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Abstract. In this work we study algebraic and generic models for group actions,
and extend them to the universal composability (UC) framework of Canetti (FOCS
2001). We revisit the constructions of Duman et al. (PKC 2023) integrating the
type-safe model by Zhandry (Crypto 2022), adapted to the group action setting,
and formally define an algebraic action model (AAM). This model restricts the
power of the adversary in a similar fashion to the algebraic group model (AGM). By
imposing algebraic behaviour to the adversary and environment of the UC framework,
we construct the UC-AAM. Finally, we instantiate UC-AAM with isogeny-based
assumptions, in particular the CSIDH action with twists, obtaining the explicit isogeny
model, UC-EI; we observe that, under certain assumptions, this model is “closer”
to standard UC than the UC-AGM, even though there still exists an important
separation.
We demonstrate the utility of our definitions by proving UC-EI security for the
passive-secure oblivious transfer protocol described by Lai et al. (Eurocrypt 2021),
hence providing the first concretely efficient two-message isogeny-based OT protocol
in the random oracle model against malicious adversaries.
Keywords: Oblivious Transfer · Isogenies · CSIDH · Group Action Model

1 Introduction
Oblivious transfer (OT), introduced by Rabin [Rab05], is a fundamental cryptographic
primitive that plays a central role in modern cryptography. In particular, OT is both
sufficient and necessary for secure two-party and multiparty computation, and it is widely
deployed in a number of efficient protocols [BLN+21, KOS16] and applications ranging
from private set intersection [DCW13, PSZ14] to contract signing [EGL82]. The most
commonly studied form of oblivious transfer is 1-out-of-2 OT, where a sender PS holds
two messages m0,m1 and a receiver PR holds a bit b corresponding to the sender’s
message mb that it will receive as output of the protocol. The security requirement is
that PR should obtain mb without learning any information about the other message
m1−b and PS should learn nothing about the choice bit b. Oblivious transfer can be
constructed from various assumptions: number-theoretic assumptions like Decisional Diffie-
Hellman (DDH) [BM90, NP01, AIR01, PVW08, ZLWR13, CO15], and quadratic-residuosity
(QR) [HK12]; and also from (presumed) post-quantum assumptions like coding-theory
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related assumptions [DvMN08, DDN14, DGH+20], lattice-based assumptions [PVW08,
BD18, MS20], and isogeny-based assumptions [Vit19, BDGM19, DOPS20, LGD21].

Security and complexity. The efficiency of oblivious transfer protocols is a very important
metric, as it directly impacts the efficiency of larger cryptographic systems in which OT
is used; in addition, even if there exists a variety of security models for OT, ideally we
would like to achieve security in the universal composability (UC) framework described
by Canetti [Can01], where security is maintained under concurrent general composition.
Unfortunately, achieving efficient UC-secure OT protocols is not an easy task, especially
if we want a protocol with a low number of messages exchanged by the two parties. A
straightforward approach to achieve fully secure OT is by using zero-knowledge proofs to
transform a passively secure protocol into an active one. However, this technique often
increases the number of interactions, which may not be desirable if the goal is to design a
protocol with few interactions, such as a two-message protocol, where PR sends a single
“request” message, and PS answers with a single “response” message. Therefore, alternative
approaches are necessary, focusing on two-message protocols that are already actively
secure.

A first barrier is given by the the impossibility result of Goldreich and Oren [GO94],
which states that achieving two-message OT with simulation-based security is impossible in
the plain model; therefore, it is necessary to rely on setup assumptions such as a common
reference string (CRS) or a random oracle (RO). In a simulation-based proof, the main
challenge is to extract the receiver’s input bit and then argue that the message m1−b

remains hidden.
When considering (presumed) post-quantum assumptions exclusively, only a few con-

structions for two-message maliciously secure OT are known. The first one is the general
framework described by Peikert, Vaikuntanathan and Waters [PVW08], where they in-
stantiate dual mode cryptosystems from LWE (and also DDH and QR), and obtain an
efficient bit OT. We also have OT from LPN via the compiler described by Döttling et al.
[DGH+20], but this construction is more involved and requires garbled circuits.

Hence, the following natural question arises:

Can we describe a concretely efficient UC-secure two-message oblivious transfer protocol
from (presumed) post-quantum secure assumptions, and in particular from isogeny-based

assumptions?

Why isogeny-based OT. Isogeny-based cryptography is a very recent and active field from
which there have been many proposed schemes for post-quantum secure key exchange,
public key encryption, signatures and much more. One of the main advantage of these
constructions, compared to other post-quantum constructions, is their relatively small
keys.

The first isogeny-based cryptosystem was given by Couveignes [Cou06] and Rostovtsev
and Stolbunov [RS06]. They described a non-interactive key-exchange protocol based on the
theory of complex multiplication of ordinary elliptic curves over Fq, whose endomorphism
ring is a given quadratic order O. In particular, they observed that the commutative
action of the ideal class group Cl(O) naturally leads to a key-exchange procedure à la
Diffie-Hellman. Later, Jao and De Feo [JD11] proposed the SIDH key-exchange scheme
using supersingular elliptic curves. Unfortunately, this scheme and related variants, like
the NIST candidate SIKE [JAC+20], have been recently broken [CD23, MMP+23, Rob23]
using Kani’s reducibility criterion [Kan97]. These attacks have no effect on another class
of isogeny-based schemes, namely CSIDH-based constructions.

CSIDH stands for Commutative-SIDH and it was introduced by Castryck et al.
[CLM+18], as an adaptation of the original Couveignes-Rostovtsev-Stolbunov protocol
with supersingular curves, and is now one of the main tools of isogeny-based cryptography.
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In particular, it sparked new interest in the general framework of group actions, which can
be seen as a generalization of the exponentiation property of Diffie-Hellman.

The challenging question, which we will address, is then if it is possible to construct
UC-secure efficient OT protocols from the CSIDH group action, similarly to how the Chou
and Orlandi [CO15] protocol can be seen as a variation of two DDH-based key-exchanges.

1.1 Our Contributions
In this work, we address the question above by focusing on the isogeny-based two-message
OT protocol described by Lai et al. [LGD21] (Figure 2), which was originally proven
secure only against semi-honest adversaries.

We first introduce a general framework for group action-based cryptography, and
formally define an Algebraic Action Model, following [Zha22] and [DHK+23]. Inspired by
the UC-AGM described by Abdalla et al. [ABK+21], we then extend the Algebraic Action
Model to the UC framework, obtaining the UC-AAM. Although our UC-AAM is actually
less expressive than standard UC, as it is for the UC-AGM, we provide some evidence to
suggest that our UC-AAM might be “closer” to plain UC, and we believe that this model
can be of independent interest.

We then specialize the UC-AAM to the context of CSIDH and refer to it as the UC
Explicit-Isogeny (UC-EI) model; this new model incorporates twists into a slightly bigger
group action, offering a novel perspective on the CSIDH action. Using the UC-EI model,
we finally show how to prove malicious security for the two-message protocol described by
Lai et al. [LGD21]. We conclude with a thoughtful comparison between several existing
constructions of OT protocols from isogeny-based assumptions in Section 5.3.

1.2 Technical overview
Background. In [CO15], Chou and Orlandi proposed a simple and efficient OT protocol,
hereafter known as the CO protocol (we refer to Section B.1 for further details), based
on DDH in the random oracle model. The protocol follows the Bellare-Micali [BM90]
paradigm, where there is a public element C ∈ Z∗

p with unknown discrete logarithm relative
to a generator g, and the receiver creates two public keys (gr, C/gr) so that they can only
know the secret key relative to one of them.

This scheme has been used as a blueprint for many subsequent constructions based on
different hardness assumptions. However, proving its UC security is problematic: the main
issue is that a corrupt receiver might never query the random oracle to get the decryption
key for the ciphertext, and in this case the simulator cannot extract the receiver’s choice
bit and thus cannot query the functionality for the corresponding sender’s message and
finish the simulation.

One solution to this problem is to require some sort of “proof of decryption”: some
protocols, like [BDD+17], add one or two messages between the parties to allow the
simulator to extract and to complete the simulation of the corresponding functionality.
This same approach was taken by Lai et al. [LGD21] to describe a concretely efficient
4-message isogeny-based UC-secure oblivious transfer.

Another solution, proposed by Abdalla et al. [ABK+21], is given by using a different
model of computation, in which the extraction of the input bit is made almost automatic
by the behaviour imposed on the adversary by the model. More concretely, the authors
introduced the UC-AGM, obtained by extending the algebraic group model (AGM) within
the UC framework, and showed that some important protocols, like CO, can be proven
secure in this model. We recall that the AGM, introduced by Fuchsbauer, Kiltz and Loss
[FKL18], takes the middle ground between the standard model and the generic group
model (GGM), which has been proposed in different and not necessarily equivalent variants,
like the ones described by Shoup [Sho97] and Maurer [Mau05].
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Roughly, adversaries in the AGM are allowed to see and use the structure of the group,
but they are required to behave “algebraically”, i.e. obtain new group elements only via
group multiplications from known elements. More precisely, an adversary A is algebraic if
for every h ∈ G that it outputs, it also provides a vector of exponents (x1, . . . , xn) such
that h =

∏n
i=1 g

xi
i , where the gi are all the group elements already seen by the adversary

A.

Drawbacks of the AGM. While the AGM (and UC-AGM) enables easier proofs of security
for protocols, the model also shows some limitations and gives rise to concerns. For
example, in the AGM we are not able to sample group elements without access to an
external oracle.

Another important issue, highlighted concurrently by Katz et al. [ZZK22] and Zhandry
[Zha22], is that the AGM is incomparable to Shoup’s GGM, due to the not fully formal
definition of the AGM. Katz et al. focus on the problems of encoding group elements
and what it means to “output a group element”; in particular, the authors prove that an
algebraic adversary can be used to reduce a generic-hard problem to a generic-easy problem,
thus showing a key weakness in the AGM’s definition. In the paper by Zhandry, a solution
to this issue is proposed by formally defining the AGM as a compiler for games in the
Type-Safe (TS) generic-group model, which is a variant of Maurer’s GGM; the TS model
restricts the type of games that can be described, and among those the AGM requirement
is met. Additional issues are encountered when one tries to combine computational models
and the UC framework; for example, [Zha22] showed that security in the TS model is
equivalent to security in Shoup’s model for single-stage games, which however cannot
describe UC security.

A more fundamental problem, specific to the UC-AGM [ABK+21], is that a composition
theorem holds only if the algebraic adversary “does not mix” protocols, i.e., if it explains
group elements of some sub-protocol using only group elements from the same sub-protocol
as a base. This means that we can safely compose protocols only if they operate on
independent groups.

