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Abstract. This paper reviews, from bottom to top, a polynomial-time algorithm
to correct t errors in classical binary Goppa codes defined by squarefree degree-t
polynomials. The proof is factored through a proof of a simple Reed—Solomon decoder,
and the algorithm is simpler than Patterson’s algorithm. All algorithm layers are
expressed as Sage scripts backed by test scripts. All theorems are formally verified.
The paper also covers the use of decoding inside the Classic McEliece cryptosystem,
including reliable recognition of valid inputs.

1 Introduction

This paper is aimed at a reader who
e is interested in how ciphertexts are decrypted in the McEliece cryptosystem,
e has arrived at a mysterious-sounding “Goppa decoding” subroutine, and
e wants to understand how this works without taking a coding-theory course.

A busy reader can jump straight to Algorithm 5.1.1 and Theorem 5.1.2 for a concise
answer, highlighting the main mathematical objects inside the decoding process.

In more detail: The cryptosystem uses a large family of subspaces of the vector space
F5, namely “classical binary Goppa codes” defined by squarefree degree-t polynomials.
This paper reviews a simple polynomial-time “t-error-correction” algorithm for these codes:
an algorithm that recovers a vector ¢ in a specified subspace given a vector that agrees with
c on at least n — ¢ positions. Components of the algorithm are introduced in a bottom-up
order: Sections 2, 3, 4, and 5 present, respectively, “interpolation”, finding “approximants”,
interpolation with errors (“Reed—Solomon decoding”), and Goppa decoding.

1.1 Hasn’t this been done already?

Goppa codes are more than 50 years old. There are many descriptions of Goppa decoders
in the literature. Self-contained descriptions appear in, e.g., van Tilborg’s coding-theory
textbook [Til93, Section 4.5, “A decoding algorithm”], a Preneel-Bosselaers—Govaerts—
Vandewalle paper on a software implementation of the McEliece cryptosystem [PreBGV92,
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2 Understanding binary-Goppa decoding

Section 5.3], a Ghosh—Verbauwhede paper on a constant-time hardware implementation of
the cryptosystem [GhoV14, Algorithm 3], and the Overbeck—Sendrier survey of code-based
cryptography [OveS09, pages 139-140].

All of these sources—and many more—are describing an algorithm introduced by Pat-
terson [Patt75, Section V] to correct ¢ errors for binary Goppa codes defined by squarefree
degree-t polynomials. McEliece’s paper introducing the McEliece cryptosystem [Mce78§]
had also pointed to Patterson’s algorithm.

However, Patterson’s algorithm isn’t the simplest fast binary-Goppa decoder. A side
issue here is that there are tradeoffs between simplicity and the number of errors corrected
(which in turn influences the required McEliece key size), as the following variations
illustrate: Patterson’s paper contained a simpler algorithm to correct |t/2] errors; more
complicated “list decoding” algorithms, starting with Sudan [Sud97] and then Guruswami-
Sudan [GurS98], correct slightly more than ¢ errors. But let’s focus on fast algorithms to
correct exactly the t errors traditionally used in the McEliece cryptosystem. The main
issue is that, within these algorithms, Patterson’s algorithm isn’t the simplest.

Goppa had already pointed out in the first paper on Goppa codes [Gop70, Section 4]
that a binary Goppa code defined by a squarefree degree-t polynomial g is also defined by
g2. The problem of correcting ¢ errors in the code defined by g2 immediately reduces to
the problem of polynomial interpolation with ¢ errors, i.e., Reed—Solomon decoding. The
resulting binary-Goppa decoder is simpler than Patterson’s.

The benefits of simplicity go beyond general accessibility of the topic: software for
simpler algorithms tends to be easier to optimize, easier to protect against timing attacks,
and easier to test. It isn’t a coincidence that the same simple structure is used in the state-
of-the-art McEliece software from Bernstein-Chou-Schwabe [BernCS13], Chou [Chol8],
and Chen—Chou [ChenC21]. This software eliminates data-dependent timing and at the
same time includes many speedups in subroutines. Avoiding Patterson’s algorithm also
seems likely to help for formal verification of software correctness, a top challenge for
post-quantum cryptography today.

Maybe someday software for Patterson’s algorithm will catch up in these other features,
and maybe it will bring further speedups—or maybe not. Patterson’s algorithm uses degree
t instead of degree 2t for some computations, but it also includes extra computations, such
as inversion modulo g; the literature does not make clear whether the speedups outweigh
the slowdowns. Also, even if Patterson’s algorithm ends up faster, surely there will be
applications where simplicity is more important. Having only Patterson’s algorithm brings
to mind Knuth’s quote [Knu74, page 268] that “premature optimization is the root of all
evil”.

For an audience familiar with coding theory, it suffices to say “the Goppa code for g is
the same as the Goppa code for ¢2; now use your favorite Reed—Solomon decoder as an
alternant decoder” (essentially as in [BernLLP11, Section 5], which also generalizes from Fy
to IF,). For a broader audience, one can reduce to the previous sentence by saying “Take
the following course on coding theory”. But it’s more efficient for the audience to take
a minicourse focusing on this type of decoder—and there doesn’t seem to be any such
minicourse in the literature.

To summarize, this paper is a general-audience introduction to a simple ¢-error decoder
for binary Goppa codes defined by squarefree degree-t polynomials, with the proof factored
through a proof of a t-error Reed—Solomon decoder.

1.2 Bonus features

This paper systematically presents each algorithm layer in two forms: a theorem with
a full proof (Theorems 2.1.2, 3.1.2, 4.1.2, and 5.1.2), and an algorithm statement (Algo-
rithms 2.1.1, 3.1.1, 4.1.1, and 5.1.1). Figure 1.2.1 summarizes the inputs and outputs.
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Goppa decoding:
Algorithm 5.1.1,
assuming A = [[,(z — o)
and deg G = 2t,
computes e € Fy
with >, (r; — ;) A/ (v — o) € Gk[x]

and wte <t
_ X J

Interpolation with errors
(Reed—Solomon decoding):
Algorithm 4.1.1
computes f € k[x]
with deg f <n — 2t
for which (f(a1),..., f(an))
\matches r on at least n — ¢t positions)

Finding approximants:
Interpolation: Algorithm 3.1.1,
Algorithm 2.1.1 assuming degA > deg B,
computes ¢ € k[x] computes a,b € k[z]
with degp < n with ged{a, b} =1,
and (¢(a1),...,0(an)) = (r1,..., ) dega < t, degh < t,
\and deg(aB — bA) < deg A — t

Figure 1.2.1: Summary of algorithm layers inside this Goppa decoder. See algorithm
statements later in paper for full input-output restrictions. Solid arrow from L to M
means that L is a subroutine in the M algorithm. Dashed arrow from L to M means that
L is not a subroutine in the M algorithm, but the proof of L is used in the proof of M.

Readers not familiar with the polynomial ring k[z] should start with Appendix A.

Each algorithm layer is presented as a script in the Sage [The20] mathematics system
rather than as pseudocode. The scripts use Sage’s built-in support for fields, matrices,
and polynomials. The scripts do not use Sage’s functions for interpolation, the Berlekamp—
Massey algorithm, etc. Appendix B presents tests of the algorithms on random inputs.

As context, Section 8 explains how the Classic McEliece cryptosystem uses a Goppa
decoder. In this context, it is important to reliably recognize invalid ciphertexts. Most
descriptions of decoders in the literature simply assume that the input vector has at most
t errors, but for cryptography one has to verify the input vector. Mathematically, the
traditional question about the set of decoded vectors is whether it contains every vector
with at most ¢ errors; the more subtle question is whether the set is ezactly the set of
vectors with at most t errors, rather than a strict superset. This paper includes various
efficient characterizations of vectors having at most ¢ errors (Theorems 4.1.3, 5.1.3, and
7.1), and an analysis of safe options for recognizing valid ciphertexts (Sections 8.3 and 8.4).

For each theorem, this paper includes a HOL-Light-verified formalization of the theorem
and a Lean-verified formalization of the theorem. See Appendix C. This verification is
a step towards, but should not be confused with, verification of theorems stating the
correctness of software for Goppa decoding (or for the McEliece cryptosystem) in a defined
model of computation.

Finally, this paper includes extensive pointers to the literature, primarily to give
appropriate credit but also to point the reader to further material explaining how to turn
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def interpolator(n,k,a,r):
a,r = list(a),list(r)
assert k.is_field()
assert len(a) == n and len(set(a)) == n and len(r) ==
kpoly.<x> = k[]
A = kpoly(prod(x-alj] for j in range(n)))
Aprime = A.derivative()
return kpoly(sum(((r[i]/Aprime(ali]))*(A//(x-a[i]))) for i in range(n)))

Algorithm 2.1.1: Direct interpolation algorithm to compute ¢ € k[z] with deg ¢ < n and
(plar),...,o(an)) = (r1,...,7rs). Inputs: integer n > 0; field k; (aq,...,a,) € k™ with
distinct entries; (r1,...,7,) € k™.

this decoder into today’s state-of-the-art software.

1.3 Acknowledgments

Thanks to Hovav Shacham for pointing out an error in the first version of this paper.
Thanks to Tanja Lange, Alex Pellegrini, and the anonymous referees for their comments.

2 Interpolation

This section explains how to recover a polynomial f € k[z] with degf < n, given
(f(a1),..., f(ay)). Here aq,...,a, are distinct elements of a field k. See Section 4 for
a generalization that handles as many as t errors in the input vector, at the expense of
requiring deg f < n — 2¢.

2.1 An interpolation algorithm

Algorithm 2.1.1 interpolates a polynomial from its values, using the ¢ formula in The-
orem 2.1.2. That formula is usually called the “Lagrange interpolation formula”, but
Waring [Warl779] published the same formula earlier.

The algorithm starts by computing the polynomial A = J[;(z — a;). This takes O(n?)
operations in k using schoolbook arithmetic in k[z]. Then, for each i, the algorithm
uses ©(n) operations to compute A/(z — a;) = [[;,;(z — ), and ©(n) operations to
compute A'(e;) = [];,;(c; — a;), where A’ is the derivative of A. In total this takes O(n?)
operations.

Theorem 2.1.2 (direct interpolation). Let n be a nonnegative integer. Let k be a field.

Let ay,...,ay, be distinct elements of k. Let r1,...,r, be elements of k. Define
Tr—«
Il
X oy — Oé_]
) VE

Then {f € k[a] : deg f <n,(f(en),..., flan)) = (r1,-..,ma)} = {}.

Proof. By construction ¢ is a sum of n terms, each term having degree at most n — 1
(more precisely, degree n — 1 if r; # 0, otherwise degree —c0), and hence has degree at
most n — 1.

Observe that ¢(an) = 32,7 [[;4,(an — a;) /(i — ;). If i # h then ap —a; =0
for j = hso [[;;(an — ) /(i —ay) = 0. If i = h then [[,_(an — aj)/(a; — ) =
[ en(an —aj)/(an — a;) = 1. Hence ¢(ay) = 7y, as claimed.
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Any f € k[z] with deg f < n and (f(a1),..., f(an)) = (r1,...,7,) must have f = .
Otherwise f — ¢ is a nonzero polynomial, so it has at most deg(f — ¢) < n roots, but it
visibly has the distinct roots aq, ..., a,, contradiction. O

2.2 More interpolation algorithms

An older interpolation method recursively interpolates a polynomial g € k[z] satisfying
(9(a2),...,g9(an)) = ((re =) /(a2 —a1),...,(rn —r1)/(an, — 1)), and then takes f =
r1+ (x — ay)g. This interpolation method, Newton’s “divided differences” method, is more
complicated than direct interpolation to express as a concise formula but also costs ©(n?).

There is an extensive literature on algorithms using n'+°(!) operations in k, not just
for interpolation but also for multiplication (multiplying Y, ., fiz? by Y 0<i<n gir?),
division, and other basic operations. See generally [Bern08a].

One particularly fast case is interpolating f from its values at every point in a finite
field k, using various types of “fast Fourier transforms”. A difficulty here is that each of
these transforms uses a standard order of points, while aq,...,a, are in a secret order
inside the McEliece cryptosystem. There are algorithms to apply a secret permutation
without using secret array indices; see generally [Bern20].

3 Approximants

Let A, B be elements of k[z] with deg A > deg B, and consider the rank-2 lattice k[z] -
(A,0) + k[z] - (B, 1) inside k[z]?. Readers familiar with integer-coefficient lattices should
note that this is something different, a k[z]-lattice. The elements of this lattice have the
form a(B,1) — b(A,0) = (aB — bA, a) for polynomials a,b € k[z]. The vector (aB — bA,a)
is a short vector when both aB — bA and a have low degree.

It’s useful to vary the weights put on the two vector components: let ¢t be a nonnegative
integer, and consider the lattice k[z]- (4, 0)+k[z]- (B, x4 4~2t=1). The point of this section
is to find, inside this lattice, a minimum-length nonzero vector (aB — bA, axdceA=2t-1),

If 2t > deg A then there’s a denominator here. One can manually track weights of
polynomials to avoid ever having to consider denominators; this is how the theorems
below are phrased. One can instead allow denominators, dropping the requirement of
staying inside k[x]2. Alternatively, one can clear denominators by considering the lattice
k[z] - (z?+1-dee A4 0) + k[x] - (22 T179%@ 4B 1) in the case 2t > deg A. Or one can simply
prohibit this case; such large values of ¢ aren’t of interest for the application to decoding.

3.1 An approximant algorithm

Theorem 3.1.2 says that one can arrange for both a B—bA and ax3°¢4~2'=1 to have degree at
most deg A—t—1. This also forces b to have degree below ¢t. (Otherwise degbA > deg A+,
while degaB = deg B + dega < deg A + ¢, so deg(aB — bA) > deg A +t.) One can also
take a,b to be coprime; then, by Theorem 3.1.3, any lattice vector of degree at most
deg A — t — 1 must be a multiple of this particular vector (aB — bA, aacdegA_%_l).

Algorithm 3.1.1 computes a, b from ¢, k, A, B. This algorithm works in the same way
as the proof of Theorem 3.1.2, constructing coefficients of a, b as solutions to an explicit
system of 2t equations in 2t + 1 variables. Straightforward matrix algorithms use O(t3)
operations in k, typically ©(¢®) operations.

Theorem 3.1.2 (approximants). Let ¢ be a nonnegative integer. Let k be a field. Let
A, B be elements of k[x] with deg A > deg B. Then there exist a,b € k[z] such that
ged{a,b} =1, dega < t, degb < t, and deg(aB — bA) < deg A —t.
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def approximant(t,k,A,B):
assert t >= 0 and A.base_ring() == k and B.base_ring() ==
kpoly,n = A.parent(),A.degree()
assert n > B.degree()
M=1[ [ Blt+tn-1-i-j] for i in range(t+1)]
+ [-Alt+n-1-i-j] for i in range(t) ] for j in range(2*t)]
M = matrix(k,2*t,2%t+1,M)
ab = list(M.right_kernel().gens() [0])
a,b = kpoly(ab[:t+1]) ,kpoly(ab[t+1:])
d = gcd(a,b)
return a//d,b//d

Algorithm 3.1.1: Linear-algebra algorithm to compute a,b € k[z] with ged{a,b} = 1,
dega <t, degb < t, and deg(aB —bA) < deg A —t. Inputs: integer ¢ > 0; field k; A € k[z];
B € k[z] with deg A > deg B. Note that [...]1+[...] in Sage is concatenation of lists.

Proof. Define n = deg A. Consider the following k-linear map from k2**! to k2!: the input
is a vector (ag,ay,...,a;—1,as,bo,b1,...,b—1); the output entries are the coefficients of
gt gntt=2 g =tin aB — bA, where a = ayat + as_ 12 4+ -+ a1z +agand b=
b1zt 1+ 4bix+by. Explicitly,if A = A 2"+ A, 12" '+--- and B = B,,_1z" '+ --
then the output entries are a;By,_1 — by_1An, B0+ a;_1B_1 — b 1A, 1 —bi_2A,,
etc.

The input dimension 2t + 1 exceeds the output dimension 2t, so there is a nonzero
input that maps to zero. The corresponding polynomials a, b have (a,b) # (0,0), dega < t,
degb < t, and deg(aB — bA) < n — t. Finally, to ensure that gcd{a,b} = 1, replace (a,b)
with (a/ged{a, b},b/ged{a,b}); this subtracts degged{a,b} > 0 from dega, degb, and
deg(aB — bA). O

Theorem 3.1.3 (the best-approximation property of approximants). Let ¢ be a nonnega-
tive integer. Let k be a field. Let A, B,a,b,c,d be elements of k[x] such that gcd{a,b} =1,
dega < t, deg(aB — bA) < deg A — t, dege < ¢, and deg(cB — dA) < deg A —t. Then
(¢,d) = (Aa, Ab) for some X € k[z].

One way to describe the proof is as follows: if the lattice mentioned above has two
independent vectors (aB — bA, axd€4A=2"1) (cB — dA, cxd®84=2¢=1) of degree at most
deg A —t — 1, then the lattice determinant has degree at most 2 deg A — 2t — 2; but, by
inspection, the lattice determinant is Azd°8A=2t=1 of degree 2deg A — 2t — 1. Combining
linear dependence with ged{a,b} =1 forces (c,d) = (Aa, Ab).

Proof. ¢(aB—bA)—a(cB—dA) = (ad— cb)A. The left side has degree smaller than deg A,
so ad — ¢b = 0. In particular, ¢b € ak[z]; but ged{a,b} = 1, so ¢ € ak[z], and similarly
d € bk[z]. Write A for ¢/a if a # 0, or for d/b if b # 0; in both cases (¢,d) = (aX,b\) as
claimed. O

3.2 More approximant algorithms

One can construct a,b via an extended-gcd computation. Straightforward extended-ged
algorithms use O(t?) operations, typically ©(t?) operations.

More sophisticated extended-ged algorithms use t'+°() operations. See [Bern08a,
Section 21]. Applying a sequence of 2t “divsteps”, taking n = 2¢ in [BernY 19, Theorems
A.1 and A.2], uses t't°(1) operations with the “jump” algorithms in [BernY19] while
avoiding the timing variability of polynomial division.
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3.3 Approximants as ratios

Why does this section take a minus sign on b7 Why multiply a by B and b by A, rather
than a by A and b by B?

Answer: small aB — bA means that the rational function b/a is close to B/A. This
rational function b/a has small height, meaning that its numerator and denominator are
small. The perspective of small-height rational approximations has played an important
role in the development of theory and fast algorithms in this area.

From this perspective, Theorem 3.1.3 (in the case ¢ # 0) is equivalent to the following: if
dega <t,degc<t,deg(B/A—b/a) < —t —dega, and deg(B/A—d/c) < —t —degc, then
d/c must equal b/a. To approximate B/A more closely than the fraction b/a constructed
in Theorem 3.1.2, one must take larger-degree denominators.

With the following definition, the conclusion of Theorem 3.1.2 is that there is an
approximant to B/A at degree t. This definition would also slightly compress the statement
of Theorem 3.1.3 and the statements of some theorems later in this paper. For the benefit
of a reader looking at just one theorem, this paper avoids using this definition in theorem
statements, but readers exploring the literature may find this definition useful. Analogous
comments apply to, e.g., Definition 4.3.1 below.

Definition 3.3.1. Let k be a field. Let A, B be elements of k((z~!)) with A # 0. Let
t be a nonnegative integer. If (a,b) € k[x] x k[x] satisfy ged{a,b} = 1, dega < t, and
deg(aB — bA) < deg A —t then b/a is an approximant to B/A at degree t.

