining two size-2α

implicants as follows: let p1 and p2 be two size-2α implicants such that they share the
same variables and differ in a single negation. They can be written as p1 = p3xi and
p2 = p3x̄i for some product term p3. Therefore, p3 is a size-2α+1 implicant of f . This can
be easily proven using Property 1 and the fact that p3 = p1 ⊕ p2. Such combinations are
searched exhaustively. There may exist several combinations ending in the same size-2α+1

implicant.
When implicants cannot be combined any further, the remaining implicants are prime

implicants. Although it is not a minimal decomposition yet, f can already be written as
the sum (i.e. disjunction) of these prime implicants.

In the second step of the algorithm, we aim at extracting the smallest subset of prime
implicants. We start by constructing the prime implicant chart, as shown in Figure 2.
Each row is mapped to a prime implicant generated in Step 1 and each column correspond
to an element x of the strict support of f (i.e. f(x) = 1). A cell then indicates whether a
prime implicant covers an element x.

From this chart, one can easily compute the corresponding Petrick’s function also
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Petrick’s function: p′
0 ∧ (p′

1 ∨ p′
2) ∧ (p′

1 ∨ p′
2 ∨ p′

3) ∧ (p′
1 ∨ p′

3) ∧ (p′
0 ∨ p′

2) ∧ p′
3

Linear system: p′
0 ≥ 1 p′

1 + p′
2 ≥ 1 p′

1 + p′
2 + p′

3 ≥ 1
p′

1 + p′
3 ≥ 1 p′

0 + p′
2 ≥ 1 p′

3 ≥ 1
Function to minimize: p′

0 + p′
1 + p′

2 + p′
3

Figure 3: Linear modelization of the Petrick’s function

shown in Figure 2. For each prime implicant pi, a binary variable p′
i is generated. It takes

the value 1 if pi is kept in the smallest subset, 0 otherwise. The Petrick’s function consists
in a conjunction of disjonctions of such binary variables. A disjunction indicates which
implicants are necessary to cover a specific element of the strict support of f . Therefore,
the Petrick’s function is true if at least one implicant in each disjonction is kept in the
smallest ΣΠ-form of f .

In order to find the smallest solution in the Petrick’s function, the so-called Petrick’s
method introduced in [Pet56] is generally considered. However, it has an exponential
complexity that makes it unsuitable for a large number of variables or, more importantly,
when the size of the support of f is big, which is true in our scenario. We do not detail more
this method. Instead, we follow the idea of [CFN61] and use Integer Linear Programming
to solve this problem. ILP is unlikely to have a lower complexity than other approaches to
solve the set cover problem, but it has the advantage of having meaningful intermediate
results that are hopefully close to optimality.

The Petrick’s function directly leads to a linear model:

• for each disjunction
∨

i∈S p′
i (for some subset S), the linear constraint

∑
i∈S p′

i ≥ 1
is added to the model,

• since we search for the smallest subset of implicants, the objective function to
minimize is the sum of all p′

i.

An example is given in Figure 3.
Finally, the smallest ΣΠ-form of f is defined by the sum of implicants pi, for which

p′
i = 1 in the minimal solution given by the ILP solver.

Remark that some disjunctions may have a single variable (for example p′
0 and p′

3 in
Figures 2 and 3). The corresponding implicants (p0 and p3) are necessarily in the smallest
ΣΠ-form. Therefore, the Petrick’s function can be simplified by setting these variables to 1
(p′

0 = p′
3 = 1), thus reducing the number of variables and disjunctions. This phenomenon

is referred as “essential prime implicants” in the original Quine-McCluskey algorithm.
Optionally, once an optimal or suboptimal solution is found, “don’t care” values of the

Boolean function f (if any) can finally be assigned 0 or 1, depending on the solution.

3.2 Practical considerations
Computing the prime implicants may require exponential time, as there may exist O(3l/

√
l)

prime implicants, see [CM78]. However, when implemented properly, this part is not an
issue compared to the second step for the considered parameters. In particular, the choice
of the data structure has a considerable impact on the efficiency: for building size-2α+1

implicants, we start by partitioning size-2α implicants by the variables they possess and
by the number of negations they have. As already mentioned, an implicant can only be
combined with an implicant having the same variables but differing in a single negation.
Thus, the partition we propose makes the search of appropriate implicants more efficient.
Also remark that there may exist several combinations ending in the same higher-size
implicant. Following these observations, our python code easily reaches l = 13.
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For larger values, a C code will be preferred and parallelisation should be deployed.
We recommend to parallelise on the subsets of the partition described above: each thread
is given a subset of implicants and tries to combine them with subsets having the same
variables and an extra negation.

