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Abstract. At CHES 2017, Banik et al. proposed a lightweight block cipher GIFT
consisting of two versions GIFT-64 and GIFT-128. Recently, there are lots of authen-
ticated encryption schemes that adopt GIFT-128 as their underlying primitive, such
as GIFT-COFB and HyENA. To promote a comprehensive perception of the soundness
of the designs, we evaluate their security against differential-linear cryptanalysis.
For this, automatic tools have been developed to search differential-linear approx-
imation for the ciphers based on S-boxes. With the assistance of the automatic
tools, we find 13-round differential-linear approximations for GIFT-COFB and HyENA.
Based on the distinguishers, 18-round key-recovery attacks are given for the message
processing phase and initialization phase of both ciphers. Moreover, the resistance of
GIFT-64/128 against differential-linear cryptanalysis is also evaluated. The 12-round
and 17-round differential-linear approximations are found for GIFT-64 and GIFT-128
respectively, which lead to 18-round and 19-round key-recovery attacks respectively.
Here, we stress that our attacks do not threaten the security of these ciphers.
Keywords: Differential-linear attack · GIFT · GIFT-COFB · HyENA

1 Introduction
The past few decades have witnessed the increasingly common deployment of small comput-
ing devices, such as sensor nodes, RFID tags, smart cards, and industrial controllers, which
brings a wide range of new security and privacy concerns. Since conventional cryptographic
standards are not acceptable when implemented in the above highly constrained computing
environment, numerous algorithms tailored for resource-constrained devices have emerged,
often summarized as so-called lightweight cryptography. The lightweight block cipher
family GIFT is designed by Banik et al. [BPP+17], which includes two versions, GIFT-64
and GIFT-128, and both have a 128-bit key size. GIFT inherits the design framework from
PRESENT, with the correction of the weakness of the strong linear hull effect. In 2018, the
National Institute of Standards and Technology (NIST) initiated a lightweight cryptog-
raphy project to solicit, evaluate, and standardize lightweight cryptographic algorithms
aiming for execution under extreme performance constraints. GIFT-COFB [BCI+21] instan-
tiates the COFB (COmbined FeedBack) block cipher based Authenticated Encryption
with Associated Data (AEAD) mode, using GIFT-128 [BPP+17]. It can be implemented
efficiently, and achieves desirable features, thus making its way to the finalists of NIST
lightweight cryptography project. HyENA [CDJN19], also instantiating with GIFT-128,
provides nonce-based authenticated encryption with associated data functionality. Here,
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when mentioning HyENA, we refer to its concrete instantiation based on GIFT-128, not the
mode of operation. Given its salient features, like inverse-free, low XOR count, low state
size, and an optimal number of nonlinear primitive calls, HyENA has been selected as one
of the 32 second-round candidates of NIST lightweight cryptography project.

Unlike public-key cryptography, our confidence in the security of symmetric-key primi-
tives mainly lies in their resistance against all known cryptanalytic methods. Therein, dif-
ferential and linear cryptanalysis, introduced by Biham, Shamir [BS90] and Matsui [Mat93]
respectively, are the two most profound techniques for the security evaluation of block
ciphers. While the design of symmetric-key primitives assures resistance against differential
and linear attacks, combining the short differential characteristics and linear approxima-
tions may be also vulnerabilities that can be exploited when evaluating their security. In
1994, Langford and Hellman [LH94] firstly showed that a differential of E0 and a linear
approximation of E1 could be combined into a distinguisher for the entire cipher E1 ◦ E0
by a technique called differential-linear cryptanalysis (abbreviated as DL cryptanalysis).
Recently, there have been many valuable and thought-provoking developments on DL
cryptanalysis. In 2017, Blondeau et al. [BLN17] developed a concise theory of differential-
linear cryptanalysis by exploiting the link between differential and linear attacks. Under
the assumption that the two subciphers were independent, an exact expression is given for
the bias of differential-linear approximation (abbreviated as DL approximation). Bar-On
et al. [BDKW19], at EUROCRYPT 2019, defined the Differential-Linear Connectivity
Table (DLCT) to take the dependency between the two subciphers into account, and
improved the differential-linear attacks on ICEPOLE and 8-round DES with DLCT. At
CRYPTO 2020, Beierle et al. [BLT20] presented several improvements in the context of the
differential-linear attacks on ARX ciphers and successfully applied them to Chaskey and
ChaCha. Subsequently, at EUROCRYPT 2021, Coutinho and Souza Neto [CN21] proposed
a new technique to find better linear approximations in ARX ciphers. At CRYPTO 2021,
Liu et al. [LLL21] studied the differential-linear cryptanalysis from an algebraic perspective
by introducing a technique called Differential Algebraic Transitional Form (DATF). Based
on DATF, they developed a new theory for estimating bias and techniques for key recovery
in differential-linear cryptanalysis, which were applied to Ascon, Serpent, and Grain v1. At
EUROCRYPT 2021, Liu et al. [LSL21] extended the framework of DL cryptanalysis into
rotational differential-linear attacks by replacing the differential part with the rotational-xor
differential. As an application, they analyzed the ciphers FRIET, Xoodoo and Alzette by a
practical method of evaluating the rotational differential-linear correlations for the special
cases where output linear masks are unit vectors. At CRYPTO 2022, Niu et al. [NSLL22]
extended the method to arbitrary output linear masks by presenting an efficient algorithm
for computing (rotational) differential-linear correlation of modulo additions. Along the
direction of [LSL21] and [NSLL22], Bellini et al. [BGG+23] and Lv et al. [LJC23] presented
automatic methods of searching differential-linear approximations for the ARX ciphers.
Recently, at ASIACRYPT 2023, Hu et al. [HPTY23] revisited high-order differential-linear
cryptanalysis from an algebraic perspective by extending DATF in [LLL21] into the higher-
order one and successfully analysed the ciphers Ascon and Xoodyak. Despite the emergence
of numerous research on differential-linear cryptanalysis, there are still many questions
remaining to be solved for this analytical method, such as how to automatically search
differential-linear approximation for the S-box-based ciphers. This is vital to facilitate
comprehensive analysis and deepen our understanding of cryptographic designs.

1.1 Our Contributions
In this paper, we give our attention to the security of GIFT family and two GIFT-based
AEADs, namely GIFT-COFB and HyENA, against differential-linear cryptanalysis. We begin
with showing how to construct an automatic tool to search concisely and effectively
differential-linear approximations for the S-box-based ciphers.
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Automatic Tools of Searching DL Approximation for S-box-based Ciphers.
An MILP (Mixed Integer Linear Programming) model has been developed to search
automatically differential-linear approximations for the S-box-based ciphers. First, for an
S-box, a way/algorithm is presented to derive the propagation of correlation of differential-
linear approximation from its DDT (Differential Distribution Table). We have implemented
the way by symbolic programming in SageMath, and correspondingly Proposition 1 is
obtained which illustrates the propagation of correlation of DL approximation for the
S-box of GIFT. The implementation in SageMath can be easily used to analyze other
cipher’s S-boxes. So the correlation of DL approximation can be efficiently computed for
the S-box-based ciphers by combining with the propagation rules for other operations, such
as XOR and AND. Further, an integrated model is designed to search differential-linear
approximations for the common framework depicted in Figure 1. More precisely, we show
how to model the differential-linear part Em by the pattern-choosing rule, which is proved
to be equivalently described by two inequalities in Theorem 1. Then the propagation of
the three part Ed, Em and El are merged as a whole MILP model to search differential-
linear approximations. Besides, a phenomenon of the differential propagation of 3-round
GIFT-128 is found, i.e. Propositions 2 and 3, which reveals the restriction of active bits
in key-recovery attacks on the message processing phase of GIFT-COFB and HyENA can
be directly converted into the ones of distinguisher’s input. We apply our automatic
tool to GIFT-64/128 and two GIFT-based AEADs GIFT-COFB and HyENA, and then some
differential-linear distinguishers with more rounds are obtained, as summarized in Table 1
where all the results are under the single-key setting.

