
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 1, 26 pages.

https://doi.org/10.62056/ak2isgvtw
Check for updates

Feldman’s Verifiable Secret Sharing for a
Dishonest Majority

Yi-Hsiu Chen and Yehuda Lindell

Coinbase, USA

Abstract. Verifiable secret sharing (VSS) protocols enable parties to share secrets
while guaranteeing security (in particular, that all parties hold valid and consistent
shares) even if the dealer or some of the participants are malicious. Most work on
VSS focuses on the honest majority case, primarily since it enables one to guarantee
output delivery (e.g., a corrupted recipient cannot prevent an honest dealer from
sharing their value). Feldman’s VSS is a well known and popular protocol for this
task and relies on the discrete log hardness assumption. In this paper, we present a
variant of Feldman’s VSS for the dishonest majority setting and formally prove its
security. Beyond the basic VSS protocol, we present a publicly-verifiable version, as
well as show how to securely add participants to the sharing and how to refresh an
existing sharing (all secure in the presence of a dishonest majority). We prove that
our protocols are UC secure, for appropriately defined ideal functionalities.

1 Introduction
Feldman’s verifiable secret-sharing scheme (VSS) [Fel87] is one of the classic verifiable secret
sharing schemes in the literature, and has lately become very popular in the construction
of practical threshold signing schemes. In general, the aim of a verifiable secret-sharing
scheme is to ensure that all honest parties receive valid and consistent shares, even if
the dealer and/or some recipients are corrupted. The way that Feldman’s VSS achieves
this is to augment a regular Shamir sharing with a broadcast of the sharing polynomial
“in the exponent”. That is, let b0 = s and let b(x) =

∑t−1
k=0 bk · xk. Then, in addition

to sending each party their share, the dealer broadcasts B0, B1, . . . , Bt−1 where each
Bk = bk · G. Each party Pj , who is supposed to receive the share sj = b(αj), then
verifies that sj · G =

∑t−1
k=0(αj)k · Bk, ensuring that its shares is consistent with the single

broadcasted polynomial in the exponent. Furthermore, since all parties receive the same
B0, B1, . . . , Bk by the security of broadcast, this ensures that they all have valid shares on
the same polynomial. In the classic literature on VSS, an honest majority is considered,
and the aim is also to ensure guaranteed output delivery, meaning that corrupted parties
cannot prevent honest parties from obtaining output.

In this paper, we prove the security of Feldman’s verifiable secret-sharing scheme
(VSS) [Fel87] in the ideal/real model paradigm of secure multiparty computation for the
case of a dishonest majority, achieving security with abort (meaning that honest parties
may not necessarily obtain output). More specifically, as usual we consider n parties and
a threshold t required to reconstruct the secret. However, we make no limitation on t, and
security is guaranteed for any t ≤ n (and even t = n). Beyond the basic VSS, we consider a
number of variants and additional operations that are useful in the threshold cryptography
setting. In particular, we construct protocols and prove security for the following:

E-mail: yihsiuc@pm.me (Yi-Hsiu Chen), yehuda.lindell@gmail.com (Yehuda Lindell)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-01-08 Accepted: 2024-03-05

https://doi.org/10.62056/ak2isgvtw
https://crossmark.crossref.org/dialog/?doi=10.62056/ak2isgvtw&domain=pdf&date_stamp=2024-03-28
https://orcid.org/0000-0002-6631-8973
https://orcid.org/0000-0002-8176-690X
https://yehudalindell.com
mailto:yihsiuc@pm.me
mailto:yehuda.lindell@gmail.com
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Feldman’s Verifiable Secret Sharing for a Dishonest Majority

1. Basic Feldman VSS: This is the basic Feldman secret sharing with a dealer and
n parties who participate. We stress that we do not assume an honest majority,
and as such parties may abort (and some honest parties may abort while others
have output). However, as with standard security with abort, it is guaranteed that
the output of all honest parties who do not abort is consistent with the same valid
sharing.

2. Feldman VSS with online and offline parties: In the basic VSS, all n parties send
and receive messages. However, consider a setting where t-of-n parties participate
in a distributed key generation protocol. In this case, t parties actually participate,
and the other n − t parties just receive shares. This is sufficient since anyway any t
parties can learn the key, and so it suffices for just t parties to generate the key (as
we assume that strictly less than t parties are corrupted). Now, in regular Feldman
VSS, it is possible to have the n − t parties be passive and merely receive their
shares. However, what happens if some of those parties are offline. This can make
sense if n ≫ t, or some of those n − t parties are actually just backup entities. In
this case, there is no way to know if a party has received a valid share until they
connect. In Appendix A.1, we show how small changes to the basic Feldman VSS
protocol can be adapted to this setting. In particular, we utilize publicly-verifiable
encryption [CD00] in order to essentially construct a publicly-verifiable secret-sharing
scheme [Sta96, Sch99], where the t parties who are online can all verify that the
shared values to the n − t offline parties are valid before the protocol terminates.
This ensures that the sharing is valid, even if not all parties are connected. We note
that the online parties may abort, but we achieve the guarantee that if any honest
online party completes without aborting, then all honest offline parties are guaranteed
to generate output and not abort. This is very significant in practice where an abort
for online parties can be immediately detected and dealt with, but offline parties
may discover problems a lot later, and dealing with it is more challenging.

3. Adding a party: In some real-world applications where a key is shared among parties,
it is necessary to be able to support the addition of new parties (without changing
the threshold t). In particular, the set of parties who can approve a signing operation
in a threshold signing setting may be dynamic (e.g., consider employees of a specific
team at a cryptocurrency custodian). As a result, it is necessary to support adding
and removing parties. Our protocol for adding a party works by having t parties
subshare the new share to each other, and then send the sum of these subshares –
which constitutes a random sharing of the new share – to the new party.

4. Refresh: In order to achieve a level of proactive security where it is not possible to
slowly steal shares from one party at a time, we provide a protocol that refreshes an
existing secret sharing. The result of a refresh operation is that the parties all hold
shares on an independent polynomial that defines the same secret. This is achieved
by t parties using VSS to share polynomials that have the secret 0, and then adding
all of those shares to the existing one.

5. Removing a party: In the same way that it is sometimes necessary to add a party to
an existing secret sharing, it is also necessary to revoke a share and remove a party
from the sharing. This can be achieved simply by running the refresh operation,
without providing the new share to the party being removed. This works since all
other parties now hold shares on an independent polynomial, rendering the revoked
party’s share useless.

We remark that all of our protocols work with more general access structures than just
a basic threshold. In particular, we can support any tree with AND, OR and threshold
nodes, using standard methods.

Yi-Hsiu Chen, Yehuda Lindell 3

Feldman’s VSS for a dishonest majority: The main differences between our protocol
and the standard Feldman VSS for an honest majority are as follows:

• Since we anyway achieve only security with abort, we do not need a full-blown secure
broadcast of the vector (B0, . . . , Bt−1), and it suffices for the parties to run a simple
echo-broadcast of what they received. This ensures consistency between all honest
parties that do not abort.

• In order to extract the polynomial that is shared in the proof of security when the
dealer is corrupted, we need to have the dealer prove knowledge of the polynomial
with a zero-knowledge proof of knowledge. In the honest majority setting (with
the number of corrupted being less than half of the quorum required, so less than
t/2 here) this is not needed since the polynomial can be extracted by the simulator
receiving enough shares to reconstruct directly. This is because the number of honest
parties in that setting is greater than the degree of the polynomial, something that
isn’t guaranteed in our setting (where up to t − 1 parties may be corrupted).

• Standard Feldman VSS has a “complaint” phase where parties can complain that
they received an incorrect value and this is fixed by the dealer. In our case with no
honest majority, if this occurs then a party will just abort, and so we do not need to
“fix” anything. Importantly, as described above, we do ensure that all honest parties
receive the same vector (B0, B1, . . . , Bt−1), and this guarantees that all shares are
on the same degree-(t − 1) polynomial. In the standard VSS setting, this would
require a full-blown secure broadcast (since guaranteed output delivery is needed),
whereas in our setting we can use a simple echo-broadcast with just one round where
all parties send each other the vector they received. If a party did not receive the
same output from everyone, then we just allow it to abort. This ensures that all
honest parties who do output something have received the same vector from all other
parties. The overall number of rounds is just two (over point-to-point channels).

On the security of Feldman VSS: Secret sharing schemes have the property that
nothing about the secret s being shared may be revealed. However, in Feldman’s secret
sharing, the value S = s · G is revealed (this value is broadcast as B0; see above). Thus,
the basic Feldman VSS is not actually “fully secure” within itself, unless the value being
shared is a hard-core bit of s and not s itself. This is often considered to be a “flaw” in
Feldman’s VSS. Nevertheless, in the context of elliptic-curve threshold cryptography where
the sharing is of an elliptic curve key, the secret s being shared is either a private key or a
share of the private key. In such cases, the public key, which is exactly s · G is supposed
to be revealed. In addition, when VSS is used for distributed key generation, then each
party shares some si and the resulting private key is s =

∑
si. In standard distributed key

generation protocols, each si · G is also revealed. Thus, Feldman VSS can be used without
any loss or compromise in security. Indeed, for these applications, revealing si · G is exactly
what is needed in order to tie the shared values back to the actual key. As a result, in this
context, the fact that s · G is revealed is a feature and not a bug, and simplifies protocol
design.

Our formalization of security actually bypasses this issue by having the ideal function-
ality itself provide the exponents of the polynomial (B0, . . . , Bt−1) to all parties. Thus, the
security guarantees provided by the functionality are primarily those of correctness and
consistency (all honest parties are guaranteed to have valid shares on the same polynomial).
In terms of “hiding”, this is only suitable for applications where the shares in the exponent
can all be revealed. As discussed, this suffices for applications like elliptic-curve threshold
cryptography, which is growing in use today.