The second step is equivalent to the set cover problem, which is itself an NP-hard
problem. The complexity of our technique, based on Integer Linear Programming (in-
cluding simplex and branch-and-bound/cut), is unclear. In our experiments, it behaves
exponentially. We use CPLEX as ILP solver. Up to l = 9, an optimal solution is found
and proved in less than a second. With l ≥ 10, unless f has some specific structure, the
ILP solver fails to output an optimal solution within a few hours and using less than our
16Go memory. However, even for l = 12 (the maximal value for our experiments), CPLEX
outputs a high-quality solution within few seconds.

4 The non-collusion-resistant BE scheme
In this section, we introduce ΣΠBE-ncr, a novel symmetric broadcast encryption scheme
based on a completely new paradigm. For n users among which r are unauthorized, it
requires log2(n) keys per user and O(r) messages. In practice, the number of messages
is lower than r, except for very small values of r. However, the solution is not secure
against (almost) any collusion of at least two users, but is used as a first step towards a
fully secure scheme.

4.1 Description
We now describe our solution. For the sake of simplicity, let us consider that the number
of users n is a power of two and let l = log2(n). To illustrate the different procedures,
let the system have n = 8 users, among which users labelled 1, 3 and 5 are revoked. We
also use two encryption schemes E and Epayload that may or may not be the same. In
particular, Epayload may be an authenticated encryption scheme. The scheme also needs a
one-way function F .

4.1.1 Setup

The key material kmaster of the emitter consists in 2l keys. For 0 ≤ i < l and 0 ≤ j ≤ 1,
the key kj

i is randomly generated and stored.
In our example, the system contains six keys: k0

0, k1
0, k0

1, k1
1, k0

2 and k1
2.

4.1.2 Join

Let u0∥u1∥...∥ul−1 be the binary decomposition of u. When user u needs to join the
broadcast protocol, the emitter sends it kui

i for all 0 ≤ i < l.
In the above example, user 4 = 0b100 receives k1

0, k0
1 and k0

2.

4.1.3 Encrypt

In the encryption procedure, the emitter starts by generating an ephemeral key ke and by
encrypting the message: Epayload(ke, m) which is part of c. (Note that this step can and
should be discarded when there is no revoked user, the message is directly encrypted using
a common pre-shared key).

Let A ⊂ [[0; n − 1]] be the set of authorized users for this session. Let f be the Boolean
function in l variables defined by f(u) = 1 if u ∈ A, f(u) = 0 otherwise. The emitter then
computes the minimal ΣΠ-form of f using our variant of the Quine-McCluskey algorithm
from Section 3. It can be replaced by other algorithms, but depending on the parameters of
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the systems, we highly suggest to choose an approach that allows to find a good suboptimal
solution when an optimal solution cannot be found using reasonable time or resources.

In our scenario, the minimal ΣΠ-form of f is:

f(u) = ū2 ∨ u0u1.

The header h consists in an encoding of f (see Section 5.3). The ciphertext c contains
several encryptions of the ephemeral key ke, which needs to be encrypted for every product
term of the ΣΠ-form. Let p1 =

∧
i∈S1

ui

∧
i∈S2

ūi be the first product term (w.l.o.g.) of
the ΣΠ-form for some ordered subsets S1 and S2 of [[0; n − 1]]. For each such product term,
the emitter encrypts ke as follows:

c1 = E(k1, ke) with k1 = F
(
(∥i∈S1k1

i ) ∥ (∥i∈S2k0
i

)
)

In our example, the ciphertext is composed of two ciphertexts:

c = E(k1, ke)︸ ︷︷ ︸
c1

∥
c2︷ ︸︸ ︷

E(k2, ke) ∥Epayload(ke, m) f(u) = ū2︸︷︷︸
k1=F (k0

2)

∨
k2=F (k1

0∥k1
1)︷︸︸︷

u0u1 .

The header h and ciphertext c are broadcast.
For large values of l, the computation of the ΣΠ-form of f soon becomes the bottleneck

of this procedure. However, it only needs to be computed when A is modified. If the set
A does not evolve too often (i.e. less than every minute), this part can be made offline, as
it does not depend on the message.