Differential-linear attacks on two GIFT-based AEADs GIFT-COFB and HyENA. The
security concerns of GIFT-COFB and HyENA have attracted considerable attention from
many researchers since their publication. There are several attacks on the encryption
procedure in message processing phase. In [ZDC+21], Zong et al. gave a key-recovery
attack on 15-round GIFT-COFB based on a 9-round linear approximation. Subsequently,
Sun et al. [SWW21b] improved this result using the automatic search with the Boolean
satisfiability problem (SAT), and gave an attack on 16-round GIFT-COFB with a 10-round
linear approximation. Besides, Sun et al. gave a key-recovery attack on 16-round HyENA
based on a 10-round linear approximation. With the assistance of our automatic tool,
we found 13-round differential-linear distinguishers for GIFT-COFB and HyENA. Then the
key-recovery attack is given for 18-round GIFT-COFB, which takes time complexity of 2102.06

and data complexity of 264 to recover full 128-bit secret key. With regard to 18-round
HyENA, we show a key-recovery attack with 2119 time complexity and 263.97 data complexity.
We summarize our attacks and the previous ones against GIFT-COFB and HyENA in Table
2 where all the results are under the single-key setting. Note that for the analysis of
the encryption procedure in message processing phase, differential-linear attacks can be
launched under the nonce misusing scenario. Moreover, we have analyzed the initialization
phase of round-reduced version of GIFT-COFB and HyENA. The attacks on the initialization
phase reach 18 rounds for both ciphers, and the details of attack complexities can be found
in Table 2.

Evaluation of Security of GIFT-64/128 against Differential-linear Cryptanalysis.
Since the publication of GIFT-64/128, there have been plenty of works on their security
against differential and linear cryptanalysis. To promote a comprehensive perception
of the soundness of GIFT-64/128’s security, their actual resistance to the variants of
differential or linear cryptanalysis should be evaluated. With our automatic tool, we
analyzed the security of GIFT-64/128 against differential-linear attacks. As a result, for
18-round GIFT-64, a key-recovery attack is launched using a 12-round differential-linear
approximation. With regard to GIFT-128, a 19-round key-recovery attack is given with a
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17-round differential-linear approximation. The details of attack complexities can be found
in Table 2. For both ciphers GIFT-64/128, the differential-linear cryptanalysis could not
reach the key-recovery attacks with the highest rounds.

As shown in Table 1, with the help of our automatic tool, we found 13-round differential-
linear distinguishers for GIFT-COFB and HyENA. For the message processing phase of both
AEADs, the distinguishers cover three rounds more than the publicly known results.
In virtue of the distinguishers, 18-round key-recovery attacks are given for the message
processing phases, as summarized in Table 2, which are better than the previous best ones
by two more rounds. Moreover, we have given the attacks on the initialization phases of
18-round GIFT-COFB and HyENA respectively, which facilitates our understanding of their
security in different phases. For GIFT-64, as shown in Table 1, a 12-round differential-
linear distinguisher is found which has the same rounds as the linear one in [SWW21a]
but one less round than the differential one in [CZD19]. As regards GIFT-128, a 17-round
differential-linear distinguisher is found, which has four or two fewer rounds with the
differential [JZZD20a] or linear [SWW21b] ones respectively. Then, 18-round and 19-
round key-recovery attacks are given for GIFT-64 and GIFT-128 respectively, which could
not reach the same rounds with the best attacks obtained by differential cryptanalysis
in [CZD19] and [ZDC+21] respectively, same to the linear case. For the details of attacks,
please refer to Table 2.

Table 1: Summary of distinguishers on GIFT-64/128, GIFT-COFB and HyENA. For
GIFT-64/128, the attacks target on the encryption phase (Enc. for short). For GIFT-COFB
and HyENA, the initialization phase (Init. P.) and message processing phase (Msg. P.) are
analyzed. For different types of distinguishers, Diff. denotes for differential, Lin. for linear
and DL for differential-linear. PR denotes the probability of differential distinguisher and
SC denotes the squared correlation of linear and differential-linear distinguishers.

Cipher Target Rounds Type PR (SC) Ref.

GIFT-COFB
Msg. P.

9 Lin. 2−58 [ZDC+21]
10 Lin. 2−57.68 [SWW21b]
13 DL 2−57.56 Sect. 4.1

Init. P. 13 DL 2−55.56 Sect. 4.2

HyENA Msg. P. 10 Lin. 2−55.36 [SWW21b]
13 DL 2−59.02 Sect. 5.1

Init. P. 13 DL 2−59.02 Sect. 5.1

GIFT-64 Enc.

9 Diff. 2−44.415 [BPP+17]
12 Diff. 2−60 [ZDY19]
12 Diff. 2−56.57 [CZD19]
13 Diff. 2−61.31 [CZD19]
9 Lin. 2−49.997 [BPP+17]
12 Lin. 2−61.61 [SWW21a]
12 DL 2−57.22 Sect. 6.1

GIFT-128 Enc.

9 Diff. 2−46.99 [BPP+17]
18 Diff. 2−109 [ZDY19]
20 Diff. 2−120.245 [JZZD20b]
21 Diff. 2−126.415 [JZZD20a]
20 Diff. 2−121.81 [ZDC+21]
15 Lin. 2−109 [ZDC+21]
19 Lin. 2−117.43 [SWW21b]
19 Lin. 2−123.11 [SWW22]
17 DL 2−117.56 Sect. 6.2
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Refer to https://gitfront.io/r/user-9335734/A33hSkkf6eEa/DL-GIFT/ for the
full version of this paper with the supplementary material where the codes and details of
attacks on GIFT-COFB, HyENA and GIFT-64/128 are provided.

1.2 Organization of This Paper
The rest of paper is organized as follows. In Sect. 2, we introduce specifications of GIFT
family and GIFT-COFB, HyENA, and recall the MILP-based automatic search method and
differential-linear cryptanalysis. In Sect. 3, we present the automatic tool i.e. MILP model
to search differential-linear approximations for the S-box-based ciphers. The details of
differential-linear attacks on GIFT-COFB, HyENA and GIFT-64/128 are shown in Sect. 4,
Sect. 5 and Sect. 6 respectively. Finally, we conclude this paper in Sect. 7.

Table 2: Summary of attacks on GIFT-64/128, GIFT-COFB and HyENA. For GIFT-64/128,
the target of attacks is the encryption phase (Enc. for short). For two AEADs GIFT-COFB
and HyENA, we consider the attacks on the initialization phase (Init. P.) and message
processing phase (Msg. P.). For different types of attacks, Diff denotes for differential
attacks, Lin. for linear attacks and DL for differential-linear attacks.

Cipher Target Rounds Type Time Data Memory Ref.

GIFT-COFB
Msg. P.

15 Lin. 290.70 262.00 296 [ZDC+21]
16 Lin. 2122.80 262.10 247 [SWW21b]
18 † DL 2102.06 264 negligible Sect. 4.1

Init. P. 18 DL 297.88 262.41 negligible Sect. 4.2

HyENA Msg. P. 16 Lin. 2122.00 261.51 252 [SWW21b]
18 † DL 2119 263.97 negligible Sect. 5.2

Init. P. 18 DL 2119 263.97 negligible Sect. 5.2

GIFT-64 Enc.

19 Diff. 2112 263 280 [ZDY19]
20 Diff. 2101.68 264 296 [CZD19]
21 Diff. 2107.61 264 296 [CZD19]
19 Lin. 2127.11 262.96 260 [SWW21a]
18 DL 2124.61 261.57 negligible Sect. 6.1

GIFT-128 Enc.

22 Diff. 2114 2114 253 [ZDY19]
26 Diff. 2123.245 2123.245 2109 [JZZD20b]
27 Diff. 2124.83 2123.53 280 [ZDC+21]
22 Lin. 2117.00 2117.00 278 [ZDC+21]
24 Lin. 2124.45 2122.55 2105 [SWW21b]
25 Lin. 2126.77 2124.75 296 [SWW22]
19 DL 2121.53 2122.51 negligible Sect. 6.2

† Launched under the nonce misusing scenario.

2 Preliminaries
In this section, we first introduce the specifications of GIFT, GIFT-COFB and HyENA. Then
we recall the MILP-based automatic search method and differential-linear cryptanalysis.

2.1 Description of GIFT

GIFT, proposed by Banik et al. [BPP+17] at CHES 2017, has two versions, namely GIFT-64
and GIFT-128. Both of them have the same key length of 128 bits, while the block sizes

https://gitfront.io/r/user-9335734/A33hSkkf6eEa/DL-GIFT/


6 Differential-Linear Cryptanalysis of GIFT family and GIFT-based Ciphers

are 64 and 128 respectively. Here we mainly introduce the description of GIFT-128, and
the similar structure to GIFT-64. For more details, please refer to [BPP+17].