Our models. Informally, a group action G = (G,X, ⋆) consists of a group G and a set X,
along with an action ⋆ : G × X → X, such that for any g, g′ ∈ G and x ∈ X, it holds
that (gg′) ⋆ x = g ⋆ (g′ ⋆ x). This definition allows us to capture the exponentiation-only
property of Diffie-Hellman, but without imposing any structure on the set X so that we can
instantiate it with Shor-resistant constructions. Similarly to the group setting, the most
studied hardness assumption for group actions is the “discrete logarithm”, or vectorization,
problem: it is easy to compute y = g ⋆ x given g and x, while it is assumed to be hard
computing g from only x, y. Group actions have long been considered for cryptography
[BY91, GS10, Cou06], and the isogeny-based key exchange CSIDH [CLM+18] highlighted
the potential of this framework, which now has different instantiations, like the lattice
isomorphism problem [Dv22] and the general linear group action on tensors [JQSY19];
the problems of code equivalence and graph isomorphism can also be viewed as discrete
logarithm problems with respect to an appropriate group action.

In a seminal paper for group action-based cryptography, Alamati et al. [ADMP20]
introduced the notions of effective-GA (EGA) and restricted-EGA (REGA) to model
cryptographic group actions and in particular CSIDH, where computing the group action
efficiently is not possible for all group elements g ∈ G. We propose a new generalization of
EGA and REGA to hint-effective GA (HEGA), which simply means that it is possible
to attach an efficient way to evaluate the action to sampled group elements. We then
introduce a type-safe model for group actions, which is a generalization of the generic
group model for the group action setting. Informally, a circuit is said to be type-safe with
respect to an action G if it has two types of wires: bit wires and element wires. Bit wires
can be combined together in any way with usual boolean gates, while element wires can
only be used through special gates: an action gate, whose input are a bunch of bit wires
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representing a group element g ∈ G and an element wire representing a set element x ∈ X,
and it outputs an element wire representing g ⋆ x; and an equality gate, which outputs a
bit wire from two element wires. Notice that the only way to get bits from elements is
through equality gates, and this resolves the problems highlighted in [ZZK22, Zha22].

We can view our type-safe model as a “Maurer-style” generic model, while the Generic
Group Action Model proposed in [DHK+23] is a “Shoup-style” model. We will need this
formalization in order to avoid the problems in the AGM with the encoding of group
elements. Notice however that like [DHK+23] we allow “generic” algorithms to have full
access to the group structure, in contrast to the model proposed in [MZ22], where even
the group operations are computed through an oracle. Using the type-safe model, and
following [Zha22], we can define the Algebraic Action Model (AAM) as a “compiler” for
certain games in the TS model. Loosely speaking, in our setting an adversary is said to be
algebraic if, every time they output a set element y ∈ X, they must explain it as a group
action y = g ⋆ x, where x ∈ X was a set element already known; the adversary moreover
has complete access to the group structure and representation. Then, given a type-safe
protocol π and an algebraic adversary A, we can “plug” it in: A only has bit wires, but
we can use the explanations it provides to connect its “element” outputs to the element
wires of the protocol π as shown in Figure 1.

UC emulation in the AAM. We follow [ABK+21] in defining a restricted UC framework
where we impose algebraic behaviour; as in [Zha22], we limit ourselves to type-safe protocols
in order to properly define the algebraic framework, and in particular what it means to
“output a set element”. Indeed, given a type-safe protocol π and a pair (A, E) of algebraic
adversary and environment, we can connect them to the protocol π as in the usual UC
framework using the AA compiler described above. Informally, the UC-AAM has the same
definitions of the standard UC framework, but we are restricting the adversary-environment
pair to be algebraic, i.e. for every y ∈ X that they output towards the protocol, they must
explain it with g ∈ G, x ∈ X such that y = g ⋆ x.

We have the usual notions of a protocol π UC-AAM emulating a protocol ϕ (denoted
by π ∼ ϕ) if an algebraic environment cannot distinguish the two executions, and we
can prove transitivity of emulation. We can also define execution in an F-hybrid model,
where F is any type-safe functionality, and prove that if π UC-AAM emulates F , then
also ρπ ∼ ρF . However, like in the UC-AGM, the composition theorem needs extra care:
since we have that π ∼ F , it means that the adversary uses set elements from protocols
π as the “base” for outputting algebraic explanations; when proving that ρπ ∼ ρF we
can only get emulation with respect to algebraic adversaries that use set elements from
π instead of the whole ρπ. This means that even if we prove that ρF ∼ F ′, we cannot
immediately obtain that ρπ ∼ F ′, since for the second part of the emulation we are also
using set elements from ρ as the base for algebraic explanations. In particular, in order to
get to a full composition theorem ρπ ∼ F ′ we need to restrict to “non-mixing” adversaries,
i.e. they explain set elements they output to ρ with elements previously seen in ρ, and
set elements going into π with set elements coming from π. As noted in [ABK+21], this
should not necessarily be seen as a limitation of UC-AGM (and UC-AAM), but rather as
a limitation of proofs in idealized models. More discussion on this point can be found on
their paper.

Ways to overcome this issue, and consider also “mixing adversaries”, could be either
proving multiple protocol executions simultaneously or proving security in extended settings
like GUC (UC with global setup) [CDPW07].

The UC-EI model. We finally introduce the UC-EI (Explicit Isogeny) model, which is
simply the specialization of the UC-AAM to the group action of CSIDH [CLM+18]. We
recall that CSIDH uses the action of the class group Cl(O) on the set of supersingular
elliptic curves having O as endomorphism ring defined by a ⋆ E = E/E[a], which is a
commutative and regular action.
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Since it is possible to compute the twist Et of an elliptic curve, the models should
consider this operation as well; the authors of [DHK+23] model twists externally in their
CEGAT and AGAMT, while we don’t need any new definition. In particular, since the
twisting operation satisfies the relation (a ⋆ E)t = a−1 ⋆ Et, we notice that this translates
into an action (Gtw in Proposition 3) of the group Cl(O) ⋊ Z/2Z; this results in a non-
commutative and non-regular group action, but neither of the properties are of fundamental
importance.

Moreover, the EI model doesn’t seem to actually restrict real adversaries, given our
current knowledge. Indeed, the only efficient way we know to generate a supersingular
curve is via an isogeny walk or with twisting: a well known open problem in isogeny-based
cryptography is in fact how to sample random supersingular elliptic curves without taking
a random isogeny walk from an already known curve. The sampling problem has recently
gained some attention [MMP22, BBD+22], but so far all the attempts to solve it have
failed.

Assuming that the problem is hard implies that the CSIDH action group Gtw is actually
an unsampleable HEGA, and therefore restricting algorithms to be algebraic does not
restrict the model. Notice that this is different to what happens in AGM, where algebraic
algorithms have to provide a representation of any group element they output, but it is
not true that the only way for them to output a new group element is to derive it using
group multiplication from known group elements.

The 2-message isogeny-based OT. Once we have established our UC-EI model, proving full
malicious security of the two-message OT protocol given in [LGD21] is a relatively easy
task. Indeed, the algebraic behaviour of the adversary allows us to immediately extract
the choice bit of a corrupted receiver, thus we can conclude the simulation. The algebraic
explanations give also an easy reduction to the group action discrete logarithm problem
simply by computing some equations, exactly as it usually happens in the AGM.

In this way, we obtain an efficient two-message protocol in the ROM with a trusted
setup curve (TSC) based on CSIDH. In addition, we show how to eliminate the TSC
requirement, but at the cost of adding an extra message of communication, so the resulting
scheme is not optimal. This latter protocol needs one message less than the maliciously
secure protocol described in [LGD21] with less computation and without TSC.

1.3 Other Related Work
Another important line of work aims to construct two-message oblivious transfer with
a slightly weaker form of security, namely statistically sender-private OT (SSP OT)
[NP01, AIR01]. In this setting, different schemes based on different quantum secure
assumptions are known, like [BD18, DGI+19, MS20, ADMP20].

The recent work [BMM+23] introduces some new OT protocols based on isogenies; in
particular, the authors show how to build UC-secure round-optimal protocols based on
the computational CSIDH assumption, both in the plain model and in the setup model
(i.e. respectively 4-message and 2-message). This is an important theoretical result, since
round-optimal protocols were known only from the decisional CSIDH problem [ADMP20].
However, both constructions require a number of isogeny computations linear in the
security parameter, which is highly inefficient.

More details about their constructions and efficiency of theirs and other isogeny-based
OT protocols can be found in Section 5.3.

2 Preliminaries
For a set S, we denote by a ←$ S the process of drawing a from S with a uniform
distribution on S. If D is a probability distribution, we denote by a←$ D the process of
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drawing a with the given probability distribution. For a probabilistic algorithm A, we
denote by a←$A the process of assigning a the output of algorithm A, with the underlying
probability distribution being determined by the random coins of A. We write ≈ (resp.
≈s) to denote computational (resp. statistical) indistinguishability between probabilistic
distributions.

In this work we assume familiarity with the UC framework, of which we provide an
informal overview in Appendix A.3; in Appendix A.4 we describe our functionalities. In
Appendix B, we also give a brief description of UC-AGM [ABK+21].

2.1 Cryptographic Group Actions
Group actions have recently been getting a lot of attention for their use in cryptography,
starting from the “Hard Homogeneous Spaces” by Couvegines [Cou06], which is a precursor
of CSIDH. Here we will follow the formalization by Alamati et al. [ADMP20].

Definition 1 (Group action). A group G is said to act on a set X if there is a map
⋆ : G×X → X that satisfies the following two properties:

Identity. If e is the identity of G, then, ∀x ∈ X, we have e ⋆ x = x

Compatibility. For any g, h ∈ G and any x ∈ X, then (gh) ⋆ x = g ⋆ (h ⋆ x).

A group action as described in the previous definition is usually denoted by G = (G,X, ⋆).
The standard notion of cryptographic group actions is given by effective group action
(EGA). Roughly, an EGA (G,X, ⋆) is such that all the well-defined group operations and
group action operations are efficiently computable, sampling random group elements is
efficient and set elements are uniquely represented. It is also possible to endow group actions
with different hardness assumptions like one-way EGA (ow-EGA), weak-unpredictable
EGA (wUP-EGA), weak pseudorandom EGA (wPR-EGA) [ADMP20].

EGA is usually too powerful to capture isogeny-based assumptions, therefore, to model
isogeny-based protocols, [ADMP20] provides the definition of restricted effective group
action (REGA), where it is possible to only evaluate the action of a generating set of small
cardinality.