4.1.4 Decrypt

While decrypting, user u first checks with the header h that f(u) = 1. In the opposite
case, u is not authorized and aborts. The user then searches which product term pi of
f is such that pi(u) = 1. There might be several such terms, in which case the user
arbitrarily choose one of them (in practice the first convenient factor encountered). As in
the encryption procedure, it derives ki with the possessed key materials and F , decrypts
ke using the corresponding part of the ciphertext and lastly decrypts m.

Here are a few examples:

user used pi decryption of ke

u = 0b100 ū2 = 1 ke = D(F (k0
2), c1)

u = 0b111 u0u1 = 1 ke = D(F (k1
0∥k1

1), c2)
u = 0b001 None cannot decrypt

4.2 Analysis
The scheme is correct: an authorized user is able to decrypt the plaintext.

Correctness. By construction of f , an authorized user u satisfies f(u) = 1. The Quine-
McCluskey algorithm (or a suboptimal variant) expresses f as a sum of products f =

∨
i pi.

If f(u) = 1, then there exists at least one product pi such that pi(u) = 1.
Let p1 =

∧
i∈S1

ui

∧
i∈S2

ūi be this product. The corresponding ephemeral key is
encrypted with:

k1 = F
(
(∥i∈S1k1

i ) ∥ (∥i∈S2k0
i

)
)

Since u = u0∥u1∥...∥ul−1 and p1(u) = 1, the user knows kui
i = k1

i for i ∈ S1 and
kui

i = k0
i for i ∈ S2. As a consequence, it has the necessary key materials to reconstruct

k1, then to decrypt the ephemeral key ke and finally m.
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The scheme is secure as long as E, Epayload and F are secure: revoked users are unable
to decrypt.

Security. By construction of f , an unauthorized user v = v0∥v1∥...∥vl−1 satisfies f(v) = 0.
Let us represent f as a sum of products f =

∨
i pi. If f(v) = 0, then all pi are such that

pi(v) = 0.
Let p1(u) =

∧
i∈S1

ui

∧
i∈S2

ūi be one of the products of f . Since p1(v) = 0, there
exists at least one index j such that either vj = 0 and j ∈ S1 or vj = 1 and j ∈ S2. By
construction k1 is computed from k1

i for i ∈ S1 and from k0
i for i ∈ S2. Then, user v misses

at least k
v̄j

j , and thus cannot reconstruct k1 if F is secure. The same argument holds for
every product pi of the ΣΠ-form of f .

If E and Epayload are secure, the unauthorized user is unable to retrieve either ke or
m, which ends the proof.

However, any collusion of users u and v that differ in at least two positions ui ̸= vi

and uj ̸= vj for distinct indexes i and j, is able to decrypt transmissions that neither u
nor v is able to decrypt alone. In particular, let u and v be two users such that ui ≠ vi for
all 0 ≤ i < l. Following the join procedure, one can easily see that they possess the whole
key materials of the system and thus are able to decrypt any broadcast.

5 The collusion-resistant BE scheme
In this section, we modify the ΣΠBE-ncr scheme to prevent any collusion of unauthorized
users from decrypting, at the cost of n keys being stored by each user. The encryption
size remains unchanged.

The one-way function F is now replaced by a pseudorandom function, as defined in
Section 2.3, still referred to as F .

We now describe the four new procedures, taking as example n = 8.

5.0.1 Setup

The key material of the emitter now consists in a single key kPRF, that is randomly
generated and stored.

As in the previous scheme, for 0 ≤ i < l and 0 ≤ j ≤ 1, values kj
i are generated and

stored. However, unlike the ΣΠBE-ncr scheme, they need not be random or secret, as long
as it is guaranteed that they are all distinct and that any concatenation is unambiguous. It
can be as simple as kj

i = i∥j encoded on a fixed number of bits. In order to be consistent
with the previous scheme, we keep the notation kj

i , but it should be considered as a label
and not as a key.

In our example, the system contains a key kPRF and six labels k0
0, k1

0, k0
1, k1

1, k0
2 and

k1
2.

5.0.2 Join

When user u = u0∥u1∥...∥ul−1 needs to join the broadcast protocol, it suffices that the
emitter sends it the key F (kPRF, ∥i∈Skui

i ) for all ordered S ⊂ [[0; l − 1]]. For simplicity, we
suggest to sort the elements of S in increasing order. There are 2l = n of them. Note that
these keys have a one-to-one correspondence with the product terms p such that p(u) = 1.