GIFT-128 follows an SPN structure with 40 rounds. The round function has three
steps: SubCells, PermBits and AddRoundkey which are illustrated as follows.

SubCells. The Sbox of GIFT-128, denoted by GS, can by found in the full paper. In
each round, the state is updated by applying 32 GS operations in parallel to every nibble.

PermBits. Then update the cipher state by a linear transformation P128(·) as bP128(i) ←
bi, i = 0, 1, · · · , 127. Refer to the full paper for details.

AddRoundKey. A 64-bit round key is viewed as two 32-bit words. In another way,
RK = U ||V = u31 · · ·u0||v31 · · · v0. Then half of the internal state bits are XORed with
RK as the following shows: b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi, ∀i ∈ {0, . . . , 31}.

GIFT-COFB and HyENA. The specification of GIFT-COFB and HyENA is in the full paper.
Here we summarize the notations used in our attacks as Table 3.

Table 3: The notations of GIFT

Xi : The input state of i-th round, and X1 = P
XS

i : The state after Subcells transformation of i-th round
XP

i : The state after PermBits transformation of i-th round
XS,K

i : PermBits−1(Xi+1)
∆X : The difference of state X
X[i] : The i-th bit of state X, and X[0] is the LSB of X
RKi : The round key of i-th round
RK ′

i : PermBits−1(RKi)
RK[i] : The i-th bit of round key, and the same to RK ′[i]

2.2 Automatic Search Methods for Differential and Linear Trails
The automatic search method will be recalled in this section. Mouha et al. [MWGP11]
showed that the problem of searching for the minimum number of active S-boxes can be
modeled with mixed integer linear programming (MILP), which is effective for evaluating
word-oriented ciphers. To apply MILP to bit-oriented ciphers, Sun et al. [SHW+14b]
developed a method to model all possible differential propagation bit by bit for the S-box.
In the following, we briefly review the method in [SHW+14b]. Owing to the similarity of
the modeling procedure between searching for differential and linear trails, we omit the
case of linear cryptanalysis for convenience narration.

Definition 1. Suppose a n-bit differential characteristic state ∆ = (∆0, ∆1, · · · , ∆n−1).
We define the vector x = (x0, x1, · · · , xn−1) to mark the active or inactive bit positions as
follows:

xi =
{

0, if ∆i = 0,
1, if ∆i = 1.

(1)

Constraints of S-box. Suppose the two vectors (x0, x1, · · · , xω−1) and (y0, y1, · · · , yν−1)
are the input and output bit differences of some ω × ν S-box St. Let the bit variable At

denote the activity of this S-box. That is to say, At = 1 if St is active, and At = 0 otherwise.
The following constraints can be used to ensure that the non-zero input difference of the
S-box must activate it: {

At − xk ≥ 0, k = 0, . . . , ω − 1,

−At +
∑ω−1

j=0 xj ≥ 0.
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To describe the differential propagation with probabilities, we introduce a vector (x0,
· · · , xω−1, y0, · · · , yν−1, pt, qt) ∈ Rω+ν+2 and then get a finite set of discrete points that
just includes all the possible differential propagations and their corresponding probabilities
of the S-box. And the above set can be represented by the inequalities called the H-
representation of the S-box St : α0,0x0 + . . . + α0,w−1xw−1 + . . . + β0,v−1yv−1 + γ0,1pt + γ0,2qt + δ0 ≥ 0,

· · · · · · ,
αn,0x0 + . . . + αn,w−1xw−1 + . . . + βn,v−1yv−1 + γn,1pt + γn,2qt + δn ≥ 0.

We can utilize the existing algorithm of SageMath to derive inequalities to represent the
propagation of differential or linear masks of the S-box, and then reduce their number by
greedy algorithm given in [SHW+14a].

Objective function of differential propagation model. The objective function
should be a linear function of variables and can be the minimum number of active S-boxes∑

At or the highest probability of differential trails
∑

pt +
∑

qt for the cipher.

2.3 Differential-Linear Cryptanalysis
In the following, we recall the common framework of differential-linear approximation and
the success probability of a key-recovery attack in the differential-linear context.

In practice, the assumption of independence between two subciphers might lead to
the wrong estimation of the correlation of differential-linear approximation. Usually, one
can get some evidence of this independence assumption by computing experimentally the
correlation of differential-linear approximation over round-reduced cipher. To obtain a more
accurate estimation of the differential-linear approximation, the target cipher is divided
into three parts Ed, Em and El such that E = El ◦ Em ◦ Ed like in recent works [Leu16,
BDKW19, BLT20]. The overall framework of differential-linear approximation is illustrated
in Figure 1. Bar-On et al. [BDKW19] introduced a theoretical method called DLCT to
characterize the property of middle part Em. However, it is still a question about how to
expand the DLCT to cover more rounds. Subsequently, Beierle et al. [BLT20] presented
several improvements in differential-linear attacks for ARX ciphers. In their work, the
correlation of middle part Em was experimentally evaluated. Assume that a differential
∆in

p→ ∆m for Ed holds with probability Pr[Ed(P ) ⊕ Ed(P ⊕ ∆in) = ∆m] = p, and
that a linear approximation Γm

q→ Γout for El holds with probability Pr[Γm · Y =
Γout ·El(Y )] = 1

2 (1 + q), and the approximation for middle part Em holds with probability
Pr[Γm · Em(X) = Γm · Em(X ⊕∆m)] = 1

2 (1 + r) (or with correlation r), where · denotes
the inner product between two vectors. Under the assumption of independence between
subciphers, the probability of differential-linear approximation can be simply estimated
using Piling-up Lemma, Pr[Γout · E(P ) = Γout · E(P ⊕∆in)] = 1

2 (1 + prq2). Therefore,
one can distinguish the cipher E from a random permutation using N = O(p−2r−2q−4)
chosen plaintext pairs (P, P ⊕∆in).

Success Probability. In [BLN17], Blondeau et al. gave the success probability of a key-
recovery attack in the differential-linear context by adapting the one of linear cryptanalysis
in [Sel08],

PS = Φ(2
√

N |pdl −
1
2 | − Φ−1(1− 2−a)), (2)

where Φ is the cumulative distribution function of the standard normal distribution, pdl

is the probability of differential-linear distinguisher, N is the number of chosen plaintext
pairs and a is the advantage of attack as defined in [Sel08].
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P P
′∆in

Ed Ed

X X
′∆m

p

Em Em

Y Y
′

El El

C C
′

r

Γm Γm

Γout Γout

q q

Figure 1: The framework of differential-linear approximation

3 Automatic Tool of DL Approximation for S-box-
Based Ciphers

In this section, we first present the automatic tool i.e. a MILP model to search differential-
linear (DL) approximations for the overall framework shown in Figure 1. For efficiently
computing the correlation of middle part Em in the MILP model, we show how to derive
the propagation of correlation of differential-linear approximations for S-boxes. At last, a
theoretical estimation of the correlation of DL approximation is given for GIFT-128.

3.1 MILP Model of Searching DL Approximations
The R-round cipher E is divided into three parts rd-round Ed, rm-round Em and rl-round
El, namely, E = El ◦Em ◦Ed and R = rd +rm +rl. Let ∆m and Γm be the input difference
and output linear mask of Em respectively.

Modeling the middle part Em. As reviewed in Sect. 2.2, there have been automatic
tools with the MILP model to search differential and linear trails for the S-box-based
ciphers. So, the crucial point is how to model for differential-linear approximations of Em

with the MILP method. Similarly, for the differential-linear part Em (treated as a whole
part), a super table can be defined, which is actually Differential Linear Connectivity Table
(DLCT). Since most entries of DLCT for Em have small correlations and may not lead to
good solutions, we can manually exclude them by some constraints, e.g., the partial DLCT
with single-bit active input difference and output linear mask. Once the correlations of
restricted input difference and output linear mask of Em are computed, we store them in
a table as the partial DLCT of Em, denoted as Cm[·].