2.2 CSIDH
In [CLM+18], the authors propose an efficient post-quantum abelian group action, as an
adaptation of the Couveignes-Rostovtsev-Stolbunov scheme, from which they derive a
key-exchange primitive, called CSIDH.

They consider a supersingular elliptic curve E over Fp, so that its Fp-rational endo-
morphism ring Endp(E) is an order O in a quadratic imaginary field. If a is a non-zero
ideal in O, then it defines a kernel subgroup E[a]. We can then consider the quotient
isogeny ψ : E → E′ = E/E[a] with kernel E[a]. This isogeny, as well as its codomain, is
well-defined up to isomorphism. If a = (α) is a principal ideal, then ψ ∼= α and E/E[a] ∼= E.
Denoting by E = Ellp(O) the set of curves having O has their Fp-endomorphism ring, we
have a free and transitive action of the class group Cl(O)×E → E given by a⋆E := E/E[a].

The main idea of CSIDH is to pick a prime of the form p = 4ℓ1 . . . ℓn − 1, with ℓi small
odd primes. In addition, they fix E0 : y2 = x3 + x, which is supersingular when p ≡ 3
(mod 4). This curve has Endp(E0) ∼= Z[√−p].

Since the characteristic polynomial of the Frobenius map is π2 + p = 0, when reduced
modulo ℓi it becomes π2− 1 ≡ 0 (mod ℓi), given that p ≡ −1 (mod ℓi). In particular, this
means that ℓ splits as the product of li = (ℓi, π − 1) and l̄i = (ℓi, π + 1) inside O (primes
that are split are called Elkies primes).

The very peculiar choice of the prime p implies that the evaluation of the action li ⋆ E
is very easy: the kernel of the corresponding isogeny E[li] is the intersection of ker(ℓi) and
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ker(π− 1), which is the Fp-rational ℓi-torsion subgroup. By computing it and using Vélu’s
formulas, we can compute the isogeny φli .

For computing l−1
i ⋆ E we can either compute the Fp2 -rational ℓi-torsion or we can use

the fact that (a ⋆ E)t ∼= a−1 ⋆ Et, where Et is the quadratic twist of E. For more details
on evaluating the class group action, we refer to [CLM+18, section 8].

Another key aspect of CSIDH is that it uses curves in Montgomery form. Indeed, we
have the following proposition.

Proposition 1 ([CLM+18, Proposition 8]). Let p ≥ 5 be a prime with p ≡ 3 (mod 8),
and let E/Fp be a supersingular elliptic curve. Then Endp(E) = Z[π] if and only if there
exists A ∈ Fp such that E is Fp-isomorphic to the curve EA : y2 = x3 +Ax2 +x. Moreover,
such A is unique.

This means that it is sufficient to use the A coefficient as the public key, instead of
a j-invariant and then having to check that it has the correct endomorphism ring. The
only check needed is that A ̸∈ {±2} (otherwise EA is not even smooth), and that EA is
supersingular. Furthermore, it is very easy to see that in this setting the twist of EA is
simply Et

A
∼= E−A.

CSIDH assumptions. We list below the main hardness assumptions we use in our
protocols; notice that these are the direct translation of respectively the discrete logarithm
and the computational Diffie-Hellman problems to the CSIDH setting.

Problem 1 (Vectorization (Vec-CSIDH)). Given curves (E, r ⋆E) with E ∈ E , r ∈ Cl(O),
the problem asks to find said element r.

Notice that since the action is regular, the generic vectorization problem is equivalent
to the one with E = E0.

Problem 2 (Computational CSIDH (Comp-CSIDH)). Given curves (E, r ⋆ E, s ⋆ E) in E
with r, s ∈ Cl(O), the problem asks to find E′ ∈ E such that E′ = rs ⋆ E.

Additional hard problems and some discussion can be found in Section A.2.

Sampling ideals in the class group. One of the issues with CSIDH is that we know
how to efficiently evaluate only the action of the ideals li corresponding to the Elkies
primes ℓi of the factorization of p+ 1. This is why CSIDH has been defined as a REGA
[ADMP20], which actually means that it describes an action of the additive group Zn on
the set E . Indeed, we have a morpishm Π : Zn → Cl(O) given by Π(e1, . . . , en) =

∏n
i=1 l

ei
i ,

and we can define v ⋆′ E = Π(v) ⋆ E for any integer vector v ∈ Zn.
Therefore, even if we could in theory pick a uniformly random element of the source

group Cl(O) (which is what many protocols would require), we can only efficiently represent
and operate with it using the integer vector representation.

We thus pose the following assumption in order to deal with this issue.

Assumption 1. Let Dm be the distribution on Cl(O) given by sampling (e1, . . . , en)
uniformly at random from [−m,m]n and outputting a = Π(e1, . . . , en) =

∏n
i=1 l

ei
i . Then,

if (2m+ 1)n ≈ |Cl(O)| ≈ √p, for any E ∈ E, the distribution1 Dm ⋆ E is computationally
indistinguishable from the uniform distribution on E.

This assumption is strongly motivated by the following heuristic from [CLM+18,
Section 7.1]: choosing m to be the smallest integer such that (2m+ 1)n ≥ |Cl(O)|, for any
a ∈ Cl(O), the size of Π−1(a) ∩ [−m,m]n is “small”; this means that the min-entropy of
the uniform distribution on Cl(O) and the one of Dm differ just by a few bits.

1The distribution Dm ⋆ E is defined by sampling a from Dm and then outputting a ⋆ E.
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Remark 1. In the case of CSIDH-512, the structure of the class group has been fully
computed [BKV19], which means that we know Λ = ker Π, and thus can compute unique
representatives. This implies that we can consider the CSIDH-512 action as a full blown
EGA, and allow for uniform sampling without heuristic assumptions. Notice however that
this is at the cost of solving a CVP problem in Λ each time that we want to evaluate the
action, as highlighted by Panny [Pan23].

Additional definitions and preliminaries about isogenies and computational assumptions
are given in Appendix A.

3 Type-Safe and Algebraic Models for Group Actions
In this section, we first propose a generalization of both EGAs and REGAs, called hint-
effective group action (HEGA), and secondly introduce a variant of Zhandry’s type-safe
(TS) model for the setting of group actions, which corresponds to the generic group model.
We then describe the algebraic action model (AAM) as a compiler, similarly to the AGM
but for group actions, where any adversary must explain any set element that it outputs
with the group element that has generated it. Finally, we study this model in the UC
framework.

A generic (and algebraic) group action model has been proposed by Duman et al.
[DHK+23], where the authors prove generic hardness results and equivalence between
different assumptions in a quantum setting; in particular, their algebraic group action
model is almost identical to the one proposed by us, and they both differ from the one
first proposed by [MZ22] in the sense that we both only encode set elements and otherwise
give full access to the group to the adversary. However, we follow [Zha22] to first describe
a type-safe generic model which formally delimits the games that can be described in our
algebraic action model, while [DHK+23] poses the same informal constraint as in the AGM
that “input that is not a set element x ∈ X does not depend on set elements”.

Another difference is that [DHK+23] only considers abelian group actions (in particular
the concrete group Z/nZ), and the authors have to model externally the twisting property
of CSIDH, while we embed it in a bigger group action, which is however neither abelian
nor regular.

3.1 Hint-Effective Group Actions
Definition 2 (HEGA). A group action (G,X, ⋆) is hint-effective if the following properties
are satisfied:

1. The group G is finite, and there is an efficiently sampleable distribution DG on G.
Moreover, sampling from this distribution produces also a hint e, and we write that
as (g, e)←$ DG.

2. The set X is finite, and there are efficient algorithms for membership testing and
computing a unique representation.

3. There is a distinguished and known element x0 ∈ X, called the origin.

4. There exists an efficient algorithm such that for any (g, e) ←$ DG and any x ∈ X
computes g ⋆ x, eventually using the hint e.

We collect these parameters in G = (G,X, ⋆,DG, x0).

Notice that an EGA is an HEGA where the hints are empty and group operations on
G are also efficient, while a REGA is an HEGA where the hint is the exponent vector with
respect to the chosen generating set. In addition, all protocols of [ADMP20] built from



10 Simple Two-Message OT in the Explicit Isogeny Model

EGAs can also be instantiated from HEGAs, as soon as DG is statistically close to the
uniform distribution on G.

Computational assumptions on HEGAs. We can define the one-way, weak unpre-
dictable and weak pseudorandom hardness assumptions on HEGAs exactly as for EGAs in
[ADMP20]. More explicitly, we can define the “discrete logarithm” analogue for group
actions as follows. Note that we do not restrict ourselves to regular actions, so there might
be more than one possible answer.

Problem 3 (DLog-HEGA). Given x = g ⋆ x0 for (g, e)←$ DG, compute any g′ ∈ G such
that x = g′ ⋆ x0.

We finally describe an important property of a group action, namely the inability of
sample directly from X without using group elements.

Definition 3 (Unsampleable HEGA). An HEGA G = (G,X, ⋆,DG, x0) is said to be
unsampleable if for any PPT algorithm AG(x1, . . . , xn) that outputs a set element x ∈ X,
there exists a PPT algorithm A′

G that outputs (g, e) such that x = g ⋆ xi for some
i ∈ {0, 1, . . . , n}.

3.2 The Type-Safe Model
Following Zhandry’s type-safe model [Zha22], we define a similar model in the context of
group actions, and in particular HEGAs.

Definition 4. Let G = (G,X, ⋆,DG, x0) be an HEGA. An algorithm A, given as a circuit,
is said to be type-safe w.r.t. G (written as TSG) if

• It has two types of wires, bit wires and element wires. Element wires should be
thought as containing/hiding values x ∈ X.

• There always exists a given element wire containing the origin x0 of the action.

• The only gates allowed are the following:

Boolean gate: It only has bit wires for input and output, and can perform
any classical boolean function.
Action gate: It has as inputs some bit wires that encode the group element g
with an hint e, and an element wire containing x. Its output is an element wire
which contains g ⋆ x.
Equality gate: It has two element wires x, y as inputs, and outputs a bit
wire that is 1 if x = y, and 0 otherwise.

This “type-safe” model can be seen as a possible definition of a generic group action;
in [MZ22] the authors briefly propose a generic group action framework based on Shoup’s
model, stating that it can also model quantum adversaries. Unfortunately, since AGM
is incompatible with Shoup’s GGM, for our purposes we decided to follow the type-safe
approach. Moreover, we allow the adversary to access the group structure in any case: the
hardness of a group action should derive from hiding the group inside the set, and not
from the group having a “generic” structure.