For simplicity the theorems in this section were stated specifically for A, B € k[x], but
the concepts and proofs do not require this. This paper does not define k((z~1)), but
instead notes that k((z~1)) contains the field k() of rational functions in x, and that
k(x) in turn contains the polynomial ring k[x], so readers not familiar with k((x~!)) can
substitute k[x] for k((x~1)) in the definition.

The condition deg(aB — bA) < deg A — ¢ is equivalent to deg(B/A —b/a) < —t — deg a;
this is why it is safe to describe the input as B/A rather than (A, B). As for the output,
knowing the ratio b/a and knowing ged{a,b} = 1 does not exactly determine the pair
(a,b), but the only ambiguity is that one can replace (a,b) by (Aa, A\b) for A € k*; this
replacement does not affect the conditions on dega, degb, and deg(aB — bA).

3.4 History

Euclid’s subtractive algorithm [Euc300BC, Book VII, Propositions 1-2; translation: “the
less of the numbers AB, C'D being continually subtracted from the greater”] recognizes
coprime integers, and, more generally, computes the ged of two integers.

What is typically called Euclid’s algorithm—see [Knu97, Section 4.5.2, text before
Algorithm E] for an argument that this must be what Euclid had in mind—is a variant
that iterates (A, B) — (B, A mod B). This is much faster than the original algorithm
when |A/B] is large. This version also has a polynomial analogue: Stevin [Stel585,
page 241 of original, page 123 of cited PDF] computed polynomial ged by iterating
(A,B) — (B, Amod B).

According to [Bre81, page 3], an extended-ged algorithm computing solutions to
aB — bA =1, for coprime integers A, B, is due to Aryabhata around the 6th century, and
the forward recurrence relation for coefficients in the extended algorithm—in other words,
numerators and denominators of convergents to a continued fraction—is due to Bhascara
in the 12th century.

Lagrange [Lagl776] used convergents to continued fractions of rational functions as
small-height approximations to power series. Kronecker [Krol881, pages 118-119 of
cited PDF] gave both the continued-fraction construction and (“in directer Weise”) the
linear-algebra construction. Consequently, it seems reasonable to credit Theorem 3.1.2 to
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Lagrange, but the short proof to Kronecker. Small-height approximations to power series
are often miscredited to [Pad1892] under the name “Padé approximants”.

An earlier paper of Lagrange [Lagl773, pages 723-728 of cited URL] had described, in
the integer case, an algorithm for basis reduction for rank-2 lattices—in the context of
simplifying quadratic forms, rather than as a perspective on extended-ged computations.
Lagrange reduction is often miscredited to [Gaul801] under the name “Gauss reduction”.

In coding theory, finding an approximant is called “solving the key equation”. The
“key equation” is, by definition, the congruence d — aB € Ak[x] where dega < ¢ and
degd < deg A — t; this is equivalent to the equation d = aB — bA where dega < t and
degd < deg A — t. Decoding algorithms are typically factored through this concept,
and often the proofs are factored through continued-fraction facts; when the continued-
fraction machinery is stripped away, those facts boil down to Theorem 3.1.3. For the more
complicated setting of list-decoding algorithms, short vectors in arbitrary-rank lattices
often appear as an abstraction layer; see, e.g., [Bon02], [Bern08b], [CohH15], [Bernllal,
and [Bernllb].

4 Interpolation with errors

This section explains how to recover a polynomial f € k[z] with deg f < n — 2t, given a
vector that matches (f(a1),..., f(a,)) on at least n — t positions. Here ag,...,a, are
distinct elements of k. The special case t = 0 of this problem was handled in Section 2,
and is used as a subroutine for handling the general case.

If e € k™, where n is a nonnegative integer, then the Hamming weight of e, written
“wte”, means #{i € {1,2,...,n} : e; # 0}, the number of nonzero positions in e. A vector
r € k™ matches ¢ = (f(aq),. .., f(an)) on at least n—t positions if and only if wt(r—c) < ¢,
ie, wt(ry — flan),...,mn — flan)) < t.

4.1 An interpolation-with-errors algorithm

Algorithm 4.1.1 recovers f, given (n,t,k,a,r) with wt(r; — f(a1),...,rn — f(an)) < t.
The algorithm has three steps:

e Interpolate the input vector r into a polynomial B € k[z] with deg B < n, as in
Theorem 2.1.2.

e Compute an approximant b/a to B/A at degree ¢ as in Theorem 3.1.2, where
A=]L(z—a,).

e Compute f = B —bA/a. Theorem 4.1.2 says that this works.

The algorithm returns None for invalid input vectors, recognized as follows: f exists if and
only if A € ak[z] (which is equivalent to #{j : a(a;) = 0} = dega) and deg(aB — bA) <
n — 2t + dega. See Theorem 4.1.3.

Beware that Sage’s degree function is not the same as the conventional degree function
for polynomials: on input 0, it returns —1 rather than —oo. This is why Algorithm 4.1.1
includes a separate test for aB — bA = 0.

Theorem 4.1.2 (interpolation with errors). Let n,t be nonnegative integers. Let k be a
field. Let a1, ..., oy, be distinct elements of k. Define A =[],(x — ;). Let B,a,b, f be
elements of k[x] with ged{a,b} =1, dega < t, deg(aB — bA) < n —t, and deg f < n — 2t.
Define e = (B(ay) — f(an),...,B(ay) — f(an)). Assume wte < t. Then A € ak[x];
f=B—bA/a; deg(aB — bA) <n — 2t +dega; and {i: e; # 0} = {i : a(a;) = 0}.
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from interpolator import interpolator
from approximant import approximant

def interpolator_with_errors(n,t,k,alpha,r):
alpha,r = list(alpha),list(r)
assert k.is_field()
assert len(alpha) == n and len(set(alpha)) == n and len(r) == n
B = interpolator(n,k,alpha,r)
kpoly = B.parent()
A = kpoly(prod(kpoly([-alphalj]l,1]) for j in range(n)))
a,b = approximant(t,k,A,B)
if a.divides(A):
if a*B-b*A == 0 or (a*B-bxA).degree() < n-2xt+a.degree():
return B-bxA//a

Algorithm 4.1.1: Algorithm to compute the unique f € k[z] with deg f < n — 2t for which
(f(ar), ..., f(an)) matches r on at least n —t positions, or None if no such f exists. Inputs:
integer n > 0; integer ¢ > 0; field k; (aq,...,a,) € k™ with distinct entries; r € k™.

Proof. Define £ =T[, . _o(z —a;) and ¢ =[], . (= — o;). Then Ec = A.

If e; = 0 then B(wa;) = f(oy) so B— f € (x — a;)k[z]. This implies B — f € Ek[z],
since aq, ..., qa, are distinct.

Define d = (B — f)/E € k[z]. Then dA = (B — f)c so ¢B —dA = cf. Note that
degc=wte <t; also deg f < n — 2t so deg(cB —dA) <n —t.

The conditions of Theorem 3.1.3 are satisfied: A, B, a,b,c,d are elements of k[x] with
ged{a,b} =1, dega < t, deg(aB—bA) < deg A—t, degc < t, and deg(cB—dA) < deg A—t.

Hence (¢,d) = (Aa, Ab) for some A € k[z] by Theorem 3.1.3. By construction ¢ # 0, so
a # 0. Also A € ck[x] C ak[z]. Consequently B — f = dA/c =bA/a,so f = B—bA/a
and deg(aB — bA) = degaf < n — 2t + dega.

To see that e; # 0 exactly when a(a;) = 0: A(ay) = 0 so if a(a;) = 0 then, by
Bernoulli’s rule, (A/a)(a;) = A'(a;)/a’ () # 0 where a’, A" are the derivatives of a, A
respectively; also b(a;) # 0 since ged{a,b} =1, so ¢, = (B — f)(«;) = (bA/a)(e;) # 0. If
a(a;) # 0 then e; = (bA/a)(a;) = 0 since A(w;) = 0. O

Theorem 4.1.3 (checking interpolation with errors). Let n,t be nonnegative integers. Let
k be a field. Let av, ..., a, be distinct elements of k. Define A = [],(x — ;). Let B, a,b, f
be elements of k[x] such that dega < t, A € ak[z], deg(aB — bA) < n — 2t + dega, and
af =aB—bA. Thena # 0; deg f < n—2t; and wt(B(ay) — f(a1), ..., Blay)— flan)) < t.

The condition deg(aB —bA) < n — 2t +dega here cannot be weakened to the condition
deg(aB — bA) < n —t. Consider, e.g., n = 3; t = 1; any field k with #k > 3; any
distinet a1, 0,3 € k; A= (. —a1)(x — ag)(z — a3); B=x; a =1; and b = 0. Then
deg(aB — bA) = degz =1 =n — 2t + dega. The values of B on ay, as, as are ay, as, a3
respectively, and there is no polynomial f with deg f < 1 that matches more than one of
those values.

Proof. By assumption A € ak[z]. This forces a # 0 since A # 0; also note that deg f =
deg(aB — bA) —dega < n — 2t.

If B(a;) — f(ay) # 0 then (bA/a)(a;) # 0, so (A/a)(ew) # 0, but A(ey;) = 0, so
a(a;) = 0. The number of roots of a is at most dega < t, and ay, ..., a, are distinct, so
wt(B(ay) — fla1),...,Blay) — f(an)) <t. O
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4.2 More algorithms: varying the pair (A, B)
IfA=][,(z—;) and B=73_,(r;/A (a;))A/(x — a;), where A’ is the derivative of A, then

B ri N (e Yoy L g el
A ; Al — ;) ; Al(ay) <x + x? + ) Z s+l Z Alay)

s>0 [

One can vary the choice of (A, B) while preserving the ratio B/A: e.g., one can take A =1
and B=Y oz "1y, ric; [ [1;4:(j — @;). Formally, this requires defining k((z=1));
but the terms in B/A after 272! do not matter for decoding, so one can take A = z?* and
B = ZO§3<22€ > riafx%_s_l/nj;éi(aj — ).

These variations preserve the set of (a,b) € k[z] x k[z] such that gcd{a,b} = 1,
dega < t, and deg(aB —bA) < degA —t. If degf < n — 2t and wte < ¢ with e =
(r1 = f(a1),...,rn — f(ay)) then {i: e; # 0} = {i : a(a;) = 0} for any such (a,b). If one
assumes that Fo C k and that e € F} then knowing {i : e; # 0} is enough information to
reconstruct e and thereby f. To instead handle arbitrary e € k™, one can use any of these
variants of (A, B) to compute (a,b), and then return to the original (A, B) to apply the
formula f = B — bA/a in Theorem 4.1.2.

4.3 Reed-Solomon codes

The set of vectors (f(aq),..., f(a,)) is called a Reed—Solomon code; see Definition 4.3.1.
This is a subspace of the k-vector space k™. Each vector in the code is called a codeword.
With this terminology, Theorem 4.1.2 recovers a Reed—Solomon codeword from a vector
that matches the codeword on at least n — t positions.

Definition 4.3.1. Let n,t be nonnegative integers. Let k be a field. Let ay,...,«, be
distinct elements of k. Then {(f(a1),..., f(an)) : f € k[z],deg f < n — 2t} is the Reed—
Solomon code over k of dimension n — 2t with support (a1,...,ay).

4.4 History
Reed—Solomon [ReeS60] suggested encoding a polynomial f € k[z] with deg f <mn — 2t
as (f(a1),..., f(ay)) for distinct ayq, ..., an, so as to be able to recover f even if ¢ vector

entries are corrupted. The point is that the code

C={(f(a1),..., fan)): f € kl[z],deg f <n — 2t}

has “minimum distance” at least 2t + 1 (every nonzero ¢ € C has wtc > 2t + 1), so the
map (e, f) = e+ (f(ar),..., f(ay)) from {(e, f) € k™ x k[z] : wte < t,deg f < n — 2t} to
k™ is injective. This raises the question of how efficiently one can decode <t errors in C,
i.e., recover (e, f) from e + (f(aq),..., f(an)).

Assume n > 2t. Prange’s “information-set decoding” [Pra62] interpolates f from n — 2¢
values at selected positions in the input vector, checks the remaining values of f to deduce
e, and, if e has the wrong weight, tries another selection of n — 2t positions. This takes
polynomial time if ¢ is close enough to 0 or n/2, but is much slower in general. Reed and
Solomon did not have the idea of checking the weight of e: they had instead suggested
trying many selections of n — 2t positions to find the most popular choice of f, and relying
on an upper bound for how often any particular incorrect choice could appear.

Forney [For65a, Chapter 4] (see also [For65b]) introduced a polynomial-time decoding al-
gorithm for Reed—Solomon codes. Forney’s algorithm simplified and extended an algorithm
by Gorenstein and Zierler [GorZ61], which handled the special case {a1, ..., a,} = k*. The
latter algorithm extended an algorithm by Peterson [Pet60], which handled the following
special case: Fy C k, each f(a;) is in Fo, and e € F3.
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The Peterson—Gorenstein—Zierler—Forney algorithm is bottlenecked by matrix operations
that, when carried out in a simple way, use n3+t°(1) operations in k, assuming n € t*+to(),
The exponent for generic matrix operations was later reduced below 3 (starting with
exponent log, 7 for matrix multiplication by Strassen [Stra69], along with the same
exponent for solving linear equations under various nonsingularity constraints), but it
turns out that one can obtain much better decoding speeds using the structure of these
particular matrices.

Berlekamp [Berl68] introduced a decoding algorithm using just n2te(1) operations
instead of n3t°(1) operations; the main work inside the algorithm is polynomial arithmetic
rather than matrix arithmetic. Massey [Mas69] streamlined Berlekamp’s algorithm and
factored the algorithm into two layers, where the top layer is a decoder and the bottom layer
is a subroutine for “shift register synthesis”. The subroutine is called the Berlekamp—Massey
algorithm.

Sugiyama-Kasahara-Hirasawa-Namekawa [SugKHN75] built an n?+°() algorithm for
Reed—Solomon decoding on top of an extended-gcd computation. Algorithms using just
n'*t°() operations were already known for ged (see [Bern08a, Section 21.6] for history)
and for all other necessary subroutines; these algorithms were applied to Reed—Solomon
decoding by Justesen [Jus76] and independently Sarwate [Sar77], reducing the costs of
decoding to n!to®),

It turned out that Berlekamp decoders and Sugiyama—Kasahara—Hirasawa—Namekawa
decoders are equivalent: Mills [Mil75] pointed out that “shift register synthesis” is the same
as the problem of finding approximants, the problem of finding (a,b) in Theorem 3.1.2.
See also [WelS79] for how the result after each polynomial division inside an extended-ged
computation appears inside in the Berlekamp—Massey algorithm; [Dor87] for an extended-
ged explanation of all further quantities inside the Berlekamp—Massey algorithm; and
[BernY19, Appendix C] for a reformulation in terms of “divsteps”. In a nutshell, the
polynomials in the Berlekamp-Massey algorithm are polynomials in an extended-gcd
computation but with coefficients in reverse order.

This does not mean that all Reed—Solomon decoders are the same. See, for example,
Section 4.2 regarding different choices of (A4, B); the choice of (A, B) in Theorem 4.1.2
was published by Shiozaki [Shi89, Section III] and later Gao [Gao03]. For the problem of
computing (a,b) in Theorem 3.1.2, algorithms in the literature have costs ranging from
n3t°() down through n't°(M A “systematic” Reed-Solomon code represents a polynomial
f of degree below n — 2t as the values (f(a1),..., f(an_2¢)) € k"2 rather than as the
coefficients of f; one needs to look closely at algorithms to see which representation allows
faster decoding, although obviously the gap cannot be larger than the cost of converting
between representations, i.e., the cost of evaluation and (error-free) interpolation. Finally,
there are list-decoding algorithms that can handle more than ¢ errors.

5 Binary-Goppa decoding

The title problem of this paper and of this section, binary-Goppa decoding, is to recover
e,c € F3 from e + ¢, assuming wte < t and ), ¢;A/(x — a;) € Gk[z]. Here ay, ..., a, are
distinct elements of a field k& containing F; A means [],(z — a;); and G is a degree-2t
element of k[z] with gcd{G, A} =1 (i.e., with G(ay),...,G(,) all nonzero). This section
presents an algorithm to solve this problem.

This paper says “k containing Fs” and “Fo C k” to mean not just that Fs is a subset
of k, but that s is a subfield of k, i.e., the identity map from Fs to k is a ring morphism.
This guarantees, for example, that the notation e + ¢ has the same meaning whether e, ¢
are viewed as elements of F or as elements of k.
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from interpolator import interpolator
from approximant import approximant

def goppa_errors(n,t,k,alpha,G,r):

alpha,r = list(alpha),list(r)
assert k.is_field() and k.characteristic() ==
assert G.base_ring() == k and G.degree() == 2%t
assert len(alpha) == n and len(set(alpha)) == n and len(r) ==n
kpoly = G.parent()
A = kpoly(prod(kpoly([-alphal[j]l,1]) for j in range(n)))
Aprime = A.derivative()
rtwist = [r[i]*Aprime(alphali])/G(alphal[i]) for i in range(n)]
B = interpolator(n,k,alpha,rtwist)
a,b = approximant(t,k,A,B)
aprime = a.derivative()
if a.divides(A):

if a.divides(G*b-aprime):

if a*B-b*A == 0 or (a*B-bxA).degree() < n-2xt+a.degree():
return [k(a(alphal[j]l) == 0) for j in range(n)]

Algorithm 5.1.1: Algorithm to compute the unique e € Fy with ».(r; —e;)A/(x — a;) €
Gk[z] and wte < t, or None if no such e exists. Here A = [[,(x — ;) € k[z]. Inputs:
integer n > 0; integer ¢ > 0; field k containing Fo; (av, ..., ap) € k™ with distinct entries;
G € k[z] with deg G = 2t and each G(«;) nonzero; r € k™.

5.1 An algorithm to decode binary Goppa codes

Algorithm 5.1.1 allows any r € k™ as an input vector, and returns the unique e € FJ
with wte < ¢ such that > (r; —e;)A/(x — a;) € Gk[z], or None if no such e exists. The
algorithm has three steps:

e Interpolate a polynomial B satisfying B(«;) = r;A'(a;)/G(;). Here A’ is the
derivative of A, so A’(a;) = [[;;(c; — ).

e Compute an approximant b/a to B/A at degree t as in Theorem 3.1.2.

o If A € ak[z] and Gb — a’ € ak|z] and deg(aB — bA) < n — 2t + deg a, then output e
determined by {i : e; = 1} = {i : a(e;) = 0}; otherwise output None. Here @’ is the
derivative of a.

Theorem 5.1.2 says that if e exists then this outputs e, and Theorem 5.1.3 says that if this
produces output then e exists. The test Gb — a’ € ak[z] can be skipped for inputs r € F%
when G is a square; see Section 7.

Theorem 5.1.2 (Goppa decoding). Let n,t be nonnegative integers. Let k be a field with
Fy C k. Let o, ...,a, be distinct elements of k. Define A = [[,(x — a;). Let G be an
element of k[z] such that deg G = 2t and gcd{G, A} = 1. Let B,a,b be elements of k[x]
with gcd{a,b} =1, dega < t, and deg(aB — bA) <n —t. Let A’,a’ be the derivatives of
A, a respectively. Let e be an element of F such that wte <t and

Z (CW - €i> - ;40[2_ € Gklz].

i

Thene; = [a(a;) = 0] for all i; wte = dega; A € ak[x]; Gb—a' € aklx]; and deg(aB—bA) <
n — 2t + dega.
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The notation [a(c;) = 0] means 1 if a(a;) = 0, else 0.
Proof. Write ¢; = (GB)(a;)/A'(o;) — €;. By assumption ), ¢;A/(x — ;) € Gk[z]. Write
f =00 ;ciA/(x —a;))/G. Then f € k[z] and deg f < n — 2t, since degA = n and
deg G = 2t.