The remaining and central question is how to encode the partial DLCT with correlation
into the MILP model. Note that the objective function is required to be linear in the
MILP model. For encoding the correlation of partial DLCT, we introduce the auxiliary
variables. Precisely, for the input difference δm and output linear mask γm of Em, an
auxiliary variable zδm,γm

is introduced. When ∆m = δm and Γm = γm, the auxiliary
variable zδm,γm

equals to one; otherwise zero. So, an auxiliary variable is set for choosing
the specific pattern of difference and linear mask in Em. To model the rule of choosing the
pattern of Em in MILP, we derive Theorem 1 to express the pattern-choosing rule with
linear inequalities.
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Theorem 1. Let a vectorial variable (x0, x1, · · · , xn−1) ∈ {0, 1}n ⊂ Zn and a variable
z ∈ {0, 1} ⊂ Z, constants (α0, α1, · · · , αn−1) ∈ {0, 1}n and β ∈ {0, 1}. Then the pattern-
choosing rule that (x0, x1, · · · , xn−1) = (α0, α1, · · · , αn−1) if and only if z = β can be
equivalently described by the following two inequalities:

n−1∑
i=0

(−1)αixi + (−1)β+1z +
n−1∑
i=0

αi − β ≥ 0,

n−1∑
i=0

(−1)αi+1xi + m(−1)βz −
n−1∑
i=0

αi + mβ ≥ 0,

where m ≥ n.

Proof. Note that the expression α + (−1)αx equals to 0 when x = α, and equals to 1 when
x ̸= α, for x, α ∈ {0, 1}.

For the condition that (x0, x1, · · · , xn−1) = (α0, α1, · · · , αn−1), the upper inequality
excludes the possibility that z ̸= β and the lower inequality always holds. For the condition
that (x0, x1, · · · , xn−1) ̸= (α0, α1, · · · , αn−1), the lower inequality excludes the possibility
that z = β and the upper inequality always holds.

Therefore, the two cases (x0, x1, · · · , xn−1) = (α0, α1, · · · , αn−1), z ≠ β and (x0, x1,
· · · , xn−1) ̸= (α0, α1, · · · , αn−1), z = β can not make the system of the above two
inequalities satisfied. While the other two cases (x0, x1, · · · , xn−1) = (α0, α1, · · · , αn−1),
z = β and (x0, x1, · · · , xn−1) ̸= (α0, α1, · · · , αn−1), z ̸= β always satisfy the system.

Theorem 1 is actually the extension of the one in [SHW+14b]. According to Theorem 1,
we can use two inequalities to describe the pattern-choosing rule that (∆m, Γm) = (δm, γm)
if and only if zδm,γm = 1. So, the correlation of Em can be expressed as

∑
zδm,γmCm[δm, γm]

which is a linear function and can be used in MILP models.

Modeling the parts Ed and El. Here, we briefly describe how to construct MILP
models to search linear and differential trails of GIFT-128. The details for modeling the
linear part of El are as follows. For the S-box of GIFT-128, since there are 3 possible
correlations, i.e., 1, 2−1, 2−2, we add two extra bits (q0, q1) to encode the correlation of
the linear mask propagation. Therefore, a vector (x0, · · · , x3, y0, · · · , y3, q0, q1) ∈ R10 can
describe a linear mask pattern with correlation for the S-box. Then by SageMath, 454
inequalities are derived through computing the H-Representation of the convex hull, and
the number of inequalities is reduced to 20 by greedy algorithm in [SHW+14a]. Since the
PermBits(·) transform is a simple permutation on a 128-bit state, there is no need to
introduce new inequalities. Besides, we can ignore the AddRoundKey transform in the
linear trail (actually in the differential-linear context). The correlation of the linear trail
through El is expressed as

∑
(q0 + 2q1).

With regard to the differential trails, the modeling process is similar to the afore-
mentioned. In [ZDY19], they presented the MILP-based automatic method to search
differential trails for GIFT-128. For the differential part of Ed, we just adopt their method
to model the differential patterns with their probabilities for the S-box of GIFT-128. Refer
to [ZDY19] for details. The probability of differential trail through Ed is denoted as∑

(3p0 + 2p1 + 1.415p2).
As a result, we integrate the three parts into a whole MILP model to search for

differential-linear approximations. The objective function is minimization of the formula∑
(3p0 + 2p1 + 1.415p2) +

∑
zδm,γmCm[δm, γm] +

∑
(2q0 + 4q1), which denotes the total

correlation of differential-linear approximation through the cipher E = El ◦ Em ◦ Ed.
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Single-bit input difference and output linear mask. Let b denote the state size of
the block cipher. There are b possibilities of all the single-bit input difference, and the
same for single-bit output mask. The single-bit input difference δm is determined by the
position of the active bit in δm, same for output mask γm. So, an auxiliary variable zδm,γm

depends on two bits, i.e. one bit for input difference and one bit for output mask. In the
simplest case, the pattern-choosing rule can be interpreted as the AND operation, i.e.,
the auxiliary variable z equals one if and only if the bit x0 of input difference and the bit
x1 of output mask are both one. According to Theorem 1, we can use two inequalities
to describe the pattern-choosing rule, that is z + 1 ≥ x0 + x1 and x0 + x1 ≥ 2z. As a
result, there are in total b× b auxiliary variables zδm,γm for choosing the pattern of output
difference and linear mask of Em.

For the more general cases, the method can be applied, but there will be too many
auxiliary variables so the MILP model will be very time-consuming.

3.2 Propagation of Correlation of DL Approximations for S-box
In this subsection, we show how to theoretically and efficiently estimate the correlation of
DL approximation for the S-boxes of ciphers, given their DDTs or ANFs.

Calculating the correlation of DL approximations for GS from its DDT. To
obtain the propagation rules of DL approximation for S-boxes, we first recall Obser-
vation 1 in [LSL21]. For the case of differential-linear approximation of S-boxes, let
x = (xn−1, xn−2, · · · , x0) be the input of a cipher’s S-box S : Fn

2 → Fn
2 and y =

(yn−1, yn−2, · · · , y0) = S(x) be the output. Let ∆x denote the input difference between x
and another input x′, i.e., ∆x = x⊕x′ with correlation ci = Cor[∆xi] = 2 Pr[∆xi = 0]− 1,
and ∆y = y ⊕ y′ the output difference where y′ = S(x′). Then the probability/correlation
of output difference ∆yi = 0 can be determined by the following formula

Pr[∆yi = 0] =
∑

∆x∈Fn
2

Pr[x⊕ x′ = ∆x] Pr[∆yi = 0 | x⊕ x′ = ∆x]

=
∑

∆x∈Fn
2

(
n−1∏
j=0

1 + (−1)∆xj cj

2 )× #{x | (S(x⊕∆x)⊕ S(x))[i] = 0}
2n

,

(3)

and Cor[∆yi] = 2 Pr[∆yi = 0]− 1.

Algorithm 1: Deriving Propagation of DL approximation for S-box from DDT
Input: S-box’s DDT and variables ci for i = 0, 1, · · · , n− 1.
Output: Propagation rule of DL approximation’s correlation for S-box.

1 Initialize an n-dimension array p[·] with all zeros.
2 for ∆x ∈ Fn

2 do
3 Pr[∆x] =

∏n−1
i=0

1+(−1)∆xi ci

2
4 for ∆y ∈ Fn

2 do
5 for i = 0, 1, · · · , n− 1 do
6 if ∆yi = 0 then
7 p[i]← p[i] + 2−nDDT[∆x][∆y]× Pr[∆x]
8 end
9 end

10 end
11 end
12 return 2p[i]− 1 for i = 0, 1, · · · , n− 1
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Next, from the view of DDT of S-box, we present a way, i.e., Algorithm 1, to derive
the propagation of correlation of DL approximation for S-boxes. This works as follows: for
a fixed row of DDT, sum the entries of DDT first column by column which is multiplied
by a row-dependent probability, then sum the results for all rows. Algorithm 1 gives
an interpretation of the propagation rule of DL approximation from the perspective of
differential. Note that we can focus on and sum over the non-zero entries of DDT in
Algorithm 1. From the view of DDT, the propagation of DL approximation of S-box is a
row-weighted sum of all non-zero entries of DDT. So the propagation of DL approximation
takes all possibilities of input/output difference into account with the distribution of input
difference under some independence assumption.

We have implemented Algorithm 1 by the symbolic programming in SageMath. Refer
to the full paper for the details of codes. The implementation in SageMath code can also
be easily used to analyze other ciphers’ S-boxes, such as PRESENT and SKINNY, see the full
paper for the details.

Calculating the correlation of DL approximations for GS from its ANF. Now
we discuss the DL approximation of S-box from another view, i.e., an algebraic view as
proposed in [LLL21]. By replacing x∆in with a variable vector for input difference and
adding its distribution into D in Algorithm 3 of [LLL21], we derive the propagation of
the DL approximation of the S-box for an arbitrary output linear mask, as depicted in
Algorithm 2.