4 Feldman’s Verifiable Secret Sharing for a Dishonest Majority

On the use of Feldman VSS for key generation: In general, VSS protocols reveal
nothing about the shared value. As a result, the classic way of running key generation
via VSS is for each party to share a secret in parallel, and to then sum the result. Of
course, in the case that one also needs to obtain the public key, it is necessary to compute
that while ensuring that it indeed matches the sum of the shared values. When using
Feldman VSS, this latter task is trivial: as described above, each party’s sharing reveals its
associated “public key share”, and the public key is just the sum of these values. However,
when using Feldman VSS, if all parties just share their secret in parallel, then it is possible
for the adversary to bias the result. This is because they can see the public shares of
the honest parties (i.e., B0, . . . , Bt−1) before they send their own shares. As a result, in
order to obtain distributed key generation with full simulation, each party first sends
an (extractable and equivocal) commitment to their VSS sharing. After receiving all
commitments, the parties decommit, and simply sum the result. This prevents corrupted
parties from biasing the result since they are committed to their sharings before learning
anything about the honest parties’ sharings.

Rounds of communication and asynchronous computation: In some settings, and
in particular in the threshold signing setting, it is possible that some parties involved in the
operations (distributed key generation, adding a party, and so on) are humans with their
personal devices. In these cases, protocols with many rounds of interaction are problematic,
since ensuring that everyone is online together can be challenging. As a result, we aim for
a minimal number of rounds. All of our protocols have two rounds, making it sufficient for
each party to “connect” twice. That is, a human can connect and participate in the first
round, and at a later time connect and participate in the second round, meaning that the
connections can be asynchronous (except for knowing that the first round has completed).
We also support having parties offline and later receiving their output, as described above.
In this paper, we call parties asynchronous if they can be online to carry out computations,
but we cannot require them to be online at the same time. As a result, they can each
connect, download information from some “coordinator machine”, prepare a message to be
sent to other parties that is sent to the coordinator, and then disconnect.

In the specific case of refresh, in Appendix A.2 we also provide a variant with just
a single round. This is due to the fact that distributed key generation, adding a party,
and removing a party, are all less common tasks. In contrast, refresh is something that
should be run periodically, and here having two rounds can be problematic. Clearly, it is
impossible to achieve consensus with only a single round of communication (each party
sending something). However, if there are also some “fully online parties” then we show
that it’s possible to run the consensus between these fully online parties only. The security
guarantee is weaker (requiring at least one honest fully online party) but enables us to
achieve practical refresh with asynchronous parties.

Security model and composition: We prove security for the stand-alone definition of
secure multiparty computation [Can00, Gol04] for security with abort (where some honest
parties may have output and some may abort) and with no honest majority. In this model,
all parties send their inputs to the ideal functionality (computed by a trusted party). The
ideal functionality then sends the (ideal-model) adversary the corrupted parties’ outputs,
and the adversary then instructs the ideal functionality as to which honest parties should
receive output. In some cases, the functionality may be interactive, with the adversary
interacting with the functionality. This is used to model issues like the fact that the
adversary may be able to influence the secret sharing polynomial, but in no way that
affects security. For example, it can choose its sharing as a function of the corrupted
parties’ shares from the honest parties’ sharings. This is inconsequential, but must be
included in the functionality definition.

Yi-Hsiu Chen, Yehuda Lindell 5

Although we prove security in the stand-alone model that guarantees security under
sequential composition only, we are really interested in UC security [Can01]; i.e., security
under concurrent general composition. This is achieved by all our protocols, since they are
all perfectly secure with straight-line simulation (i.e., no rewinding). As shown in [KLR10],
this implies UC security. We remark that the actual VSS protocol is only perfectly secure
in the ideal zero-knowledge hybrid model. However, this suffices since it means that as
long as the zero-knowledge proof of knowledge is instantiated with a UC-secure protocol,
then everything is UC secure.

A note on novelty: To the best of our knowledge, a formal description and proof of
security for Feldman’s VSS in the case of a dishonest majority has not appeared previously
in the literature. Our protocols are based on well-known techniques, but have not previously
been formalized and proven. This has value, for example, to ensure that zero-knowledge
proofs are used in the sharing (something not always done in naive implementations). In
addition, our simple protocols for adding a party and refreshing a sharing have also, to
the best of our knowledge, not appeared previously.

2 Definitions and Preliminaries
2.1 Preliminaries
Group and field: We work over an additive group G of order q, with group generator
G. We denote scalars in Zq with lower-case characters, and group elements of G with
upper-case characters. For the secret sharing, we consider polynomials over the field Fq

(i.e., the same q which is the order of G).

Lagrange interpolation: Let α1, . . . , αn be distinct field elements. We denote the
Lagrange basis polynomials with respect to a set I ⊆ [n] by

{
LI

i

}
i∈I where LI

i (x) =∏
j∈I\{i}

x−αj

αi−αj
. The standard Lagrange interpolation works by the fact that for any

set of t distinct points {(αi, βi)}i∈I , it holds that f(x) =
∑

i∈I βi · LI
i (x) is the unique

degree-(t − 1) polynomial such that f(αi) = βi for every i ∈ I.

Zero-knowledge: We describe and prove our protocols secure with an ideal functionality
for a (batch) zero-knowledge proof of knowledge of the discrete log of a series of group
elements in the group G with generator G. The relation is formally defined by:

BatchDLG,G =
{(

{Xi}i∈[k] , {xi}i∈[k]

)
: ∀i ∈ [k] xi · G = Xi

}
.

We denote an ideal zero-knowledge proof of knowledge functionality for this functionality
by FBatchDL

zk (we omit the parameterization of the group G and generator G from here on).
This can be realized with UC security in the random-oracle model by applying the Fischlin
transform [Fis05] to the standard Sigma protocol for discrete log by Schnorr [Sch89], in
parallel for each value. The functionality is a pairwise functionality, and so the prover Pi

sends
(

prove, sid, i, j, {Xi}i∈[k] , {xi}i∈[k]

)
, and FBatchDL

zk sends
(

prove, sid, i, j, {Xi}i∈[k]

)
to party Pj if the proof is valid, and sends

(
prove, sid, i, j, {Xi}i∈[k] , abort

)
if it is invalid.

Practically, we realize this by having each Pi generate a non-interactive proof and simply
send it to each party separately. We stress that this means that the functionality does not
guarantee that all parties receive the same proof. In our protocols this does not matter,
since we anyway guarantee that the statement being proven is the same for all parties,
and this suffices.

6 Feldman’s Verifiable Secret Sharing for a Dishonest Majority

2.2 Ideal Functionality Definitions
In this section we define the ideal functionalities for each of the operations we support.
We do not define a “remove party” functionality since, as we have described, this is easily
carried out by just running refresh without including the party to be removed.

Honest parties’ outputs: As described above, we consider a setting of security with
abort, where some honest parties may abort while others receive output. This is modeled
by having the adversary send the trusted party/ideal functionality the set of honest parties
to receive output. This can be modeled within the instructions of the adversary, or as part
of the ideal-model execution. We choose the latter, with the understanding that these are
equivalent. We denote the list of honest parties sent by the ideal adversary/simulator in
the ideal execution that should receive output by Oh.

2.2.1 VSS

We define a VSS functionality Fvss for sharing a secret s via a degree-(t − 1) polynomial
s(x). The functionality also sends all of the polynomial coefficients “in the exponent” (i.e.,
bk · G for k = 0, . . . , t − 1 where s(x) =

∑t−1
k=0 bk · xk)). These additional values help

to enforce correct behavior (in the dishonest majority setting). Recall that, as we have
discussed, releasing S = s · G is not “leakage” per se in our application, since we use this
functionality for the case that s is an EC private key (or a share of an EC private key). In
this case, S is its associated public key which is supposed to be public.

Functionality Fvss:

• Upon receiving input from party Pi with i ∈ [n]

– (share, sid, s) if Pi is honest
– (share, sid, s(x)) if Pi is corrupted

operate as follows:

1. If Pi is honest, then choose a random degree-(t − 1) polynomial s(x) ∈ Fq[x]
with s(0) = s

2. If Pi is corrupted, then ignore the message if deg(s(x)) ≥ t

3. Let1 s(x) =
∑t−1

k=0 bk · xk

4. For k = 1, . . . , t − 1, compute Bk = bk · G

5. Set B = (B0, . . . , Bt−1)
6. For j = 1, . . . , n, compute sj = s(αj)
7. Send (share, sid, B, sj) to party Pj for j = 1, . . . , n

A more minimal functionality? The Fvss functionality reveals to the parties not only
S = B0 = s · G, but also all of the polynomial coefficients in the exponent B1, . . . , Bt−1
for all parties. In our uses of Fvss, the value S = B0 = s · G is always revealed, as it is
the public key and s is the private key (or they are shares of the public/private keys but
also revealed). However, the additional B1, . . . , Bt−1 need not be revealed in principle.
As such, it may seem that this formulation reveals more information than necessary, and
it would be better to have the functionality send only (share, sid, S, sj) where S = s · G
for the secret s. However, it is easy to see that the basic Feldman secret sharing does

1We are aware that denoting the polynomial by s(x) and the coefficients by bk and not sk looks strange.
However, we do this since we denote the i’th party’s share by si.

Yi-Hsiu Chen, Yehuda Lindell 7

not securely compute a minimal functionality where parties only receive (share, sid, S, sj)
from the ideal functionality. This is because the distinguisher sees all outputs – of both
honest and corrupted parties. Now, in the real execution, the corrupted parties see the
polynomial “in the exponent” and so can compute S1, . . . , Sn where Sj = sj · G for all
parties, including the honest parties. In contrast, in an ideal execution where less than t
parties are corrupted, the simulator cannot compute sj · G for an honest Pj , given only the
points of the corrupted parties. Thus, this more minimal functionality cannot be computed
in this way, and any application using Feldman VSS will have to be proven secure for
the above functionality, where B0, . . . , Bt−1 (or equivalently, S1, . . . , Sn) are all revealed.
Fortunately, for applications like distributed key generation and the like, this additional
information can be simulated by choosing a random polynomial “in the exponent”, and so
it is inconsequential.

Observe also that a corrupted party sends s(x) and not just s (like an honest dealer)
since in the real protocol, nothing forces a corrupted dealer to use a random polynomial.
It is possible to securely realize a stronger functionality where a corrupted dealer sends
s to Fvss and the functionality chooses s(x), like for an honest dealer. Realizing this
functionality would require a type of coin tossing where the dealer commits to a sharing of
s and all other parties commit to a sharing of 0, and then all parties decommit and the
sharing is the sum of all sharings. However, this is not needed in applications of secret
sharing we are familiar with, and so would add unnecessarily complexity and cost.