In the above example, user 4 = 0b100 receives:

F (kPRF, k1
0) F (kPRF, k1

0∥k0
1) F (kPRF, ∅)

F (kPRF, k0
1) F (kPRF, k1

0∥k0
2) F (kPRF, k1

0∥k0
1∥k0

2)
F (kPRF, k0

2) F (kPRF, k0
1∥k0

2) .
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5.0.3 Encrypt

Let A ⊂ [[0; n − 1]] be the set of authorized users for this session. Let f be the Boolean
function in l variables defined by f(u) = 1 if u ∈ A, f(u) = 0 otherwise.

The beginning of the encryption procedure is identical to the ΣΠBE-ncr scheme, the
emitter generates an ephemeral key ke and encrypts the message: Epayload(ke, m). The
emitter computes the minimal ΣΠ-form of f using the Quine-McCluskey algorithm of
Section 3.

In our scenario, suppose the minimal ΣΠ-form of f is:

f(u) = ū2 ∨ u0u1.

The header h consists in an encoding of f , as in the ΣΠBE-ncr scheme. The ciphertext
c contains several encryptions of the ephemeral key ke, which needs to be encrypted for
every product term of the ΣΠ-form. Let p1 =

∧
i∈S1

ui

∧
i∈S2

ūi be the first1 product term
(w.l.o.g.) of the ΣΠ-form for some subsets S1 and S2 of [[0; n − 1]]. For each such product
term, the emitter encrypts ke as follows:

c1 = E(k1, ke) with k1 = F

(
kPRF, ∥i∈S1∪S2

{
k1

i if i ∈ S1
k0

i if i ∈ S2

)
The set S1 ∪ S2 must be ordered to fit the ordering of the join procedure. As aforemen-

tioned, we recommend to sort the elements of S1 ∪ S2 in increasing order. In our example,
the header is composed of f and two ciphertexts:

c = E(k1, ke)︸ ︷︷ ︸
c1

∥
c2︷ ︸︸ ︷

E(k2, ke) ∥Epayload(ke, m) f(u) = ū2︸︷︷︸
k1=F (kPRF,k0

2)

∨
k2=F (kPRF,k1

0∥k1
1)︷︸︸︷

u0u1 .

The header h and ciphertext c are broadcast.
A method for encoding f is detailed in Section 5.3. An alternative encoding is possible

as long as it allows to easily build a mapping between the product terms pi of f and the
encrypted keys ki.

As in the ΣΠBE-ncr scheme, the computation of the ΣΠ-form of f can be made offline,
as it only depends on the set of authorized users.

5.0.4 Decrypt

While decrypting, user u first checks that f(u) = 1. In the opposite case, u is not authorized
and aborts. The user then searches which product term pi of f is such that pi(u) = 1.
There might be several such terms, in which case the user arbitrarily chooses one of them.
As we mention in the Join procedure, such a product term corresponds to one key ki

received by the user and defined as:

pi =
∧

j∈S1

uj

∧
j∈S2

ūj ki = F

(
kPRF, ∥j∈S1∪S2

{
k1

j if j ∈ S1
k0

j if j ∈ S2

)
Note that the computation of ki is done by the emitter and the receiver is only injected

with the list of keys described in the join procedure, contrary to the ΣΠBE-ncr scheme
where the user could freely derive ki. This more complicated design is precisely what makes
our scheme collusion resistant: even knowing the ki

j and the value of u, two colluding users
are not able to compute more keys than they already have because they do not know the
master key kP RF .

1The notion of “first” depends on the encoding method of f . Our approach is described in Section 5.3.
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Finally, thanks to ki, the user decrypts ke using the corresponding part ci of the
ciphertext and subsequently decrypts m.

Here are a few examples:

user used pi decryption of ke

u = 0b100 ū2 = 1 ke = D(F (kPRF, k0
2), c1)

u = 0b111 u0u1 = 1 ke = D(F (kPRF, k1
0∥k1

1), c2)
u = 0b001 None cannot decrypt

5.1 Analysis
The scheme is correct: an authorized user is able to decrypt the plaintext.

Correctness. The correctness can actually be reduced to the one of the ΣΠBE-ncr scheme.
Instead of being derived by the user, all possible derivations of the key/label materials
kui

i (0 ≤ i < l) are now made by the emitter then sent to the user u.