Algorithm 2: Deriving Propagation of DL approximation for S-box from ANF
Input: The ANF F of the S-box, the correlation {ci} of input difference, and an

output mask λ.
Output: Propagation rule of DL approximation’s correlation for S-box.

1 Initialize a variable vector ∆x for input differential, and initialize a probability
distribution set D = {Pr[xi = 0] = 1

2} ∪ {Pr[∆xi = 0] = 1+ci

2 }.
2 Compute the output difference ∆yλ = λ · (F (x)⊕ F (x⊕∆x)) which is Boolean

function of 2n variables xi’s and ∆xi’s for i = 0, 1, · · · , n− 1.
3 With the assumption that xi’s and ∆xi’s for i = 0, 1, · · · , n− 1 are independent,

compute the probability of ∆yλ according to Equation (3.2) in [LLL21], i.e.,
Pr[∆yλ = 0] =

∑
a∈{(x,∆x)|∆yλ=0} 2−n

∏n−1
i=0 ( 1+(−1)an+i ci

2 ).
4 return 2 Pr[∆yλ = 0]− 1.

By performing either Algorithm 1 or Algorithm 2, we get the following proposition to
describe the propagation of correlation of DL approximation for the S-box of GIFT.

Proposition 1. Let x = (x3, x2, x1, x0) be input of S-box of GIFT GS, and ∆x =
(∆x3, ∆x2, ∆x1, ∆x0) be input difference with correlation Cor[∆xi] = ci, i.e., probability
Pr[∆xi = 0] = 1+ci

2 , for i ∈ {0, 1, 2, 3}. The corresponding output difference of GS is
denoted by ∆y = (∆y3, ∆y2, ∆y1, ∆y0), i.e., y = GS(x) and ∆y = GS(x)⊕GS(x⊕∆x).
Assuming the bits of x and ∆x are independent, we have

Cor[∆y0] = 1
4(c0 + 1)(c1 + 1)c2c3,

Cor[∆y1] = 1
4(c0 + 1)(c1 + c2)c3,

Cor[∆y2] = 1
16(c0c1c2 + c0c1 + c0c2 + 4c1c2 + c0)(c3 + 1),

Cor[∆y3] = 1
16(c0c1c2 + c0c1 + c1c2 + 4c0 + c1)(c3 + 1).

(4)
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Proposition 1 considers the propagation of differences in single bits, and we refer to the
full paper for the DL approximation of the S-box with an arbitrary output linear mask.

Independence assumption of Proposition 1. The assumption of the independence
of input bits always holds, since the GIFT round function is a bijection. The independence
assumption of the four bits of input difference is reasonable for GS because the four bits
input to one S-box originate from different S-boxes from the previous round due to the
property of bit permutation in the linear layer. Our experiments show that the independence
between the four bits of the input x and the four bits of the input difference ∆x are also
reasonable. More exactly, we have verified that Pr[(x, ∆x) = a] = 2−n

∏n−1
i=0 ( 1+(−1)an+i ci

2 )
holds with a probability greater than 0.98, within the allowed error range of 10%. In the
experiments, we set x and ∆x to the bits and difference bits input to the same S-box of
the sixth round of GIFT, and the input difference of the first round to a random difference
with Hamming weight up to three, and verify the equation for all possible a and repeat it
for hundreds of times.

3.3 Estimation of Correlation of DL Approximation for GIFT-128

Here, we give an example of GIFT-128 to demonstrate the theoretical estimation of DL
approximation’s correlation by using Proposition 1.

In Figure 2, for r-round GIFT-128, blue symbol x denotes the logarithm of maximum
correlation of single-bit input difference and output mask which is theoretically estimated
by Proposition 1 and black circle the one estimated by the sampling experiment, and red
line the error percentage which is defined as the absolute value of the difference between the
theoretical value and the experimental value, divided by the experimental value. Since at
most 234 random plaintext pairs are used for each of 23 random keys, a correlation of about
|Cor| > c ·2−17 = 2−13.5 can be detected (where c ≈

√
128 for reasonable estimation error).

As shown in Figure 2, the theoretical estimations of correlation of DL approximation match
the experimental results in the first eight rounds, and the error percentage remains within
55%. For the trend of correlation with an increasing number of rounds, the correlation
of DL approximation decreases for GIFT-128, especially decreasing sharply after eight
rounds.

Figure 2: Estimation of maximum correlation for r-round GIFT-128, where x denotes the
theoretical one, black circle the experimental one, and red line the error percentage.
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4 Differential-Linear Attacks on GIFT-COFB

In this section, we present our differential-linear attacks on GIFT-COFB, including the
attacks on message processing phase and initialization phase.

4.1 Attack on Message Processing Phase
We first present the procedure of automatically searching differential-linear distinguishers
with the assistance of the MILP model. Then the key-recovery attack on GIFT-COFB is
given based on the new distinguisher.

Before showing the details of the analysis, let us take a look at the restriction of active
bits in attacks on the message processing phase of GIFT-COFB. For the attack on message
processing phase which is illustrated in the figure of the full paper. From the plaintext-
ciphertext pair of GIFT-COFB (M [1]||M [2], C[1]||C[2]), we can get the input-output pair of
the cipher GIFT-128, and the input is G(Y [a])⊕M [1]⊕ (2a3iL||0n/2), the corresponding
output is M [2] ⊕ C[2], where Y [a] = M [1] ⊕ C[1]. Under the nonce misusing scenario,
another input-output pair can be chosen for GIFT-128. Since L is unknown (depending
on nonce and secret key), we can not get the value from the most significant 64 bits of
the input for GIFT-128 back to (G(Y [a])⊕M [1])[64− 127]. So, the data structure in the
key-recovery attacks should not involve the most significant 64 bits of GIFT-128’s input.

As stated in [SWW21b], Given the GIFT-128 achieves full diffusion after four rounds,
we conjecture the maximum number of rounds annexed before the linear distinguisher in the
attack on GIFT-COFB is three. Similarly, the maximum number of rounds extended before
the differential-linear approximation is assumed as three. In [SWW21b], they introduced
extra variables and Boolean expressions in their model to satisfy the restriction that there
are no active bits in the most significant 64 bits of the input for GIFT-128.

By exploiting the structure property of GIFT-128, we have found a phenomenon of
the differential propagation of 3-round GIFT-128. The phenomenon is summarized in
Proposition 2, which reveals that the most significant 64 bits of GIFT-128’s input always go
to another fixed set of 64 bits after three rounds. According to Proposition 2, the restriction
of active bits for key-recovery attacks can be directly converted into the restriction for
distinguisher’s inputs.

Proposition 2. Let ∆P be the input difference of plaintext, and ∆X4 be the input difference
of the 4-th round, i.e., the output difference of the 3-rd round. If Index(∆X4) ⊆ S , then
Index(∆P ) ⊆ {0, 1, · · · , 63} after three rounds backward; vice versa, where the Index(·)
function returns the indices on which the value is non-zero, and S = {4j0, 4j0 + 2|j0 ∈
{0, 1, · · · , 7, 16, 17, · · · , 23}} ∪ {4j1 + 1, 4j1 + 3|j1 ∈ {8, 9, · · · , 15, 24, 25, · · · , 31}}.

Proof. Due to the invertibility of GS, the input difference at a single S-box is zero if and
only if the output difference is zero. Besides, the transformation SubCells, which applies
32 parallel S-boxes, does not change the position of bits. Therefore, the function Index(·)
remains unchanged through the transformation SubCells in terms of the S-boxes.

Since the set of bit positions S1 = {0, 1, · · · , 63} corresponds to bit positions of
the {0, 1, · · · , 15} S-boxes, then Index(∆P ) ⊆ S1 if and only if Index(∆XS

1 ) ⊆ S1.
Because the transformation PermBits maps the set S1 to the set of bit positions S2 =
{0, 1, · · · , 11}∪{32, 33, · · · , 43}∪{64, 65, · · · , 75}∪{96, 97, . . . , 107}, so Index(∆XS

1 ) ⊆ S1
if and only if Index(∆XP

1 ) ⊆ S2. We can ignore the transformation AddRoundKey,
because it does not affect the propagation of differences.