3.3 The Algebraic Action Model
We now introduce the algebraic action model (AAM) as a relaxation of the TS model,
where adversaries can behave arbitrarily, but must explain the set elements they produce.
First we define what it means for an adversary to behave algebraically.
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Q1

(BIT,b)
elx, (EL,x)

(BIT,b)
elx

Action gateP1

(g, e) x

g ⋆ x

b

x

b

Figure 1: Compiled protocol AA(π, {Q1})

Definition 5. Let G be an HEGA, and A a PPT algorithm2. We say that A uses algebraic
actions w.r.t. G (denoted by AAG) if

• It receives two types of input messages:

– (BIT, b), where b is a bit-string
– (EL, x), where x ∈ X is the representation of some element

• It sends two types of output messages:

– (BIT, b), where b is a bit-string
– (EL, (g, e, x)), where g ∈ G, e is some hint and x is one of the previously received

EL messages.

The meaning of this definition is that if an algebraic adversary wants to output a set
element y ∈ X, it must explain it as some y = g ⋆ x for some x ∈ X that it has already
seen. Notice that any given TSG algorithm can be translated into an AAG algorithm, and
thus we can use the AA model as a compiler in the following way.
Definition 6. Let π be a TSG protocol between parties P1, . . . , Pn, and let Q =
{Qi1 , . . . , Qik

} a set of algebraic algorithms, with S = {i1, . . . , ik} ⊂ {1, . . . , n}.
Then AA(π,Q) is a protocol where each party Ps for s ∈ S is replaced by Qs and its

communication wires have been transformed as follows:
• Any incoming bit wire to Ps gets translated to a BIT message for Qs.

• Any incoming element wire to Ps gets translated into a (EL, x) message for Qs, and
the element wire gets labelled as elx.

• Any outgoing BIT message from Qs gets translated into a bit wire from Ps.

• Any outgoing (EL, (g, e, x)) message from Qs gets translated back into an element
wire from Ps, by applying an action gate on elx with group element (g, e).

The AA compilation on a party P1 being substituted by an algebraic Q1 can be seen
in Figure 1. What this compiler is doing is transforming a fixed subset of parties in a TS
protocol into algebraic machines, forcing them to output group elements with which they
have generated the element y they are sending. The goal of this transformation is being
able to give a definition of what it means to be “secure in the algebraic action model”.
The intuition here is that a protocol π is secure in the AAM model if its compiled version
AA(π) is secure in the standard model. This type of approach is exactly the one used by
[Zha22] for formally (re)defining security in the AGM.

We conclude the discussion of the AAM with the following informal statement about
unsampleable HEGA.

2Remark that we don’t impose the use of element wires to A.
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Remark 2. Let G be an unsampleable HEGA, and let A be any PPT algorithm that
receives inputs and sends outputs of the form (BIT, b) and (EL, x). Then, if the BIT inputs
give no information about the group action G, there exists an algebraic algorithm A′ that
upon the same inputs of A gives the same outputs, giving also an explanation to the EL
messages that it outputs.

This gives the intuition that for an unsampleable HEGA, all possible adversaries are
actually algebraic; however, this is the closest we can get to a formal result, which cannot
exist since it’s not clear what it means that BIT messages don’t reveal anything about G.
This is the fundamental issue with the AGM, as highlighted in [ZZK22]; the best resolution
of this issue is some kind of type-safe model, but there will always be a gap between the
TS model and the standard model.

3.4 UC Emulation in the Algebraic Action Model
We now formalize the definition of security in the AA model within the UC framework.
First, we use the previous compiler to define the execution of a type-safe protocol against
algebraic adversaries.

Definition 7. Let π be a TSG protocol, and A,Z be AAG algorithms.
Denote by UC(π) the TSG protocol defined by adding a “dummy” type-safe adversary

and environment A′,Z ′. In particular, we have that:

• The environment Z ′ can send input messages to the main parties of π, and read their
output messages, all of which consist of both a bit wire and an element wire.

• The environment Z ′ and the adversary A′ can communicate freely.

• The adversary A′ has a backdoor channel towards the parties, which also has both
bit wires and element wires.

We define execπ,A,Z(z) as the output bit of the environment Z in an execution of the
protocol AA(UC(π), {A,Z}) with input z, i.e. we are compiling the “dummy” adversary
and environment into meaningful algebraic ones.

With this definition we are modelling a similar setting of UC-AGM, while using the
type-safe model to give a precise definition on the condition “when the adversary outputs
a group element” given in UC-AGM [ABK+21].

Notice that with our definition we are allowing π to have hybrid type-safe functionalities,
and also to have element wires as input/output. For example, FRO is a TSG algorithm
that keeps a list of pairs (element wire, bit-string). When activated with an element wire
input, it checks with equality gates if that input is present; if yes, it answers with the
bit-string, otherwise it samples a bit-string, answers with it and stores it in the list with
the input element wire.

We can finally define what an algebraic emulation of a protocol is, and consequently
define an algebraic realization of a type-safe functionality.

Definition 8. Let π, ϕ be TSG protocols. We say that π UC-AA emulates ϕ if for any
AAG adversary A there is an AAG simulator S such that for all AAG environments Z it
holds that

execπ,A,Z ≈ execϕ,S,Z .

If F is a TSG functionality, we say that a TSG protocol π UC-AA realizes F if π UC-AA
emulates idealF , where idealF is the protocol in which all the parties forward their input
to the ideal functionality F , and output the returned value from F .
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We can also prove a composition theorem, but, as in UC-AGM, there is an important
limitation. In order to obtain emulation, the adversary must give its explanations relative
to elements of the same sub-protocol where it’s sending the output. Concretely, we say that
an AAG adversary against a TSG composed protocol ρπ is non-mixing if the explanations of
messages to be sent to ρ only use element wires from ρ, and analogously with π. Therefore,
we can state the composition theorem respect to non-mixing adversaries as follow. Note
the proof of this theorem is exactly the same as the one given in [ABK+21].

Theorem 1 (Informal). Let F1,F2 be TS functionalities. Let π be a TS protocol that
UC-AA realizes F2, and ρ a protocol that UC-AA realizes F1 in the F2-hybrid model. Then
protocol ρπ UC-AA realizes F1 against non-mixing algebraic adversaries.

4 The Explicit Isogeny Model
In this section we will introduce the Explicit Isogeny model of computation, which we
will then use to prove the security against malicious adversaries of the two-message OT
protocol proposed in [LGD21]. Concretely, the UC-EI model is nothing else than UC-AA
instantiated with the action given by CSIDH, where we also incorporate twists for a more
accurate model. This means that for any curve E the adversary must output the secret
isogeny path that it used to generate E.

We will then argue that, given the difficulty of the “hash-to-curve” problem, the CSIDH
action is an example of an unsampleable HEGA, so that this new model of computation is
really close to the standard model.

4.1 The CSIDH Action with Twists
Recall that the CSIDH action is ⋆ : Cl(O) × E → E , where O is the order Z[√−p] and
E = Ellp(O). However, to fully capture the structure of the Fp-rational supersingular
isogeny graph it is necessary to also consider twists. This has also been proposed and
used by [AEK+22] to construct password authentication key-exchange (PAKE) protocols
and to prove their (in)security. Moreover, also Duman et al. [DHK+23] consider twists in
their AGAMT, by modelling them as an external construction. However, we notice that
twists can still be described internally to the group action framework, by introducing the
appropriate semidirect product.

We recall that a semidirect product of two groups is given by the following definition.

Proposition 2 (Semidirect product). Let H,N be groups, and ϕ : H → Aut(N) (where
Aut(N) denotes the group of all automorphisms of N). Then the cartesian product N ×H
equipped by the operation

(n1, h1)(n2, h2) = (n1ϕ(h1)(n2), h1h2)

is a group, denoted by N ⋊ϕ H.

This construction is useful because of the following classical result in the theory of
group actions.

Theorem 2. Let H be a group and N a H-group, meaning that there is a map ϕ : H →
Aut(N). Suppose that both H and N act on the same set X (with actions denoted by
⋆H , ⋆N respectively) in a compatible way, i.e. h ⋆H (n ⋆N x) = ϕh(n) ⋆N (h ⋆H x). Then
there is a well-defined action of N ⋊ϕ H on the set X given by (n, h) ⋆ x = n ⋆N (h ⋆H x).

We will apply the theorem in our setting, where H = Z/2Z, N = Cl(O), X = E . The
action of Z/2Z on E is exactly twisting, in particular 0 · E = E and 1 · E = Et. Moreover,
Z/2Z has also a natural action on Cl(O) given by 1 ·a = a−1, which corresponds to the map
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ι : Z/2Z→ Aut(Cl(O)) where ι(1) : a 7→ a−1. It is now easy to see that the compatibility
requirement is exactly the fact that (a ⋆ E)t = a−1 ⋆ Et. We can then construct a new
action on E , which automatically includes twists in its description.

Corollary 1. There is an action of Gtw := Cl(O)⋊ιZ/2Z on E given by (a, 0)⋆twE = a⋆E
and (a, 1) ⋆tw E = a ⋆ Et.

Since |Gtw|= 2|Cl(O)|, the action will not be regular anymore; indeed, for any E = a⋆E0
it’s easy to see that its stabilizer is Stab(E) = {(1, 0), (a2, 1)}.

We conclude by showing that what we have constructed is still an HEGA.

Proposition 3. Let ⋆tw : Gtw × E → E the action defined above. Then the group action
Gtw = (Gtw, E , ⋆tw,DGtw , E0) such that:

• E0 is the same as in the CSIDH action, namely the curve y2 = x3 + x

• DGtw is defined by independently sampling (a, e) from Cl(O) as in CSIDH, and
choosing a random bit b ∈ Z/2Z; the group element is (a, b) and the hint is e′ = (e, b)

is an HEGA. Moreover, if Assumption 1 holds, DGtw is close to the uniform distribution.

Proof. The last claim follows directly from the assumption that the CSIDH sampling is
close to the uniform distribution on Cl(O). The fact that Gtw is a HEGA directly follows
from the fact that CSIDH is a HEGA (indeed, the hint allows us to evaluate the action of
sampled group elements).

4.2 The UC-EI Model
We are now ready to define the Explicit Isogeny model, which is an instantiation of
UC-AA with Gtw. More concretely, we see that our compiler turns the adversaries into
EI-adversaries.

Definition 9. Let Gtw be the HEGA defined before. We say that an algorithm A uses
Explicit Isogenies (EI) if its communication tapes have messages of the type (bit,m) and
(curve, E), where m is a bit-string and E is an element of E , i.e., a supersingular curve
over Fp. Moreover, for any outgoing message (curve, E), A must also send an explanation
(a, e, E′) such that E = a ⋆E′, where E′ is one of the previous incoming curves or its twist.