Public verifiability: Publicly-verifiable secret sharing enables anyone to verify that each
party’s (encrypted) share is valid. This can be achieved canonically (with Feldman’s VSS)
by simply having the dealer encrypt each party’s share under the recipient’s public key
using publicly-verifiable encryption. Then, given the coefficients of the sharing polynomial
in the exponent, it is possible for anyone to compute any party’s share in the exponent,
and then verify its validity in the encryption. We do not model public verifiability any
differently in the definition. Rather, we use it as a way of computing the standard Fvss
with only a quorum t of actively participating parties. In particular, we do not need the
n − t additional parties to be online during the secret sharing itself. This is achieved by
having the t online parties verify that the encrypted shares of all parties are valid, without
the n − t additional parties needing to be online. We remark that public verifiability
does not guarantee output delivery. However, it does provide us with a weaker version of
guaranteed output delivery that is very meaningful. In particular, we achieve the property
that if any honest online party does not abort then it is guaranteed that all offline honest
parties do not abort.

More general access structure: Our protocols all support access structures of a more
general form of any tree of AND, OR and threshold nodes. The extension of the sharing
to access structures of these types is straightforward. We therefore focus on the basic
threshold case only; the proof remains essentially the same for the general case.

2.2.2 Add Party

We also define a functionality Fadd for adding a new party to the sharing. This involves
computing s(αn+1) for a new Pn+1.

Functionality Fadd: Upon receiving (add, sid, B, si, αn+1) from t parties I ⊆ [n],

1. Verify that all received B and αn+1 are the same

2. Parse B = (B0, . . . , Bt−1)

3. Verify that si · G =
∑t−1

k=0(αi)k · Bk for all i ∈ I

8 Feldman’s Verifiable Secret Sharing for a Dishonest Majority

4. Reconstruct s(x) to be the unique polynomial such that s(αi) = si for all i ∈ I

5. Compute sn+1 = s(αn+1)

6. Send (add, sid, B) to the adversary

7. Send (add, sid, B, sn+1) to Pn+1

We remark that in the protocol computing this, Pn+1 is a passive recipient only.

2.2.3 Refresh

Finally, we define a functionality Frefresh for refreshing the sharing. This involves inter-
actively computing a sharing of a new random polynomial s′ for the sharing, with the
constraint that s′(0) = s(0). As we will see below, this works by having all parties choose
a random sharing of 0, and then defining the refreshed sharing to be the sum of the
original sharing plus all the new ones. This is clearly a new sharing of the same value. A
naive definition of this functionality would be for Frefresh to simply reconstruct the secret
and choose a new random polynomial with the same secret. However, securely realizing
this functionality would be difficult since it would require the result to be a completely
random polynomial. As such, all parties would have to commit to their sharings of 0 and
then decommit (to ensure that no sharing is chosen as a function of the other sharings).
However, there is no real need for the polynomial to be truly random. Therefore, we enable
the ideal model adversary to receive the new sharing chosen by Frefresh and to then send
a sharing of 0 to be added to it. This models the adversary’s ability to bias the sharing
polynomial in the real protocol by first seeing the shares of the honest parties and only
then sending its sharing. This does not negatively impact security since adding a known
polynomial to a secret random polynomial does not leak any information about the secret.

Functionality Frefresh:

• Upon receiving (refresh, sid, B, si) from t parties I:

1. Verify that all received B are the same
2. Parse B = (B0, . . . , Bt−1)
3. Verify that si · G =

∑t−1
k=0(αi)k · Bk for all i ∈ I

4. Reconstruct s(x) to be the unique polynomial such that s(αi) = si for all i ∈ I

5. Choose a new random degree-(t − 1) polynomial ŝ(x) =
∑t−1

k=0 b̂k · xk under the
constraint that ŝ(0) = s(0)

6. For k = 1, . . . , t − 1, compute B̂k = b̂k · G

7. Set B̂ = (B̂0, . . . , B̂t−1)
8. Compute ŝj = ŝ(αj) for all j = 1, . . . , n

9. Send
(

refresh, sid, {ŝ(αi)}i∈Ic
, B̂

)
to the adversary, where Ic denotes the set of

corrupted parties, and await the adversary’s response

• Upon receiving (refresh, sid, s̃(x)) from the adversary after sending it(
refresh, sid, {ŝ(αi)}i∈Ic

, B̂
)

(if before that, then ignore):

1. Verify that s̃(x) is a degree-(t − 1) polynomial and that s̃(0) = 0
2. Set s′(x) = ŝ(x) + s̃(x) =

∑t−1
k=0 b′

k · xk

3. For k = 0, . . . , t − 1, compute B′
k = b′

k · G

Yi-Hsiu Chen, Yehuda Lindell 9

4. Set B′ = (B′
0, . . . , B′

t−1)
5. Compute s′

j = s′(αj) for j = 1, . . . , n

6. Send
(
refresh, sid, B′, s′

j

)
to party Pj for j = 1, . . . , n

7. Send (refresh, sid, B′) to the adversary

We remark that in the protocol computing this, all parties Pj with j /∈ I are passive
recipients, receiving messages only.

3 Protocols
3.1 Securely Computing Fvss with n Online Parties
Intuition: The protocol works by the dealer computing Shamir shares of the secret,
and then sending each party its share as well as the coefficients of the polynomial “in
the exponent” (in elliptic-curve notation, this means that each coefficient bk is given as
Bk = bk · G). Since groups support multiplication by a scalar and addition, it is possible
for any party to compute the polynomial in the exponent (meaning compute f(a) · G for
any a) given a and the coefficients in the exponent (even without knowing f itself). Thus,
each party verifies that its share is consistent with the polynomial in the exponent, as well
as running an echo-broadcast on the coefficients to ensure that they all received the same
polynomial. This ensures that all honest parties hold shares on the same degree-(t − 1)
polynomial, as required.

Protocol 1 (Feldman VSS – Πvss).

Parties: P1, . . . , Pn with Pi being the dealer

Common input: sid ∈ {0, 1}∗, parameters t, n ∈ N with t ≤ n, and unique non-zero
values α1, . . . , αn ∈ Fq

Pi’s private input: s ∈ Fq

The protocol:

1. Round 1 – party Pi:
(a) Set b0 = s

(b) Choose random b1, . . . , bt−1 ∈ Fq and define s(x) def=
∑t−1

k=0 bk · xk

(c) For every j ∈ [n], set sj = s(αj)
(d) For k = 0, . . . , t − 1, compute Bk = bk · G

(e) Define B = (B0, . . . , Bt−1)
(f) Send

(
prove, sid, i, j, {Bk}t−1

k=0 , {bk}t−1
k=0

)
to FBatchDL

zk for every j ∈ [n]
(g) Send (share, sid, B, sj) to Pj for every j ∈ [n]

2. Round 2 – each Pj with j ̸= i: Upon receiving (share, sid, B, sj) from Pi and
(prove, sid, . . .) from FBatchDL

zk

(a) Parse B = (B0, . . . , Bt−1)
(b) Verify that all Bk are valid group elements (they are allowed to be the

identity)
(c) If sj · G ̸=

∑t−1
k=0(αj)k · Bk, then send abort to all parties and abort

(d) If the message from FBatchDL
zk is

(
prove, sid, i, j, {Bk}t−1

k=0 , abort
)

, then send
abort to all parties and abort

10 Feldman’s Verifiable Secret Sharing for a Dishonest Majority

(e) If the set {Bk}t−1
k=0 from FBatchDL

zk is not the same as B, then send abort to
all parties and abort

(f) Send B to all Pℓ with ℓ ∈ [n]
(In practice, it suffices to send H(B), where H is a collision-resistant hash function.)

3. Output – each Pj: upon receiving B1→j , . . . , Bn→j (where Bℓ→j denotes the
set B that Pj received from party Pℓ)
(a) Abort unless B1→j = · · · = Bn→j = B
(b) Output (share, sid, B, sj)

Security: We now prove the security of the protocol for up to t − 1 corrupted parties.
Since t is the minimum quorum size (and t can even equal n), this is the setting of a
dishonest majority (i.e., security as long as at least one party is honest).

Theorem 2. Protocol Πvss realizes the functionality Fvss in the FBatchDL
zk -hybrid model with

perfect security-with-abort, in the presence of a static malicious adversary corrupting up to
t − 1 parties, for any t ≤ n.

Proof. Let I = [n] denote the set of all parties, let Ic ⊆ I denote the set of corrupted
parties, and let Ih

def= I \Ic denote the set of honest parties. If Ic is empty, then simulation
is trivial; we therefore assume that there is at least one corrupted party. We separately
consider the case that the dealer Pi is honest, and the case that the dealer Pi is corrupted.

Case 1 – the dealer Pi is corrupted: The simulator for this case works simply
by running the honest parties (this is easy since they have no secret input) and seeing
which would abort or not, and by extracting the polynomial from the adversary via the
zero-knowledge proofs of knowledge to send to the ideal functionality Fvss. Let A be the
real-world adversary. We construct an ideal world adversary/simulator S, as follows:

1. S invokes A with sid and receives the messages
(

prove, i, j, sid, {Bk}t−1
k=0 , {bk}t−1

k=0

)
intended for FBatchDL

zk and (share, sid, Bj , sj), for all j ∈ Ih.