Since the set S2 corresponds to bit positions of the {0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24,
25, 26, 27} S-boxes, then Index(∆XP

1 ) ⊆ S2 if and only if Index(∆XS
2 ) ⊆ S2. Because the

transformation PermBits maps the set S2 to the set of bit positions S3 = ∪15
i=0{8i + j|j =

0, 1, 2, 3}, so Index(∆XS
2 ) ⊆ S2 if and only if Index(∆XP

2 ) ⊆ S3.
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Since the set S3 corresponds to bit positions of {2i|i = 0, 1, · · · , 15} S-boxes, then
Index(∆XP

2 ) ⊆ S3 if and only if Index(∆XS
3 ) ⊆ S3. Because the transformation

PermBits maps the set S3 to the set of bit positions S4 = {4j0, 4j0 +2|j0 ∈ {0, 1, · · · , 7, 16,
17, · · · , 23}} ∪ {4j1 + 1, 4j1 + 3|j1 ∈ {8, 9, · · · , 15, 24, 25, · · · , 31}}, so Index (∆XS

3 ) ⊆ S3
if and only if Index(∆XP

3 ) ⊆ S4, the same for Index(∆X4).
This completes the proof.

Therefore, the specialized MILP model to search DL approximations for GIFT-COFB
should be set such that there is no active bit in {0, 1, · · · , 127} \ S, where S is defined
in Proposition 2. From Proposition 2, the DL distinguishers returned by the specialized
MILP model will always satisfy the restriction in key-recovery attack.

Table 4: The attack on message processing phase of 18-round GIFT-COFB

∆P
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗

∆XS
1

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- ∗∗- - - ∗∗ 1- - ∗ ∗1- - - ∗∗- - - ∗∗ ∗- - ∗ ∗∗- - - ∗∗- - - ∗∗ ∗- - ∗ ∗∗- - - ∗∗- - - ∗∗ ∗- - ∗ ∗∗- -

∆XP
1

- - - - - - - - - - - - - - - - ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ - - - - - - - - - - - - - - - - 11∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RK1
- - - - - - - - 11 11 11 11 - - - - - - - - 11 11 11 11
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

∆X2
- - - - - - - - - - - - - - - - ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ - - - - - - - - - - - - - - - - 11∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

∆XS
2

- - - - - - - - - - - - - - - - - ∗∗- - - ∗∗ 1- - ∗ 1∗- - - - - - - - - - - - - - - - - - - 1- - - - ∗- - - - ∗ 1- - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

∆XP
2

- - - - 1∗∗∗ - - - - 11∗∗ - - - - - - - - - - - - - - - - - - - - 1∗∗∗ - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RK2
- - 11 - - 11 - - - - - - - - - - 11 - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

∆X3
- - - - 1∗∗∗ - - - - 11∗∗ - - - - - - - - - - - - - - - - - - - - 1∗∗∗ - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

∆XS
3

- - - - - - - 1 - - - - - 1- - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

∆XP
3

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1- 1 - - - - - - - 1 - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RK3
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

∆in
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1- 1 - - - - - - - 1 - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Γout
- - - - - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - 1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1- - - - - - - - - -

XS
17

- - - - - - - - - - - - - - - - - - - - •••• - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - •1•1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - •11• - - - - - - - -

RK ′
17

- - - - - - - - - - 11 - - - - - - - - - - - - - - - - - - - -
- - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

XS,K
17

- - - - - - - - - - - - - - - - - - - - •••• - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - •1•1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - •11• - - - - - - - -

X18
- - - - - - •- - - - - - - - - - - •- - - - - - - - - - - 1- - - - - - - - • - - - - - - - - - - - 1 - - - - - - - - - - - •
- - - - •- - - - - - - - - - - •- - - - - - - - - - - •- - - - - - - - •- - - - - - - - - - - 1- - - - - - - - - - - 1- -

XS
18

- - - - •••• - - - - - - - - •••• - - - - - - - - •••• - - - - •••• - - - - - - - - •••• - - - - - - - - ••••
- - - - •••• - - - - - - - - •••• - - - - - - - - •••• - - - - •••• - - - - - - - - •11• - - - - - - - - •11•

RK ′
18

- - 11 - - - - 11 - - - - 11 - - 11 - - - - 11 - - - - 11
- - 11 - - - - 11 - - - - 11 - - 11 - - - - - - - - - - - -

XS,K
18

- - - - •••• - - - - - - - - •••• - - - - - - - - •••• - - - - •••• - - - - - - - - •••• - - - - - - - - ••••
- - - - •••• - - - - - - - - •••• - - - - - - - - •••• - - - - •••• - - - - - - - - •11• - - - - - - - - •11•

X19
- - •- ••- - - - •- ••- - - - •- ••- - - - •- •1- - - - - • - ••- - - - • - ••- - - - • - ••- - - - • - 11-
•- - - - - •• •- - - - - •• •- - - - - •• •- - - - - 1• - •- - •- - • - •- - •- - • - •- - •- - • - •- - •- - •
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4.1.1 Searching Differential-Linear Approximations

The specialized MILP model is applied to assist in searching the differential-linear dis-
tinguishers for message processing phase of GIFT-COFB. To make the analysis simple and
get a better result, the input difference and output linear mask of Em are restricted to
be single-bit. The correlation of differential-linear approximation of Em is theoretically
estimated according to the propagation of correlation of DL approximation for GS as
shown in Proposition 1. After constructing the partial DLCT of Em, the specialized MILP
model is obtained to search for differential-linear approximations. In the test phase, no
R-round differential-linear approximation with a correlation greater than 2−32 is found in
our model when R ≥ 14. Targeting for 13-round cipher E, with setting rd = 3, rm = 8,
and rl = 2, we can find better differential-linear distinguishers. In the key-recovery phase,
with some subkey bits guessed, the distinguishers can be extended backward by three
rounds and appended forward by two rounds. Note that the differential-linear distinguisher
with the greatest correlation may not lead to the best key-recovery attack. Therefore,
to obtain an attack as good as possible, we store thousands of distinguishers with high
correlation and find the optimal one that has the lowest complexities in the key-recover
attack. In Gurobi, the function PoolSolution is used to find the l-best solution.

Therefore, we collect the top l = 1024 differential-linear distinguishers with a correlation
greater than 2−32. When we extend three rounds at the top and append two rounds at the
bottom of these distinguishers, the minimum number of guessed subkey bits is 39. Only
one differential-linear distinguisher achieves the minimum of guessed subkey bits.

As a result, we exploit the 13-round differential-linear approximation, with a correlation
of 2−29.76, which has the minimum number 39 of guessed subkey bits, and the indices of
active bits in its input difference are Index∆in

= {84, 92, 94}, the indices of active bits in
its output linear mask are IndexΓout

= {10, 59, 105}. The differential-linear distinguisher is
constructed by an 8-round differential-linear approximation of Em with correlation 2−12.76,
a 3-round differential trail of Ed with probability 2−11 and a 2-round linear trail of El with
correlation 2−3. The two trails are shown in the tables in the full paper. By the sampling
experiment with 233 random plaintext pairs for each of the 23 random keys, we have
checked the correlation of the 8-round Em, which is about 2−11.78 with input difference
at the 95-th bit and output linear mask at the 39-th bit. Therefore, the correlation of
13-round differential-linear is estimated as 2−11 × 2−11.78 × 2−3×2 = 2−28.78 which is used
in the following.

4.1.2 Key-recovery Attack

With the 13-round differential-linear approximation, an 18-round key-recovery attack on
GIFT-COFB is given by appending three rounds at the top and two rounds at the bottom
of this distinguisher. As illustrated in Table 4, the key-recovery attack is described by the
following procedure where the 39 guessed key bits during the attack are listed in Table 5.
In Table 4, the bit ordering is first from right to left, then from down to top. The symbol -
indicates the inactive bits of the state. In the differential trail propagation, ’∗’ denotes an
uncertain bit of difference, and ’1’ denotes an active bit of difference. In the linear trail
propagation, ’•’ indicates a bit whose value needs to be computed, and ’1’ indicates a bit
linearly involved.

1. Select 2N plaintexts, consisting of 2N
232 structures, each is chosen by selecting:

(a) Any intermediate XP
1 , and the remaining 232 − 1 intermediate values which

differ from XP
1 by all the other 232 − 1 possibilities of the 32 bits which enter

the 8 active S-boxes in round 1, i.e., {64 : 79, 96 : 111}.
(b) The corresponding plaintexts are obtained by applying the transformation

SubCells−1 ◦ PermBits−1(·) to the above 232 intermediate values.
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2. Request the ciphertexts of these plaintext structures (encrypted under the unknown
key K).