Notice that (Gf)(c;)/A (e;) = ¢;. Indeed,

ZCiAl(ai)Ha —aj chH:r—aj Z ani:Gf,

i J#i i J#i

so ¢;A'(a;) = (Gf)(e;) by Theorem 2.1.2.

Now (GB — Gf)(a;) /A (e;) = e, s0 (B — f)(ay) = e;A’(e;) /G (), which is nonzero
exactly when e; # 0, so wt((B — f)(a1),..., (B — f)(an)) = wte < t.

By Theorem 4.1.2, A € ak[z]; f = B — bA/a; deg(aB — bA) < n — 2t + dega;
and {i: (B — f)(a;) #0} = {i:a(a;) =0}. Hence {i:e; #0} = {i:a(a;) =0}. By
assumption e; € Fa, so e; # 0 exactly when e; = 1, so e; = [a(a;) = 0]. Also, wte equals
the number of roots of a among «ay, ..., a,, namely dega since A € ak[z].

Finally, say a(«;) = 0. Then a'(o;) # 0, and (A/a)(co;) = A’(e;)/a’(«;) by Bernoulli’s

rule, so
1= = Glai)(B— filas) _ Glai)(bA/a)(ai) _ Glai)b(a)
' Al(ai) Al(ai) a’(a;)
so (Gb—d')(a;) = 0. Hence Gb — o’ € ak[z]. O

Theorem 5.1.3 (checking Goppa decoding). Let n,t be nonnegative integers. Let k be a
field with Fy C k. Let oy, ..., a, be distinct elements of k. Define A =[],(x — «;). Let
G be an element of k[x] with deg G = 2t. Let B, a,b be elements of kx| with A € ak[z],
deg(aB —bA) < n—2t+dega, and Gb—a’ € ak[z]|, where a’ is the derivative of a. Define
e € F% by e; = [a(a;) = 0]. Then wte = dega and

() 2o

i
where A’ is the derivative of A.

Proof. First a # 0 since 0 # A € ak[z]. Define f = B —bA/a. Then f € k[z] and
deg f = deg(aB — bA) —dega <n — 2t =n —degG, so degGf < n.
Observe that e; = (GbA/a)(a;)/A (i) = (GB — Gf)(ay) /A (e;):

e If a(a;) = 0 then o'(a;) # 0 and (A/a)(ay) /A (o) = 1/a’(a;). Also Gb— a’ € ak|x]
o (Gb)(a;) = a'(a;). Multiply: (GbA/a)(o)/A () =1 =e;.

o If a(a;) # 0 then (GbA/a)(y;)/A () = 0 = e; since A(a;) =0

Hence

() - S P,

_Z Gh)(e) [[ = = Gf € Ghla]

JFi @ ¢

by Theorem 2.1.2.
To see wt e = dega: Since A splits into linear factors of the form x — «;, the same is
true for a, so #{i:e; =1} = #{i : a(a;) = 0} = dega. O
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5.2 Goppa decoders via Reed—Solomon decoders

Fix f1,..., 8, € k*, and consider the problem of recovering f € k[z] with deg f < n — 2t
given a vector that agrees with (81 f(a1),. .., Bnf(an)) on at least n —t positions. Dividing
B; out of the jth position immediately reduces this to the problem considered in Section 4.

The main point of the proof of Theorem 5.1.2 is that the vectors ¢ € k™ satisfying
> ciA/(x — a;) € Gklx] are exactly the vectors (Bif(a1),...,Bnf(on)) where B; =
G(a;)/A (a;). Any Reed-Solomon decoder can thus be used as a Goppa decoder.

Algorithm 5.1.1 starts from this approach but streamlines the computation of e, taking
advantage of the assumption e € Fy. The critical information coming from the Reed-
Solomon decoder is the “error-locator polynomial” a, which is a nonzero constant multiple
of [1;.¢,20(z — ;). Knowing the positions of nonzero entries in e immediately reveals e,
since each entry of e is either 0 or 1.

Without the assumption e € F%, one can compute each e; in the Reed-Solomon context
as (bA/a)(a;), which is b(a;) A’ (e;)/a’(e;) when a(a;) = 0. In the binary-Goppa context
one multiplies by 8; = G(«a;)/A’(e;) to obtain e; = G(a;)b(e;)/a’(o;) when a(a;) = 0.

Streamlining this to e; = 1 might not seem helpful in Algorithm 5.1.1, since the
algorithm checks Gb — a’ € ak[z] anyway, and the obvious way to do this is to check
G(a;)b(e;) = a/(e;). However, Section 7 shows that this check can simply be skipped in
the following important case: G is a square and the input vector is in F7.

5.3 Binary Goppa codes

The set of ¢ € F3 satisfying >, ¢;A/(x — a;) € Gk[z] is called a binary Goppa code; see
Definition 5.3.1. As in Section 4.3, elements of the code are called codewords. With
this terminology, the problem of binary-Goppa decoding solved above is the problem of
recovering a Goppa codeword from a vector that matches the codeword on at least n — ¢
positions, assuming deg G = 2t.

Definition 5.3.1. Let n be a nonnegative integer. Let k be a field with Fo C k. Let
ai,...,on be distinct elements of k. Define A = [[,(x — «;). Let G be a nonzero element
of klxz] with gcd{G,A} = 1. Then {c€F3:> . c;A/(x — ;) € Gk[z]|} is the binary
Goppa code with k-support (a1,...,a,) and Goppa polynomial G.

The binary Goppa code with k-support (aq,...,a,) and Goppa polynomial G is
also the binary Goppa code with K-support (aq,...,a;,) and Goppa polynomial G (by
Theorem 5.4.1 below) if K is an extension field of &, but can be different if K is a superset
of k with an incompatible field structure, so, at least formally, it is important for k& to be
named in the boldfaced phrase in Definition 5.3.1. In any case, this paper’s theorems do
not rely on Definition 5.3.1; the definition is provided only as context.

5.4 Lower bounds on dimensions of binary Goppa codes

Theorem 5.4.1 rewrites the condition ), ¢;A/(x — ;) € GE[z] as the following sys-
tem of k-linear equations: ) . ¢;/G(ey) = 0, Y. cia;/G(a;) = 0, and so on through
> cia?egG_l/G(ai) = 0. This theorem is from Goppa [Gop70, Section 3], and is used
inside the standard method of computing McEliece keys.

This system of deg G linear equations over k is equivalent to a system of m deg G linear
equations over Fy if #k = 2™. The Fy-vector space of solutions ¢ € F} therefore has
dimension at least n —mdeg G, i.e., at least 2"~ 4°8C elements. See Section 6.2 for better
results in the case G = g% with squarefree g.

Theorem 5.4.1 (Goppa parity checks). Let n be a nonnegative integer. Let k be a field. Let
ai,...,0n be distinct elements of k. Define A = [[,(x — «;). Let G be a nonzero element
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of k[z] with ged{G, A} = 1. Let ¢ be an element of k™. Then ), ¢;A/(x — o;) € Gk[x] if
and only if Y, c;orl /G(a;) = 0 for all nonnegative integers j < deg G.

Proof. Define B = ) .(c;/G(a;))A/(x — ;) and C = Y, ¢;A/(x — o;). Then B(a;) =
;A (;)/G(ay) and C(a;) = ¢;A’(e;) by Theorem 2.1.2, so C(a;) — G(a;)B(ay;) = 0, so
C'—GB € Ak[x] since oy, . . ., oy, are distinct. Note that deg B < deg A and deg C' < deg A.

Define d = degG. If deg B < n — d then degGB < n = deg A so C = GB € Gkl[z].
Conversely, if C € Gk[z] then (C/G — B)G = C — GB € Ak[x] so C/G — B € Ak[z] since
ged{G, A} = 1; but deg(C/G — B) < deg A, so C/G — B =0, so deg B = deg(C/G) <
n—degG=n—d.

Define Q@ = 3", (¢;/G(i))adA/(z — ;). Then

j A ¢ o
ig_Q=N"_9 (i_oH—2 4 : d=1=jod
€ Q XZ: G(Oéi) (1: az)x — oy ZZ: G(a Z z @;

Y oo0<j<d

One has deg @ < n, so deg B < n — d if and only if deg(z?B — Q) < n, i.e., if and only if
>oilei/G(ai) D o< jca ¥ 1ol =0, ie., if and only if Y, (c;/G(a;))e = 0 for all j with
0 < j < d. Hence C € Gk[z] if and only if ), cial /G(a;) =0 for all j with0 < j <d. O

If the formal structure of this paper allowed k((x~!)) then one could replace the last
paragraph of the proof with the following: deg B < n — d if and only if deg(B/A) < —d,
ie., if and only if >, ¢;a! /G(i;) = 0 for all nonnegative integers j < d, since B/A =
> =771 il /G(ay) as in Section 4.2. The proof given above replaces B/A with the
approximation (2B — Q)/x%A so as to work entirely with polynomials.

6 Squarefree binary-Goppa decoding

This section explains how to recover e, ¢ € F3 from e+ ¢, assuming ) . ¢;A/(x — ;) € gklx]
and wte < t. Here aq,...,qa, are distinct elements of a finite field k containing Fo; A
means [[,(z — «;); and g is a squarefree degree-t element of k[z] with ged{g, A} = 1.

The problem of recovering e, ¢ in this section is the same problem as binary-Goppa
decoding from Section 5, except that (1) this section requires k to be finite and (2) this
section uses a squarefree polynomial g of degree ¢t where Section 5 uses a polynomial G of
degree 2t.

6.1 Replacing g with g2

The point of this section is Goppa’s observation that, for ¢ € F} and squarefree g € k[x],
one has >, ¢;A/(z— ;) € gk[x] if and only if >, ¢;A/(x — ;) € g*k[z]. See Theorem 6.1.1.

Recovering e, ¢ € Fy from e+ ¢, assuming wte < ¢t and ), ¢;A/(x — a;) € gk[z], is thus
equivalent to recovering e, ¢ € F% from e+c, assuming wte < tand >, ¢;A/(z—a;) € g°k|z],
which is simply a matter of setting G = g2 in Section 5.

Theorem 6.1.1 (Goppa squaring). Let n be a nonnegative integer. Let k be a finite field
with Fo C k. Let v, ...,y be distinct elements of k. Define A = [],(x — ;). Let g be
a squarefree element of k[z| such that ged{g, A} = 1. Let ¢ be an element of F3. Then
> ciA/(x — ;) € gklz] if and only if Y, ¢;A/(x — o;) € g°k|x].

Goppa proved Theorem 6.1.1 in [Gop70, Section 4]. The same proof works for all
perfect fields of characteristic 2, not just finite fields.

Proof. Write Z = [[,... _o(z —a;) and C' = [[;..._; (¥ — ;). Then A = ZC'" By hypothesis
ged{g, A} = 1, so ged{g, Z} = 1.
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The derivative C" of C'is > ;.. _; C/(z — ;). Hence ), ¢;A/(z — i) € gk[z] if and
only if ZC’ € gk[z]; i.e., if and only if C" € gk[z]. Similarly, >, ¢;A/(x — ;) € g*k[z] if
and only if C’ € g?k[z]. It thus suffices to show that C’ € gk[x] if and only if C’ € g?k[x].

Assume that C' € gk[z]. Write C' as 33, Cja/. By assumption k is a finite field
containing F2, so C' =}, Caj+12%; also, Co;41 has a square root Cglﬁ_l in k, so C' = 2
where § = 3, Czlj/ilmj. Thus S? € gk[z], implying S € gk[x] since g is squarefree,
implying C’ € ¢g2k[x].

Conversely, if C’ € g?k[x] then certainly C’ € gk[z]. O

6.2 Lower bounds on dimensions of squarefree binary Goppa codes

Recall from Section 5.4 that the vectors ¢ € Fy satisfying ). ¢;A/(x — o;) € Gk[x] form
an Fy-vector space of dimension at least n — mdeg G when #k = 2™.

In the case G = g2 with squarefree g, the equivalence in Theorem 6.1.1 between the
conditions >, ¢;A/(x — a;) € g°k[z] and Y, ¢;A/(z — ;) € gk[z] immediately produces
the conclusion that the dimension is at least n — mdegg. This is a larger bound than
n —mdeg G = n — 2mdeg g whenever degg > 0.

In other words, subject to a requirement of the dimension being at least n — 2mx for a
specified positive integer z, one can guarantee decoding x errors by taking any G of degree
2z, but for > 0 one can make a stronger guarantee of decoding 2x errors by taking
G = g¢? for a squarefree g of degree 2z. This is the core reason for interest in the latter
case.

7 A closer look at binary Goppa codes

The main point of this section is that if the input vector is assumed to be in F5, not
merely in k", then the test Gb — a’ € ak[x] can be removed from Algorithm 5.1.1 in the
case G = ¢g2. See Theorem 7.1.

Theorem 7.1 (checking Goppa decoding for received words in F}). Let n, t be nonnegative
integers. Let k be a field with Fy C k. Let aq,...,qa, be distinct elements of k. Define
A =[[,(z — ;). Let g be an element of k[z] such that degg =t and ged{g, A} = 1. Let
B, a,b be elements of k[x] with gcd{a,b} =1, dega < t, A € ak[x], and deg(aB — bA) <
n — 2t + dega. Assume that g(o;)?B(«a;)/A'(a;) € Fy for all i, where A’ is the derivative
of A. Define e € F% by e; = [a(a;) = 0]. Then g?b — a’ € ak[x], where a’ is the derivative
of a. Furthermore wte = dega and

3 (g(ajii()ai) - ei> - _Aai € g*k[al.

i

Compared to the case G = g2 of Theorem 5.1.3, Theorem 7.1 adds the hypothesis that
g(i)?B(a;) /A’ (o;) € Fa, but Theorem 7.1 obtains g?b — a’ € ak|x] as a conclusion rather
than requiring it as a hypothesis.

Part of the proof of Theorem 7.1 is essentially the calculation in Theorem 5.4.1. This
paper’s formally verified proofs (see Appendix C) factor the main overlap into shared
lemmas. It wouldn’t be surprising if Theorem 7.1, or at least part of the proof beyond
Theorem 5.4.1, is already in the literature, but various searches and discussions with
colleagues have not found a reference.

Proof. By assumption [ [;(x—a;) = A € ak[z]. By unique factorization, a = A [[;cg(v—0;)
for some A\ € k* and some S C {1,...,n}. Now ¢ € S if and only if a(e;) = 0, so
a=2A I_Ii:a(ozi):O(aj - ai)'
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It suffices to show that «; is a root of g?b — a’ for each i with a(a;) = 0. Indeed, this
implies g%b — a’ € (IT:.a(ai)=0(z — ai))k[z] = ak[z]. By Theorem 5.1.3, wt e = dega and

2 (W - ez-) . :4% € ¢°k[x]

%

as claimed.

So fix j with a(a;) = 0; this implies ¢ > 1 since t > dega. Write ¢ = a/(z — «;); then
q(aj) = d/(a;) by Bernoulli’s rule. The rest of the proof will show that (¢%b)(a;) = q(o;),
so a; is a root of g?b — a’ as desired.

Define r; = (¢°B)(«;)/A’ () for each i. By hypothesis r; € Fa; i.e., r2 = r;.

For any p € k[z], abbreviate p(x 4+ ;) as p. Define D = A, and define §; = o; — o;.
Then 61,...,0, are distinct elements of k; D = [[,(z + a; — o) = [[;(x — 4;); and
Dl(dl) = A/((Sl + Oéj) = A/(Oéi).

Define R = >,(ri/¢g*(a;))D/(x — ;). Then deg R < n, and, by Theorem 2.1.2,
R(8;) = (ri/g*(w))D'(6;). Substitute r; = (92B)(a;)/A’(a;) and D'(6;) = A'(ay) to see
that R(5;) = B(a;). The difference R — B has each d; as a root, so R — B € Dk[z].

Define Q = >_.(ri/g*(«;))62*D/(x — §;). Then deg @ < n, and

2t _ T 2t oy D 2t—1—sgs
x RfQ—;TQ(ai)(x -9 ):E—(Sii Z Z x 0.

0<s<2t

Counsider any ¢ € k[x] with deg ¢ < 2t. Write @, for the coefficient of 2¢ in ¢. Then
¥ = Zoge<2t Pex®, 50

<P2tR Q _ Z‘pe Z Zx2tls55

0<e<2t O<s<2t

6(5‘7‘1' e —1—s
_ Z 802 il et2t—1-s
9% (i)

1,e,5:0<e<2t,0<s<2t

The coefficient of 221 in ¢ - ('R — Q)/D is thus

‘Pe(;fri - @eé Tz QO
> Py = 2 e

i,e,5:0<e<2t,0<s<2t,e4+2t—1—s5=2¢t—1 i,e:0<e<2t

More specifically, consider any h € k[z] with degh < t, define ¢ = hq, and define
H =hq- (2R —Q)/D. Then deg ¢ < 2t since degq = dega —1 <t — 1, so the coefficient
of 221 in H is 3 (0:)rs/ % () = 34(ha)(ce)rs/ 6% (ac).

Next note that deg(aB — bA) <n —2t +dega < n —t, so deg((z — o;)hgB — hbA) =
deg(haB — hbA) < n, so deg((z — a;)**hgB — (v — «; )2t 1hbA) < n + 2t — 1. Hence
deg(z*hqB — x*'~'hbD) < n + 2t — 1. Also deg Q < n so deg(hqQ) < n + 2t — 1.

Now rewrite H as

(x2*hqB — 2%~ 1hbD) — hqQ . thh—qR

2177
T hb + )

The second term has degree at most 2t — 2, so the coefficient of 2/~! in that term is
0. The third term is in 22%k[z], so the coefficient of x?/~! in that term is also 0. The
coefficient of 2%~ in H is thus the coefficient of %=1 in 2~ 1hb; i.e., the coefficient of
2% in hb; i.e., (hb)(0); ie., (hb)(a;).

Recap: any h € k[z] with degh < ¢ has (hb)(a;) = >, (hq)(;)ri/g* (). In particular,
(gb)(ay) = 32 (99) ()i /g?(ai) = 32, aleu)ri/g(ew), and (gb)(e;) = 3=, ¢*(cw)ri/ g° (o).
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One has 2 = 0 in k since k contains Fa, so (v + w)? = v? 4 2vw + w? = v? + w? for all
v,w € k: in short, squaring maps sums to sums. In particular,

(gb)( aj anl i Zq (co)r z= (gb) ()

since r? = r;. Finally, b(a;) # 0 since ged{a, b} =1, so (¢°b)(c;) = q(a;). O

8 McEliece decryption

The reader is presumed to be interested specifically in Classic McEliece [BernCLM+17],
although without much work one can also cover other versions of the McEliece cryptosystem.

8.1 Ciphertexts

The basic goal of the cryptosystem is for Alice to communicate to Bob a secret vector
e € F} with wte = ¢. Alice encodes e as a shorter “ciphertext” H(e) € F3'; shorter
means mt < n. The function H is determined by Bob’s “public key” and has three critical
properties listed below.