2. For every j ∈ Ih:

(a) S verifies that sj · G =
∑t−1

k=0(αj)k · Bk and that Bk = bk · G for every k =
0, . . . , t − 1 in the prove message for Pj

(b) If yes (to both), S simulates Pj sending Bj to all parties
(c) Else, S simulates Pj sending abort to all parties, and sends abort to Fvss (and

after simulating all honest parties sending their message in this round, S
simulates all honest parties aborting)

3. S receives the message
{

Bℓ
j

}
j∈Ic

from A for every ℓ ∈ Ih, where Bℓ
j is the vector

sent from the corrupted party Pj to honest party Pℓ (note that Pj may send different
vectors Bj to different honest parties)

4. For every ℓ ∈ Ih

(a) S verifies that the B vectors received by Pℓ are all the same (based on the Bj

values computed for the honest parties, and the Bℓ
j values received for Pℓ)

(b) If yes, S adds ℓ to Oh (the set of honest party to receive output, initially empty)

5. S defines s(x) =
∑t−1

k=0 bk · xk and sends (share, sid, s(x)) to Fvss, together with the
list of honest parties Oh to receive output

Yi-Hsiu Chen, Yehuda Lindell 11

6. S outputs whatever A outputs

If A sends an incorrect proof to FBatchDL
zk to an honest party, or sends an incorrect sj to

an honest party, then in the real execution all honest parties abort (since they instruct
all honest parties to abort). Likewise, in the ideal execution, S sends abort to Fvss and
so all honest parties abort in the ideal execution. Next, if A sent a share message with
different sets B and B′ to two different honest parties, then all honest parties abort in the
output phase, in both the real and ideal executions. This holds since all honest parties
receive different B and B′ in the second round. If none of the above happens, then it is
guaranteed that all honest parties received the same set B, and they all received a valid
share sj such that sj · G =

∑t−1
k=0(αj)k · Bk. Thus, any honest party not aborting will

output (share, sid, B, sj) with the same set S, as in the ideal execution (since Fvss computes
B in the same way based on s(x)). Finally, note that if any corrupt party sends a different
B′ value to an honest party in the last step, then that party will abort in both the real
and ideal executions. Thus, the distribution over the adversary and honest party’s outputs
are identical in both cases.

Case 2 – the dealer Pi is honest: The simulation in this case works by simulating
the messages that the corrupted parties would receive, using the shares received from Fvss.
Let A be the real-world adversary. We construct an ideal world adversary/simulator S, as
follows:

1. S receives (share, sid, B, sj) from Fvss, for every j ∈ Ic, where B = (B0, . . . , Bt−1)

2. S invokes A with sid and simulates FBatchDL
zk sending it

(
prove, sid, i, j, {Bk}t−1

k=0

)
for

every j ∈ Ic, and the honest dealer Pi sending it (share, sid, B, sj) for every j ∈ Ic

3. S simulates all honest parties sending B to all corrupted parties in round 2

4. S receives the messages
{

Bℓ
j

}
ℓ∈Ih

that A sends for every j ∈ Ic to all honest parties
ℓ ∈ Ih

5. For every ℓ ∈ Ih, if A sends B as received to the honest party Pℓ from every corrupted
Pj , then S adds ℓ to Oh (the set of honest party to receive output, initially empty)

6. S sends Oh to Fvss to indicate which honest parties receive output

7. S outputs whatever A outputs

In order to see that the distribution over the messages in the real and ideal executions is
identical, observe that the honest dealer in the real protocol chooses the polynomial s(x)
identically to the way that the functionality Fvss chooses the polynomial (given only s) in
the ideal execution. Furthermore, the only impact that the corrupted parties can have in
this execution is to send incorrect B values. These are easily simulated perfectly by S, as
they only impact who receives output and who aborts. This completes the proof.

Observe that the simulator S in the proof of Theorem 2 is straight line (it does not
rewind A). Since perfect security with a straight-line simulator implies UC security, as
proven in [KLR10], we have the following corollary:

Corollary 1. Protocol Πvss UC realizes with abort the functionality Fvss in the FBatchDL
zk -

hybrid model, in the presence of a static malicious adversary corrupting up to t − 1 parties,
for any t ≤ n.

12 Feldman’s Verifiable Secret Sharing for a Dishonest Majority

Securely computing Fvss with t online Parties and n − t offline parties: In
Appendix A.1, we show how a small change to Protocol Πvss enables t online parties to
verifiably share values to n parties, n − t of them whom are offline, with the property that
if any online party is (semi-)honest, then all offline parties are guaranteed to receive correct
output. This can be important for cases that the offline parties may only connect much
later on, and discovering that their sharing is not valid at that time will make recovery
difficult.

3.2 Adding a Party
We describe this protocol directly for t online parties, with the new party being added
being a passive recipient only. The protocol requires each of the t parties to send and
receive a message to the quorum, and to then prepare a final message for the new member.
Thus, in the case of asynchronous parties, each party has to connect twice.

Idea: The idea behind this protocol is as follows. Let I ⊆ [n] be a set of online parties
with |I| = t, with respective shares {si}i∈I on a polynomial s(x). The aim of the
parties is to generate s(αn+1) for the new party. By Lagrange interpolation, we have that
s(x) =

∑
i∈I si · LI

i (x) and thus s(αn+1) =
∑

i∈I si · LI
i (αn+1). Thus, each party Pi with

i ∈ I can simply send the new party Pn+1 the value sn+1
i = si · LI

i (αn+1), and Pn+1 can
compute the sum sn+1 =

∑
i∈I sn+1

i = s(αn+1). Unfortunately, this simple solution is
insecure, since Pn+1 can also compute∑

i∈I
sn+1

i · LI
i (0)

LI
i (αn+1)

=
∑
i∈I

si · LI
i (αn+1) · LI

i (0)
LI

i (αn+1)
=

∑
i∈I

si · LI
i (0) = s(0) = s

thereby revealing the secret itself. As a result, instead of each party directly sending
si · LI

i (αn+1) to Pn+1, the parties first subshare their shares amongst each other. Each
party then locally sums the shares they receive, and the result is sent to Pn+1. With this
method, Pn+1 receives a random additive sharing of s(αn+1) which reveals nothing beyond
that value, as required.

The simple way to implement this is for each Pi to generate additive shares of si ·
LI

i (αn+1) to Pn+1 to all the participating parties. Each party can then sum up the
sub-shares that it receives, and send to Pn+1. By the fact that sn+1 = s(αn+1) =∑

i∈I si · LI
i (αn+1), it is immediate that Pn+1 receives a random additive sharing of sn+1

as required. Our actual protocol works differently, since this would require that all parties
know who the participating parties are ahead of time. In practice, we wish to enable the
first t parties to connect to participate (asynchronously), and so we therefore have each Pi

generate Shamir shares of si. By multiplying by the appropriate Lagrange coefficients, the
same effect is achieved.

Protocol 3 (Πadd).

Parties: A set of t parties {Pi}i∈I with I ⊆ [n], and a new party Pn+1

Common input: sid ∈ {0, 1}∗, parameters t, n ∈ N with t ≤ n, and unique non-zero
values α1, . . . , αn+1 ∈ Fq

Pi’s private input: (B, si), as output from Fvss
(The protocol assumes that all parties have the same B and that si is the correct share as defined by B.
If this may not be the case, then parties need to begin by echo-broadcasting B (to ensure that all honest
parties hold the same vector), and each party needs to locally verify that si · G =

∑t−1
k=0(αi)k · Bk

where B = (B0, . . . , Bt−1).)

The protocol:

Yi-Hsiu Chen, Yehuda Lindell 13

1. Each party Pi subshares its share:
(a) Pi chooses a random polynomial si(x) of degree-(t − 1) such that si(0) = si

(b) For every j ∈ I, Pi computes si→j = si(αj)
(c) Pi sends (sid, si→j) to party Pj, for every j ∈ I.
Note that if the set of participating parties I ⊆ [n] is not known ahead of time,
then each Pi subshares to all parties, and the first t parties to connect only will
continue to the next round.

2. Pi generates the new party’s subshare: upon receiving (sid, sj→i) from t − 1
parties Pj

(a) Pi computes sn+1
i =

∑
j∈I sj→i · LI

j (αn+1)
(b) Pi sends (B, sn+1

i) to Pn+1
(If Pn+1 is not online, then this message is encrypted under Pn+1’s public key, and
signed with Pi private signing key, using secure signcryption.)

3. Pn+1 prepares its output: upon receiving t values (B, sn+1
i) from parties I,

(a) Pn+1 verifies that all B values are the same from all parties, and aborts if
not

(b) Pn+1 computes sn+1 =
∑

i∈I sn+1
i · LI

i (0)
(c) Pn+1 verifies that sn+1 · G =

∑t−1
k=0(αn+1)k · Bk, where B = (B0, . . . , Bt−1),

and aborts if not
(d) Pn+1 outputs (B, sn+1)

Correctness: Before proving security, we show (for the sake of clarity) that the protocol
output is correct. Observe that

sn+1 =
∑
i∈I

sn+1
i ·LI

i (0) =
∑
i∈I

∑
j∈I

sj→i ·LI
j (αn+1) ·LI

i (0) =
∑
j∈I

LI
j (αn+1) ·

∑
i∈I

sj→i ·LI
i (0).

In the protocol, each sj→i is generated by sj→i = sj(αi) where sj(0) = sj . Thus,∑
i∈I sj→i · LI

i (0) = sj where sj = s(αj) is a point on the original sharing polynomial s(x)
for which s(0) = s (and s is the original shared secret). Thus,

sn+1 =
∑
j∈I

LI
j (αn+1) ·

∑
i∈I

sj→i · LI
i (0) =

∑
j∈I

LI
j (αn+1) · sj = s(αn+1)

as required.

Security: We prove the security of the protocol under the assumption that all parties
begin with consistent and valid input. That is, each party Pi is given input (B, si) where
si · G =

∑t−1
k=0(αi)k · Bk and B = (B0, . . . , Bt−1), and all parties are given the same vector

B. This makes sense in practice since this input is the output of a previous VSS execution.
However, as described in the protocol, if this may not be the case, then it needs to be
separately verified. If the above holds, then we say that the input is consistent and valid.2

Theorem 4. Assume that the parties’ inputs are consistent and valid. Then, protocol
Πadd realizes functionality Fadd with perfect security-with-abort, in the presence of a static
malicious adversary corrupting up to t − 1 parties, for any t ≤ n.

2When considering modeling of this property in the UC framework, this can be captured by quantifying
only over environments that always write consistent and valid inputs on the parties’ input tapes for this
functionality/protocol. The UC composition theorem can then be applied as usual. The justification
for such an assumption in practice is that these inputs are the outputs from previous executions where
consistency and validity are guaranteed. However, as mentioned, if this is not guaranteed, then it can
easily be checked before running the protocol.