Notice that for our UC-AA definition to make sense, it’s necessary that the original
protocol is type-safe w.r.t. Gtw, so incorporating twists into the action is a fundamental
step of the construction, otherwise we couldn’t describe protocols that use twists, such as
the one proposed by Lai et al. [LGD21].

Our EI model can thus be seen as the formalized type-safe variant of the AGAMT model
by [DHK+23]. We also restate our definition of UC emulation, which is exactly that given
for UC-AA for the specific case of Gtw protocols against EI adversaries.

Definition 10. Given two TSGtw protocols π and ϕ, we say that π UC-EI emulates ϕ
if for any efficient EI-adversary A there is an efficient EI-simulator S such that for any
efficient EI-environment Z we have that

execϕ,S,Z ≈ execπ,A,Z .

If F is an ideal functionality and ϕ = idealF , we say that π UC-EI realizes F .

Like UC-AGM, also UC-EI limits the capabilities of the adversary, so it may seem that
it’s less expressive than the plain model of UC security. However, as we will discuss in the
next sections, there is strong evidence suggesting that any PPT adversary A behaves like
in the explicit isogeny model, in particular given the fact that “hashing” to a supersingular
curve seems to be very hard.
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4.3 The EI Model and the Sampling Problem
One of the main open problems of isogeny-based cryptography is how to sample a super-
singular curve without taking a random isogeny walk from another known curve; this is
also called the “hashing-to-curve” problem, which can be roughly stated as follows.

Problem 4 (Informal). Given a prime p, compute a supersingular curve E/Fp2 , without
revealing anything about End(E), or any information that helps solving the isogeny path
problem from E.

More concretely, the sampling problem is defined and studied in [MMP22], where it is
called the cSRS (cryptographic Supersingular Random Sampling) problem. In this work
and another comprehensive study of the problem [BBD+22], the authors review some
known methods to generate supersingular elliptic curves and explore possible ways to hash
into the isogeny graph, but the conclusion of both these works is that the best algorithms
we know for this task still have exponential complexity.

We can then introduce a new knowledge assumption based on this problem.

Assumption 2. For any PPT algorithm A that receives as input a prime number p and
outputs a supersingular j-invariant j ∈ Fp2 , there exists a PPT algorithm A′ that outputs
the pair (j, R), where R = End(E) is the endomorphism ring of a curve E with j(E) = j.

We can also use a slightly different variant of the problem, that only deals with isogeny
paths and not endomorphism rings.

Assumption 3. For any PPT algorithm A(p, j0, j1, . . . , jn) that outputs a supersingular
j-invariant j ∈ Fp2 knowing a list of some j-invariants, there exists a PPT algorithm A′

that outputs a computable isogeny ϕ : Ei → E, where j(E) = j and j(Ei) = ji.

It is important to notice that the two different Assumptions 2 and 3 are not equivalent:
knowing an isogeny ϕ : E0 → E is equivalent to knowing End(E) only if we can compute
End(E0), but in an interactive protocol a party ususally receives a supersingular curve
from other parties, and cannot know its endomorphism ring. The second assumption is
thus trying to model exactly the multi-party computation setting, by forcing any party
to generate new curves only by walking in the isogeny graph, starting from curves that
have been sent to it. Moreover, in [BBD+22] the authors highlight some variants for the
hashing problem, in particular the problem of sampling Fp-rational supersingular curves.
It is related to the general problem, and it likely seems as difficult, but it is very hard to
prove an equivalence between them. However, we currently don’t know better algorithms
to hash into the Fp-graph than those that hash into the Fp2 -graph.

We will then pose another assumption, specific to the CSIDH setting.

Assumption 4. For any PPT algorithm A(p,E0, E1, . . . , En) that outputs a supersingular
curve E/Fp knowing a list of some supersingular curves Ei/Fp, there exists a PPT algorithm
A′ that outputs a computable Fp-rational isogeny ϕ : E′

i → E, where E′
i is Ei or one of its

twists.

Notice that this is a quite literal translation of Assumption 3 into the Fp-isogeny graph,
where we have to use curves instead of j-invariants: any supersingular invariant j ∈ Fp

will correspond to multiple curves which are F̄p-isomorphic, but not Fp-isomorphic, i.e.
all the twists. Moreover, this assumption also captures the fact that twists are easy to
compute, so an algorithm can easily generate Et from E, even without knowing an isogeny
from E to Et.

This new assumption is actually needed, and it doesn’t seem to follow directly from
the other two. Indeed, Assumption 2 and Assumption 4 are not related for the exact same
reason for which Assumption 2 and Assumption 3 are not equivalent. Trying to directly
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Protocol Πtw
Common input: H : E → K; (Enc,Dec)
Trusted setup: random E ∈ E
Sender Receiver
Input: (m0, m1) Input: σ

s←$ Cl(O) r ←$ Cl(O)
A = s ⋆ E C0 = r ⋆ E

C1 = Ct
0

Cσ

k0 = H(s ⋆ Cσ)
k1 = H(s ⋆ Ct

σ)
ci = Encki (mi)

A, (c0, c1)

kσ = H(r ⋆ A)
mσ = Deckσ (cσ)

Figure 2: The twist OT protocol by Lai et al.

relate Assumptions 3 and 4 means instead translating Fp2 -isogenies into Fp-isogenies, which
is a very interesting problem, but still open for now.

We conclude the section by describing what those assumptions mean for the EI model,
starting from the following immediate result.

Proposition 4. Under Assumption 4, Gtw is an unsampleable HEGA.

In conjunction with Remark 2, this means that our UC-EI model does not seem to
impose any actual restrictions, and can almost be thought as equivalent to the plain UC
model, with all the caveats of that remark.

5 Actively-Secure 2-Message Isogeny-Based OT
In this section we describe a 2-message OT protocol secure against malicious adversaries
and give its security proof in the UC-EI model. We describe in Section 5.2 a variant of this
protocol with 3 messages, but without the need of a trusted setup. Finally, a comparison
of different isogeny-based OT protocols can be found in Section 5.3.

5.1 The Twist OT Protocol
The protocol Πtw, described in Figure 2, is exactly the 2-message protocol proposed by
Lai et al. [LGD21].

The protocol is actually type-safe w.r.t. Gtw, since the only operations we do on curves
are twists and CSIDH actions. In addition, both functionalities FTSC and FRO can be
easily seen to be type-safe.3

This protocol was only proved to be semi-honest secure in the UC framework by Lai et
al.; in the same paper, the authors give a maliciously-secure version of it that requires two
additional messages to allow the extraction of the input of a malicious receiver in the UC
proof. We now show that this is not needed in our UC-EI setting.

3FTSC just samples (t, e) from DGtw , and then computes t ⋆ x0 via an action gate. FRO can be emulated
by lazily sampling a table of pairs (x, mx), where mx is the random answer to the query x, and can be
implemented using only equality gates.
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Theorem 3. The protocol Πtw, described in Figure 2, UC-EI realizes the functionality
FOT (Figure 4) in the (FRO,FTSC)-hybrid model in the presence of malicious adversaries
and static corruptions, if the encryption scheme (KeyGen, Enc, Dec) is IND-CPA secure,
the CSIDH vectorization problem is hard, and Assumption 1 holds.

Proof. We distinguish the main two cases of honest PS and corrupt PR and corrupt PS

and honest PR. Proving security in the remaining two cases is straightforward.
Honest sender and corrupt receiver. We first describe the simulator S, and in
particular how it can extract the input of the corrupt receiver to forward to the OT
functionality.
Simulation. Throughout the execution, S simulates the random oracle H by answering
every new query with a random value from the relevant set and maintaining a list of past
queries to answer repeated queries consistently. More concretely, S keeps a list L in E ×K
in which it stores all the past queries. It initializes the random oracle with an empty list,
then for each query X ∈ E it checks whether (X, k) ∈ L for some k: if this is the case,
returns that k, otherwise it samples a random k ←$ K, adds (X, k) to L and returns k.
The simulator is defined by the following instructions:

• Emulate the trusted setup step, defining the curve E = t ⋆ E0, with a randomly
sampled t ∈ Cl(O).

• Set its public key as the honest sender A = s ⋆ E, for a random s←$ Cl(O).

• When receiving the curve C from the adversary, also obtain an explanation C = x⋆ER,
with ER = E0, E or Et. If ER = E set σ = 0, if ER = Et set σ = 1, otherwise set
σ = −1. If σ ̸= −1, query the functionality and get the message mσ.

• Sample two random keys ki ←− KeyGen() and for any additional query to H proceed
as follows:

– If query is s ⋆ C, then if σ ̸= 0 send abort to FOT, otherwise returns k0

– If query is s ⋆ Ct, then if σ ̸= 1 send abort to FOT, otherwise returns k1

• Set any mi that it doesn’t know to 0 (i.e. m1−σ if σ ∈ {0, 1}, both m0,m1 otherwise);
then it computes ci = Encki

(mi).

• Finally, send A, c0, c1 to the adversary.

Indistinguishability. We now prove indistinguishability between the real and ideal execution.
Let ZS denote execF,S,Z , while Zπ denote execπ,A,Z . Let Ab be the event that S aborts
in an ideal execution. Write

s = Pr
[
ZS = 1 |Ab

]
, s′ = Pr

[
ZS = 1 | ¬Ab

]
, p = Pr[Zπ = 1] a = Pr[Ab].

Then we have∣∣ Pr[ZS = 1]− Pr[Zπ = 1]
∣∣ =

∣∣ sa + s′(1− a)− p
∣∣ =

∣∣ a(s− s′) + s′ − p
∣∣

≤ 2a +
∣∣s′ − p

∣∣ = 2 Pr[Ab] +
∣∣∣Pr

[
ZS = 1 | ¬Ab

]
− Pr[Zπ = 1]

∣∣∣ .