Section 8.2 explains how Bob “decrypts” H(e), recovering e from H(e) using Bob’s
“secret key”. Meanwhile an attacker sees the ciphertext H(e) and Bob’s public key, and
hopefully has trouble recovering e. One aspect of attacks is within scope of this paper and
is covered in Section 8.3 below.

Here are the three critical properties of the function H : Fy — F3':

e Linear: The function is Fo-linear. (This allows the function to be concisely commu-
nicated as a matrix. That matrix is Bob’s public key.)

e Goppa: Each ¢ € F3 has H(c) = 0 if and only if ). ¢;A/(x — ;) € gklz]. Here
k is a field with #k = 2™, and a1,...,a,,g are as in Section 6, as usual with
A =[[;,(z — o;). (Bob’s secret key is (ai,...,an,g). There is a standard public
choice of k.)

e Systematic: The composition H o : F3** — F* is the identity map, where ¢ is the
injection F5"* — F% that simply appends n — mt zeros to the input. In other words,
the first mt x mt block of the matrix is an identity matrix. (Obviously the identity
matrix can then be omitted from the public key, saving some space; less obviously,
this reduces the cost of optimized decoding from n?t°() to nlte(d) )

For each k, a1, ..., a,, g there is at most one H satisfying these properties. The obvious
way for Bob to construct this H, if it exists, is to convert > . ¢;A/(z — o) € gk[z] into a
system of Fa-linear equations (a “parity-check matrix”) using Theorem 5.4.1, and then
row-reduce the equations to obtain systematic form. Conjecturally, this succeeds about
30% of the time. In case of failure, the traditional response is to try again with a new
(a1, ..., ap,9); Chou’s “semi-systematic form” options (see [BernCLM+19]) instead apply
a limited permutation to (aq,...,a,); [AIbCPTT17] had instead applied an arbitrary
permutation to (aq,...,a,). See [BernCLM+19] for step-by-step algorithms.

8.2 Decryption

Bob decrypts a ciphertext H(e) as follows. Define ¢ = ((H(e)) — e € F3. One has
H(.(H(e))) = H(e) by the systematic-form property of H, so H(c) = 0 by linearity. One
then has ) . ¢;A/(x — «;) € gk[z] by the Goppa property of H. Recovering e from H (e)
is thus a simple matter of appending n — mt zeros to obtain ¢(H(e)) = e + ¢, and then
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recovering e, c € F% from e + ¢ by the decoding algorithm from Section 5 (with G = g2 as
explained in Section 6). The quantities a;, ..., a,, g used in the decoding algorithm are
available in Bob’s secret key.

8.3 Rigidity
At this point one could define a “public-key cryptosystem” consisting of

e a key-generation algorithm that randomly generates a secret key (a1, ..., a,,g) and
the corresponding public key (the matrix representing H),

e an encryption algorithm that takes a “plaintext” e and the public key and outputs
the ciphertext H(e), and

e a decryption algorithm that takes H(e) and the secret key and outputs e.

Classic McEliece is actually a “key-encapsulation mechanism” (KEM) in which e is chosen
randomly and the final output is the result of applying a “cryptographic hash function” to
e. There are also further steps that protect against various types of attacks.

One type of attack is relevant to this paper: “chosen-ciphertext attacks” in which an
attacker tries another ciphertext and sees how Bob responds. The protections against
these attacks (see [BernCLM+-17]) rely critically on Bob recognizing invalid input vectors
to the decryption process. An input vector o € F5** is by definition valid exactly when it
isin {H(e) : e € F}, wte = t}.

One way to recognize invalid input vectors is as follows:

e Feed o through any decoding algorithm that works for valid inputs. More precisely,
apply some function D : F§"* — F% with the following property: all e € F% with
wte =t have D(H(e)) = e.

o In all cases, whatever the output e € Fy is, check that wte = ¢. If this fails, the
input vector is invalid.

e “Reencrypt” to double-check validity of o: compute H (e) and check whether H(e) = o.
If this fails, the input vector is invalid.

Handling the matrix for H in the last step incurs similar costs to encryption. Consider,
e.g., [Patel9] saying that this “necessitates the inclusion of the public key as part of the
private key and increases the running time of decapsulation”, although to save space one
could instead take time to “regenerate the public key from the private key when needed”.

A more efficient approach, already noted in [BernCLM+17, Section 2.5] and used in
the software accompanying [BernCLM+17], checks whether H(e) = o “without using
quadratic space”, and in particular without storing or recomputing the matrix for H. The
point is that the following properties are equivalent:

e 0 =Hfe);

e H(i(0)) = H(e), by the systematic-form property of H;

e H(c) =0 for ¢ = (o) — e, by linearity;

e > .ciA/(x — o) € gk[z], by the Goppa property of H.

This last condition, checking that ¢ = ¢(0) — e is a codeword, no longer involves H: it is
simply some extra polynomial arithmetic, the same type of arithmetic that is being carried
out anyway.

A third approach is to inspect the details of decoding, relying not just on Theorem 5.1.2
to decode valid inputs but also Theorem 5.1.3 to identify invalid inputs. Specifically, after
interpolating B with B(a;)g(;)?/A’(a;) = t(o); and finding an approximant b/a to B/A
at degree t, one checks
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e that dega =t (this also forces deg(aB —bA) < n — 2t + deg a, since an approximant
by definition has deg(aB — bA) < n —t);

e that A € ak[z] (i.e., that a has exactly ¢ roots among aj, ..., a,); and
e that ¢g%b — a’ € ak[z] (i.e., that g?b — @’ vanishes on each of the roots of a).

If all of these checks succeed then wte =t and H(e) = o where e; = [a(a;) = 0]. Otherwise
o is invalid.

It is not clear that the condition ¢g?b — a’ € ak[z] is more efficient to evaluate than
the condition ), ¢;A/(x — a;) € gk[z]. See generally the discussion of fast “syndrome’
computation in [BernCS13].

A fourth approach is to interpolate, find an approximant b/a, check that dega = ¢, and
check that A € ak|x], skipping the check that ¢g?b — a’ € ak[x]. This relies on Theorem 7.1
and the fact that (o) € F5.

i

8.4 Robust system design

There are several reasons to recommend the second approach from Section 8.3, the approach
taken in Classic McEliece, even if it is not quite as efficient as the fourth approach.

What happens if there’s a mistake in the extra logic in this paper leading to Theorem 7.1,
or in the handling of invalid inputs in software implementing a decoding algorithm?
Appendix C includes a formalization of Theorem 7.1 having a computer-verified proof,
but this does not directly address the software question. Software is normally tested on
many valid inputs; this doesn’t provide any assurance that invalid inputs are correctly
recognized.

A separate reencryption step, whether expressed as testing H(e) = o or more efficiently
as testing that ¢ = (o) — e is a codeword, splits the decryption task into two simpler tasks.
The task of decoding is to correctly handle valid inputs. The task of reencryption is to
reject invalid inputs. Reencryption is redundant if the decoder also rejects invalid inputs,
but having the separate reencryption step means that the requirements on the decoder are
reduced.

As an illustration of the value of reencryption, consider the efficient chosen-ciphertext
attack from Chou [Cho20] breaking both specified versions (namely [AIbCPTT17] and
[AIbCPTT19]) of “NTS-KEM”, a McEliece variant that skipped reencryption.

Recall that Berlekamp—Massey polynomials are extended-ged polynomials but with
coefficients in reverse order. Reversing polynomials loses information if one does not attach
extra information (a “formal degree”) to each polynomial: for example, both 3 + x + 422
and 3z + 22 4 423 have the same reversal, namely 4 + x + 322. The NTS-KEM decoding
algorithms are shown in [Cho20] to sometimes find a polynomial az of degree ¢ when they
should instead find a polynomial a of degree ¢ — 1. This often leaks information if the
attacker modifies a ciphertext H(e) in a way that correponds to flipping one bit of e.

As further illustrations of how the decoding details matter, [Cho20] identifies bugs
(deviations from the specification) in the decoding algorithms in each of the four official
NTS-KEM implementations (ref, opt, sse2, avx2); these bugs stop the attack from
working against one implementation (ref), although the attack works against the other
three implementations.

Reencrypting the incorrect weight-¢ error vector obtained from ax would have detected
the mismatch with o and would have stopped this attack. A different way to stop this
attack would be to require computer verification of proofs that

e decoding algorithms decode correctly, including cases of weight below ¢, and

e decoding software correctly implements those algorithms.
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Reencryption has the advantage of being easier. Verification has the advantage of also
ensuring that valid ciphertexts are handled correctly.

8.5 History

McEliece’s original cryptosystem [Mce78] had a different ciphertext shape: the secret
message being sent was encoded as some ¢ with H(c) =0 (i.e., some Goppa codeword),
and then transmitted as e + ¢ for a secret e with wt e = ¢. Niederreiter [Nie86] introduced
the idea of sending just H(e) as a ciphertext, with e as the message. In both [Mce78] and
[Nie86], the decoder handled matrices of similar size to the public key.

McEliece started with a generator matrix for the Goppa code, meaning a matrix with
row space {c € Fy : Y. ¢;A/(x — «;) € gk[z]}. McEliece said that this matrix “could be
in canonical, for example row-reduced echelon, form”. Row-reduced echelon form is easily
compressed into less space than a random matrix, especially if one requires row-reduced
echelon form specifically with no skipped columns, i.e., systematic form.

But McEliece didn’t use this canonical matrix as the public key: McEliece used a
random generator matrix. McEliece also randomly permuted the output positions; this is
equivalent to randomly permuting (v, ..., ay,).

Eventually it was understood that, after permuting (a1, ..., @), one can safely use a
canonical generator matrix (or, equivalently, a canonical parity-check matrix), such as a
systematic matrix. Canteaut and Chabaud [CanC95, page 4, note 1] said that “most of the
bits of the plain-text would be revealed” by a systematic generator matrix but that using a
random generator matrix “has no cryptographic function”. Canteaut and Sendrier [CanS98,
pages 188-189] said that the Niederreiter variant “allows a public key in systematic form at
no cost for security whereas this would reveal a part of the plaintext in McEliece system”.
As noted by Overbeck and Sendrier [OveS09, page 98], the partial-plaintext problem is
eliminated by various McEliece variants designed for security against chosen-ciphertext
attacks: in these variants, the plaintext looks completely random, and the attacker is faced
with the problem of finding all of the bits of the plaintext.

The fact that one can decrypt using n'+t°(!) time and space, including an optimized
version of a reencryption step to check H(e) = o, appeared in [BernCLM+17]. This relies
on systematic form

e to reduce decryption of ¢ to decoding of ¢(0); and, symmetrically,
e to reduce testing H(e) = o to testing that ¢(c) — e is a codeword.

The first reduction had already appeared in the McEliece context in [BernCS13, Section
6], which in turn says that the choice of ¢(0) as a decoder input was recommended to the
authors by Sendrier.
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A.1 Commutative rings

A commutative ring is a set R with elements 0,1 € R, a unary operation — : R — R, and
binary operations +, - : Rx R — R satisfying the identities r4s = s+r; r+(s+t) = (r+s)+t;
r+(—r)=0;0+r=mrr-s=s-rmr-(s-t)=(r-s)-t;r-(s+t)=(r-s)+(r-t);1-r=r.
These identities imply all of the identities satisfied by Z, the set of integers with its
usual 0,1, — +,-.
Normally r - s is abbreviated rs, and r + (—s) is abbreviated r — s.

A.2 Ring morphisms

A ring morphism from R to S, where R and S are commutative rings, is a function
from R to S preserving 0,1, —,+,: i.e., a function ¢ : R — S with ¢(0) =0, ¢(1) =1,
(1) = —p(r), e(r + s) = (1) + ¢(s), and ¢(rs) = p(r)e(s).

This is the universal-algebra definition of a ring morphism. This is equivalent to a
shorter definition that omits the conditions ¢(0) = 0 and p(—r) = —p(r).

A ring morphism maps every 0,1, —, +, - formula in the inputs to the same formula in

the outputs: e.g., ¢(r + st) = ¢(r) + ¢(s)¢(t) and (>, r:) = >, ¢(r:)-
A.3 Multiples

Let R be a commutative ring. The notation uR, for u € R, means the set {uq : ¢ € R}.
The notation uR + vR, for u,v € R, means the set {uq + vr : q,r € R}.

A.4 Units

The notation R* means {u € R: 1 € uR}; i.e., u € R* exactly when some v € R satisfies
uv = 1. The elements of R* are called the units of R.

A.5 Fields

One calls R a field if R* = {u € R: u # 0}. In other words, an element of a field is a unit
and if only if it is nonzero.

For example, the set {0,1} with —, +, - defined as arithmetic modulo 2 is a field, denoted
Fy. As another example, the set Q of rational numbers with its usual 0,1, —, +, - is a field.

A.6 Vector spaces

Let k be a field. A k-vector space is a set V' with an element 0, a unary operation —, a
binary operation +, and, for each a € k, a unary operation v — «-v such that v4+w = w+wv;
u+(wtw)=(u+v)+w; 0+v=v;0+(—v)=0;1-v=v;a-(v+w)=a-v+a-w
(afB) - v=a-(B-v);and (a+B)-v=(a-v)+ (8-v) for all u,v,w € V and «, 5 € k.
A.7 The standard n-dimensional vector space

Let n be a nonnegative integer. The set k™ = {(vo, v1,...,Vn—1) : V0, V1, ..., Vp_1 € k} is
a k-vector space under the following operations:

e 0is (0,0,...,0).
[ ] 7(1}0,’[)1,...,’Un_1) is (71}0,71}1,...,71)”_1).
° (’Uo,’Ul, e ,’Un_l) —+ (wo,wl, e 711)”_1) is (’UO —+ Wo, V1 +’LU1, ceeyUn—1 + wn_l).

o o (Vo,V1,...,Vp—1) Is (g, a1, ..., QU,_1).
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A.8 Linear maps

Let k be a field, and let V., W be k-vector spaces. A k-linear map from V to W
is a function from V to W preserving 0, —, +,: i.e., a function ¢ satisfying ¢(0) = 0,
(=) = —p(v), p(u+v) = p(u) + p(v), and p(a - v) = a- @(v) for all u,v € V and all
a € k.

This is the universal-algebra definition of a k-linear map as a k-vector-space morphism.
This is equivalent to a shorter definition that omits the conditions ¢(0) = 0 and ¢(—v) =
—¢(v).

If n,m € Z with n > m > 0 then any k-linear map from k™ to k™ must map some
nonzero input to zero.

A.9 Polynomials

Let k be a field. By definition k[x] is the set of vectors (fo, f1,...) with all nonnegative
integers as indices, f; € k for each nonnegative integer i, and {i : f; # 0} finite.

If one drops the requirement that {i : f; # 0} is finite then one obtains the power-series
ring k[[z]], but the reader can safely focus on k[xz] for this paper.

A.10 The ring structure of polynomials
The set k[z] is a commutative ring under the following operations:

e 0 is the vector (0,0,...).

1 is the vector (1,0,...).
Negation maps (fo, f1,--.) to (—fo,—f1,---)-

Addition maps (fo, f1,---), (90, 91,---) to (fo + go, f1 +9g1,-..).

Multiplication maps (fo, f1, f2, f3,--- ), (90, 91, g2, g3, - - - ) to the “convolution” vector
(fogo, fog1 + f1g0, fog2 + f1g1 + fago, fogs + fige + f201 + f390,--).

A.11 The k-algebra structure of polynomials

The map a — («,0,0,...) from k to k[z] is a ring morphism. This map is injective, so
one can view k as a subset of k[z].

A.12 Units of k[x]

The units of k[x] are exactly the elements («,0,0,...) where a € k*.

A.13 The k-vector structure of polynomials

The set k[z] is a vector space under the following operations: 0, —, + are as defined above;
a- (fo, f1,...), for a € k, is defined as (afy, af1,...).

This k-vector structure matches the k-algebra structure: (afo, afi,...) is the same as
the product («,0,0,...)(fo, f1,---)-

A.14 Powers of =
The vector (0,1,0,...) € k[x] is abbreviated x. One then has 2° = (1,0,0,...) = 1,
xt =(0,1,0,...), 22 = (0,0,1,...), etc.

Any f = (fo, f1,...) € k[x] equals the finite sum Zi:fﬁéo fiz®. One can also write f as
the infinite sum ZiZO fiz®; only finitely many terms here are nonzero.
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A.15 Coefficients

If f = (fo, f1,...) € k[z] and i € Z then the coefficient of x* in f means the entry f;
for i > 0, or 0 for ¢ < 0. (The case i < 0 arises in the proof of Theorem 3.1.2 if t > deg A.)

One conventionally hides the formal definition of a polynomial as a vector: rather than
constructing a polynomial f as (fo, f1,...) and referring to f; as the entry at position 7 in
f, one constructs f as ), fix® and refers to f; as the coefficient of 2% in f.

A.16 Degree

If f = (fo, f1,...) € k[z] then the degree of f, written deg f, is —oo for f = 0, and
otherwise the largest ¢ such that f; # 0.
If f,g € k[z] then deg fg = deg f + deg g and deg(f £ g) < max{deg f,degg}.

A.17 Monic polynomials

An element f = (fo, f1,...) € k[z] is called monic if f # 0 and fgeg f = 1; i.e., f # 0 and
the coefficient of z4°¢7/ in f is 1.

A.18 Evaluation

If f=(fo, f1,...) € k[z] and o € k then the value of f at a, denoted f(a),is >, fie,
ie, >, 40 fia®. This is an element of k. Beware the ambiguity of concatenation being
used to express both multiplication and evaluation: (a+ 8)f, (o + ) - f, and f - (a+ )
refer to products in k[z], while f(a + ) refers to a value in k.

For each a € k, the map f — f(a) from k[z] to k is a ring morphism. In other
words, for f,g € k[z] one has f(a) =01if f =0, f(a) =11if f =1, (—f)(a) = —f(a),
(f +9)(@) = f(a) + g(a), and (£ - g)(a) = f(a) - gla)-

A.19 Roots

For f € k[z] and a € k, saying that « is a root of f means that f(a) = 0. This is
equivalent to f = (z — «)q for some ¢ € k[z], i.e., f € (x — a)k[z].

A.20 Vandermonde invertibility

If f # 0 then f has at most deg f roots. Equivalently: if a1, aq, ..., a, € k are distinct, and

Jos f1,- s fnor € K satisfy o, fiadh = 0 for all j € {1,2,...,n}, then (fo, f1,..., fa—1) =
(0,0, ....,0).

A.21 Derivatives

If f = (fo, f1, fo, f3,...) € k[z] then the derivative of f is (fi,2f2,3f3,...). In other
words, the derivative of >, fiz" is > .o ifiz' L.

If f,g € k[z] then (fg)' = fg' + f’g, where f’,g’, (fg)' are the derivatives of f, g, fg
respectively; this is the product rule.

One consequence of the product rule is Bernoulli’s rule that if & € k and f(«) = 0 then
(fg) () = f'(a) - g(@). Bernoulli’s rule is typically described as a rule for evaluating some
“0/0” expressions: if f(a) =0 and f'(«) # 0 then the ratio (fg/f)(«) is (fg)'(a)/f'(a).
Bernoulli’s rule is often called L’Hopital’s rule, for reasons explained in [Stru63].

As an example of Bernoulli’s rule, if a1,...,a, € k and A = [[,;,,(z — a;) then

Al(ap) = ngjgn,j;éh(ah — o).
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A.22 Shifts

If f = (fo, f1,...) € k[z] and « € k then the shift of f by «, denoted f(z + «), means
the element > .., fi(z + «)® of k[z].