14 Feldman’s Verifiable Secret Sharing for a Dishonest Majority

Proof. Let I ⊆ [n] denote the set of online parties participating in the protocol, let
Ic ⊆ I ∪ {n + 1} denote the set of corrupted parties, and let Ih

def= I ∪ {n + 1} \ Ic denote
the set of honest parties.3 If Ic is empty, then simulation is trivial; we therefore assume
that there is at least one corrupted party. We separately consider the case that the recipient
(new party) Pn+1 is honest, and the case that Pn+1 is corrupted.

Case 1 – the new party Pn+1 is corrupted: The simulation in this case works by
generating random values for all si→j values from honest parties, under the constraint
that all values sum to sn+1. This can be computed since sn+1 is given to S by Fadd in this
case of a corrupted Pn+1, and all corrupted sj values are also known (by the assumption
on valid and consistent inputs). Thus, it is possible to compute the sum of all the values
the corrupted parties should send, and the sum of all values sent by the honest parties is
just the difference between sn+1 and that sum. All the other messages can be honestly
generated once these si

j values are computed.
Let A be the real-world adversary. We construct an ideal world adversary/simulator S

as follows.

1. S sends (add, sid, B, sj , αn+1) to Fadd for every j ∈ Ic

(These inputs are consistent and valid by the assumption in the theorem.)

2. S receives (add, sid, B, sn+1) from Fadd (since Pn+1 is corrupted)

3. S computes sh = sn+1 −
∑

j∈Ic
LI

j (αn+1) · sj

4. S chooses random {sj}j∈Ih
under the constraint that

∑
j∈Ih

sj · LI
j (αn+1) = sh

(This implies that
∑

j∈I LI
j (αn+1) · sj = sn+1 and so the simulation will result in the correct

output.)

5. S runs the honest parties in the protocol, following the exact protocol instructions
but while using input (B, sj) for honest party Pj

6. S outputs whatever A outputs

The distribution over the messages seen by A is identical to a real protocol, since the
input values chosen for the honest parties in the simulation sum up to the correct sum
sh (computed from sn+1 and the corrupted parties’ inputs). These input values differ
from the real inputs of the honest parties. However, since the honest parties subshare
each share, including subshares amongst each other (between the honest parties), the
distributions are identical. Formally, this holds because for every set of sj→i messages from
the honest parties to the corrupted parties, these can be the result of the real sharing or
of the simulated sharing with the same probability, by adjusting a single message between
two honest parties. Since there are at least two honest participating parties (because Pn+1
is corrupted and a participating party is corrupted, at most t − 2 participating parties are
corrupted), such a message exists and is not seen by the adversary.

Case 2 – the new party Pn+1 is honest: The simulation in this case works by just
providing random sj→i values from honest parties to corrupted parties. However, in this
case, the simulator needs to determine if the honest Pn+1 would output sn+1 or would
abort. It can verify this by checking if the sum of all values sent by corrupted values equals
what it is supposed to. We stress that the corrupted party may send incorrect values, but
this does not matter since the honest Pn+1 will output sn+1 if and only if the overall sum
for all corrupted parties is correct. Let A be the real-world adversary. We construct an
ideal world adversary/simulator S, as follows:

3In this protocol, only participating parties and Pn+1 receive any messages. Therefore, we can ignore
any other parties that may be corrupted.

Yi-Hsiu Chen, Yehuda Lindell 15

1. S sends (add, sid, B, sj , αn+1) to Fadd for every j ∈ Ic

(These inputs are consistent and valid by the assumption in the theorem.)

2. S sends the round 1 messages that A should receive from the honest parties:

(a) S chooses sj→i randomly for all j ∈ Ih and i ∈ Ic

(b) S simulates each honest party Pj sending sj→i to each corrupted party Pi

3. S verifies that the sum of the messages sent by A is correct:

(a) Compute the sum of messages from A:

i. S receives from A messages (sid, si→j) for all i ∈ Ic and j ∈ Ih; all the
messages sent by corrupted parties to honest parties in round 1 of the
protocol

ii. S receives from A the messages (B, sn+1
i) for all i ∈ Ic that the corrupted

parties send to the honest Pn+1

iii. S computes sc =
∑

j∈Ic

∑
i∈Ih

sj→i ·LI
j (αn+1) ·LI

i (0)+
∑

i∈Ic
LI

i (0) ·sn+1
i

(b) Compute the sum of messages when playing corrupted parties honestly:

i. S runs the corrupted parties Ic honestly, given the correct inputs {sj}j∈Ic

and the first round messages {sj→i}j∈Ih,i∈Ic
that it generated in Step 2b

of the simulation above (and using fresh randomness for the corrupted
parties)

ii. Let {ŝj→i}j∈Ic;i∈Ih
be the round 1 messages and let

{
ŝn+1

i

}
i∈Ic

be the
round 2 messages sent by the corrupted parties in the execution by S where
it runs all corrupted parties honestly

iii. S computes ŝc =
∑

j∈Ic

∑
i∈Ih

ŝj→i ·LI
j (αn+1) ·LI

i (0)+
∑

i∈Ic
LI

i (0) · ŝn+1
i

4. Completion of simulation:

(a) If ŝc = sc then S instructs Fadd to provide the output to Pn+1; else, it instructs
Fadd to provide abort / not provide output to Pn+1

(b) S outputs whatever A outputs

It is immediate that the distribution over the messages {sj→i}j∈Ih,i∈Ic
received by the

corrupted parties from the honest parties is identical in the real and ideal executions. This
holds since these values are less than t secret shares on a random degree-t polynomial. It
remains to show that the honest party Pn+1 outputs (B, sn+1) in a real execution if and
only if it outputs (B, sn+1) in an ideal execution. Since the adversary can decide to cause
an abort or not depending on the values sent by the honest parties in the first round, we
also need to ensure that the joint distribution over the messages from the honest parties
and whether or not Pn+1 aborts or not is also identical. However, under the assumption
(that we prove below) that S detects accurately whether or not Pn+1 aborts, this follows
from the fact that the adversary (with randomness fixed at the beginning of the execution)
is fully determined by the honest parties’ messages. Thus, the view of the adversary fully
determines whether or not Pn+1 aborts. We now conclude by showing that S accurately
predicts if Pn+1 would abort or not. Intuitively, this holds since once the honest parties’
round 1 messages are fixed, the sum of what the corrupted parties send must be a fixed
value. This is due to the fact that otherwise Pn+1 would not receive the correct sn+1 (in

16 Feldman’s Verifiable Secret Sharing for a Dishonest Majority

which case it certainly aborts). Formally:

sn+1 =
∑
i∈I

sn+1
i · LI

i (0)

=
∑
i∈I

∑
j∈I

sj→i · LI
j (αn+1) · LI

i (0)

=
∑

(j,i)∈I×I

sj→i · LI
j (αn+1) · LI

i (0)

=
∑

(j,i)∈Ih×Ih

sj→i · LI
j (αn+1) · LI

i (0) +
∑

(j,i)∈Ic×Ih

sj→i · LI
j (αn+1) · LI

i (0)

+
∑

(j,i)∈I×Ic

sj→i · LI
j (αn+1) · LI

i (0).

Now, ∑
(j,i)∈I×Ic

sj→i · LI
j (αn+1) · LI

i (0) =
∑
i∈Ic

∑
j∈I

sj→i · LI
j (αn+1) · LI

i (0)

=
∑
i∈Ic

LI
i (0) ·

∑
j∈I

sj→i · LI
j (αn+1)

=
∑
i∈Ic

LI
i (0) · sn+1

i

and so

sn+1 −
∑

(j,i)∈Ih×Ih

sj→i · LI
j (αn+1) · LI

i (0)

=
∑

(j,i)∈Ic×Ih

sj→i · LI
j (αn+1) · LI

i (0) +
∑
i∈Ic

LI
i (0) · sn+1

i . (1)

Observe that sn+1 is a fixed value (determined fully by the input sharing polynomial),
albeit unknown to S. In addition,

∑
(j,i)∈Ih×Ih

sj→i · LI
j (αn+1) is fully determined by the

messages sj→i sent by S to A in the simulation of the round 1 messages, albeit again
unknown to S. This holds because4∑

(j,i)∈Ih×Ic

sj→i · LI
j (αn+1) · LI

i (0)

is fully determined by the messages sent from the honest parties to the corrupted parties in
round 1 (by definition {sj→i}(j,i)∈(Ih×Ic) is the set of all sj→i messages sent by the honest
to the corrupted, and the Lagrange coefficients depend only on the set of participating
parties). Next, we have∑

(j,i)∈Ih×I

sj→i · LI
j (αn+1) · LI

i (0)

=
∑

(j,i)∈Ih×Ih

sj→i · LI
j (αn+1) · LI

i (0) +
∑

(j,i)∈Ih×Ic

sj→i · LI
j (αn+1) · LI

i (0).

Thus, if
∑

(j,i)∈Ih×I sj→i · LI
j (αn+1) · LI

i (0) is fully determined by the input values, then
it holds that

∑
(j,i)∈Ih×Ih

sj→i · LI
j (αn+1) · LI

i (0) is fully determined by the input values
and first message from the honest parties to the corrupted parties.

4This may seem obvious and therefore not require a proof. However, note that this sum refers to the
messages sent between the honest parties alone, whereas the messages sent by S to A are from the honest
parties to the corrupt parties.

Yi-Hsiu Chen, Yehuda Lindell 17

In order to see that
∑

(j,i)∈Ih×I sj→i · LI
j (αn+1) · LI

i (0) is fully determined from the
input, observe that the t values {sj→i} with j ∈ Ih and i ∈ I define a polynomial sj(x)
with sj(0) = sj . This implies that∑

(j,i)∈Ih×I

sj→i · LI
j (αn+1) · LI

i (0) =
∑
j∈Ih

∑
i∈I

sj→i · LI
j (αn+1) · LI

i (0)

=
∑
j∈Ih

LI
j (αn+1) ·

∑
i∈I

sj→i · LI
i (0)

=
∑
j∈Ih

LI
j (αn+1) · sj(0),

where the second equality is simply because LI
j (αn+1) is independent of i ∈ I, and the

third equality is by the definition of Lagrange interpolation. All the values LI
j (αn+1) and

sj(0) are fully determined for all j ∈ Ih, and thus the entire sum depends only on the
input.