The theorem will then follow from the fact that both quantities are negligible. Indeed if
S aborts, then we can solve a vectorization CSIDH problem, while if Z can distinguish
we can break the IND-CPA property of the encryption scheme. More concretely, suppose
that S does not abort, then we can construct an adversary D for the IND-CPA game as
we describe in what follows. D internally runs Z against S, but stopping the execution
before the simulator computes c1−σ. Then D takes the input (m0,m1) for the honest
sender, and sends to the IND-CPA oracle the pair of messages (0,m1−σ), which returns
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Table 1: The computable solutions to the CSIDH problem

y ⋆ E0 y ⋆ E y ⋆ Et y ⋆ A y ⋆ At

C = x ⋆ E0, s ⋆ C s = yx−1 s = ytx−1 s = yt−1x−1 t = xy−1 s2 = x−1t−1

C = x ⋆ E0, s ⋆ Ct s = yx s = ytx s = yt−1x t = x−1y−1 s2 = xt−1

C = x ⋆ E, s ⋆ Ct s = xyt s = xyt2 s = xy t = x−1y−1 s2 = xy
C = x ⋆ Et, s ⋆ C s = x−1yt s = x−1yt2 s = x−1y t = xy−1 s2 = x−1y

a ciphertext c. At this points D resumes the execution, but it sets c1−σ = c. Finally D
outputs whatever Z outputs. Notice that when the bit b of the IND-CPA oracle is 1, D
runs a perfect emulation of the real protocol, while if b = 0, D is running S. This means
that

AdvIND-CPA
D,E =

∣∣∣Pr
[
D = 1 | b = 0

]
− Pr

[
D = 1 | b = 1

]∣∣∣ =
∣∣∣Pr

[
ZS = 1 | ¬Ab

]
− Pr[Zπ = 1]

∣∣∣ .

In particular Z cannot distinguish S and the real world if the encryption scheme E is
IND-CPA, in the case that S doesn’t abort. We now estimate the probability of S aborting.
Suppose then that we have a CSIDH problem E1 = a ⋆ E0 we want to solve. We create
two possible solvers for this problem:

• Algorithm D1 will run S with E1 as trusted setup. Then it will check if it can
compute a from the queries and explanations that Z makes to the random oracle.

• Algorithm D2 will run S with b ⋆ E0 as trusted setup and b ⋆ E1 as sender’s public
key. Then it will check queries to compute a value a′ such that a′ ⋆ (b ⋆ E0) = b ⋆ E1,
which means a′ = a.

In Table 1, we show how D1 and D2 can compute the solutions from the query. The rows
are indexed by the explanation of the curve C and the query, while the columns are the
explanation of the query. We now compute the probability that the simulator aborts,
Pr[S aborts], and estimate it with the advantages of D1,D2 for the CSIDH problem. Let
T1 be the event that Z makes one of the “forbidden” queries and explains it as y ⋆ A
(so that t can be computed); let T2 be the event that a forbidden query is made and is
explained differently from y ⋆ A (in which case s can be computed). Notice that S only
aborts when a forbidden query is made, so we have that Pr[S aborts] = Pr[T1] + Pr[T2].
Moreover Di wins with probability 1 if event Ti happens, so we have that

Advcsidh
Di

≥ 1 · Pr[Ti] + 1
#Cl(O) Pr[¬Ti] ≥ Pr[Ti].

In particular, we get that Pr[S aborts] ≤ Advcsidh
D0

+ Advcsidh
D1

, from which we can finally
conclude ∣∣Pr[ZS = 1]− Pr[Zπ = 1]

∣∣ ≤ AdvIND-CPA
D + Advcsidh

D0
+ Advcsidh

D1
,

which proves indistinguishability, provided that the encryption scheme is IND-CPA and
the CSIDH problem is hard.
Corrupt sender and honest receiver. As in the previous case, we first describe the
simulator and then we argue indistinguishability between the real and ideal execution.
Simulation. The simulator S handles random oracles queries as in the previous case and
does the following.

• Backdoor the trusted setup as before: sample t←$ Cl(O) and set E = t ⋆ E0

• Sample r ←$ Cl(O) and compute C = r ⋆ E. Set σ = 0 and send C to A. Then
proceed as an honest party would do.
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• If, at some point, A sends abort, then forward abort to the OT functionality.

• If receive (A, c0, c1), together with an explanation for A, from A, using t can recover
both the keys k0 and k1 as follows: k0 = H(r ⋆ A) and k1 = H(r−1t−2 ⋆ A); then
decrypt the two messages with the computed keys mi = Decki

(ci). Send m0,m1 to
the functionality.

• Output whatever the adversary outputs and halt.

Indistinguishability. In the trusted setup, the simulator backdoors the public curve, but
this is unnoticeable to the adversary. After the setup phase, in the real protocol the curve
C sent by the receiver is either r ⋆ E or (r ⋆ E)t depending on whether σ = 0 or σ = 1,
respectively. In the former case the messages received by A are identically distributed in
the two executions, in the latter case, by Assumption 1 the messages are computationally
indistinguishable, since both r ⋆ E and (r ⋆ E)t are sampled from distributions that are
computationally indistinguishable from uniform (notice that the twist of the uniform
distribution is again uniform). Finally, using its knowledge of t it is straightforward to see
that S is able to correctly extract the input of A. Therefore we can conclude that the two
executions are indistinguishable.

In conclusion, by proving UC-EI security for the protocol Πtw, we can claim security
against malicious adversaries of a two-round OT protocol that only requires 3 isogeny
computations for the sender and 2 for the receiver. Removing one of the two assumptions,
i.e., either ROM or TSC, without compromising the efficiency of the protocol, remains
a fascinating open question, whose answer will probably require a completely different
approach.

5.2 A 3-message variant
We can apply our model to prove UC-EI security of other isogeny-based OT protocols. We
decided to only show this for a variant of Πtw that does not require a trusted setup, but
unfortunately needs 3 messages, and thus it’s not optimal. The protocol Πtw3 , described
in Figure 3, is similar to Πtw, except that now it is the sender PS that generates the curve
E and sends it to the receiver PR.

Theorem 4. The protocol Πtw3 , described in Figure 3, UC-EI realizes the functionality
FOT in the random oracle model if the CSIDH vectorization problem is hard and the
encryption scheme (KeyGen, Enc, Dec) is IND-CPA secure.

Sketch. As before we distinguish between the two main cases of corrupt sender and honest
receiver and honest sender and corrupt receiver.
Corrupt sender and honest receiver. As in the other proof, the twisting statistically
hides the choice bit, since the lemma holds for any starting curve, even possibly ones that
have been maliciously generated.
Honest sender and corrupt receiver. This also works as in the other proof, since
by simulating the honest sender we know t such that E = t ⋆ E0, which otherwise we knew
by simulating the trusted setup functionality.

5.3 Efficiency and Comparison
In Table 2, we give a detailed comparison between the protocol Πtw presented in Section
5.1 and other isogeny-based OT protocols that have been proposed in the last few years;
we considered only the ones whose security relies on CSIDH or variants.

In the table, we report the number of messages #M, the number of isogenies computed
by the sender and the receiver, respectively, #(PKS , PKR), the power of the adversary,
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Protocol Πtw3

Common input: H : E → K; (Enc,Dec);E0

Sender Receiver
Input: (m0, m1) Input: σ

s, t←$ Cl(O) r ←$ Cl(O)
E = t ⋆ E0

A = s ⋆ E

E, A

C0 = r ⋆ E

C1 = Ct
0

Cσ

k0 = H(s ⋆ Cσ)
k1 = H(s ⋆ Ct

σ)
ci = Encki (mi)

c0, c1

kσ = H(r ⋆ A)
mσ = Deckσ (cσ)

Figure 3: The twist protocol without trusted setup

Table 2: Comparison of some properties of proposed OT protocols

Reference # M # (PKS , PKR) Adversary Proof Model Assumption
[DOPS20] I 2 3, 2 Semi-honest UC ROM ParallelEither
[LGD21] I 2 3, 2 Semi-honest UC ROM+TSC Inv-CSIDH
[ADMP20] 2 4λ, λ+ 3 Malicious SSP Plain wPR-EGA
[ADMP20] + [PVW08] 2 4λ, λ Malicious UC CRS wPR-EGA
[DOPS20] + [DGH+20] 2 poly(λ) Malicious UC ROM+TSC ParallelDouble
[LGD21] II 4 5, 6 Malicious UC ROM+TSC Rec-CSIDH
[BMM+23] I 2 O(λ), O(λ) Malicious UC ROM+CRS Comp-CSIDH
[BMM+23] II 4 O(λ), O(λ) Malicious Simulation Plain Comp-CSIDH
Πtw ([LGD21] + this work) 2 3, 2 Malicious UC-EI ROM+TSC Vec-CSIDH
Πtw3 this work 3 4, 2 Malicious UC-EI ROM Vec-CSIDH

the proof framework, the model of computation, and the underlying hardness assumption
on which the security of the protocol is based on. We denote the security parameter by λ.

A brief description of some of the works cited in Table 2 was already given in [LGD21].
We recall here their main properties for completeness. In the first rows, we have semi-honest
secure protocols.

In [DOPS20], the authors introduce the concept of masking, which generalizes the
one of hard homogeneous spaces. The paper contains two passively secure OT protocols,
one with two rounds, derived from the Shamir-3-Pass key transportation scheme, and the
other with three rounds derived from the CO protocol. In addition, the authors prove
that their two-round protocol can be extended to be secure against malicious adversaries
using a transformation by Döttling et al. [DGH+20], which increases the complexity of
the protocol as a side effect. As mentioned before, the protocols are based on masking
assumptions, ParallelEither, ParallelBoth and ParallelDouble, that can be instantiated with
isogeny-based assumptions. The ParallelEither asks for either gab or ga/b given ga, gb; the
ParallelBoth asks for gba0/a1 or gba1/a0 given ga0 , ga1 , gb; the ParallelDouble asks for gac

and gbc given ga, gb, gc and a one-time access to an oracle that exponentiates by c. We
refer to [DOPS20] for additional details.

In [ADMP20], the authors introduce a new framework based on group actions, from
which they derive new cryptographic primitives based on CSIDH. In particular, they



Emmanuela Orsini, Riccardo Zanotto 21

construct a “dual-mode encryption scheme” which allows them to use the framework by
Peikert et al. [PVW08] to produce an OT protocol that is UC-secure against malicious
adversaries. The resulting protocols has only two rounds, but it needs to generate O(λ)
public keys and compute O(λ) isogenies. They also directly build a statistically sender-
private OT protocol, which still needs O(λ) public key operations. The security of these
protocols relies on the weak pseudorandomness of the underlying EGA.

The recent paper [BMM+23] constructs a 4-round maliciously secure protocol in the
plain model, and a 2-round UC-secure protocol in the ROM+CRS model. They start
from a semi-honest protocol and add a proof of knowledge to show that the messages are
well-formed. Both protocols are based on the computational CSIDH problem, but need a
number of isogeny computation that is linear in the security parameter λ, which mainly
comes from the PoK.