The map f — f(x + «) from k[z] to k[z] is a ring morphism. This map preserves
degrees: deg f(x + «) = deg f. This map also preserves derivatives: the derivative of
fle+ ) is f'(x + «), where f’ is the derivative of f.

One can unify evaluation and shifts into a more general evaluation operation. This
generality is not necessary for the main body of this paper, but is used in Appendix C.

A.23 Quotients and remainders

If f,g € k[z] and g # 0 then there are unique ¢,r € k[z] such that f = gg + r and
degr < degg. If r = 0 then the notation f/g means q.

A.24 Unique factorization

The ring k[z] is a unique-factorization domain. In particular, if f € k[z] has roots
a1,...,0n €k, and aq,. .., oy are distinct, then f € (x —aq) -+ (z — o) klz].

A.25 Greatest common divisors

If f,g € k[z] are not both 0 then there is a unique monic d € k[z] such that dk[z] =
fEk[x]+gk[z]. This is called the greatest common divisor of f and g, written ged{f, g}.
One has f, g € dk[z] and k[z] = (f/d)k[z] + (9/d)k[x], so ged{f/d,g/d} = 1.

A.26 Squarefreeness

A nonzero element f € k[z] is called squarefree if it has the following property: g% € fk[x]
implies g € fk[z]. Equivalently, f is not divisible by the square of any irreducible element
of k[z]. Equivalently, ged{f, f'} = 1 where f’ is the derivative of f.

B Random tests

B.1 Test scripts

Beware of bugs in the above code; I have only proved it correct, not tried it.
—Knuth [Emd13, page 11 in cited PDF]

Figures B.1.1, B.1.2, B.1.3, and B.1.4 are Sage scripts to test Algorithms 2.1.1, 3.1.1,
4.1.1, and 5.1.1 respectively on random inputs.

B.2 Test-development principles

The primary design objective of random tests is, for any given amount of CPU time spent
on testing, to minimize the chance that bugs will avoid the tests. The obvious baseline is
to ensure that tests catch every known bug in the subroutine being tested. Beyond this,
one can try to proactively catch further bugs, extrapolating from what is known about the
processes by which people make mistakes.

Bug patterns are a central topic in the literature on software engineering. There is far
less attention to bugs in the literature on algorithms. If one is trying to test, for example,
an extended-ged algorithm, then how does one evaluate whether tests reach the baseline
of catching every known extended-gcd bug, never mind proactively catching further bugs?
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from interpolator import interpolator

for q in range(100):
q = Z22(q)
if not q.is_prime_power(): continue
print (’interp %4’ % q)
sys.stdout.flush()
k = GF(q)
for loop in range(100):
n = randrange(q+1)

a = list(k)

shuffle(a)

a = al:n]

r = [k.random_element() for j in range(n)]

phi = interpolator(m,k,a,r)

assert phi.degree() < n

assert all(phi(aj) == rj for aj,rj in zip(a,r))
kpoly = phi.parent()

assert phi == kpoly.lagrange_polynomial(zip(a,r))

Figure B.1.1: Random tests for Algorithm 2.1.1.

Occasionally a bug will be highlighted because it has been shown to have security
consequences. For example, Section 8.4 described an exploitable bug pointed out by
Chou [Cho20] in the Goppa decoder from [AIbCPTT17] and [AIbCPTT19]. As another
example, Ormandy [Orm19] discovered that some inputs would cause an extended-ged
algorithm in a Microsoft cryptography library to enter an infinite loop; this meant that an
attacker could trivially cause a server to stop responding, something that [Winl19] called a
“Windows 10 zero-day security bomb”.

However, this information is generally not indexed by algorithm. Furthermore, the
baseline goal is to catch every known bug—mnot merely the bugs already shown to have
security consequences. From an engineering perspective, one would expect much more
serious efforts to track what has previously gone wrong.

Comer’s introduction [Com01] to the differences between two computer-science cultures,
namely the mathematical culture and the engineering culture, lists algorithms solely within
the mathematical culture. Certainly most algorithm papers are like most mathematics
papers in viewing proofs as the primary goal. A typical algorithm paper includes a proof
that an algorithm works; the paper is expected to avoid reminding readers that proofs are
often wrong, and, in particular, is expected to avoid taking any steps other than a proof to
address the risk that the algorithm is wrong. This position is defensible for the occasional
computer-verified proofs, but most proofs in the literature are not computer-verified, and
the systematic lack of attention to bugs makes test development unnecessarily difficult.

This paper’s computer-verified proofs (see Appendix C) reduce, but do not eliminate,
the risk of bugs in this paper’s algorithms. The theorems cover the main mathematical
content of the algorithms, but they do not directly state that the algorithms compute the
specified functions. Such a statement would require the proof system to have a definition
of algorithms, and a definition of the Sage instructions used in this paper’s algorithms;
formalizing such definitions is beyond the scope of this paper.
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from approximant import approximant

for q in range(100):
q = 22(q)
if not q.is_prime_power(): continue
print (’approximant %d’ % q)
sys.stdout.flush()
k = GF(q)
kpoly.<x> = k[]
for loop in range(100):
Adeg = randrange(100)
A = kpoly([k.random_element() for j in range(Adeg)]+[1])
if Adeg == 0:
B = kpoly(0)
else:
Bdeg = randrange(Adeg)
B = kpoly([k.random_element() for j in range(Bdeg+1)])
# note that B could actually have lower degree
t = randrange (Adeg+3)
a,b = approximant(t,k,A,B)
assert gcd(a,b) == 1
assert a.degree() <=t
assert b.degree() < t
assert a !=0
assert a*B-b*A == 0 or (a*B-bx*A).degree() < A.degree()-t

Figure B.1.2: Random tests for Algorithm 3.1.1.

B.3 General shape of these tests

The element 0 € k plays a special role in linear algebra, the definition of polynomials, etc.
The tests here try small fields k so that 0 will often appear at various positions in the
computation. Hopefully this means that any mishandling of 0 will be triggered by the
tests.

Half of the tests of Reed—Solomon decoding in Figure B.1.3 are tests aimed at checking
correct behavior on decodable inputs. These tests use input vectors r generated as e + ¢
where ¢ = (f(ay1),..., f(an)) and e has weight at most ¢ (often chosen to be below t).
These tests check whether the decoder finds f.

The other half of the decoding tests are aimed at checking correct behavior on non-
decodable inputs. These tests use uniform random input vectors r. If the decoder finds
some f then the tests check that wt(r —¢) < ¢t where ¢ = (f(ay),. .., f(ay)). If the decoder
returns None, there is no check whether the decoder should actually have found some f; a
bug here should be caught more efficiently by the first type of test.

Figure B.1.4 has an analogous split between testing decodable inputs and testing
non-decodable inputs for Goppa decoding. There is no similar split in Figures B.1.1 and
B.1.2, since those algorithms handle all inputs successfully.

For Figures B.1.1, B.1.3, and B.1.4, n is chosen randomly between 0 and ¢; for
Figure B.1.2, deg A is chosen randomly between 0 and 99. Similarly, ¢ is chosen randomly
in Figures B.1.2, B.1.3, and B.1.4; in each case, the range of ¢ covered by the tests is
slightly beyond the range of ¢ useful for applications.
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from rs import interpolator_with_errors

for q in range(100):
q = 22(q)
if not q.is_prime_power(): continue
print (’interpolator_with_errors %d’ % q)
sys.stdout.flush()
k = GF(q)
kpoly.<x> = k[]
for loop in range(100):
n = randrange(q+1)
t = randrange(3+n//2)
a = list(k)
shuffle(a)
a = al:n]
for known in True,False:
if known:
f = kpoly([k.random_element() for j in range(n-2*t)])
r = list(map(f,a))
e [k.random_element() for j in range(t)]+[0]*(n-t)
shuffle(e)
assert len([ej for ej in e if ej !=0]) <=t
for j in range(n): r[jl += el[j]
else:

f = ’unknown’ # cut off data flow from previous iteration
r = [k.random_element() for j in range(n)]

f2 = interpolator_with_errors(n,t,k,a,r)

if £f2 == None:
assert not known

else:
assert f2 == 0 or f2.degree() < n-2*t
if known: assert f2 ==
assert len([j for j in range(n) if f2(aljl) !'= r[jll) <=t

Figure B.1.3: Random tests for Algorithm 4.1.1.

B.4 How the tests catch various bugs

The bug in the Goppa decoder from [AIbCPTT17] and [AIbCPTT19] is triggered when
the correct error vector e has weight ¢ — 1 and has e, = 0 where a, = 0. Figure B.1.4
is intended to catch this: the tests generate uniform random sequences (aq,...,a,) of
distinct field elements, and often use weight ¢ — 1 for the error vector e; often a, will be 0
for some z, and often e, will also be 0.

In an experiment that modified Algorithm 5.1.1 to imitate what [Cho20] described,
Figure B.1.4 immediately caught the bug. One could directly test the algorithms from
[AIbCPTT17] and [AIbCPTT19] by translating the algorithms from pseudocode to real
code. One could directly test the software accompanying [AIbCPTT17] and [AIbCPTT19]
by extracting the Goppa-decoding portions of that software and providing a shim layer to
support the goppa_errors interface.

The extended-ged bug mentioned above in Microsoft’s cryptography library was that a
modular-inversion algorithm continued to loop until finding gcd 1—which would always
happen for inputs with modular inverses, but the attacker could provide a non-invertible
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from goppa import goppa_errors

for m in range(1,10):
q=2"m
print (’goppa_errors %d’ % q)
sys.stdout.flush()
k = GF(q)
kpoly.<x> = k[]
for loop in range(100):
while True:
n = randrange(qg+1)
t = randrange(3+n//m)
if t >=n: t =n

a = list(k)
shuffle(a)
a = al:n]

G = kpoly([k.random_element() for j in range(2*t)]+[1])
if all(G(aj) !'= 0 for aj in a):
break

assert G.degree() == 2%t

A = kpoly(prod(x-aj for aj in a))
Aprime = A.derivative()

for aj in a: assert Aprime(aj) != 0

for known in True,False:
if known:
f = kpoly([k.random_element() for j in range(n-2+*t)])
r = [(f%G) (aj)/Aprime(aj) for aj in al
if randrange(2):
e = [1]*t+[0]*(n-t)
else:
actualweight = randrange(t+1)
e = [1]xactualweight+[0]*(n-actualweight)

shuffle(e)
assert len([ej for ej in e if ej != 0]) <=t
for j in range(n): r[jl += el[j]
else:
e = ’unknown’ # cut off data flow from previous iteration

r = [k.random_element() for j in range(n)]
e2 = goppa_errors(n,t,k,a,G,r)
if e2 == None:
assert not known
else:
assert len(e2) == n
if known: assert e2 == e
assert len([ej for ej in e2 if ej !=0]) <=t
assert G.divides(sum((r[i]-e2[i])*A//(x-a[i]) for i in range(n)))

Figure B.1.4: Random tests for Algorithm 5.1.1.
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input, triggering an infinite loop. In the decoding context, an extended-gcd computation
is the normal way to compute approximants, and one can imagine someone

e starting with an extended-ged algorithm that computes all remainders,

e augmenting the algorithm to record (a,b) for the first remainder aB — bA of degree
below deg A — t, and

e not optimizing away the pointless computation of subsequent remainders,

so there could still be an infinite-loop bug. In these tests, because k is small, some input
positions will often be 0, forcing ged{ A, B} # 1, so if there is an infinite loop for that case
then the tests will trigger it.

Another easy bug to imagine in Reed—Solomon decoders and Goppa decoders is testing
deg(aB — bA) against n — ¢ rather than n — 2t 4+ deg a, although this does not matter in
an application that requires dega = t. An experiment with eight runs of Figure B.1.3
consistently caught this bug; each run already caught the bug with #k = 2. Another
experiment with eight runs of Figure B.1.4 also consistently caught this bug; here the eight
runs caught the bug with #k = 8, #k = 16, #k =4, #k =8, #k =8, #k =4, #k = 32,
#k = 4 respectively. The variation in #k here suggests running more repetitions of the
tests for reliability, or adding tests specifically for this case.

C Computer-verified formalizations of the theorems

This appendix presents formalizations of this paper’s theorems using two proof assistants,
namely HOL Light and Lean 4; compares the formalized statements to the theorem
statements earlier in this paper; and explains how to verify proofs of the formalized
theorems. The proofs, 1ightgoppa-20230818.m1 and leangoppa-20230818.tar.gz, are
supplements available at the URLs shown below.

See [Har96] for an introduction to HOL Light, [MouU21] for an introduction to Lean
4, and [Mat20] for an introduction to the Lean math library. This appendix says “HOL
Light” and “Lean” to refer to the full proof assistants available when these formalizations
began, including the math libraries.

See [BraCPR22, Section 4] for a report of previous progress towards formalizing this
paper’s theorems in Lean. Theorems on direct interpolation were already in Lean.

C.1 Risks

The claim that a computer has verified a proof does not mean that the user is safe. On
the contrary, various risks should be kept in mind.

First, as noted above, this paper’s theorem statements are not stating that any particular
software works correctly. The theorem statements capture the mathematical content of
what some decoding software is intended to compute, but perhaps the software actually
computes something else. This appendix does not directly address this risk. Appendix B
directly addresses this risk, but only for a limited set of inputs.

Second, there can be mismatches between the formalized theorems and the theorems
claimed earlier in this paper. Such mismatches could allow a claimed theorem to be false
despite a computer-verified proof of the formalized theorem. Appendix C.6 addresses this
risk by comparing theorem statements.

Third, beyond the risks of mismatches in the theorem statements, there are risks of
mismatches in the underlying definitions. This paper does not review the complete chain
of definitions, but Appendix C.5 reviews the definitions that seem most likely to cause
problems.
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Fourth, bugs are sometimes discovered in proof-verification software. An erroneous
proof could slip past verifier bugs, even in the absence of malice. Proof software typically
addresses this by delegating verification to a “relatively small trusted kernel”, in the words
of [MouU21], so the problem is then simply to audit that kernel. The HOL Light kernel is
particularly small, and [AbrMKS22] includes a proof of correctness of the kernel.

Fifth, HOL Light is written in a general-purpose programming language, namely
OCaml; Lean is itself a general-purpose programming language; and, for both HOL Light
and Lean, proofs are software written in the same languages. Buggy code or malicious
code inside any of this software—mnot just the kernel responsible for verifying proofs—can
spoil verification, destroy files, etc. This appendix recommends running verification inside
a virtual machine, but does not otherwise address the risk of malice.

Candle from [AbrMKS22] is a port of HOL Light to the verified CakeML compiler,
and is backed by a theorem stating that the resulting machine code releases only correct
theorems (where “release” refers to a particular output mechanism; the Candle user can,
with some work, disable other output mechanisms). However, Candle’s official version does
not yet include HOL Light’s ring-theory library.

C.2 Verifying the proofs of the HOL Light formalizations

Here is how to run lightgoppa in HOL Light. These instructions assume a Debian virtual
machine with at least 2GB free disk space.
A few instructions are run as root in the virtual machine:

apt install git opam wget -y

adduser --disabled-password —--gecos lightgoppa lightgoppa
su - lightgoppa

All remaining steps are within the 1ightgoppa account:

time opam init -a

time opam switch create 4.05.0

eval ‘opam env‘

time opam pin add camlp5 7.10 -y
time opam install num camlp-streams ocamlfind -y

git clone https://github.com/jrh13/hol-light

cd hol-light

git checkout 29b3e114f5c166584f4fbcfdielf9b13a25b7349
make

wget https://cr.yp.to/2023/lightgoppa-20230818.ml

time ocaml -I ‘camlp5 -where‘ camlpbo.cma -init hol.ml \
< lightgoppa-20230818.m1 > lightgoppa-20230818.out

grep Error lightgoppa-20230818.out

The timed commands were observed to take 16, 273, 59, 114, and 1168 seconds
respectively on a dual AMD EPYC 7742 server running at 2.245 GHz, mostly using just
1 of the server’s 128 cores. The resulting lightgoppa-20230818.out has 40792 lines,
including copies of all definitions and proven theorems. The first 80% of the lines are from
various HOL Light libraries. The main lightgoppa theorem statements are collected at
the end. Proof errors would instead produce Error lines.

C.3 Verifying the proofs of the Lean formalizations

Here is how to run leangoppa in Lean. These instructions assume a Debian virtual
machine with at least 8GB free disk space.
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A few instructions are run as root in the virtual machine:

apt install git curl -y
adduser --disabled-password --gecos leangoppa leangoppa
su - leangoppa

All remaining steps are within the leangoppa account:

GH=raw.githubusercontent.com

curl -sS -o elan-init.sh \
https://$GH/leanprover/elan/master/elan-init.sh

sh elan-init.sh -y

source $HOME/.elan/env

wget https://cr.yp.to/2023/leangoppa-20230818.tar.gz

tar -xf leangoppa-20230818.tar.gz

cd leangoppa-20230818

time lake exe cache get

time lake build

The lake exe cache get was observed to take 42 seconds on the machine mentioned
above. The lake build was observed to take 162 seconds, producing some Building lines
(and timing information from time at the end). Proof errors would instead produce error
lines.

C.4 Examples of the underlying definitions
Typing “field;;” in a HOL Light session prints out

val it : thm =
|- !'r. field r <=>
~(ring 1 r = ring 0 r) /\
('x. x IN ring_carrier r /\ ~(x = ring 0 r)
==> (?y. y IN ring_carrier r /\ ring_ mul r x y = ring_1 r))

which is a translation of the following statement into the HOL Light language: a commu-
tative ring r is a field if and only if

e 1#40inr and
e for each = € r such that  # 0 in 7: there exists y € r such that zy =1 in r.

HOL Light reserves the word “ring” for commutative rings; this matches common ter-
minology in commutative algebra, although it does not match common terminology in
non-commutative algebra.

As this translation illustrates, HOL Light uses ASCII versions of various logic symbols:
|- for F (proves), <=> for < (if and only if), ==> for = (implies), /\ for A (and), !
for V (for all), ? for 3 (there exists), ~ for = (not). Also, if a set S has elements 0 and
1 and operations —, 4+, - satisfying the usual identities, and if r is defined as the ring
(5,0,1,—,+,-), then ring_carrier r means .S and ring_0 r means 0 and so on.

More subtly, using the syntax ring_1 r, ring 0 r, etc. adds an implicit hypothesis
that r is a ring. One can make this more explicit in theorem statements by replacing !r
with !'r:A ring, where S is a subset of A.

HOL Light’s definition of ring takes longer to read:
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let ring tybij =

let eth = prove

("?s (z:A) wnam,
z IN s /\
wINs /\
('x. x INs==>nxINs) /\
('xy. xINs /\yINs==>axylINs)/\
('xy. xINs /\NyINs=mxy]INs) /\
('xy.xINs/ANyINs=axy=ayx) /\

(Ixyz. xINs/\NyINs/\zINs==>ax(ayz)=al(axy)z)/\
('x. x INs ==>a2zx-=x)/\

('x. x INs =>a (hx)x=12z)/\

(IXy. xINs/\NyINs=mxy=myx) /\
('xyz.xINs/N\NyINs/NzINs=>mx (my z)=m(mxy)z)/\

('x. x INs=>mwx =x) /\
('xyz.xINs/\NyINs /\zINs
=> mx(ayz)=a(mxy) (mxz),
MAP_EVERY EXISTS TAC
["{ARB:A}"; "ARB:A"; "ARB:A'; "(\Xx. ARB):A->A";
“(\x y. ARB):A->A->A"; “(\x y. ARB):A->A->A"] THEN
REWRITE _TAC[IN SING] THEN MESON TAC[]) in
new type definition "ring" ("ring","ring operations")
(GEN_REWRITE RULE DEPTH_CONV [EXISTS_UNPAIR THM] eth);;

Part of the length comes directly from the number of rules in the usual mathe-
matical definition of (S,0,1,—,+,-) being a commutative ring. For example, the line
“Iv y. x INs /Ny IN s ==>m x y = m y x’ states that each x,y with € S and
y € S has -(z,y) = (y,z), i.e., that multiplication is commutative; this is one of eight
identities in the definition, after five lines saying that S is closed under 0,1, —, +, -.