We conclude that the left-hand side sn+1 −
∑

(j,i)∈Ih×Ih
sj→i · LI

j (αn+1) · LI
i (0) of

Eq. (1) is fixed and independent of the messages sent by the adversary. This implies
that after fixing the messages {sj→i}(j,i)∈(Ih×Ic) from the honest parties to the corrupted
parties in round 1, the simulator S can choose all random values {si→j}(i,j)∈Ic×I from
the corrupted parties (independently of what A sends) and recompute∑

(j,i)∈Ic×Ih

sj→i · LI
j (αn+1) · LI

i (0) +
∑
i∈Ic

LI
i (0) · sn+1

i

using the input values {si}i∈Ic
and these chosen random values, playing the corrupted

parties “honestly”. If this sum equals the sum of values received from the corrupted
parties, then the output will be correct for Pn+1 and so S instructs Fadd to provide output.
Otherwise, it instructs Fadd to not provide output to Pn+1. This completes the proof.

Observe that the simulator S in the proof of Theorem 4 is straight line (it does not
rewind A). Since perfect security with a straight-line simulator implies UC security, as
proven in [KLR10], we have the following corollary:

Corollary 2. Assume that the parties’ inputs are consistent and valid. Then, protocol
Πadd UC realizes with abort the functionality Fadd in the presence of a static malicious
adversary corrupting up to t − 1 parties, for any t ≤ n.

3.3 Secure Refresh in the Fvss-Hybrid Model
Intuition: The refresh protocol works by the parties generating a random secret sharing
of 0 and adding it to the initial secret sharing. This clearly generates a random polynomial
with the same constant term. In order to generate a random secret sharing of 0, we simply
use Fvss, verifying that each secret sharing is of 0 (this is easy to do, since s · G is revealed,
and so all that is needed is to verify that this equals the identity point O).

Protocol 5 (Πrefresh).

Parties: A set of t online parties I ⊆ [n] (I denotes the online parties)

Common input: sid ∈ {0, 1}∗, parameters t, n ∈ N with t ≤ n, and unique non-zero
values α1, . . . , αn ∈ Fq

Pi’s private input: (B, si), as output from Fvss
(The protocol assumes that all parties have the same B and that si is the correct share as defined by B.

18 Feldman’s Verifiable Secret Sharing for a Dishonest Majority

If this may not be the case, then parties need to begin by echo-broadcasting B (to ensure that all honest
parties hold the same vector), and each party needs to locally verify that si · G =

∑t−1
k=0(αi)k · Bk

where B = (B0, . . . , Bt−1).)

The protocol:

1. Phase 1 (2 rounds) – each (online) party Pi (i ∈ I) deals a sharing
of zero:
(a) Each online Pi sends Fvss the message (share, sid∥i, 0)
(b) Every (online and offline) Pi receives

{(
share, sid∥j, B̃j , s̃j→i

)}
i∈I , where

B̃j =
(

B̃j
0, B̃j

1, . . . , B̃j
t−1

)
and s̃j→i is Pi’s private share in the secret sharing

from Pj

2. Phase 2 – each (offline and online) party Pi (i ∈ [n]) generates output:
(a) If not all t outputs

{(
share, sid∥j, B̃j , s̃j→i

)}
i∈I are received (i.e., if any

aborts), then output abort and halt
(b) Let B̃j =

(
B̃j

0, B̃j
1, . . . , B̃j

t−1

)
and let B = (B0, . . . , Bt−1)

(c) Abort if any B̃j
0 ̸= O (i.e., if any of the secret sharings are not to zero)

(d) For k = 0, . . . , t − 1, set B′
k = Bk +

∑
j∈I B̃j

k

(e) Set B′ = (B′
0, B′

1, . . . , B′
t−1)

(f) Set si = si +
∑

j∈I s̃j→i

(g) Output (refresh, sid, B′, si)

We remark that Protocol Πrefresh can be instantiated with Πvss or Πoff
vss for Fvss, thereby

yielding two variants with all online or only t parties online. This works since the parties
only run local operations (to compute output) after the VSS output is received.

Security: We prove the security of the protocol under the assumption that all parties
begin with consistent and valid input. That is, each party Pi is given input (B, si) where
si · G =

∑t−1
k=0(αi)k · Bk and B = (B0, . . . , Bt−1), and all parties are given the same vector

B. This makes sense in practice since this input is the output of a previous VSS execution.
However, as described in the protocol, if this may not be the case, then it needs to be
separately verified. If the above holds, then we say that the input is consistent and valid.

Theorem 6. Assume that the parties’ inputs are consistent and valid. Then, protocol
Πrefresh realizes functionality Frefresh in the Fvss-hybrid model with perfect security-with-abort,
in the presence of a static malicious adversary corrupting up to t − 1 parties, for any t ≤ n.

Proof. Let I ′ ⊆ [n] denote the set of t online parties, let Ic ⊆ [n] denote the set of
corrupted parties, and let Ih = [n] \ Ic denote the set of honest parties. If Ic is empty,
then simulation is trivial; we therefore assume that there is at least one corrupted party.
Since not all parties are online and participate in the protocol, we denote by I ′

c and I ′
h the

respective sets of online corrupted and honest parties (i.e., I ′
c = I ′ ∩ Ic and I ′

h = I ′ ∩ Ih).
The idea behind the simulation is as following. The ideal functionality Frefresh chooses

a new random sharing, and provides the ideal adversary with its shares. The adversary
can then choose to add any valid zero-sharing of its choice in order to determine the
final polynomial. This reflects the fact that the real adversary can see the VSS shares
of the honest parties before choosing its own shares. Thus, the sharing received by the
ideal adversary/simulator S from Frefresh reflects the sum of the original sharing and what
the honest parties share. Thus, the simulator S subtracts the original sharing from the
sharing received to receive a sharing of zero, and then simulates the honest parties sharings
such that they sum to this sharing of zero. Finally, after receiving the corrupted parties’

Yi-Hsiu Chen, Yehuda Lindell 19

sharings from A, the simulator sums them up and sends them as the polynomial to be
added to the sharing by the ideal functionality.

We construct a simulator S as follows:

1. Prepare values for simulating honest parties’ sharings:

(a) S invokes A upon input {(refresh, sid, B, si)}i∈I′
c

(These inputs are consistent and valid by the assumption in the theorem.)

(b) S sends {(refresh, sid, B, si)}i∈I′
c

to the trusted party computing Frefresh, and
receives back

(
refresh, sid, {ŝi}i∈Ic

, B̂
)

; let B̂ = (B̂0, B̂1, . . . , B̂t−1)

(c) S computes Bh =
(
B̃h

0 , B̃h
1 , . . . , B̃h

t−1
)
, the public sum of the “honest parties’

sharings”, by B̃h
k = B̂k − Bk for k = 0, . . . , t − 1, where B̂k is from B̂ received

from Frefresh and Bk is from B in the input
(d) S computes

{
sh

i

}
i∈Ic

the sum of the honest parties’ shares sent to the corrupted
parties by sh

i = ŝi − si for every i ∈ Ic, where ŝi is the new share received from
Frefresh and si is the corrupted party’s previous share
(Note that for every i ∈ Ic it holds that sh

i · G =
∑t−1

k=0(αi)k · B̃h
k .)

(e) S chooses random {s̃j→i}j∈I′
h

;i∈Ic
under the constraint that for every i ∈ Ic,∑

j∈I′
h

s̃j→i = sh
i

(f) S finds random polynomials
{

B̃j

}
j∈I′

h

under the constraint that they sum to
Bh and that for every j ∈ I ′

h and i ∈ Ic it holds that s̃j→i · G =
∑t−1

k=0(αi)k · B̃j
k,

as follows:
i. Let j′ ∈ I ′

h

ii. For every j ∈ I ′
h \ {j′}, S chooses a random degree-(t − 1) polynomial b̃j(x)

such that b̃j(0) = 0 and for every i ∈ Ic it holds that b̃j(αi) = s̃j→i. S sets
B̃j = (B̃j

0, . . . , B̃j
t−1) by B̃j

k = b̃j
k · G where b̃j(x) =

∑t−1
k=0 b̃j

k · xk.
(Note that S can always find such a polynomial. If t − 1 parties are corrupted, then this
polynomial is fully determined from s̃j→i values and the fact that b̃i(0) = 0.)

iii. S computes S̃j′→i = s̃j′→i · G for j′ ∈ I ′
h specified above, and for every

i ∈ Ic. S then interpolates “in the exponent” to find a random polynomial
B̃j′ =

(
B̃j′

0 , . . . , B̃j′

t−1

)
such that B̃j′

0 = O (the additive identity) and for

every i ∈ Ic it holds that S̃j′→i =
∑t−1

k=0(αi)k · B̃j′

k .
(As above, S can always find such a polynomial since at most t − 1 parties are corrupted
and so at most t points are fixed, and since Lagrange interpolation can be computed “in
the exponent” (i.e., on the group elements).)

2. Simulate the refresh protocol:

(a) S simulates the protocol playing Fvss using the B̃j and s̃j→i values for all j ∈ I ′
h

computed above (including aborting if any invalid messages are sent, as specified
in the protocol and in the Fvss description)

(b) Let {(share, sid∥i, si(x))}i∈I′
c

be the messages the adversary A sends as the
online corrupted parties sharings sent to Fvss. If for any i ∈ I ′

c it holds that
si(0) ̸= 0, then S simulates all honest parties aborting the protocol, and outputs
whatever A outputs.
(If not all sharings are sent, then S just waits.)