3. For all the possible values of the 22-bit subkey RK1[IndexRK1 ]||RK2[IndexRK2 ] (16
bits entering the 8 S-boxes in round 1 and 6 bits entering the 3 S-boxes in round 2),
where IndexRK1 = {32 : 39, 48 : 55} and IndexRK2 = {44, 45, 56, 57, 60, 61},

(a) Partially encrypt for each plaintext the 8 active S-boxes in round 1 and 3 active
S-boxes in round 2, and find the pairs which satisfy the difference ∆X4 = ∆in

before round 3.
(b) Given those N pairs, for all the possible values of the 17-bit subkey RK ′

17
[IndexRK′

17
]||RK ′

18[IndexRK′
18

] (extra 2 bits in round 17 and extra 15 bits in
round 18), initialize a counter CT for the targeted parity ∆t = ⊕i∈IndexX17

X17[i],
for each ciphertext pair, perform partial decryption on the 10 active S-boxes
in round 18 and 2 S-boxes in round 17 and compute the value of ∆t, if
∆t = 0, then increase the counter CT by one, where where IndexRK′

17
=

{52, 53}, IndexRK′
18

= {12, 13, 16, 17, 22, 23, 28, 29, 32, 39, 44, 45, 48, 60, 61} and
IndexX17 = {10, 59, 105}. If |CT/N − 0.5| > θ, accept the current value of
39-bit subkey as a candidate.

4. The rest of the key bits are then recovered by exhaustively searching.

Complexity analysis. We set the advantage of attack as a = 26 to make a balance
between the exhaustive search. When the data complexity is D = 2N = 264, the
success probability is 85.23%. Therefore, the time complexity of procedure is T =
222 × (217 × 2N)× 12

18×32 + 2128−a = 2102.06.

Table 5: The 39 guessed key bits for the message processing phase of 18-round GIFT-COFB

1 k91k27 k90k26 k89k25 k88k24 k83k19 k82k18 k81k17 k80k16

2 k126k62 k124k60 k118k54

17 k70k22
k19

18 k103k55 k118k62 k126k46 k101k53 k116k60 k124k44
k99k51 k114k58 k122k42 k97k49

4.2 Attack on Initialization Phase
The attack on the initialization phase of GIFT-COFB is similar to the one on the encryption
procedure in the message processing phase. For searching differential-linear distinguishers,
compared with the one for the message processing phase, there is no restriction on active
bits on the input difference of distinguisher for the initialization phase. In the following,
we first give the new differential-linear distinguisher, and then the key-recovery attack is
presented based on it.

Differential-linear distinguisher. With the automatic tool, we found a 13-round
differential-linear approximation with correlation of 2−27.78, whose indices of active bits in
its input difference are Index∆in

= {86, 87, 94, 95} and output linear mask are IndexΓout
=

{10, 59, 105}. Compared with the differential-linear distinguisher for the message processing
phase, the 13-round distinguisher has a different 3-round differential trail of Ed with
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probability 2−10, and the same 8-round differential-linear approximation of Em and the
2-round linear trail of El. The new 3-round differential of Ed is shown in the full paper.

Key-recovery attack. Based on the above 13-round differential-linear approximation,
an 18-round key-recovery attack is given on the initialization phase of GIFT-COFB by
extending three rounds at the top and appending two rounds at the bottom of this
distinguisher. The key-recovery attack is presented in the full paper, where 41 key bits are
guessed. For the details of the procedure of attack, please refer to the full paper.

Complexity analysis. The advantage of attack is set as a = 35 to make a balance
between the exhaustive search. When the data complexity is D = 2N = 262.41, the
success probability is 85.23%. Therefore, the time complexity of procedure is T =
224 × (217 × 2N)× 12

18×32 + 2128−a = 297.88.

5 Differential-Linear Attacks on HyENA

In this section, we first give the differential-linear distinguisher which is found by the spe-
cialized MILP for the message processing phase of HyENA. Then, based on the distinguisher,
the key-recovery attacks are given on the message processing phase of HyENA.

For the attacks on the message processing phase, the target is the encryption proce-
dure which is illustrated in the full paper. From the plaintext-ciphertext pair of HyENA
(M0||M1, C0||C1), we can get the input-output pair of the cipher GIFT-128, and the input
is (Ya[64−127]||M0[0−63])⊕ (M0[64−127]||2a+2∆), the corresponding output is M1⊕C1,
where Ya = M0 ⊕ C0. Under the nonce misusing scenario, another input-output pair can
be chosen for GIFT-128. Due to the fact that the value of ∆ is unknown, we can not
determine the least significant 64 bits of input for GIFT-128. So, the data structure used
in our key-recovery attacks can not involve the least significant 64 bits of the input for
GIFT-128.

Similar to the case of GIFT-COFB, we can derive the following proposition for HyENA
(actually the complement of Proposition 2, this result can be obtained in the same way).

Proposition 3. Let ∆P be the input difference of plaintext, and ∆X4 be the input difference
of the 4-th round, i.e., the output difference of the 3-rd round. If Index(∆X4) ⊆ S′ , then
Index(∆P ) ⊆ {64, 65, · · · , 127} after three rounds backward; vice versa, where the Index(·)
function returns the indices on which the value is non-zero, and S′ = {4j0, 4j0 + 2|j0 ∈
{8, 9, · · · , 15, 24, 25, · · · , 31}} ∪ {4j1 + 1, 4j1 + 3|j1 ∈ {0, 1, · · · , 7, 16, 17, · · · , 23}}.

Therefore, we set the specialized MILP model to search DL approximations for HyENA
such that there is no active bit in {0, 1, · · · , 127} \ S′, where S′ is defined in Proposition 3.
From Proposition 3, the DL distinguishers returned by the specialized MILP model will
always satisfy the restriction in the key-recovery attack.

5.1 Searching Differential-Linear Approximations
The specialized MILP model is applied to search differential-linear approximations for
the message processing phase of HyENA. Similarly, the input difference and output linear
mask of Em are restricted to be single-bit. In the test phase, no R-round differential-linear
approximation with a correlation greater than 2−32 is found in our MILP model when R ≥
14. As a result, we found a 13-round differential-linear approximation with correlation of
2−30.37, and the indices of active bits in its input difference are Index∆in

= {96, 98, 104}, the
indices of active bits in its output linear mask are IndexΓout

= {49, 82, 99}. The differential-
linear distinguisher is constructed by an 8-round differential-linear approximation of Em

with correlation 2−13.37, a 3-round differential trail of Ed with probability 2−11 and a
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2-round linear trail of El with correlation 2−3. The two trails are shown in the full paper.
By the sampling experiment with 233 random plaintext pairs for each of the 23 random
keys, we have checked the correlation of the 8-round Em, which is about 2−12.51 with
input difference at the 19-th bit and output linear mask at the 3-rd bit. Therefore, the
correlation of 13-round differential-linear is estimated as 2−11 × 2−12.51 × 2−3×2 = 2−29.51

which is used in the following.

Table 6: The attack on message processing phase of 18-round HyENA

∆P
∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

∆XS
1
∗- - ∗ ∗∗- - - ∗∗- - - ∗∗ ∗- - ∗ 1∗- - - 1∗- - - ∗∗ ∗- - ∗ ∗∗- - - ∗∗- - - ∗∗ ∗- - ∗ ∗∗- - - ∗∗- - - ∗∗
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

∆XP
1

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
∗∗∗∗ 11∗∗ ∗∗∗∗ ∗∗∗∗ - - - - - - - - - - - - - - - - ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ - - - - - - - - - - - - - - - -

RK1
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
11 11 11 11 - - - - - - - - 11 11 11 11 - - - - - - - -

∆X2
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
∗∗∗∗ 11∗∗ ∗∗∗∗ ∗∗∗∗ - - - - - - - - - - - - - - - - ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ - - - - - - - - - - - - - - - -

∆XS
2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1- - - - 1- - - - ∗- - - - ∗ - - - - - - - - - - - - - - - - 1- - ∗ 1∗- - - ∗∗- - - ∗∗ - - - - - - - - - - - - - - - -

∆XP
2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - 1∗∗∗ - - - - - - - - - - - - - - - - - - - - 11∗∗ - - - - 1∗∗∗ - - - -

RK2
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - 11 - - - - - - - - - - 11 - - 11 - -

∆X3
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - 1∗∗∗ - - - - - - - - - - - - - - - - - - - - 11∗∗ - - - - 1∗∗∗ - - - -