The surrounding lines are showing that an object satisfying these rules exists (namely,
a ring of one element), and are then saying that any tuple (S,0,1, —, +,-) satisfying the
rules, or more precisely (5, (0, (1, (—,(+,))))), is referred to as the ring_operations of a
ring.

The field definition quoted above relies on further definitions that extract S etc. from
such a tuple. For example, the following definition says that if r is a ring then
ring_carrier r is defined as the first component of the ring_operations tuple, i.e., that
the carrier of the ring (S,0,1,—,+,-) is S:

let ring_carrier = new definition
“(ring carrier: (A)ring->A->bool) =
\r. FST(ring_operations r)";;

Inside this definition, X->Y means the set of functions from X to Y; A->bool in particular
means the set of subsets of A, modeled as the set of functions from A to {True, False};
(A)ring means the set of rings (S,...) whose first components S are subsets of A; and
(A)ring->A->bool means the set of functions mapping such rings to subsets of A. This
definition specifies ring_carrier as one such function, namely the function that maps
(S,...) to S: the tuple (S,0,1,—,+, ) is modeled via pairs as (S, (0, (1, (—, (+,))))), and
FST means the first component of a pair.

Reading the complete definition of a field in Lean takes much longer, and only fragments
of the definition are displayed below. At the top there is

class Field (K : Type u) extends CommRing K, DivisionRing K

which sounds easy enough—a field is a commutative division ring. The complications
begin at the next layer, the definition of a division ring:
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class DivisionRing (K : Type u) extends Ring K, DivInvMonoid K, Nontrivial K, RatCast K where
/-- For a nonzero "a’, "a-!" is a right multiplicative inverse. -/
protected mul inv cancel : V¥ (a : K), a#0-a*at=1
/-- We define the inverse of "0 to be '0'. -/
protected inv zero : (0 : K)-! =
protected ratCast := Rat.castRec
/-- However “ratCast’ is defined, propositionally it must be equal to “a * b-'". -/
protected ratCast mk : V (a : Z) (b : N) (hl h2), Rat.cast (a, b, hl, h2) =a * (b : K)-! := by
intros
rfl
/-- Multiplication by a rational number. -/
protected gsmul : Q » K - K := gsmulRec Rat.cast
/-- However “gsmul’ is defined,
propositionally it must be equal to multiplication by ratCast’. -/
protected gsmul eq mul' : V (a : Q) (x : K), gsmul a x = Rat.cast a * x := by
intros
rfl

This defines a division ring as a tuple (K,Q, X, Z,Q",Q",Q""), where

e K is a nontrivial ring;

K is also a “division-inversion monoid”;

Q@ is a function from Q to K;

X is the fact that each nonzero ¢ € K has aa™! =1 in K;

Z is the fact that 07! =0 in K;

e (' is the fact that each a € Z and b € N ={0,1,...} has Q(a/b) = ab~! in K;
e (" is a function from Q x K to K; and
e Q" is the fact that each a € Q and x € K has Q"(a,z) = Q(a)z in K.

These definitions rely on the usual map from Z to K having already been specified, on 0!
being defined as 0, and on the underlying DivInvMonoid definition—which has its own
complications and is not displayed here—allowing division by 0. HOL Light also defines
0! =0.

One can see from the above definition that Lean uses the syntax 0 : K to refer to 0
in K, and the syntax x*y for the product of elements z and y of K. The conciseness
of this notation improves legibility compared to HOL Light’s notation ring_0 K and
ring _mul r x y, especially in long formulas. Lean also automatically deduces that the
second 0 in the equation (0: K)~! = 0 is intended as 0 : K.

Similarly, Lean uses the syntax ¢ : K to refer to Q(gq), where ¢ is a rational number
and @ is the function provided as part of defining the division ring K. Note that a
reader checking Lean’s definitions for an application using fields is confronted with the
Q,Q",Q", Q" complications whether or not the application uses this syntax, and has to
figure out whether these complications restrict the mathematical concept of a field.

Both HOL Light and Lean include various theorems about fields, such as HOL Light’s
theorem FIELD_INTEGER_MOD_RING saying

'n. field (integer mod ring n) <=> prime n

(for each n, the ring Z/n is a field if and only if n is prime) and Lean’s unnamed construction
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variable (p : N) [Fact p.Prime]

/-- Field structure on “ZMod p* if "p’ is prime. -/
instance : Field (ZMod p) :=

(the weaker statement that, for each prime p, the ring Z/p is a field). There are further
theorems saying, e.g., that 2 is a prime, so fields exist with the definitions of both systems;
the definitions are not accidentally vacuous. Also, the theorem

variable (p : N) [h prime : Fact p.Prime] (n : N)

theorem card (h : n # 0) : Fintype.card (GaloisField pn) =p *~ n := by

shows (in conjunction with the fact that any GaloisField is a Field) that Lean’s definition
of fields allows fields of any prime-power cardinality. Such theorems reduce the risk of
improper definitions slipping through, although a reviewer is still happier when the
definitions per se are clean and easy to review.

C.5 High-risk definitions

A complete review would check many more definitions and theorems in HOL Light and
Lean, building confidence that both systems are defining concepts equivalent to various
standard mathematical concepts. This appendix does not include a complete review. There
are, however, two reasons to study some definitions more closely.

First, both systems make some dangerous choices of notation. For example, the function
m,n +— max{0,m —n} from N x N to N, where N ={0,1,2,...}, is given the surprisingly
short name “—" in both HOL Light and Lean. This creates an obvious risk of confusion
with the mathematician’s much more important subtraction function from Z x Z to Z,
which is also denoted “—” in these systems and in the broader literature. The two functions
have incompatible semantics in the sense that applying the usual map from N x N to Z x Z,
and then applying “—”, does not always produce the same results as applying “—” and
then the usual map from N to Z. The reader expects 2 — 3 to be —1, not 0. As another
example, Lean defines a/b to mean what mathematicians would write as [a/b]; this is
usually not the same as a/b.

Second, for a paper formalizing additional definitions, there is a clear need to carefully
check those definitions. The formalized theorem statements below rely on the following 8
definitions in leangoppa and the following 21 definitions in 1ightgoppa. The reason there
are more definitions in lightgoppa is that, for some of the following concepts, lightgoppa
develops the concepts from scratch while leangoppa uses concepts already built into Lean.

C.5.1 Squarefree elements of rings

In lightgoppa, ring_squarefree is defined as follows:

let ring_squarefree = new definition °
ring squarefree(r:R ring) a
<=>
('b. b IN ring_carrier r ==>
ring divides r a (ring mul r b b) ==>
ring_divides r a b

)

A



44 Understanding binary-Goppa decoding

This says that an element a of a (commutative) ring r is squarefree if and only if each b
in  with a dividing b? also has a dividing b. The ring_divides notion is already provided
by HOL Light; the definition is not repeated here.

Note that X = (Y = Z) is logically equivalent to (X AY) = Z. Conventionally, and
in HOL Light, syntax is defined so that X = Y = Z means X = (Y = Z). But one
can instead write X AY = Z (i.e., X /\ Y ==> Z) if desired, meaning (X AY) = Z, as
illustrated by the field definition quoted above.

As an example of the importance of checking definitions, consider the fact that a suffi-
ciently severe misdefinition of squarefreeness could make a formalization of Theorem 6.1.1
content-free. As extra evidence that the above definition of squarefree matches the
expected notion, lightgoppa includes a proof that any prime element of r is squarefree—

let ring_squarefree if prime = prove(’
I(r:R ring) p.
ring prime r p ==> ring squarefree r p

—and a proof that, more generally, a product of prime elements is squarefree if the prime
elements do not divide each other.

Lean already provides a Squarefree definition, so leangoppa simply uses that. Lean’s
Squarefree syntax is more concise than the ring_squarefree syntax: it does not mention
the ring in its name or as an argument.

C.5.2 Univariate polynomials

HOL Light has some general development of multivariate polynomials over a ring. The
following definition in lightgoppa extracts the special case of univariate polynomials:

let x_ring = new definition °
x_ring (r:R ring) = poly ring r {0}

r

The notation here is deceptively concise, as the following paragraphs explain.

In both HOL Light and Lean, the universe is partitioned into disjoint “types”. There
are various ways to construct types, such as the type N ={0,1,2,...} (denoted num in
HOL Light) and the type X — Y of functions from type X to type Y. Subsets of X are
formalized as functions from X to {True, False}, as noted above.

HOL Light’s Z type is not a superset of N—this would violate the disjointness rule.
Instead of having elements 0 and 1 and so on, HOL Light’s Z (denoted int) has elements
&0 and &1 and so on, along with negative integers. (Similarly, Lean’s 0 in N is a different
object from Lean’s 0 in Z, even though the Lean syntax often allows the map from N to Z
to be left implicit,) What matters here is that there is only one type containing 0, namely
N.

Mathematically, multivariate polynomials over a ring r are functions from exponent
vectors to r satisfying certain finiteness conditions. For example, the polynomial 2z3y* +
525y” is the function that maps (3,4) to 2, maps (6,7) to 5, and maps everything else to
0. The exponent vector (3,4), in turn, can be viewed as a function producing 3 on one
input and 4 on another input. HOL Light formalizes exponent vectors as functions from
any type V to N; HOL Light then defines poly_ring r S, where S is any subset of V, as
the polynomials with exponent vectors supported on S.

Defining x_ring r as poly_ring r {0} is thus extracting the polynomials with ex-
ponent vectors supported on {0} out of the ring of polynomials with exponent vectors
supported on N, since N is the unique type containing 0: in other words, extracting r[x]
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out of r[xg,z1,22,...]. The exponent vectors here are defined as functions from N to
N, and polynomials are defined as functions mapping exponent vectors to r. In HOL
Light syntax, the type of an exponent vector is num->num in this case, and the type of a
polynomial is (num->num) ->R, when the carrier of r is a subset of R.

Given this setup, the definition of coefficient extraction from a univariate polynomial
is factored into two definitions in 1ightgoppa:

let mapOto = new definition °
mapOto (d:num) = \v. if v = 0 then d else 0

let coeff = new definition °
coeff (d:num) (p:(num->num)->R)
= p(map0Oto d)

The backslash is HOL Light’s ASCII version of the A notation for defining functions:
mapOto d is defined as the function mapping v to d if v = 0 and to 0 otherwise. HOL
Light automatically figures out that this function has type num->num, since 0 is used as
an input of the function. It would figure this out even if (d:num) were abbreviated as d,
since 0 is also used as an output of the function.

The point of mapOto d is that it is the exponent vector of the monomial zgx{xJ. .. in
the polynomial ring r[xg, z1,Z2,...]. Viewing a polynomial as a function from exponent
vectors, and evaluating this polynomial at (d, 0,0, ...), extracts the coefficient of x¢ from
the polynomial. This is what coeff d p does.

(Appendix A.15 defined coefficients more generally for d € Z. Both lightgoppa and
leangoppa include a corresponding zcoeff definition. This is a convenient tool inside
the proof of Theorem 3.1.2, but someone reviewing the theorem statements displayed
below can skip it. Similarly, polynomial shifts as in Appendix A.22 appear in the proof of
Theorem 7.1 but not in the theorem statement.)

Note that someone using univariate polynomial rings generally does not want to know
implementation details such as the variable being labeled 0 and the ring being carved out
of r[zg,x1,...]. Most of the definitions and theorem statements below are expressed in
terms of coeff etc., and it would be useful to add syntax to abstract away the occasional
(num->num) ->R.

Even with a suitable abstraction layer, obtaining univariate polynomial rings as a
specialization of multivariate polynomial rings means that someone reviewing the full
definition is faced with the complications of multivariate polynomial rings even for applica-
tions not using those complications. On the other hand, having 1ightgoppa define its own
univariate polynomial rings would mean more high-risk definitions to review. Presumably
what will be best in the long run is a formalized version of what appears in the mathematical
literature: a simple definition of univariate polynomial rings, a more complicated definition
of multivariate polynomial rings, and theorems regarding the relationship between the
definitions.

For Lean, leangoppa reuses Lean’s existing definition of k[X] as the ring of univariate
polynomials over k, and Lean’s definition of p.coeff d as the coefficient of X% in p. The
formal definitions of these objects in Lean are not reviewed here.

C.5.3 Special polynomials

Several important polynomials are given names in 1lightgoppa:
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let x_pow = new definition °
x_pow (r:R ring) (d:num) =
\m. if m = map@to d then ring 1 r else ring 0 r

This defines x_pow r d as the polynomial z¢ in 7[z], i.e., the polynomial zd in [z, 1, .. .J:
formally, the function that maps the exponent vector (d,0,0,...) to 1 and maps everything
else to 0.

let poly x = new definition °
poly x (r:R ring) = x pow r 1

1

This defines poly_x r as the polynomial 2! in 7[x].

let const x_pow = new definition °
const x pow (r:R ring) c d =
ring mul(x_ring r) (poly const r c) (x _pow r d)

1

This defines const_x_pow r ¢ d as the polynomial cz?; poly_const is already provided
by HOL Light as the usual map from r to r[z]. Lean defines an equivalent function under
the name monomial, but supports the more concise syntax (C c)*X~d; C is defined as the
usual map from r to r[X].

let x _minus const = new definition °
X_minus_const (r:R ring) (c:R)
= ring sub(x ring r) (poly x r) (poly const r c)

1

This defines x_minus_const r c as the polynomial z — ¢. In Lean, writing X - C c is
more concise.

C.5.4 Degrees of polynomials

To avoid working with —oo, lightgoppa works with the map f ~ 29°8/ denoted twodeg,
from r[z] to N. If r is a field (or, more generally, a domain) then this maps multiplication
to multiplication. The definition of twodeg is factored into the following three layers.

let x_support = new definition °
x_support (r:R ring) (p:(num->num)->R)
={d | ~(coeff d p=ring 6 r)}

1

This defines x_support r p as the set of natural numbers d such that the coefficient of
x¢ in p is nonzero. Recall that ~ in HOL Light means “not”. HOL Light automatically
figures out that d ranges through N, since coeff requires its input to be in N.

let maximum = new definition °
maximum S
=@:num. mINS /\ (!In. m<n==>~(nINS))

1

This defines notation for maximal elements of sets of natural numbers. (HOL Light already
defines notation for minimal elements of sets of natural numbers.) In HOL Light, “ém. P m”
means a choice of m satisfying P(m), or an arbitrary choice of m (within whichever type)
if no choice of m satisfies P(m). This definition says that maximum S is some m € N such
that m € S and each n > m has n ¢ S, or, if no such m exists, an arbitrary m € N.
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let twodeg = new definition °
twodeg (r:R ring) (p:(num->num)->R) =
if p = ring 0(x_ring r)
then 0
else 2 EXP (maximum (x_support r p))

1

This defines twodeg r p as 0if p =0, or as 2™ (denoted 2 EXP m in HOL Light) if p # 0,
where m is the maximum element of x_support r p. Both cases match the usual concept
of 2deep,

In Lean, p.degree is the usual mathematical degree of p. This degree is in a “WithBot
N” type that can be viewed as NU {—o0}, although it actually has a separate copy of N to
follow the disjointness rule mentioned above. The Lean syntax automatically maps N to
WithBot N, so one does not see WithBot named in any of the theorem statements below.
The semantics of the theorem statements still depend on WithBot.

Lean also provides natDegree producing results in N, in particular mapping the
polynomial 0 to 0. This avoids WithBot but would force various theorem statements to
treat the polynomial 0 specially.

C.5.5 Polynomial evaluation

The “more general evaluation operation” mentioned in Appendix A.22 is as follows: any
ring morphism from r to s can be extended to a ring morphism from r[x] to s; the extension
is unique if one specifies the image of z in s.

Even more generally, write r[V] for the multivariate polynomial ring with polynomial
variables indexed by V. For any ring morphism f : r — s and any function e : V — s,
there is a unique ring morphism from r[V] to s compatible with f (i.e., f is the composition
of the usual map r — r[V] and this morphism r[V] — s) and compatible with e (i.e., this
morphism takes each variable v € V' to e(v)).

HOL Light defines poly_extend r s f e as this general morphism. The following
definition specializes this to the case of univariate polynomial evaluation, or, more precisely,
evaluating all variables at the same point:

let poly eval = new definition °
poly eval (r:R ring) (a:R)
= poly extend(r,r) I (\v:num. a)

1

The ring morphism f : r — r here is I, which HOL Light defines as the identity function.
The function e : N — r maps all inputs to a given element a € r. The resulting
poly_eval r ais then a function mapping r[zg, z1,...] to r, specifically the evaluation
map that takes each x; to a. In lightgoppa, this is applied to various elements of
rlz] = rlxo].

Reviewers checking this definition and the underlying poly_extend definition, to see
that this is the expected polynomial-evaluation function on r[z], are again faced with
multivariate complications. However, reviewers can instead inspect the following theorem,
which completely characterizes poly_eval r a p for a € r and p € r[z]:
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let poly eval expand = prove(’
I(r:A ring) a p.
a IN ring carrier r ==>
p IN ring_carrier(x_ring r) ==>
poly eval rap =
ring sum r
(x_support r p)
(\d. ring mul r (coeff d p) (ring pow r a d))

This still relies on HOL Light’s definition of ring_pow r a d as a? in r, and its definition
of ring_sum r S £ as the sum in r of f(s) for all s € S.

C.5.6 Derivatives of polynomials
The definition of derivative in lightgoppa is factored into the following two layers:

let monomial shift = new definition °
monomial shift (m:num->num)
= (\v. if v=0 thenmv + 1 else m v)

This maps exponent vector (mg,my,ma,...) to (mg+ 1,mq, ma,...).

let x derivative = new definition °
x_derivative (r:R ring) (p:(num->num)->R)
= (\m. ring_mul r

(ring_of num r (m 0 + 1))
(p (monomial shift m)))

1

This defines x_derivative r p as the function that maps an exponent vector m =
(mo,my,...) to (Mo + 1)Pmo+1,m,,...- HOL Light defines ring_of_num r to map N to r in
the usual way.

The case that matters for univariate polynomials is that x_derivative r p maps expo-
nent vector (d,0,...) to (d+1)pg+1,0,.... In other words, if p has coefficients (po, p1,p2, - -)
then x_derivative r p has coefficients (1p1, 2p2, 3ps, - . .), as in Appendix A.21. Instead
of checking these definitions, reviewers can rely on the following characterization:

let x _derivative expand twodeg = prove(’
'(r:R ring) p H.
p IN ring carrier(x_ring r) ==>
twodeg r p <= H ==>
X_derivative r p
= ring_sum (x_ring r)
{d | 2 EXP d <= H}
(\d. const x pow r
(ring_mul r (ring of num r d) (coeff d p))
(d-1))

This says that if p € [z] and 29°8? < H then x_derivative r pis Y .qacy(dpa)z?1,
where pg is the coefficient of 2% in p. Beware that, as noted above, HOL Light’s d-1 means
0 if d = 0 rather than —1; fortunately, the result for d = 0 is multiplied by 0 in 7.