The scheme is collusion-resistant: any collusion of revoked users is unable to decrypt.

Collusion-resistance. Consider a set of authorized users A ⊂ [[0; n − 1]] and of revoked
users R ⊂ [[0; n − 1]]/A. Let f be the Boolean function defined by f(u) = 1 ⇐⇒ u ∈ A.
As usual, f is expressed in a ΣΠ-form: f =

∨
i pi.

Assuming that Epayload and E are secure encryption schemes, the collusion R is able
to decrypt if only if it manages to obtain a key ki corresponding to a product term pi.
Recall that they are of the form:

pi =
∧

j∈S1

uj

∧
j∈S2

ūj ki = F

(
kPRF, ∥j∈S1∪S2

{
k1

j if j ∈ S1
k0

j if j ∈ S2

)
.

Although they possibly know all labels k0
j and k1

j , the key kPRF is known only to the
emitter. If the collusion is able to decrypt, then:

• either ki is known by at least one user v ∈ R. Following the join and encrypt
procedures, it implies that f(v) = 1, meaning that v ∈ A. This contradicts the initial
definition of R.

• or the collusion is able to compute ki from the other evaluations of the PRF F
it possesses from the join procedure. If so, the collusion can be used to build an
adversary that distinguishes F from a random function (see Section 2.3).

The security of the scheme against a single revoked user is implied by the collusion-
resistance.

5.2 The case of “don’t care” users
The encryption procedures of the ΣΠBE-ncr and ΣΠBE schemes first define a function
f such that f(u) = 1 if and only if user u is authorized. Until now, it does not exploit
the possibility of setting “don’t care” values2 in the Boolean function f . We see several
applications of these values.

If the number of users n of the system is not a power of two, let n′ > n be the closest
greater power of two. We recommend to instantiate the schemes with n′ users and we talk
about “don’t care” users u for all n ≤ u < n′. In the encryption procedures, we suggest to

2See Section 1.
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define f(u) = ∗ for all n ≤ u < n′. The Quine-McCluskey algorithm then affect either 0 or
1 to these “don’t care” users, such that the ΣΠ-form of f is minimal.

As another application, in the context where it is not needed to deliver a message
to a user u but it is also not needed to protect this message from u (for instance a
pay-TV subscriber who already has his credentials), u can be defined as “don’t care” user.
Therefore, the set of authorized users A of the encryption procedures must be separated
in two sets :

• AM for mandatory users. Let f(u) = 1 for all u ∈ AM .

• ADC for “don’t care” users. Let f(u) = ∗ for all u ∈ ADC .

An unauthorized user u, which is not in AM ∪ ADC , remains unchanged: f(u) = 0. As a
consequence, a “don’t care” user u might be able to decrypt, which does not affect the
security against unauthorized users.

Similarly, “don’t care” users may also be used as spare slots for future needs: new users
can be dynamically added using these spare slots. However, in that case, forward secrecy
is not guaranteed: a newly added user u might be able to decrypt ciphertexts generated
before u joined the system.

5.3 An encoding for sums of products
In this section, we propose a method for encoding the ΣΠ-form of a Boolean Function f
in a compact way. As usual, let n be the number of users and 2l the closest greater or
equal power of two.

The encoding of f requires an encoding of each product term. A product term contains
at most l variables, numbered from 0 to l − 1, which can be negated. For a given product
term p, we denote by S0 the set of negated variables and by S1 the set of non-negated
variables. S0 and S1 are (disjoint) subsets of [[0; l − 1]] of size at most l. The product term
is written as:

p =
∧

i∈S0

x̄i ∧
∧

i∈S1

xi .

We propose to encode S0 (resp. S1) as an l-bit string where the i-th bit is set to 1 if and
only if i ∈ S0 (resp. i ∈ S1). The term p is then encoded as the 2l-bit string defined by
the concatenation of the encoding of S0 and S1. For example with l = 4:

x0x1x̄2 → S0 = {2}, S1 = {0, 1} →
S0︷︸︸︷

0010
S1︷︸︸︷

1100 .