∆XS
3

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - 1- - - - - - - - - 1 - - - -

∆XP
3

- - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - 1- 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RK3
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

∆in
- - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - 1- 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Γout
- - - - - - - - - - - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

XS
17

- - - - - - - - - - - - - - - - - - - - - - - - - - - - •1•1 - - - - - - - - - - - - •11• - - - - - - - - - - - - - - - -
- - - - - - - - - - - - •••• - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RK ′
17

- - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - -
- - - - - - 11 - - - - - - - - - - - - - - - - - - - - - - - -

XS,K
17

- - - - - - - - - - - - - - - - - - - - - - - - - - - - •1•1 - - - - - - - - - - - - •11• - - - - - - - - - - - - - - - -
- - - - - - - - - - - - •••• - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

X18
- - - - •- - - •- - - - - - - •- - - - - - - - - - - - - - - - - - - - 1- - - 1- - - - - - - •- - - - - - - - - - - - - -
- - - - - - •- - - 1- - - - - - - •- - - - - - - - - - - - - - - - - - - - 1 - - - • - - - - - - - • - - - - - - - - - - - -

XS
18

- - - - •••• •••• - - - - •••• - - - - - - - - - - - - - - - - •11• •11• - - - - •••• - - - - - - - - - - - -
- - - - •••• •••• - - - - •••• - - - - - - - - - - - - - - - - •••• •••• - - - - •••• - - - - - - - - - - - -

RK ′
18

- - 11 11 - - 11 - - - - - - - - - - - - - - 11 - - - - - -
- - 11 11 - - 11 - - - - - - - - 11 11 - - 11 - - - - - -

XS,K
18

- - - - •••• •••• - - - - •••• - - - - - - - - - - - - - - - - •11• •11• - - - - •••• - - - - - - - - - - - -
- - - - •••• •••• - - - - •••• - - - - - - - - - - - - - - - - •••• •••• - - - - •••• - - - - - - - - - - - -

X19
- - •• - •- - - - 1• - •- - - - •• - •- - - - •• - •- - •- - • - - •- •- - • - - •- •- - • - - •- •- - • - - •-
••- - - - - • •1- - - - - • ••- - - - - • ••- - - - - • - ••- •- - - - 11- •- - - - ••- •- - - - ••- •- - -

5.2 Key-recovery Attack

With 13-round differential-linear approximation, we give an 18-round key-recovery attack
on HyENA by extending three rounds at the top and appending two rounds at the bottom
of the distinguisher. The key-recovery attack is illustrated in Table 6 where 39 key bits
are guessed. For the detailed procedure of the attack, please refer to the full paper.
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Complexity analysis. The advantage of attack is set as a = 9 to make a balance
between the exhaustive search. When the data complexity is D = 2N = 263.97, the
success probability is 85.21%. Therefore, the time complexity of the procedure is T =
222 × (217 × 2N)× 12

18×32 + 2128−a = 2119.

Remark. The attack on the initialization phase of HyENA is similar to the one on the
message processing phase. Compared with the one for the message processing phase, the
input difference can be imposed at the most 96 significant bits. Therefore, the attack on
the message processing phase can also be launched for the initialization phase of HyENA.

6 Differential-Linear Cryptanalysis of GIFT-64/128

To promote a comprehensive perception of the soundness of GIFT-64/128, we evaluated
the security GIFT-64/128 against differential-linear attacks in this section.

6.1 Attack on GIFT-64

First, a 12-round differential-linear approximation is found, and then we give an 18-round
key-recovery attack on GIFT-64 based on the DL approximation.

Searching differential-linear approximation. To simplify, the input difference and
output linear mask of Em are restricted to be single-bit. In the test phase, we could not
find the R-round differential-linear approximation correlation greater than 2−32 when
R ≥ 13. For 12-round GIFT-64, with setting rd = 2, rm = 7 and rl = 3, the better
differential-linear distinguishers was found. With the automatic tool, we found a 13-round
differential-linear approximation with correlation of 2−28.61, whose indices of active bits in
its input difference are Index∆in

= {34, 35, 38, 39}, the indices of active bits in its output
linear mask are IndexΓout

= {20, 30, 41, 54, 58, 60}. The differential-linear distinguisher
consists of a 7-round differential-linear approximation of Em with correlation 2−10.61, a
2-round differential trail of Ed with probability 2−6 and a 3-round linear trail of El with
correlation 2−6 which are shown in the full paper. The theoretical estimation of correlation
2−28.61 is used in the following analysis of attack complexity.

Key-recovery attack. Based on the above 12-round differential-linear distinguisher,
an 18-round key-recovery attack is given by appending three rounds at the top and three
rounds at the bottom of this distinguisher. The key-recovery attack on 18-round GIFT-64
is given in the full paper, where 66 key bits are guessed.

Complexity analysis. The advantage of attack is set as a = 6 to make a balance
between the exhaustive search. When the data complexity is D = 2N = 261.57, the success
probability is 85.07%. The time complexity of the procedure is T = 266 × 2N × 31

18×16 +
2128−a = 2124.61.

6.2 Attack on GIFT-128

In this section, we present a key-recovery attack on 19 rounds of GIFT-128 which is based
on a 17-round differential-linear approximation. The differences between on GIFT-128 and
GIFT-COFB are no data limitation of 264 but less than the space of entire block size 2128

and no restriction of the input difference on the least significant 64 bits for GIFT-128.
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Searching differential-linear approximation. The input difference and output linear
mask of Em are restricted to be single-bit. In the test phase, we did not find R ≥ 18-round
differential-linear approximation with a correlation greater than 2−64. With setting rd = 4,
rm = 8 and rl = 5, a differential-linear distinguisher is constructed for 17-round GIFT-128.
The 17-round differential-linear approximation with correlation of 2−58.78, whose indices of
active bits in its input difference are Index∆in

= {82, 83, 93, 94, 121, 122, 123}, the indices
of active bits in its output linear mask are
IndexΓout

= {50, 54, 91, 95, 112, 116}. The 17-round differential-linear distinguisher consists
of an 8-round differential-linear approximation of Em with correlation 2−18.78, a 4-round
differential trail of Ed with probability 2−16 and a 5-round linear trail of El with correlation
2−12, which are shown in the full paper. The theoretical estimation of correlation 2−58.78

is used in the following analysis of attack complexity.

Key-recovery attack. Based on the above 17-round differential-linear distinguisher, a
19-round key-recovery attack is given by extending one round at the top and one round at
the bottom of this distinguisher. The key-recovery attack on 19-round GIFT-128 is given
in the full paper, where 6 key bits are guessed.

Complexity analysis. The advantage of attack is set as a = 9 to make a balance
between the exhaustive search. When the data complexity is D = 2N = 2122.51, and the
success probability is 85.21%. The time complexity of the procedure is T = 26 × 2N ×

4
19×32 + 2128−a = 2121.53.

7 Conclusion
In this paper, we evaluated the security of GIFT-64/128, GIFT-COFB and HyENA against
differential-linear cryptanalysis. The automatic tool was developed for searching differential-
linear approximations for the ciphers based on S-boxes. With the application of our
automatic tool, we found the 13-round differential-linear distinguishers for GIFT-COFB and
HyENA, and the 18-round key-recovery attacks were given on both ciphers, which cover two
rounds more than the previous best ones. As regards GIFT-64 and GIFT-128, the 12-round
and 17-round differential-linear distinguishers were found, leading to the 18-round and
19-round key-recovery attacks respectively. The attacks on GIFT-64 and GIFT-128 could
not reach the same rounds with the best attacks obtained by the differential cryptanalysis
in [CZD19] and [ZDC+21] respectively, same to the linear case. We stress again that our
attacks do not threaten the security of these ciphers.

In future work, we will continue to improve the automatic tool for differential-linear
cryptanalysis. Although the (differential-linear) distinguishers with more rounds are found,
fewer rounds are appended at the top and bottom at the distinguishers to launch the
key-recovery attacks. Therefore, more advanced techniques may improve further the
key-recovery attacks in differential-linear cryptanalysis, such as the fast Fourier transform
(FFT) and filtering technique with guessing partial S-boxes. Another one is how to
integrate the key-recovery part into the MILP model. This strategy could be used in our
attacks, and we will further investigate how it could improve the results. Furthermore, we
are going to analyze other ciphers and evaluate their security with the automatic tool.
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