3. S interacts with Frefresh:

20 Feldman’s Verifiable Secret Sharing for a Dishonest Majority

(a) S computes s̃(x) =
∑

i∈I′
c

si(x) and sends s̃(x) to Frefresh (the si(x) polynomials
are from the sharings sent by A to Fvss above)

(b) S instructs Frefresh to provide output to an honest party Pj if and only if A
instructs Fvss to provide output to Pj in all sharings of 0 from corrupted parties

4. S outputs whatever A outputs, and halts

If the distribution over the polynomials
{

B̃j

}
j∈I′

h

and values {s̃j→i}j∈I′
h

;i∈Ic
is the same

as in a real execution, then it is clear that the output distribution is identical. This is due
to the fact that the rest of the simulation merely follows the instructions of the protocol,
and due to the fact that the resulting sharing is guaranteed to match the output from
the ideal functionality by how these values are chosen. However, since all s̃j→i values are
chosen at random under the constraint that they sum to the correct value, and since all
other values are derived from these, the distribution of values seen by the adversary in the
real and ideal executions is the same. Furthermore, the sum of the values chosen by the
simulator match exactly the output received from the ideal functionality, as required.

Observe that the simulator S in the proof of Theorem 6 is straight line (it does not
rewind A). Since perfect security with a straight-line simulator implies UC security, as
proven in [KLR10], we have the following corollary:

Corollary 3. Assume that the parties’ inputs are consistent and valid. Then, protocol
Πrefresh UC realizes with abort the functionality Frefresh in the Fvss-hybrid model in the
presence of a static malicious adversary corrupting up to t − 1 parties, for any t ≤ n.

Refresh with offline parties and a coordinator machine: In the case of asyn-
chronous parties communicating via a coordinator machine that receives all (encrypted and
signed) messages and forwards them to their appropriate destination, the refresh protocol
can be implemented using Πoff

vss. This protocol guarantees that if any honest online party
does not abort and if the coordinator machine is semi-honest, then all offline parties are
guaranteed to not abort. However, in this protocol, each online party only needs to connect
twice: in the first connection it plays the dealer, and in the second connection it receives
the shares, signs the bundles and sends them to the coordinator. This can be a challenge
for asynchronous parties, and we present a proposal for dealing with it in Section A.2.

Refresh with some fully online parties: In Appendix A.2, we show how with a few
fully online parties, it is possible to achieve refresh where asynchronous parties need to send
a single message only, as long as at least of one of the fully online parties is (semi-)honest.

Acknowledgements
We thank Arash Afshar, Iftach Haitner, Samuel Ranellucci and Gil Segev for helpful
discussions and comments, and Chengyi Qin for pointing out an error in the original proof
of Theorem 4.

References
[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J.

Cryptol., 13(1):143–202, 2000. URL: https://doi.org/10.1007/s001459910
006, doi:10.1007/S001459910006.

https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/S001459910006

Yi-Hsiu Chen, Yehuda Lindell 21

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 136–145. IEEE
Computer Society, 2001. doi:10.1109/SFCS.2001.959888.

[CD00] Jan Camenisch and Ivan Damgård. Verifiable encryption, group encryption, and
their applications to separable group signatures and signature sharing schemes.
In Tatsuaki Okamoto, editor, Advances in Cryptology - ASIACRYPT 2000,
6th International Conference on the Theory and Application of Cryptology and
Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings, volume
1976 of Lecture Notes in Computer Science, pages 331–345. Springer, 2000.
doi:10.1007/3-540-44448-3_25.

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing.
In 28th Annual Symposium on Foundations of Computer Science, Los Angeles,
California, USA, 27-29 October 1987, pages 427–437. IEEE Computer Society,
1987. doi:10.1109/SFCS.1987.4.

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with
online extractors. In Victor Shoup, editor, Advances in Cryptology - CRYPTO
2005: 25th Annual International Cryptology Conference, Santa Barbara, Cali-
fornia, USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture Notes in
Computer Science, pages 152–168. Springer, 2005. doi:10.1007/11535218_10.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2: Basic Applica-
tions. Cambridge University Press, 2004. URL: http://www.wisdom.weizmann.
ac.il/%7Eoded/foc-vol2.html, doi:10.1017/CBO9780511721656.

[KLR10] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure
protocols and security under composition. SIAM J. Comput., 39(5):2090–2112,
2010. doi:10.1137/090755886.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Gilles Brassard, editor, Advances in Cryptology - CRYPTO ’89, 9th Annual
International Cryptology Conference, Santa Barbara, California, USA, August
20-24, 1989, Proceedings, volume 435 of Lecture Notes in Computer Science,
pages 239–252. Springer, 1989. doi:10.1007/0-387-34805-0_22.

[Sch99] Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and its
application to electronic. In Michael J. Wiener, editor, Advances in Cryptology -
CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes
in Computer Science, pages 148–164. Springer, 1999. doi:10.1007/3-540-484
05-1_10.

[Sta96] Markus Stadler. Publicly verifiable secret sharing. In Ueli M. Maurer, editor,
Advances in Cryptology - EUROCRYPT ’96, International Conference on the
Theory and Application of Cryptographic Techniques, Saragossa, Spain, May
12-16, 1996, Proceeding, volume 1070 of Lecture Notes in Computer Science,
pages 190–199. Springer, 1996. doi:10.1007/3-540-68339-9_17.

A Working with Online and Offline Parties
In this appendix, we present variants of our main protocols that enable working in a setting
where some of the parties are offline. These variants have applications to cases where not
all of the parties who receive shares can connect on an ongoing basis.

https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/3-540-44448-3_25
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1007/11535218_10
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol2.html
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol2.html
https://doi.org/10.1017/CBO9780511721656
https://doi.org/10.1137/090755886
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-48405-1_10
https://doi.org/10.1007/3-540-48405-1_10
https://doi.org/10.1007/3-540-68339-9_17

22 Feldman’s Verifiable Secret Sharing for a Dishonest Majority

A.1 Securely Computing Fvss with t Online Parties and n−t Offline
Parties

Intuition and security goal: Our above protocol considers a scenario where all n
parties are online and interacting. However, given that we only obtain security for up to
t − 1 corrupted parties (since we want to be able to reconstruct with any t parties), it
actually suffices to have only t parties interact in an online manner in the VSS, and to have
the remaining n − t parties be passive and merely receive output. This can be achieved
naively by simply having the dealer send its round 1 message to only the online parties,
and then having all online parties send their round 2 messages (and the dealer send its
round 1 messages) to the offline parties as well (encrypted under each offline party’s public
encryption key). Upon receiving all of the messages from online parties, the offline parties
can just verify that everything is consistent and output their share if yes.

The above simple extension has a disadvantage in practical settings. In particular,
offline parties in practice may take a long time until they come online. The desired property
would be that whenever they come online, they should be able to receive their share and
join any needed computation. However, if the dealer or one of the online parties sends an
offline party an incorrect value, then the offline party would abort. Given that this may
happen a long time after the shares were generated, dealing with this at that time is costly
and painful. As such, we would like to ensure that the offline parties can successfully
obtain their shares later. This is of course a problem since in the setting of a dishonest
majority, it is impossible to achieve guaranteed output delivery. In particular, in our VSS
sharing protocol above, it suffices for a corrupted party to send a different B′ vector in
round 2 and all honest parties will abort. This is in some sense unavoidable. However,
it is possible to achieve a guarantee that if any honest online party accepts then so will
all honest offline parties later on. This can be achieved by having all parties sign on the
public B, and then each online party sends each offline party all the signatures. If there
are t valid signatures on some B then the offline party accepts that as the value. This
prevents a corrupted party sending an invalid B′ in round 2. However, this still does not
solve the problem that the dealer may send an offline party an incorrect share sj . This can
be prevented by having the dealer send a publicly-verifiable encryption of the share for each
offline party. Such an encryption has the property that it’s possible to efficiently verify
that some ciphertext is a valid encryption of the discrete log of some group element. This
enables all online parties to verify all offline party shares, and to sign on these ciphertexts
together with B.

Publicly-verifiable encryption: As mentioned above, in the context of our applications
here, publicly-verifiable encryption is an encryption scheme with an additional property
that it is possible to verify (in zero knowledge) that the encrypted value is the discrete log
of a given point. That is, such a scheme has standard encrypt and decrypt functionality,
denoted c = vencryptpk(x) and x = vdecryptsk(c), along with a verification function
enc-verify(pk, c, X) that outputs 1 if and only if c is an encryption of the discrete log of X
under public key pk. A simple and canonical construction of such a scheme (that works
with any encryption scheme) can be found in [CD00]. The following ideal functionality,
denoted FPVE, models publicly-verifiable encryption and runs with parties P1, . . . , Pn:

• Init: after receiving init from all parties P1, . . . , Pn (for setting up a PKI), proceed.
(Before receiving all init messages, ignore all other messages.)

• Encrypt: upon receiving (vencrypt, i, j, m) from a party Pi with m ∈ Zq

1. Compute M = m · G

2. Store (i, j, m, M)

Yi-Hsiu Chen, Yehuda Lindell 23

3. Send (vencrypted, i, j, M) to all parties P1, . . . , Pn

• Decrypt: upon receiving (vdecrypt, i, j, m, M) from party Pj

1. Ignore unless (i, j, m, M) has been stored
2. Send (vdecrypted, i, m) to party Pj

The protocol: The protocol is described formally below.

Protocol 7 (Πoff
vss).