In leangoppa, there is a diff definition providing a thin wrapper around Lean’s
existing derivative definition:



Daniel J. Bernstein 49

variable {R: Type _} [Semiring R]
noncomputable def diff: R[X] - R[X] := derivative.toFun

Then p.diff is the derivative of p. The toFun refers to the fact that, in Lean, derivative
is not a function from R[X] to R[X], but rather a tuple that includes such a function along
with extra facts about derivatives, such as the fact that derivatives are compatible with
multiplication by scalars in R. (Formally, Lean builds up these facts in multiple layers,
and one toFun still leaves the additive structure of derivatives, but Lean is able to figure
out what the pure diff function means.) One can write p.derivative or derivative p
in some—but not all—of the same situations as p.diff, with Lean automatically using
the desired function.

C.5.7 Interpolator

The following notation is defined in both 1ightgoppa and leangoppa to shorten various
theorem statements. The definitions are juxtaposed here for comparison.

There is nothing special about the indices 1,...,n for a list a,...,a, of distinct
elements of k. Lean encourages finite vectors to be indexed by an arbitrary finite set for
generality. Accordingly, in leangoppa’s formalization, « is an injective function from an
arbitrary finite set S to k. Other vectors indexed by 1,...,n in this paper’s theorems are
similarly indexed by S in the formalization.

In lightgoppa’s formalization, S is instead specifically a finite subset of k; « is the
identity map and is suppressed. Other vectors indexed by 1,...,n in this paper’s theorems
are again indexed by S in the formalization.

let monic_vanishing at = new definition °
monic_vanishing at (r:R ring) (S:R->bool)
= ring product(x_ring r)

S (\s. x _minus const r s)

This gives a name to [[,.q(z — s).

variable {k: Type } [Field k]
variable {U: Type } [DecidableEq U]

noncomputable def monic vanishing at (a: U - k) (S: Finset U): k[X] :=
[sin§S, (X - C (as))

This gives a name to [[,.g(X —as). Note the conciseness of Lean’s version of this formula.

let monic vanishing at except = new definition °
monic_vanishing at except (r:R ring) S s
= monic_vanishing at r (S DELETE s)

This gives a name to [[,cq_ (4 (x — 1), Le., [Tiegpps(x — 1)

variable {k: Type } [Field K]
variable {U: Type } [DecidableEq U]

noncomputable def monic vanishing at except
(o: U - k) (S: Finset U) (s: U): k[X] :=
monic_vanishing at a (S.erase s)
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This gives a name to [[,cq_ (4 (X — ).

let vanishing at except 1 at = new definition °

vanishing at except 1 at (k:K ring) S s
= ring mul(x_ring k)

(monic_vanishing_at_except k S s)

(poly const k

(ring_inv k
(poly eval k s
(monic_vanishing at except k S s))))

1

This gives a name to ([[;c5_ (5 ( —1))/(Il;es- (53 (s — 1)), where the second product is
expressed as the value at s of (J[,cq_g,) (2 —1)).

variable {k: Type } [Field k]
variable {U: Type _} [DecidableEq U]

noncomputable def vanishing at except 1 at
(a: U - k) (S: Finset U) (s: U): k[X] :=
(monic_vanishing at except a S s)
* C (((monic_vanishing at except a S s).eval (a s))-1)

This gives a name to ([J,cg_ (X — at))/(I]ies— (s (s — ).

let interpolator = new definition °
interpolator (k:K ring) S v
= ring _sum(x_ring k) S
(\s. ring mul(x_ring k)
(poly const k (v s))
(vanishing at except 1 at k S s))

1

This gives a name to ) g (US(Htes_{s}(x = 1))/ (ILies—(s3 (5 — t)))

variable {k: Type } [Field K]
variable {U: Type _} [DecidableEq U]

noncomputable def interpolator (a: U - k) (S: Finset U) (r: U - k): k[X] :=
Yy sin S, C (r s) * vanishing at except 1 at a S s

This gives a name to ) g (’US(Htesf{s}(X — o))/ (Tes—qsy (s — at))).

C.5.8 Approximant
The following notation is also defined in both lightgoppa and leangoppa.
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let approximant = new definition °
approximant (k:K ring) ABtab
<=> A IN ring carrier(x ring k)
/\ B IN ring carrier(x_ring k)
/\ a IN ring_carrier(x_ring k)
/\ b IN ring carrier(x ring k)
/\ ring _coprime(x_ring k) (a,b)
/\ twodeg k a <= 2 EXP t
/\ 2 EXP t * twodeg k (ring sub(x ring k)
(ring_mul(x_ring k) a B)
(ring_mul(x_ring k) b A))
< twodeg k A

1

This defines approximant k A B t a b to mean that all of the following are true:
A, B,a,barein k[z]; a,bare coprime in k[z]; 29°8¢ < 2! ie., dega < t; and 2t2de8(eB—b4)
2dee 4 i et + deg(aB — bA) < deg A.

HOL Light’s definition of ring_coprime says that the inputs a,b are in the ring (so
the approximant definition could have skipped saying a € k[x] and b € k[x], although this
would not necessarily increase clarity) and that each common divisor of a and b is a unit.
Various theorems in lightgoppa say that, for fields k, ring_coprime(x_ring k) a b
is equivalent to ak[z] + bk[x] = k[z], which in turn is equivalent to saying that some
u,v € k[z] have au + bv = 1.

variable {k: Type } [Field K]

def approximant (A B: k[X]) (t: N) (a b: k[X]): Prop :=
IsCoprime a b A a.degree = t A t + (a*B-b*A).degree < A.degree

This more concisely defines approximant A B t a b, where A, B,a,b have type k[X],
to mean that all of the following are true: a,b are coprime in k[X]; dega < ¢; and
t + deg(aB — bA) < deg A. Lean defines IsCoprime a b as the existence of u,v with
ua +vb = 1.

Recall that Section 3 said deg(aB —bA) < deg A—t. The formalizations in 1ightgoppa
and leangoppa shift ¢ to the other side of the inequality, avoiding division and subtraction
respectively.

let small approximant = new definition °
small approximant (k:K ring) ABtab
<=> approximant k ABtab
/\ twodeg k b < 2 EXP t

A

This defines small_approximant k A B t a b the same way as above but with the extra
condition 29°8% < 2t ie., degh < t.

variable {k: Type } [Field K]

def small approximant (A B: k[X]) (t: N) (a b: k[X]): Prop :=
approximant AB t a b A b.degree < t

Similarly, this defines small_approximant A B t a b the same way as above but with
the extra condition degb < t.
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C.5.9 Hamming weight

The final definitions listed here are the lightgoppa and leangoppa definitions of the
Hamming weight of a vector.

let hamming weight = new definition("
hamming weight (r:R ring) (e:X->R) S

= CARD {x | x INS /\ ~(e x =ring 0 r)}

)i

This defines hamming_weight r e S as the cardinality of the set of z € S with e, # 0 in
r.

variable {k: Type } [Field k] [DecidableEq k]
variable {U: Type _} [DecidableEq U]

def hamming weight (e: U - k) (S: Finset U) :=
(S.filter (fun s » e s # 0)).card

This defines hamming_weight similarly: the fun builds the function that maps s to True
exactly when the s entry in the vector is nonzero, and the filter extracts the corresponding
subset of S.

C.6 Comparing this paper’s theorems to the formalizations

Finally, the following pages compare each theorem statement in the main body of this
paper to (1) the formalized theorem statement in HOL Light and (2) the formalized
theorem statement in Lean.

This comparison accompanies each step in each formalized theorem statement by a
nearby note (in blue for HOL Light or red for Lean) translating the step into normal math-
ematical language. It is then easy to match up the notes to the original theorem statement
at the top of the page. Sometimes the formalized theorem statement skips an assumption
from the original theorem statement, making it more general; also, see Appendix C.5.7
regarding how the vector indices {1,...,n} are handled in the two formalizations.

A special comment is required for Theorem 4.1.2. One of the stated conclusions is
f = B —bA/a; with the mathematician’s normal interpretation, this implies a # 0. The
proof of a # 0 uses an earlier conclusion that A € ak[z], along with a hypothesis saying
A =[[,(x—a;). For the formalization in leangoppa, the conclusion £ = B-b*(A/a) (recall
that this means f = B —b| A/a| in Lean) does not imply a # 0, since Lean defines division
by 0; so the formalization includes a separate conclusion that a # 0. The formalization in
lightgoppa similarly has separate conclusions saying a # 0 and af = aB — bA.
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Theorem 2.1.2 (direct interpolation). Let n be a nonnegative integer. Let k be a field.
Let ay,...,a, be distinct elements of k. Let r1,...,r, be elements of k. Define

Then {f € k[z] : deg f < n, (f(a1),...

let interpolator main = prove(’
I(k:K ring) S r.
field k ==>
S SUBSET ring carrier k ==>
FINITE S ==>

if

k C K is a ring
and k is a field
and S C k

and S is finite

(!s. s INS ==>r s IN ring carrier k) ==> and 75 € k for each s € S

{f | f IN ring carrier(x_ring k)

/\ twodeg k f < 2 EXP CARD S

then the set of f € k[x]
with deg f < #S5

/\ ('t. t INS ==>poly eval k t f =r t)} and f(t) =r; for each t € S

= {interpolator k S r}

is the set consisting solely of

> ses (Ts (Htesf{s}(@" - t))/(HtESf{s}(s - t)))

variable {k: Type } [Field K]
variable {U: Type } [DecidableEq U]

theorem interpolator main

{a: U - k}

{S: Finset U}

{r: U -k}

(injective: Set.InjOn a S)
¢ {f:k[X] | degree f < S.card

if k is a field

and « is a function from U to k

and S is a finite subset of U

and r is a function from U to k

and « is injective on S

then the set of f € k[X] with deg f < #S

AN(Vs, (s€S=-feval (as) =rs))} and f(ag) = rg for each s € §

= {interpolator a S r} := ...

is the set consisting solely of

> ses (7‘5 (HLESf{s}(X - O‘t)>/<HLesf{s}(o‘S - Oft))>
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Theorem 3.1.2 (approximants). Let t be a nonnegative integer. Let k be a field. Let
A, B be elements of k[x] with deg A > deg B. Then there exist a,b € k[z] such that
ged{a,b} =1, dega < t, degh < t, and deg(aB — bA) < deg A —t.

let small approximant exists = prove(’ if
'(k:K ring) A B t:num. kC KisaringandteN
field k ==> and k is a field
A IN ring carrier(x_ring k) ==> and A € k[x]
B IN ring_carrier(x_ring k) ==> and B € k[x]
twodeg k B < twodeg k A ==> and deg B < deg A then
?a b. small approximant k AB t ab there exist a,b with a,b € k[x];

ged{a, b} = 1; dega < t; t + deg(aB — bA) < deg A; degb < t

)

variable {k: Type } [Field k] if k is a field
theorem small_approximant_exists
{A B: k[X]} and A, B € k[X]
(degAB: A.degree > B.degree) and deg A > deg B
{t: N} and t € N
: 3ab, small approximant AB tab := ... then there exist a,b with a,b € k[ X];

ged{a,b} = 1; dega < t; t + deg(aB — bA) < deg A; degb < ¢



Daniel J. Bernstein

95

Theorem 3.1.3 (the best-approximation property of approximants). Let ¢ be a nonnega-
tive integer. Let k be a field. Let A, B, a, b, c,d be elements of k[z] such that ged{a,b} =1,
dega < t, deg(aB — bA) < deg A — t, degc < t, and deg(cB — dA) < deg A — t. Then

(¢, d) = (Aa, Ab) for some X € k[z].

let approximant best = prove("
'(k:K ring) AB tab cd.
field k ==>
approximant k AB t ab ==
¢ IN ring carrier(x_ring k)
d IN ring carrier(x_ring k)
twodeg k ¢ <= 2 EXP t ==>
2 EXP t * twodeg k (ring_sub(x ring k)

==>
==>

(ring_mul(x_ring k) c
(ring mul(x_ring k) d

< twodeg k A ==>

7L.

L IN ring carrier(x_ring k)
/\ ¢ = ring mul(x _ring k) a L
/\ d = ring mul(x_ring k) b L

1

B)
A))

if

k C K is a ring

and k is a field

and t € N; A, B,a,b € k[z]; ged{a, b} = 1;
dega < t; t + deg(aB — bA) < deg A

and ¢, d € k[x]

and degc <t

and ¢t + deg(cB — dA) < deg A

then

there exists L with
L € k[z]

and ¢ = alL

and d = bL

variable {k: Type } [Field k]

theorem approximant best

{ABabcd: k[X]}

{t: N}

(appr: approximant A B t a b)

(cdeg: c.degree = t)

(cBdAdeg: t + (c*B-d*A).degree < A.degree)
3 (L: k[X]),

(c =a*L nd =b*L) := ...

if k is a field

and A, B,a,b,c,d € k[X]

and t € N

and ged{a,b} = 1; dega < t;

t + deg(aB — bA) < deg A and dege < ¢
and t 4 deg(cB — dA) < deg A

then there exists L € k[X] with

c=al and d =0L
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Theorem 4.1.2 (interpolation with errors). Let n,t be nonnegative integers. Let k be a
field. Let s, ..., o, be distinct elements of k. Define A =[],(x — ;). Let B,a,b, f be
elements of k[z] with ged{a,b} =1, dega < t, deg(aB — bA) < n —t, and deg f < n — 2t.
Define e = (B(a1) — f(aa),...,B(ay) — f(aw)). Assume wte < t. Then A € ak[z];
f=B—0bA/a; deg(aB — bA) <n — 2t +dega; and {i: e; # 0} = {i: a(ay;) = 0}.

if
kC Kisaring and t € N

let interpolation with errors = prove(’
'(k:K ring) S A B t:num a b f e aBbA.

field k ==> and k is a field
S SUBSET ring carrier k ==> and S is a subset of k
FINITE S ==> and S is finite
A = monic_vanishing at k S ==> and A = [[,cq(z —s) and
approximant k AB t a b ==> teN; A, B,a,b € k[z]; ged{a,b} = 1; dega < ¢;

t + deg(aB — bA) < deg A and [ € k[z]
and 2t 4+ deg f < deg A

f IN ring carrier(x_ring k) ==>
2 EXP (2*t) * twodeg k f < twodeg k A ==>

(!s. s INS ==> and each s € S has e; = B(s) — f(s)
e s = ring sub k (poly eval k s B) (poly eval k s f)) ==>
aBbA = ring sub(x ring k)

(ring_mul(x_ring k) a B) (notation for aB — bA)
(ring mul(x_ring k) b A) ==>
hamming weight k e S <= t ==>
ring divides(x_ring k) a A
/\ ~(a = ring 0(x_ring k))
/\ ring mul(x_ring k) a f = aBbA
/\ 2 EXP (2*t) * twodeg k aBbA
< twodeg k A * twodeg k a
/N {s | sINS/\ ~(e s=ring 0 k)}
={s | s INS /\ poly eval k s a = ring 0 k}

p o

and wt(e on S) <t then
A € ak|z]

and a # 0

and af = aB — bA and
2t + deg(aB — bA)

< deg A+ dega

and {s € S:es #0}
={seS:a(s) =0}

variable {k: Type } [Field k] [DecidableEq k] if k is a field

variable {U: Type } [DecidableEq U]

theorem interpolation with errors
{a e: U~ k}
{S: Finset U}
{ABab f:k[X]}
{t: N}
(injective: Set.InjOn o S)

and «, e are functions from U to k
and S is a finite subset of U

and A, B,a,b, f € k[X]

and t € N

and « is injective on S

(Adef: A = monic vanishing at o S)
(appr: approximant A B t a b)
(fdeg: 2*t + f.degree < A.degree)

and A = [[,.¢(X — as) and ged{a, b} = 1;
dega < t; t + deg(aB — bA) < deg A
and 2t + deg f < deg A

(edef: (Vs, s€S -
e s =B.eval (as) - f.eval (a s)))

and each s € S has e; = B(as) — f(as)

(wt: hamming weight e S = t) and wt(e on S) <t
:( alA then A € ak[X]
ANa#d and a # 0
A f = B-b*(A/a) and f =B —b|A/a|
A 2%t + (a*B-b*A).degree < S.card + a.degree and 2t + deg(aB — bA)
AN{s€ES|es#0}={s€ES|aeval (as) =01} < #S +dega

and {s € S:es #0} ={s €5 :a(as) =0}
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Theorem 4.1.3 (checking interpolation with errors). Let n,t be nonnegative integers. Let
k be a field. Let oy, ...,y be distinct elements of k. Define A = [],(x — ;). Let B, a,b, f
be elements of k[z] such that dega < t, A € ak[z], deg(aB — bA) < n — 2t + dega, and
af =aB—bA. Thena # 0; deg f < n—2t; and wt(B(ay) — f(a1), ..., Blay)— f(a,)) < t.

let checking_interpolation with errors = prove(" if
I(k:K ring) S A B t:num a b f. kC Kisaring and t € N
field k ==> and k is a field
S SUBSET ring carrier k ==> and S C k
FINITE S ==> and S is finite
A = monic vanishing at k S ==> and A = [[,cq(x —s)
B IN ring_carrier(x_ring k) ==> and B € k[x]
a IN ring _carrier(x ring k) ==> and a € k]
b IN ring carrier(x ring k) ==> and b € k[x]
f IN ring_carrier(x_ring k) ==> and f € k[x]
twodeg k a <= 2 EXP t ==> and dega <t
ring divides(x_ring k) a A ==> and A € ak[z]
aBbA = ring sub(x_ring k)
(ring_mul(x_ring k) a B) (notation for aB — bA)
(ring mul(x ring k) b A) ==> and 2t + deg(aB — bA) < deg A + dega
2 EXP (2*t) * twodeg k aBbA < twodeg k A * twodeg k a ==> and
ring mul(x_ring k) a f = aBbA ==> af =aB — bA then
( ~(a =ring 0(x_ring k)) a#0
/\ 2 EXP (2*t) * twodeg k f < twodeg k A and 2t 4+ deg f < deg A
/\ hamming weight k and wt(s € S +— B(s) — f(s)) <t
(\s. ring sub k (poly eval k s B) (poly eval k s f))
S<=1t
)
variable {k: Type } [Field k] [DecidableEq kI if k is a field

variable {U: Type } [DecidableEq U]

theorem checking interpolation with errors

{a: U - k} and « is a function from U to k
{S: Finset U} and S is a finite subset of U
{ABab f: k[X]} and A, B,a,b, f € k[X]
{t: N} and t € N
(injective: Set.InjOn a S) and « is injective on S
(Adef: A = monic vanishing at a S) and A = J[,cq(X — as)
(adeg: a.degree < t) and dega <t
(aA: a | A) and A € ak[X]
(aBbAdeg: 2*t + (a*B-b*A).degree < S.card + a.degree) and
(af: a*f = a*B-b*A) 2t + deg(aB — bA) < #S + dega and af = aB — bA
t(a=0 then a # 0
A 2%t + f.degree < S.card and 2t +deg f < #S5

A hamming weight (fun s » B.eval (a s) - f.eval (a s)) S=<t
) = ... and wt(s € S — B(ag) — f(as)) <t
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Theorem 5.1.2 (Goppa decoding). Let n,t be nonnegative integers. Let k be a field with
Fy C k. Let ov,...,a, be distinct elements of k. Define A = [],(x — a;). Let G be an
element of k[x] such that deg G = 2t and ged{G, A} = 1. Let B,a,b be elements of k[z]
with gcd{a,b} = 1, dega < t, and deg(aB — bA) <n —t. Let A’,a’ be the derivatives of
A, a respectively. Let e be an element of I such that wte <t and