Since f is a disjunction of product terms, it now suffices to concatenate the number of
product terms and the encoding of each one of them. A (very large) upper bound on this
number is n, the number of users. Indeed, as mentioned in Section 3, a naive ΣΠ-form
of f involves all elements of the support of f . Therefore the number of product terms is
represented by an l-bit integer. As example, taking n = 16 and l = 4:

x0x1x̄2 ∨ x̄1x̄3x2 ∨ x̄0x1 →
3︷︸︸︷

0011
x0x1x̄2︷ ︸︸ ︷

0010 1100
x̄1x̄3x2︷ ︸︸ ︷

0101 0010
x̄0x1︷ ︸︸ ︷

1000 0100 .

If f = 1 (i.e. all users are authorized), then there are no product term and the f is
encoded as an l-bit zero.

An even more compact way is to instead represent f by using an l-digit number in
base 3, whose j-th digit would determine each of the three possibilities: either uj does
not appear, or uj appears, or ūj appears in f . Such a number is represented on at most
l log3(2)+1 bits, which represents a gain of about 20% compared to using 2l bits as above.
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6 Comparison with other schemes

6.1 Comparison with Complete Subtree
In this section, we show that our BE scheme systematically outperforms the Complete
Subtree in terms of bandwidth, i.e. that no matter the status of the users, the number of
encryptions needed by our BE scheme is no greater than the one needed for CS. To do so,
we recall the principle of the Complete Subtree: the n users are numbered from 0 to n
and arranged as leaves of a complete binary tree T . Any set S of authorized users is then
represented as a disjoint union of sets Si, each of them being the set of leaves of a subtree
of T of height h.

In the case where all users are authorized, the CS uses the key corresponding to the root
and our BE scheme uses a key common to all users, so they both require one encryption.
Let us now assume that at least one user is revoked, meaning that the sets Si involved
in the CS comes from strict subtrees of T . We now explain how every Si can be viewed
as a product term of f . For instance, if Si corresponds to the leaves descending from
the left (resp right) child of the root, then the set Si is exactly the set of leaves whose
labels are < n/2 (resp ≥ n/2), it is therefore described by the product term ūh (resp uh).
Inductively, if the set Si corresponds to the leaves of a subtree rooted at a node of depth
d, then it will be described by a product term involving either ui or ūi for d ≤ i ≤ h, the
occurrence of one or the other option being determined by the critical path from the root
of the subtree to the root of T .

This means that every subset cover used in the CS can be represented as a ΣΠ-form
but since our BE scheme uses a ΣΠ-form whose number of terms is minimal, it necessarily
involves no more encryptions than the CS. Based on the results that were proven for the
CS in [NNL01], we get the following theorem as a corollary.

Theorem 1. For a total of n users among which r users have been revoked, the bandwidth
required by the ΣΠBE scheme is in O(r log(n/r)).

In the next section, we present experimental results showing that the performance of
our BE scheme is on average much better than this bound. We also remark that there is a
worst case in which this bound is actually reached.

6.2 A practical comparison with Subset Difference
We compare our ΣΠBE scheme to the Subset Difference (SD) method proposed by Naor
et al. [NNL01]. Let us consider a system of n users and r ≤ n revoked users. The SD
scheme requires each user to store 1

2 log2(n)2 keys. In comparison, our solution is heavier,
since n keys are stored per user.

On the contrary, the encryption cost and bandwidth consumption, expressed in number
of encryptions of the ephemeral key, behaves better in our scheme. It has been proved
in [BS13] that 1.25r encryptions are needed in the average case and 2r in the worst
case. However, this study is asymptotic and the scheme actually performs better in
practice (e.g. ≈ 1.15r for n = 2048). In comparison, we cannot give an average case,
as it relies on the average solution size of the NP-hard set cover problem, and even so,
our approach described in Section 3 outputs a suboptimal solution for large n. Our
comparison is therefore empirical, we choose n = 2048 (resp. n = 4096) and r ∈ [[0; 230]]
(resp. r ∈ [[0; 520]]). For each value of r, 20 tests are run with a set of r revoked users
drawn pseudo-randomly. Since the Quine-McCluskey algorithm generally does not end in
reasonable time for such parameters, we limit the ILP part to 30 seconds of computation on
our laptop (i5-1135G7 with 16GB RAM). Depending on the context, it may be acceptable
to run it for longer, resulting in a better solution and saving even more bandwidth. We
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Figure 4: Performance comparison for n = 2048 (above) and n = 4096 (below)

discuss this question further. The experimental encryption cost for the ΣΠBE and SD
schemes are given in Figure 4.

We observe that our solution outperforms the SD scheme except for very small values
of r, which are unlikely to be the bottleneck anyway. For a fixed r, both schemes show a
low variance in the encryption cost.