Parties: P1, . . . , Pn with Pi being the dealer, with Ion ⊆ [n] the set of t online parties,
and Ioff = [n] \ Ion the set of n − t offline parties; note that i ∈ Ion

Common input: sid ∈ {0, 1}∗, parameters t, n ∈ N with t ≤ n, a vector of public keys
PKI = (pk1, . . . , pkn) and unique non-zero values α1, . . . , αn ∈ Fq

Pi’s private input: s ∈ Fq

Each Pj’s private input: a private key skj (associated with pkj in PKI)

The protocol:

1. Round 1 – party Pi:
(a) Set b0 = s

(b) Choose random b1, . . . , bt−1 ∈ Fq and define s(x) def=
∑t−1

k=0 bk · xk

(c) For every j ∈ [n], set sj = s(αj)
(d) For k = 0, . . . , t − 1, compute Bk = bk · G

(e) Define B = (B0, . . . , Bt−1)
(f) Send

(
prove, sid, i, j, {Bk}t−1

k=0 , {bk}t−1
k=0

)
to FBatchDL

zk for every j ∈ Ion

(g) For every ℓ ∈ Ioff , compute the publicly-verifiable encryption

Vℓ = vencryptpkℓ
(sℓ; Sℓ) for Sℓ = sℓ · G

(h) Set V = {Vℓ}ℓ∈Ioff

(i) Compute σi = Signski
(share, sid, B, V)

(j) Send (share, sid, B, V, σi, sj) to Pj for every j ∈ Ion

2. Round 2 – each Pj with j ∈ Ion \ {i}: Upon receiving (share, sid, B, V, σi, sj)
from Pi and (prove, sid, . . .) from FBatchDL

zk

(a) Parse B = (B0, . . . , Bt−1) and V = {Vℓ}ℓ∈Ioff

(b) Verify that all Bk are valid group elements (they are allowed to be the
identity) and that all Vℓ are valid ciphertexts

(c) If sj · G ̸=
∑t−1

k=0(αj)k · Bk, then send abort to all parties and abort

(d) If the message from FBatchDL
zk is

(
prove, sid, {Bk}t−1

k=0 , abort
)

, then send abort
to all parties and abort

(e) If the set {Bk}t−1
k=0 from FBatchDL

zk is not the same as B, then send abort to
all parties and abort

(f) If there exists Vℓ ∈ V such that enc-verifypkℓ
(Vℓ, Sℓ) = 0 where Sℓ =∑t−1

k=0(αℓ)k · Bk, then send abort to all parties and abort
(g) Compute σj = Signskj

(share, sid, B, V)
(h) Send (share, sid, B, V, σj) to all Pℓ with ℓ ∈ Ion

24 Feldman’s Verifiable Secret Sharing for a Dishonest Majority

3. Round 3 and online party output – each Pj with j ∈ Ion: Upon receiving
(share, sid, Bℓ, Vℓ, σℓ) from Pℓ for all ℓ ∈ Ion

(a) Each Pj verifies that Verifypkℓ
(share, sid, Bℓ, Vℓ, σℓ) = 1 and that Bℓ = B and

Vℓ = V for all ℓ ∈ Ion \ {i}, where (Bℓ, Vℓ) are the values received from Pℓ

and (B, V) are the values received from Pi. If no, it aborts.
(b) Each Pj sends

(
share, sid, B, V, {σℓ}ℓ∈Ion

)
to each offline Pℓ

(c) Each Pj outputs (share, sid, B, sj)
4. Output for offline parties – each Pj with j ∈ Ioff: Upon receiving(

share, sid, B, V, {σℓ}ℓ∈Ion

)
from one or more parties,

(a) If there exists a message
(
share, sid, B, V, {σℓ}ℓ∈Ion

)
for which it holds that

Verifypkℓ
(share, sid, B, V, σℓ) = 1 for all ℓ ∈ Ion and Ion is of size t, then

compute sj = vdecryptskj
(Vj) for Vj ∈ V, and output (share, sid, B, sj)

Security: The proof of security with abort is almost identical to that of Theorem 2.
The only difference is that some messages are sent as publicly-verifiable encryptions, but
these can be simulated in the same way. Regarding the property that if at least honest
online party accepts then so do all honest offline parties, this follows immediately from
the fact that the message

(
share, sid, B, V, {σk}k∈Ion

)
sent to all offline parties by any

honest online party is valid, and will result in the offline party accepting and outputting
its decryption. Now, since this message has t valid signatures, it follows that all honest
online parties viewed the same B and V, and thus all outputs of online and offline honest
parties are consistent, as required. Note that there cannot be more than one (B, V) with
this property, except with negligible probability, since at most t − 1 parties are corrupted
and all honest parties sign on the same (B, V) that they agree upon in the echo-broadcast
consensus. Thus, there can be more than one valid pair (B, V) only if the adversary can
forge honest parties’ signatures. The proof of the following theorem is essentially the
same as Theorem 2, with the addition regarding guaranteed output following the above
discussion (FPVE denotes the publicly-verifiable encryption ideal functionality).

Theorem 8. Protocol Πoff
vss realizes the functionality Fvss in the FBatchDL

zk , FPVE-hybrid
model with perfect security-with-abort, in the presence of a static malicious adversary
corrupting up to t − 1 parties, for any t ≤ n. Furthermore, if at least one honest online
party accepts then so do all honest offline parties.

A setting with a coordinator machine instead of point-to-point channels: In a
setting where the parties do not have direct point-to-point channels, but rather communicate
by sending encrypted-and-signed messages via some central “coordinator machine”, there
are a few changes that need to be highlighted. First, in such a case, it is not necessary for
the set of online parties Ion to be fixed ahead of time. Rather, the dealer Pi can prepare
its message (share, sid, B, V, σi, sj) for all j ∈ [n] (including publicly-verifiable encryption
for all parties) and the first t − 1 parties to connect to the coordinator become the “online
parties”. Second, although communicating via such a coordinator machine makes no
difference regarding the messages sent (since messages are signed they cannot be modified,
and since they are encrypted the coordinator machine sees nothing), it does mean that
the coordinator can block or erase messages at will. This means that the property that
we desire – that if any honest online party accepts then so do all honest offline parties –
cannot actually be achieved (specifically, the coordinator can refuse to deliver any valid
message to an offline party). This means that the property achieved in this case is different
and states that if any honest online party accepts and the coordinator is semi-honest
then all honest offline parties are guaranteed to accept. However, once this is the case,
the third round – where all parties exchange all signatures – can be avoided. Rather,

Yi-Hsiu Chen, Yehuda Lindell 25

the coordinator receives all (share, sid, B, V, σj) at the end of round 2, and prepares the
message

(
share, sid, B, V, {σk}k∈Ion

)
which it sends to all offline parties. This therefore

simplifies the protocol, and all online parties need to only connect once and then later
download their output. We stress that if the coordinator is malicious, then the only
thing that can go wrong is for the parties to abort.

A.2 Refresh with ℓ Fully Online Parties, t−ℓ Asynchronous Online
Parties, and n − t Offline Parties

Aim: Our aim is to construct a refresh protocol that requires asynchronous online parties
to only connect once, since connecting more than once for an operation that should happen
regularly (like refresh) is very problematic. Clearly, if we assume that all participating
parties are asynchronous, then this cannot be achieved. In particular, there is no way to
ensure consensus between the values shared by the parties in a single round. However,
if we assume that there are some fully online parties (we call them fully online parties
to differentiate them from the asynchronous online parties who connect and disconnect),
and we assume that at least one of these fully online parties is semi-honest then the
consensus can be verified by them. We remark that the consensus could also be verified by
the coordinator, and recall that in Πoff

vss we also had the assumption that the coordinator
was semi-honest. However, that protocol had the guarantee that if the coordinator was
malicious, then the only bad thing that can happen is that parties abort. In contrast,
here, if the coordinator verifies the consensus and it is malicious, then parties may output
shares that are not consistent (i.e., do not lie on the same degree-(t − 1) polynomial).
Therefore, rather than relying on a single machine, we assume that there are some ℓ fully
online parties, and as long as one of them is semi-honest – and not all of them malicious,
security (and even output delivery) is guaranteed.5 We do stress, however, that if all
fully online parties are malicious, then security is not guaranteed. (Although it is hard
to separate correctness and privacy in secure computation, the aspect that breaks is only
that of correctness. This means that the parties may end up having inconsistent shares,
and so will not be able to operate. However, this can only happen if all fully online parties
are corrupted.)

Protocol: The above discussion yields the following protocol for refresh.

Protocol 9 (Π′
refresh).

Parties: A set of ℓ fully-online parties {Pi}i∈Iperm-on
, a set of t − ℓ asynchronous online

parties {Pi}i∈Iasync-on
, and n− t offline parties {Pi}i∈Ioff

. The sets Iperm-on, Iasync-on,

Ioff are disjoint, and their union is [n].

Common input: sid ∈ {0, 1}∗, parameters t, n ∈ N with t ≤ n, and unique non-zero
values α1, . . . , αn ∈ Fq

Pi’s private input: (B, si), as output from Fvss
(The protocol assumes that all parties have the same B and that si is the correct share as defined by B.
If this may not be the case, then parties need to begin by echo-broadcasting B (to ensure that all honest
parties hold the same vector), and each party needs to locally verify that si · G =

∑t−1
k=0(αi)k · Bk

where B = (B0, . . . , Bt−1).)

The protocol:

1. Phase 1 (single round) – each asynchronous online party Pi shares a
zero-sharing:

5As with the Πoff
vss , output delivery is guaranteed in the sense that if at least one of the honest online

parties does not abort, then all offline honest parties do not abort.

26 Feldman’s Verifiable Secret Sharing for a Dishonest Majority

(a) Each online Pi computes the first round of Protocol Πoff
vss for a sharing of

zero, and with the offline parties defined to be all in [n] (i.e., all parties’
shares are encrypted using publicly-verifiable encryption)

(b) Each online Pi signs their sharing values, and sends them to the fully-online
parties

2. Phase 2 – fully-online parties:
(a) Each fully-online party runs rounds 2 and 3 of Protocol Πoff

vss: the parties
check all values and ZK proofs, echo-broadcast among themselves to verify
consistency of all sharings, and gather signatures (of the fully-online parties
and the asynchronous online party who shared)

(b) Each fully-online party sends the bundle to the coordinator, for all parties
to download

3. Output:
(a) Each party (asynchronously-online or offline) downloads the bundle from

the coordinator
(b) Each party verifies that the bundle has the signature of all the fully-online

parties, that the bundle contains t sharings of zero (i.e., verifying that each
B0 = O), and that each sharing is signed by a different asynchronous-online
party.

(c) For each of the t sharings, each party decrypts their publicly-verifiable
encryption and verifies its consistency with the sharing polynomial vectors B

(d) Each party runs phase 2 (generate output) in Πrefresh, and outputs the result

Security: The proof of security of Protocol Π′
refresh is essentially the same as that of

Theorem 6, with the only difference being which subset of parties carries out the consistency
checks.

	Introduction
	Definitions and Preliminaries
	Preliminaries
	Ideal Functionality Definitions

	Protocols
	Securely Computing Fvss with n Online Parties
	Adding a Party
	Secure Refresh in the Fvss-Hybrid Model

	References
	Working with Online and Offline Parties
	Securely Computing Fvss with t Online Parties and n-t Offline Parties
	Refresh with l Fully Online Parties, t-l Asynchronous Online Parties, and n-t Offline Parties