Lai et al. [LGD21] describe the 2-round semi-honest protocol that we prove to be
maliciously secure in the UC-EI model. This protocol is particularly efficient compared
to other isogeny-based protocols as it requires only 2 round of communications and a
constant, very low number of isogeny computations. The protocol requires both a random
oracle and a trusted setup.
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Auxiliary Supporting Material

A Additional Preliminaries
A.1 Elliptic Curves, Isogenies, Endomorphisms
An elliptic curve is a smooth curve of genus one with a distinguished rational point. More
concretely, an elliptic curve E defined over a field K (denoted E/K) is the set of points
satisfying the Weierstrass equation y2 = x3 + ax + b, with a, b ∈ K, with an additional
“point at infinity”. The points of an elliptic curve, denoted by E(K), have an abelian and
algebraic group structure given by intersecting lines with the curve. Given two elliptic
curves E1 and E2 over K, an isogeny ψ between E1 and E2 is a non-constant morphism
between them. The degree of an isogeny is its degree as a rational map; an isogeny is said
to be separable if its degree is equal to the size of its kernel. Given a finite subgroup G of
E, there exists a separable isogeny ψ : E → E/G, with ker ψ = G, which is unique up to
isomorphism. Both the isogeny ψ and image E/G can be computed from the kernel using
Vélu’s formulas [Vél71], whose efficiency depends on the smoothness of the isogeny degree.

An endomorphism of an elliptic curve E is an isogeny from E to itself. The set End(E)
of endomorphisms of E, together with the zero map, is a ring. When E is defined over
a finite field, the endomorphism ring of E is either an order in a quadratic field, in
which case we say E is ordinary, or a maximal order in a quaternion algebra and E is
called supersingular . For more background on elliptic curves, isogenies and their use in
cryptography we refer to standard resources [Sil09, Feo17].

A.2 Other Computational Assumptions
The two main problems of isogeny based cryptography are the Endomorphism Ring Problem
(EndRing) and the Isogeny Path Problem (IsogenyPath), which can be stated as follows.

Problem 5 (IsogenyPath). Given two isogenous supersingular curves E,E′, compute an
isogeny ϕ : E → E′.

This problem deals with the computational complexity of finding a path in the isogeny
graph of all supersingular curves. Indeed, we know that for any pair of curves having the
same number of points, there exists an isogeny between them; the problem then asks to
explicitly compute it.

Problem 6 (EndRing). Given a supersingular elliptic curve E over Fp2 , compute End(E).

Since End(E) is a rank 4 lattice for supersingular curves, finding even one extra
endomorphisms that is not “trivial” (i.e. a combination of scalar multiplications and the
Frobenius) seems to be very hard.

One of the most important results for isogeny based cryptography is the following
theorem that relates EndRing to IsogenyPath.

Theorem 5 ([Wes22b]). The problems EndRing and IsogenyPath are equivalent, under
the generalised Riemann hypothesis (GRH).

We can also try to understand the relationship between CSIDH, where curves and
isogenies are constrained to be Fp-rational, and the general EndRing problem. In [CPV20],
the authors describe an efficient algorithm that, given two curves E1, E2 over Fp and their
full endomorphism rings, outputs a class group element a such that a · E1 = E2. The
problem is that this ideal usually doesn’t have a smooth norm, so its action cannot be
efficiently computed. In order to smoothen the norm, we need to find relations in Cl(O)
and then run lattice reduction algorithms, which greatly increase complexity. This previous
result can be made effective, and we actually have the following equivalence.



28 Simple Two-Message OT in the Explicit Isogeny Model

Theorem 6 ([Wes22a]). EndRing and the effective CSIDH vectorization problem are
equivalent, under GRH.

Other computational problems related to CSIDH are the following; these are mainly
defined and studied in [Fel19] and [LGD21].

Problem 7 (Computational Inverse CSIDH (Inv-CSIDH)). Given curves E, r ⋆ E in E
with s ∈ Cl(O), the problem asks to find E′ ∈ E such that E′ = r−1 ⋆ E.

Given that Et
0 = E0, we have that (a ⋆ E0)t = a−1 ⋆ E0, so the above problem is easy

in the special case of E = E0.

Problem 8 (Computational Reciprocal CSIDH (Rec-CSIDH)). Given E ∈ E, first the
adversary chooses and commits to X ∈ E, then it receives the challenge s ⋆ E, s ∈ Cl(O).
The adversary wins if it can compute (s ⋆ X, s−1 ⋆ X) w.r.t. X.

We have the following reductions between these problems.

Proposition 5. The computational reciprocal CSIDH problem is equivalent to the compu-
tational inverse CSIDH problem.

Proposition 6 ([Fel19], [LGD21]). If the group Cl(O) has known order, the computational
CSIDH problem is equivalent to the computational inverse problem.

This also means that the two problem are quantumly equivalent, since the computation
of the class group can be done in quantum polynomial time.

Another fundamental quantum equivalence is the following.

Theorem 7 ([GPSV21], [Wes22a], [MZ22]). The vectorization problem and the computa-
tional CSIDH problem are quantumly equivalent.

A.3 Overview of the UC Framework
We present here a semi-formal overview of the universally composable (UC) model of
security established by Canetti [Can01]. The UC framework allows for defining security
properties tasks so that security is maintained under general composition with unbounded
number of instances of arbitrary protocols running concurrently.

Protocols that aim to achieve security in this model are defined in three steps. First, the
protocol and its execution in the presence of an adversary are formalized, this represents
the real-life model which we also call the real world. Next, an ideal process for executing
the task is defined; its role is to act as a trusted party by separately receiving the input
of each party, honestly computing the result of the protocol internally and returning the
output assigned to each party. In this ideal world, the parties do not communicate with
one another but instead solely rely on the ideal functionality to provide them with their
output. Finally, we say that the protocol in question UC-realizes the ideal functionality if
running the protocol is equivalent to emulating the ideal functionality. Below, we provide
a brief discussion with additional formal details.
Real model. An execution of a protocol π in the real model consists of n PPT interactive
Turing machines (ITMs) P1, . . . , Pn representing the computing parties. Each party
is uniquely determined by a party identifier (ID) that is used to distinguish between
participants of the same protocol instance. We also have two additional ITMs, an adversary
A, describing the behaviour of the corrupted parties and an environment Z, representing
the external network environment in which the protocol operates. The environment
gives inputs to the honest parties, receives their outputs, and can communicate with the
adversary at any point during the execution. The adversary controls the operations of the
corrupted parties and the delivery of messages between the parties. In more details, when
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the environment is activated, it can read the output tapes of all honest parties and A,
and it can activate a subset of the parties and A by writing input messages on their input
tapes. Parties, once activated, can perform local computation, write on their output tape,
send messages to other parties and send subroutine output messages to Z. The adversary
A can send backdoor messages to Z and all parties, and receive backdoor messages from
all parties. We say that the adversary is passive (or semi-honest) if it always instructs the
corrupt parties to follow the protocol; while we say that the adversary is malicious if it
may instruct the corrupt parties to arbitrarily deviate from the protocol’s instructions.
We let execπ,A,Z(κ, z, r) denote Z’s output on input z and security parameter κ, after
interacting with A, P1, . . . , Pn running the protocol Π with random tape r.
Ideal model. In the ideal protocol ]idealF , we have n dummy parties P1, . . . , Pn which
interact with an ideal functionality F in a simple way: they pass their private inputs
to F and wait for it to return their assigned output. There is also an ideal-adversary S
which is responsible for the delivery of messages. The ideal functionality F defines the
desired behaviour of the computation, playing the role of a trusted third party, and can
communicate with the ideal adversary S by providing and receiving backdoor information.
Finally, the same environment Z is present in the ideal world. Z also prescribes the inputs
and observes the outputs of all parties. We only consider static corruptions, hence the set
of corrupt parties is fixed before the start of the computation and is known to F ,Z and S.
We let execF,S,Z(κ, z, r) denote Z’s output on input z and security parameter κ, after
interacting with S and dummy parties P1, . . . , Pn that interact with F using random tape
r.
UC emulation. One of the main concept of the UC framework is that of UC-emulation.
Informally, it involves two protocols, say π and ϕ, and we say that π UC-emulates ϕ
(π ∼ ϕ), if for every efficient adversary A in an execution of π, there is an efficient ideal
adversary S in an execution of ϕ, such that no efficient environment Z can distinguish
an execution of π with A and an execution of ϕ with S, i.e. execπ,A,Z ≈ execϕ,S,Z .
In particular, it implies that π can be safely used on behalf of ϕ without compromising
security.

Since the security of protocols is defined by comparing the “real” protocol execution
with an “ideal” one, we can instantiate the concept of protocol emulation with the very
special case of ϕ being an ideal protocol idealF for the functionality F . Therefore, we
say that π UC-emulates F if we can infer that π does not leak any other information to
an adversary than F would have, and hence securely realizes the given task no matter how
many other instances of π and/or other protocols are executed concurrently. In this case
we write execπ,A,Z ≈ execF,S,Z .

Definition 11. We say that a protocol π UC-realizes an ideal functionality F if π
UC-emulates the ideal protocol idealF .

Hybrid model. When a protocol π uses an ideal functionality G as a sub-routine, the
UC-framework considers the G-hybrid model. In this case the parties, in both real and
ideal world, have access to a copy of the ideal functionality G. In the real world, this is an
independent trusted party that executes the functionality honestly. In the ideal world, S
executes an internal copy of the functionality G and only interacts with F . An important
property of the UC framework is that the ideal functionality G in a G-hybrid model can be
replaced with a protocol ρ that UC-realizes G. More concretely, let ρ be a protocol that
securely realizes G and let πρ be identical to π with the exception that the interaction with
each copy of G is replaced with an interaction of a separate instance of ρ. Then π and πρ

have essentially the same input/output behaviour. In particular, if π securely realizes F in
the G-hybrid model, then πρ securely realizes F in the standard model, i.e., without access
to G and any other functionalities. In the following, we informally state the composition
theorem.
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Functionality FOT

The functionality runs with a receiver PR, a sender PS and an adversary S
1. On input (receive, sid, σ) from PR, if no message with the same sid has been stored,

store (receive, sid, σ).
2. On input (send, sid, (m0, m1)) from PS , if no message with the same sid has been

stored, store (send, sid, (m0, m1)).
3. If S sends abort, forward abort to the honest parties. Otherwise, on input (deliver, sid)

from the adversary, if there have been stored both messages (receive, sid, σ) and
(send, sid, (m0, m1)), send (output, sid, mσ) to PR.

Figure 4: Oblivious transfer functionality

Functionality FRO

The functionality runs with a receiver PR, a sender PS and an adversary S. It is parametrized
by a domain D and range R. It keeps a list L of pairs of values, which is initially empty and
proceeds as follows:

1. Upon receiving a query m ∈ D, if there is a pair (m, k′) ∈ L, set k = k′; otherwise
choose k ←$R and store (m, k) in L.