Concerning the computation time of the encryption process, our ΣΠBE scheme is
obviously much heavier. It is exclusively due to the Quine-McCluskey algorithm. If the
set of revoked users does not evolve too often (i.e. less than every minute), we stress
that this part can be made offline, as it does not depend on the message. We believe
most practical scenarios would fit in that description and recall that in the setting of BE,
the power requirements are less stringent for the emitter than for the receivers. We also
observed that very good solutions are found within the few first seconds of the ILP part.
Our experiments suggest that running the ILP solver for 30 seconds (resp. 2 minutes and
20 minutes) improves the solution found after 5 seconds by less than 0.5% (resp. 1.7% and
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4.2%) on average. Therefore, only 5 seconds of computation would have given roughly the
same results as shown in Figure 4.

Beside the Quine-McCluskey part, our approach behaves slightly better, since no key
derivation is necessary compared to the SD scheme. Similarly, the decryption process of
ΣΠBE requires a few less computations thanks to the absence of key derivation.

6.3 Further comments on the comparison with SD
Contrary to the result proven for CS in Section 6.1 it is not true that our BE scheme
systematically outperforms the Subset Difference. A typical example is the case where one
single user is denied. With the SD framework, only one encryption is needed using the
key associated to the whole tree minus the leaf corresponding to the revoked user. For
our BE scheme, λ = log2(n) encryptions are required. For instance is the revoked user is
identified by the number 0, we have f(u) =

∧λ
i=1 ui (u is authorized iff it has a 1 in its

binary decomposition). This decomposition is already optimal because it is impossible to
ensure that u ̸= 0 without looking at all its bits.

On the other hand, however, there exist cases in which our BE scheme performs
significantly better than the SD, in particular when a large number of users have been
revoked. For instance, if one revokes all the users whose corresponding number is even
then the SD will need exactly n/2 encryptions using, for every authorized leaf, the key
corresponding to the difference of the subtree rooted at its parent minus the subtree
rooted at its sibling. Using our BE scheme, such a denial is straightforward because the
corresponding f(u) is simply the value of the LSB of u, i.e. only one encryption is needed.

Following this reasoning, one gets the intuition that SD will perform well when denied
users are clustered and poorly when they are interspersed among the authorized users,
which should be a relatively frequent situation when users are randomly denied as in
our experiments. Our BE scheme, on the other hand, is more adapted to handle this
situation as it can easily cluster the denied users using a “comb” which groups users based
on their remainders modulo a power of 2. We believe that this is the explanation behind
our experimental results, but we reckon that, as we mentioned before, it is extremely
challenging to provide a quantitative analysis of our BE scheme’s behaviour.

An important point that may come in mind is that, in practice, users are absolutely
not revoked at random but based on features that can be used to arrange the tree used
within the SD. For instance, if users are put in the tree based on their subscription date,
their corresponding leaves will be close to one another and they will be roughly revoked at
the same time, when the subscription expires. While this is a perfectly valid argument, we
claim that it applies identically to our BE scheme (“close” users have consecutive numbers,
so their most significant bits are identical) and that our BE scheme should actually benefit
even more from this fact.

Indeed, in the case where several meaningful features need to be encoded, one could
simply assign the first half of the identifier to one feature (e.g. geographic location, type
of subscription) while the other half would just be a customer number related to the time
of subscription. This would make it extremely convenient for our BE scheme to perform
effective revocations based on these features or a combination thereof (for instance if there
are various options for subscription duration, users will not be revoked based on their
date of subscription but on a combination of both subscription date and subscription
duration).

7 Future works
As briefly mentioned in Section 2.2, the ESPRESSO algorithm [BHMS84] is an interesting
alternative to the Quine-McCluskey algorithm when dealing with a large number of users.
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As for the Quine-McCluskey, it aims at representing a Boolean function as a small sum of
products. However, the prime implicants are built following some customizable heuristic
and is likely to output a suboptimal solution. We did not feel confident about using
such a complex tool in a black box fashion without having some intuition about how
it works and why it would be close or far from optimality. This question would need
further investigation, but we point out that both the security and correctness of our BE
scheme do not depend on the method used for minimizing the number of terms of the
ΣΠ-form of f , leaving room for numerous options including the pre-computation and
storage of some ΣΠ-forms in advance when revocations can be anticipated (e.g. expiration
of subscriptions).
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