Z (CW - ei) = jlai € Gkl[z].

i

Thene; = [a(a;) = 0] for alli; wte = dega; A € ak[x]; Gb—a’' € aklx]; and deg(aB—bA) <
n — 2t + dega.

let goppa_decoding = prove(" if
'(k:K ring) S G AB t a b Aprime aprime aBbA e. k C K is a ring
field k ==> and k is a field
S SUBSET ring carrier k ==> and S C k
FINITE S ==> and S is finite
A = monic_vanishing at k S ==> and A =[], cq(x —s)
G IN ring_carrier(x_ring k) ==> and G € k[z]
twodeg k G = 2 EXP (2*t) ==> and deg G = 2t and ged{G, A} =1
ring coprime(x_ring k) (G,A) ==> and t € N; A, B,a,b € k[z]; ged{a, b} = 1;
approximant k AB t a b ==> dega < t; t + deg(aB — bA) < deg A
(!s. sINS==(es=ring 0 k \/ e s =ring 1Kk)) == and
hamming_weight k e S <= t ==> each s € S has e; € {0,1}, and wt(e on S) <t
Aprime = x_derivative k A ==> (notation for A’)
aprime = x derivative k a ==> (notation for a’)

aBbA = ring_sub(x_ring k)
(ring_mul(x_ring k) a B) (notation for aB — bA)
(ring mul(x_ring k) b A) ==>

ring divides(x_ring k) G ( and

ring sum(x_ring k) S
(\s. ring_mul(x_ring k) Z (G(S)B(S) —es> H (x —t) | € Gklz]
(poly_const k ( sES : teS—{s}
ring sub k
(ring_div k
(ring mul k
(poly eval k s G)
(poly eval k s B))
(poly eval k s Aprime))
(e s)))
(monic_vanishing at except k S s))) ==> then
( ('s. sINS ==> each s € S has e; = [a(s) = 0]
e s = if poly eval k s a = ring 0 k
then ring 1 k else ring 0 k)

/\ 2 EXP (hamming weight k e S) = twodeg k a and wt(e on S) =dega

/\ ring_divides(x_ring k) a A and A € ak[z]

/\ ring divides(x_ring k) a and Gb — o’ € aklx]
(ring sub(x ring k) (ring mul(x_ring k) G b) aprime)

/\ 2 EXP (2*t) * twodeg k aBbA < twodeg k A * twodeg k a and

) 2t + deg(aB — bA) < deg A + dega
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Theorem 5.1.2 (Goppa decoding). Let n,t be nonnegative integers. Let k be a field with
Fy C k. Let ov,...,a, be distinct elements of k. Define A = [],(x — a;). Let G be an
element of k[x] such that deg G = 2t and ged{G, A} = 1. Let B,a,b be elements of k[z]
with gcd{a,b} = 1, dega < t, and deg(aB — bA) <n —t. Let A’,a’ be the derivatives of
A, a respectively. Let e be an element of I such that wte <t and

Z (CW - ei) = jlai € Gkl[z].

i

Thene; = [a(a;) = 0] for alli; wte = dega; A € ak[x]; Gb—a’' € aklx]; and deg(aB—bA) <
n — 2t + dega.

variable {U: Type } [DecidableEq U] if

variable {k: Type } [Field k] [DecidableEq k] k is a field

theorem goppa_decoding
{a e: U -k} and «, e are functions from U to k
{S: Finset U} and S is a finite subset of U
{A B ab G: Kk[X]} and A, B a,b,G € k[ X]
{t: N} and t € N
(injective: Set.InjOn a S) and « is injective on S
(Adef: A = monic_vanishing_at o S) and A = [[,cq(X — ay)
(Gdeg: G.degree = 2*t) and deg G = 2t
(GA: IsCoprime G A) and ged{G, A} =1 and ged{a, b} = 1;
(appr: approximant A B t a b) dega < t; t + deg(aB — bA) < deg A
(einfF2: (Vs, s€S-es=0ves=1)) and each s € S has e; € {0,1}
(wt: hamming weight e S = t) and wt(e on S) <t
feofenorni s | and Bcs (‘G — o) Mies ) (X — ) € GRLX]

C (((G * B).eval (a s) / A.diff.eval (a s) - e s))
* monic_vanishing at except a S s)

: ((Vs, s€S-es=1f a.eval (a s) = 0 then 1 else 0) then
A hamming_weight e S = a.degree each s € S has e; = [a(as) = 0]
Aa | A and wt(e on S) = dega
Aa | Gk - a.diff and A € ak[X]
A 2%t + (a*B-b*A).degree < S.card + a.degree and Gb — d’ € ak[X]

) = .. and 2t + deg(aB — bA) < #S + dega
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Theorem 5.1.3 (checking Goppa decoding). Let n,t be nonnegative integers. Let k be a
field with Fy C k. Let a, ..., a, be distinct elements of k. Define A =[],(x — «;). Let
G be an element of k[x] with deg G = 2t. Let B, a,b be elements of k(x| with A € ak[z],
deg(aB —bA) < n—2t+dega, and Gb—a’ € ak[z], where a’ is the derivative of a. Define
e € F} by e; = [a(a;) = 0]. Then wte = dega and

> (Gleabted ) A gy

i

where A’ is the derivative of A.

let goppa_checking = prove(" if
'(k:K ring) S G A B t:num a b Aprime aprime aBbA e. kC Kisaring and t € N
field k ==> and k is a field
S SUBSET ring carrier k ==> and S C k
FINITE S ==> and S is finite
G IN ring_carrier(x_ring k) ==> and G € k[z]

A = monic_vanishing at k S ==> and A = [[,cq(x —5)
B IN ring carrier(x ring k) ==> and B € k[x]
a IN ring_carrier(x_ring k) ==> and a € k[z]
b IN ring _carrier(x_ring k) ==> and b € k[x]

twodeg k G = 2 EXP (2*t) ==>

Aprime = x_derivative k A ==>

aprime = x_derivative k a ==>

aBbA = ring sub(x ring k)
(ring_mul(x_ring k) a B)
(ring mul(x_ring k) b A) ==>

ring divides(x ring k) a A ==>

and deg G = 2t
(notation for A’)
(notation for a’)

(notation for aB — bA)

and A € ak[z]

2 EXP (2*t) * twodeg k aBbA < twodeg k A * twodeg k a ==> and

ring divides(x_ring k) a 2t + deg(aB — bA) < deg A+ dega

(ring sub(x ring k) (ring mul(x_ring k) G b) aprime) ==> and Gb — d’ € ak|x]

(!s. s INS == and
e s = if poly eval k s a = ring 0 k then ring 1 k

else ring 0 k) ==> each s € S has es = [a(s) = 0] then

(2 EXP hamming weight k e S = twodeg k a wt(e on S) = dega

/\ ring divides(x_ring k) G ( and
ring sum(x_ring k) S
(\s. ring mul(x_ring k) GB)(s
(poly const k ( Z ((A’()()) - es> H (x—1t)
ring_sub k ses 5 teS—{s}
(ring_div k e Gklz]

(poly eval k s
(ring mul(x_ring k) G B))
(poly eval k s Aprime))
(e s)))
(monic vanishing at except k S s))))
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Theorem 5.1.3 (checking Goppa decoding). Let n,t be nonnegative integers. Let k be a
field with Fy C k. Let a, ..., a, be distinct elements of k. Define A =[],(x — «;). Let
G be an element of k[x] with deg G = 2t. Let B, a,b be elements of k(x| with A € ak[z],
deg(aB —bA) < n—2t+dega, and Gb—a’ € ak[z], where a’ is the derivative of a. Define
e € F} by e; = [a(a;) = 0]. Then wte = dega and

Z(G(ji)(i()ai) —ez) A Gkl

i

where A’ is the derivative of A.

variable {U: Type } [DecidableEq U] if
variable {k: Type } [Field k] [DecidableEq k] k is a field
theorem goppa_checking
{a e: U- k} and «, e are functions from U to k
{S: Finset U} and S is a finite subset of U
{ABab G: k[X]} and A, B,a,b,G € k[X]
{t: N} and t € N
(injective: Set.InjOn a S) and « is injective on S
(Adef: A = monic_vanishing at a S) and A = [[,cq(X —as)
(Gdeg: G.degree = 2*t) and deg G = 2t
(aA: a | A) and A € ak[X] and 2t + deg(aB — bA) < #S + dega
(aBbAdeg: 2*t + (a*B-b*A).degree < S.card + a.degree)
(Gba: a | G*b - a.diff) and Gb — da’ € ak[X]
(ea: Vs, s€S - and each s € S
es=if a.eval (a s) = 0 then 1 else 0) has e = [a(as) = 0]
: ( hamming weight e S = a.degree then wt(e on S) = dega
NG| )sins§,
C (((G * B).eval (a s) / A.diff.eval (a s) - e s)) and

* monic vanishing at except a S s

(GB)(as) e o
> (A/(as) ) I[I X-a)|eckx]

s€S teS—{s}
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Theorem 5.4.1 (Goppa parity checks). Let n be a nonnegative integer. Let k be a field.
Let ay, ..., o, bedistinct elements of k. Define A = [[,(x—«;). Let G be a nonzero element
of k[z] with ged{G, A} = 1. Let ¢ be an element of k™. Then ), ¢;A/(x — o;) € Gk[z] if
and only if 3., ¢;a /G(a;) = 0 for all nonnegative integers j < deg G.

let goppa parity = prove(" if
'(k:K ring) S G A (c:K->K). k C K is a ring and c is a function from K to K
field k ==> and k is a field
S SUBSET ring carrier k ==> and S C k
FINITE S ==> and S is finite
A = monic_vanishing at k S ==> and A = [[,cq(x —5)
G IN ring carrier(x ring k) ==> and G € k[z]
~(G = ring_0(x_ring k)) ==> and G # 0
ring coprime(x_ring k) (G,A) ==> and ged{G, A} =1
(!s. s INS ==>c s IN ring carrier k) ==> and each s € S has ¢s € k then:

(ring_divides(x _ring k) G
(ring_sum(x_ring k) S

(\s. ring_mul(x_ring k) Z Cs H (x —t) | € Gklz]
(poly const k (c s)) s€S \ teS—{s}
(monic_vanishing at except k S s)))

<=> if and only if

('j:num. 2 EXP j < twodeg k G ==> each j € N with j < degG
ring sum k S

(\s. ring div k has Y g css?/G(s) =0

(ring mul k (c s) (ring pow k s j))
(poly eval k s G))

= ring 0 k))

variable {U: Type } [DecidableEq U] if
variable {k: Type } [Field k] [DecidableEq k] k is a field

theorem goppa parity
{a c: U- k} and «, ¢ are functions from U to k
{S: Finset U} and S is a finite subset of U
{A G: k[X1} and A,G € k[X]
{d: N} and d € N
(injective: Set.InjOn a S) and « is injective on S
(Adef: A = monic_vanishing_at o S) and A =[], q(X — ay)
(Gdeg: G.degree = d) and deg G =d
(GA: IsCoprime G A) and gcd{G, A} =1
(G| YysinS, C(cs) *monic_vanishing at_except a S s then
o V(3:N), j<d- Dees (s Ilies () (X — )
ysinS, (cs/G.eval (as)) * (as)j=0 € Gk[X]

) = if and only if each j € N with j < d has > g(cs/G())ad =0
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Theorem 6.1.1 (Goppa squaring). Let n be a nonnegative integer. Let k be a finite field

with Fo C k. Let a,...,ay, be distinct elements of k. Define A =[], (x —

«;). Let g be

a squarefree element of k(x| such that ged{g, A} = 1. Let ¢ be an element of F3. Then
> ciA/(x — ;) € gklz] if and only if Y, ¢;A/(x — o;) € g°k|x].

let goppa_squaring = prove("

I(k:K ring) S A g cQ.
field k ==>
FINITE(ring_carrier k) ==>
ring char k = 2 ==>
S SUBSET ring carrier k ==>
A = monic vanishing at k S ==>
g IN ring carrier(x_ring k) ==>
ring squarefree(x ring k) g
ring coprime(x_ring k) (g,A) ==>
(!s. sINS==> (cs =
Q = ring_sum(x_ring k) S

(\s. ring mul(x_ring k)

(poly const k (c s))

==>

ring 0 k \/ ¢ s = ring 1 k)) ==>

if
k C K is a ring
and k is a field
and k is finite
and k has characteristic 2
and S C k
and A =[], q(x —s)
and g € k[x]
and g is squarefree
and ged{g, A} =1
and each s € S
has ¢s € {0, 1%
and Q =3 (s [Tres—(o (@ —1)

(monic_vanishing at except k S s)) ==> then:

(
ring_divides(x_ring k) g Q Q € gk[z]
<=> if and only if
ring divides(x_ring k) (ring mul(x_ring k) g g) Q Q € g*k[z]

)
variable {U: Type } [DecidableEq U] if

variable {k: Type } [Field k] [CharP k 2]

theorem goppa_squaring
[Fintype K]
{a c: U- k}
{S: Finset U}
{A Q g: kIXI}
(Adef: A = monic vanishing at a S)
(sqfree: Squarefree g)
(gA: IsCoprime g A)
(cinF2: (V' s, s€S->cs =

1 (g ] Qegr2]0Q) :=...

k is a field
and k& has characteristic 2

[DecidableEq K]

and k is finite

and «, ¢ are functions from U to k
and S is a finite subset of U

and A4,Q, g € k[X]

and A = [[,cq(X — ay)

and g is squarefree

and ged{g, A} =1

Ovcecs=1)) and each s € S has ¢; € {0,1}

(Qdef: Q = (3 s in S, C (c s) * monic_vanishing at except a S s)) and
Q=Y ues (s Thes— g (X —av)

then:

Q € gk[X] if and only if Q € ¢g?k[X]
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Theorem 7.1 (checking Goppa decoding for received words in F%). Let n,t be nonnegative
integers. Let k be a field with Fy C k. Let aq,...,qa, be distinct elements of k. Define
A =][[,(z — ;). Let g be an element of k[z] such that degg =t and ged{g, A} = 1. Let
B, a,b be elements of k[z] with ged{a,b} =1, dega < t, A € ak[z], and deg(aB — bA) <
n — 2t + dega. Assume that g(o;)?B(«a;)/A'(a;) € Fy for all i, where A’ is the derivative
of A. Define e € F} by e; = [a(a;) = 0]. Then g*b — a’ € ak|x], where a’ is the derivative
of a. Furthermore wte = dega and

Z (W - ei) = :4% € g*klz].

%

let goppa_checking 2 = prove(" if Kk C K is a ring
'(k:K ring) S g G AB t:num a b Aprime aprime aBbA e r. and t € N
field k ==> and k is a field
ring char k = 2 ==> and k has characteristic 2
S SUBSET ring carrier k ==> and S C k
FINITE S ==> and S is finite
A = monic_vanishing at k S ==> and A = [[,cq(x —s)
Aprime = x derivative k A ==> (notation for A’)
g IN ring carrier(x_ring k) ==> and g € k[x]
twodeg k g = 2 EXP t ==> and degg =t
G = ring mul(x_ring k) g g ==> (notation for g?)
ring_coprime(x_ring k) (g,A) ==> and ged{g, A} =1
B IN ring_carrier(x_ring k) ==> and B € k[x]
a IN ring carrier(x ring k) ==> and a € k]
aprime = x_derivative k a ==> (notation for a')
b IN ring_carrier(x_ring k) ==> and b € k[z]
ring_coprime(x_ring k) (a,b) ==> and ged{a,b} =1
twodeg k a <= 2 EXP t ==> and dega <t
ring_divides(x_ring k) a A ==> and A € ak[z]
aBbA = ring sub(x ring k)
(ring mul(x_ring k) a B) (notation for aB — bA)
(ring mul(x_ring k) b A) ==> and 2t + deg(aB — bA)
2 EXP (2*t) * twodeg k aBbA < twodeg k A * twodeg k a ==> < deg A+ dega
(!s. s INS == and each s € S
r s = ring div k has 7, = (g°B)(s)/A’(s)

(poly eval k s (ring mul(x _ring k) G B))
(poly eval k s Aprime)) ==>

(!s. s INS ==>ring pow k (rs) 2=rs) == and each s € S has r2 =7,

(!s. s INS ==> and each s € S has e, = [a(s) = 0]
e s = if poly eval k s a = ring 0 k then ring 1 k

else ring 0 k) ==> then

( ring_divides(x ring k) a g*b — a’ € ak[z]

(ring sub(x ring k) (ring mul(x_ring k) G b) aprime)

/\ 2 EXP hamming weight k e S = twodeg k a and wt(e on S) = dega

/\ ring divides(x_ring k) G ( and

ring_sum(x_ring k) S Dees((rs —es) [lies—qsy (@ — t)) € g*klz]

(\s. ring mul(x_ring k)
(poly const k (ring sub k (r s) (e s)))
(monic vanishing at except k S s))))
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Theorem 7.1 (checking Goppa decoding for received words in F}). Let n, ¢ be nonnegative
integers. Let k be a field with Fy C k. Let aq,...,«a, be distinct elements of k. Define
A =][[,(z — ;). Let g be an element of k[z] such that degg =t and ged{g, A} = 1. Let
B, a,b be elements of k[z] with ged{a,b} =1, dega < t, A € ak[z], and deg(aB — bA) <
n — 2t + dega. Assume that g(o;)?B(«a;)/A'(a;) € Fy for all i, where A’ is the derivative
of A. Define e € F} by e; = [a(a;) = 0]. Then g*b — a’ € ak|x], where a’ is the derivative
of a. Furthermore wte = dega and

Z (W - €i> = jlai € g*klz].

%

variable {U: Type _} [DecidableEq U] if
variable {k: Type } [Field k] [CharP k 2] [DecidableEq k] k is a field

and k has characteristic 2
theorem goppa checking 2

{aer:U-k} and «, e, r are functions from U to k
{S: Finset U} and S is a finite subset of U
{ABabg: k[X]} and A, B,a,b, g € k[X]
{t: N} and t € N
(injective: Set.InjOn a S) and « is injective on S
(Adef: A = monic_vanishing at o S) and A = [[,cq(X — ay)
(gdeg: g.degree = t) and degg =1
(gA: IsCoprime g A) and ged{g, A} =1
(ab: IsCoprime a b) and ged{a,b} =1
(adeg: a.degree < t) and dega <t
(aA: a | A) and A € ak[X] and 2t + deg(aB — bA)
(aBbAdeg: 2*t + (a*B-b*A).degree < S.card + a.degree) < #S+dega
(rdef: ¥'s, s €S - and each s € S has ry = (¢°B)(as) /A’ (ay)
rs=(g"2*B).eval (a s) / A.diff.eval (a s))
(rsq: ¥'s, s€ES - (rs)*2=rs) and each s € S has r2 = r
(ea: (Vs, SES =~ and each s € S has e; = [a(as) = 0]
e s =1if a.eval (a s) = 0 then 1 else 0))
©(a ] g*2*b - a.diff then g%b — a’ € ak[X]
A hamming weight e S = a.degree and wt(e on 5) = dega
ANgr2 | Y sins,
C (((g™2 * B).eval (a's) / A.diff.eval (a's) - e s)) and

* monic vanishing at except a S s

(9°B)(cvs) )
2 (A’(a)_f’) [[ X—a)|egklx]

seS teS—{s}
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