2. Output k.

Figure 5: Random oracle functionality

Functionality FTSC

The functionality runs with a receiver PR, a sender PS and an adversary S
- Upon activation, sample t←$ Cl and output the curve t ⋆ E0.

Figure 6: Trusted setup functionality

Theorem 8 ([Can01]). Let π be a protocol that UC-securely realizes the ideal functionality
F in the G-hybrid model, let ϕ be a protocol that UC-securely realizes the ideal functionlity
G, then the protocol πϕ, obtained by replacing each call to the ideal functionality G in π
with a call to the sub-protocol ϕ, securely realizes F in the standard model.

A.4 Functionalities
In this work we will make use of relatively standard functionalities. The main OT
functionality, FOT, described in Figure 4, is a standard 2-party functionality.

We will also need a random oracle functionality, FRO, as described in Figure 5. It
initially contains an empty list L, then, each time it receives a query m from a fixed
domain D, it checks if the queried value m is already present in the list l. If this is the
case, the functionality output the pair (m, k) in L; otherwise, it samples a random k ←$R,
outputs (m, k), and stores that pair in L.

Finally, we will make use of a trusted setup FTSC, described in Figure 6, that fixes a
starting curve E ∈ E . Note that it outputs E = t ⋆ E0, but not t which maps E0 to E.

B The Algebraic Adversary Model
Here, we briefly recall the algebraic group model by Fuchsbauer, Kiltz and Loss [FKL18],
and in particular its instantiation in the UC framework, resulting in the UC-AGM as
described by Abdalla et al. [ABK+21]. We also show how the AGM enables a proof of the
“simplest OT” by Chou and Orlandi [CO15].
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The UC-AGM Framework. The setting involves a group G of prime order p, with
known generator g. We collect those parameters in G = (G, g, p). Roughly, an algebraic
adversary, compared to a standard adversary, has an additional auxiliary tape on which
it writes the representation of any group element it outputs on some other tapes. More
formally, we have the following definition.

Definition 12. Suppose a protocol π uses the group G as above. A pair of environment
Z and adversary A is said (G , π)-algebraic if it satisfies the following conditions.

1. A has a special output tape called algebraic tape;

2. Whenever A sends a (backdoor,m) message to a party and m contains an element
h ∈ G, then either

(a) It must provide (to a special “algebraic tape”) an algebraic representation X of
h, or

(b) A has previously received such algebraic representation from Z,

where the algebraic representation of h is a list X = [(g1, x1), . . . , (gk, xk)] such that
h =

∏k
i=1 g

xi
i and gi are group elements already seen by A or Z in the execution of

π.

With this definition, it is possible to restrict standard UC-emulation to algebraic
adversaries and environments.

Definition 13. Suppose protocols π and ϕ involve the same group G . We say that π
G -AGM emulates ϕ if for any efficient adversary A there is an efficient simulator S such
that for any efficient environment Z with (Z,A) that is (G , π)-algebraic we have that also
(Z,S) is (G , ϕ)-algebraic and

execϕ,S,Z ≈ execπ,A,Z .

We can apply the definition of AGM-emulations (Definition 13) to an ideal protocol
idealF and instantiate Definition 11 accordingly.

Like in standard UC, we can use dummy adversaries also in this algebraic setting; we
only need to pay attention to the algebraic representations that the environment send to
the adversary, because we don’t want to forward them to the actual protocol.

Definition 14. Suppose the protocol π involves G . An adversary D is (G , π)-algebraically
dummy if it only forwards messages in this way:

• For any received message of the type (backdoor,m) from a party ID, it sends
(backdoor, (ID,m)) to Z.

• For any (input, (ID,m)) from Z, it sends (input,m′) to ID, where m′ is equal to m,
but without all algebraic representations X of elements h ∈ G which are inside m.

Using this definition of dummy adversary we then have the following theorem.

Theorem 9. Suppose protocols π and ϕ involve group G . Then π G -AGM emulates ϕ if
and only if π G -AGM emulates ϕ with respect to the dummy adversary.

Observe also that since the dummy adversary doesn’t output any algebraic representa-
tion, they must all come from the environment Z.
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Composition and transitivity. It is possible to prove the composition theorem in the
UC-AGM framework stated as follows.
Theorem 10 ([ABK+21]). Let π and ϕ protocols involving group G , such that ϕ is a
sub-protocol of ρϕ, and π G -AGM emulates ϕ. Then ρπ (G , π, ϕ)-AGM emulates ρϕ.

Similarly to standard UC, we have that if π, ϕ′ and ϕ are protocols involving G , and
π G -AGM emulates π′ (i.e. π ∼

A
π′) and π′ ∼

A
ϕ, then π ∼

A
ϕ. However, we need to take

special care when we combine the previous transitivity result with composition.
Theorem 11 ([ABK+21]). Suppose protocols ρF , π and ideal functionalities F ,F ′ involve
the same group G , such that:

• IDEALF is a sub-protocol of ρF ,

• π (G , π)-AGM realizes F ,

• ρF (G , ρ)-AGM realizes F ′,
Then, the protocol ρπ AGM realizes F ′ with respect to attackers that are both (G , ρ)- and
(G , π)-algebraic.

B.1 The CO-OT Protocol in AGM

Protocol ΠCO
OT

Sender Receiver
Input: (m0, m1) Input: σ

a←$ {0, . . . , p− 1} b←$ {0, . . . , p− 1}
A = ga

A

B = Aσ · gb

B

ki = H((B/Ai)a) kσ = H(Ab)
ci = ki ⊕mi

(c0, c1)

mσ = kσ ⊕ cσ

Figure 7: The Simplest OT protocol by Chou and Orlandi

Here, we will analyse the OT protocol proposed by Chou and Orlandi [CO15]. The
core of the protocol is described in Figure 7, and needs a random oracle functionality,
denoted here by H.

B.1.1 Proof of UC-AGM security of Chou and Orlandi

The Algebraic Group Model is a key tool for proving UC security for the “simplest OT”
protocol. Roughly, it uses the algebraic behaviour of the adversary both for explaining
the parties’ state after adaptive corruptions and for extracting the input bit of a corrupt
receiver. We will only give a sketch of the proof in the case of static corruptions. We use
the protocol in Figure 7, with the functionality presented in Figure 8.
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Functionality FA
OT

The functionality runs with a receiver PR, a sender PS and an adversary S
• On input (receive, sid, σ) from PR or S, if no message with the same sid has been

stored, store (receive, sid, σ) and notify S.
• On input (send, sid, (m0, m1)) from PS or S, if no message with the same sid has been

stored, store (send, sid, (m0, m1)) and notify S.
• On input (deliver, sid, R) from the adversary, if there have been stored both messages

(receive, sid, σ) and (send, sid, (m0, m1)), send (output, sid, mσ) to PR; otherwise
output ⊥ to S.

• On input (deliver, sid, S) from the adversary, if it was previously output
(output, sid, mσ), then send (output, sid) to PS ; otherwise output ⊥ to S.

Figure 8: OT functionality in the AGM-UC framework

Theorem 12. The protocol ΠCO
OT AGM-realizes the functionality FA

OT in the FRO-hybrid
model under static corruptions.

Proof. We construct a simulator S for the dummy algebraic adversary in each of the four
corruption cases. By definition, this means that all group elements output by Z to S must
have a representation.

Corrupted sender and honest receiver: When S receives A from the adversary,
it also learns the value a such that A = ga. The simulator then chooses a random b,
computes B = gb, and sends it back to A.

Then it computes the key k = H(Ab). When the adversary sends any (c0, c1), the
simulator sends (c0 ⊕ k, c1 ⊕ k) to the trusted party and makes it deliver to the honest
receiver.

This simulates correctly since the output of the receiver is identical in both the ideal
and the real execution; moreover the distributions gaσ+b and gb are identical, so the
environment cannot distinguish between the case σ = 0 and σ = 1.

Honest sender and corrupted receiver: The simulator samples a, computes A = ga

and sends it to the adversary, which responds with an arbitrary element B; since A is
algebraic, it must also output a representation B = Axgy.

If x ∈ {0, 1}, the simulator queries the functionality with this bit, and sets mx to the
retrieved value; in all other cases (i.e. i = 1− x, or both 0 and 1 if x ̸∈ {0, 1}), it sets mi

to null. It also samples random c0, c1.
The simulator also runs the random oracle, and checks the queries made to it. In

particular, upon learning B, it retroactively checks all queries for the values Bag−ia2 : if
mi is null the simulator aborts, otherwise it sets ci = ki ⊕mi, where ki was the answer
of the query; it also does this for future queries, this time by computing the answer as
ki = ci ⊕mi. This means that S aborts precisely when x ∈ {0, 1} and A queries for both
Ba and Bag−a2 , of if x ̸∈ {0, 1} and A queries at least one of Ba or Bag−a2 .

The simulator concludes the simulation by sending (c0, c1) to the adversary.
Notice that when S does not abort, the simulation is perfect. Thus, the proof follows

from this claim:

Claim. S aborts with negligible probability if the discrete logarithm is hard.

Proof. Suppose we want to solve the discrete logarithm problem A = ga, using A as an
oracle. We feed A the element A as coming from the simulator. Notice that now the
simulator cannot check what is the query that makes it abort, so the solver for the discrete
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logarithm problem analyzes all queries made by A, and for each of them tries to solve the
equation in z and checks if gz = A, thus finding the secret exponent.

• Case x ̸∈ {0, 1}. Suppose A queries Bz. Being algebraic, it must know a rep-
resentation Bz = Asgt. But this means that gz2x+zy = (Axgy)z = Bz = gsz+t,
i.e.

z2x+ z(y − s)− t ≡ 0 (mod p)

from which we can compute z. In the other case we have that Bzg−z2 = Asgt, for
which the equation is z2(x− 1) + zy ≡ sz + t (mod p), which also has a solution.

• Case x = 0. The adversary A has queried Bzg−z2 , for which it knows a representation
Asgt. Then it gets the equation zy − z2 ≡ sz + t (mod p), which has a solution.

• Case x = 1. The adversary A has queried Bz, and represents it as Asgt. Then the
equation is z2 + zy ≡ sz + t (mod p), which also has a solution.

This concludes the proof of the claim.

Honest sender and honest receiver: This simulation can be constructed putting
together both simulations above, as we did in the proof of the toy protocol.

This concludes the proof since if the simulator doesn’t abort, the simulation is perfect,
given that the keys queried from the random oracle statistically hide the messages. Finally
we observe that all the simulators we have constructed are algebraic themselves.
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